JP2010115025A - Contactless power transmission system and electronic device - Google Patents

Contactless power transmission system and electronic device Download PDF

Info

Publication number
JP2010115025A
JP2010115025A JP2008285998A JP2008285998A JP2010115025A JP 2010115025 A JP2010115025 A JP 2010115025A JP 2008285998 A JP2008285998 A JP 2008285998A JP 2008285998 A JP2008285998 A JP 2008285998A JP 2010115025 A JP2010115025 A JP 2010115025A
Authority
JP
Japan
Prior art keywords
electrodes
pair
voltage
electronic device
transmission system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008285998A
Other languages
Japanese (ja)
Other versions
JP5460022B2 (en
Inventor
Kenji Shiba
建次 柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2008285998A priority Critical patent/JP5460022B2/en
Publication of JP2010115025A publication Critical patent/JP2010115025A/en
Application granted granted Critical
Publication of JP5460022B2 publication Critical patent/JP5460022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To supply electric power to electronic equipment in a living body from outside the body without giving much impact on the body. <P>SOLUTION: A pair of intracorporeal electrodes 12a and 12b are disposed on the outer surface of a capsule 11, and electronic equipment is encapsulated inside the capsule 11, then the capsule 11 is disposed inside a living body. A pair of extracorporeal electrodes 22a and 22b which are dielectrically coupled to the intracorporeal electrodes 12a and 12b are mounted on the surface of the body. An AC voltage is applied to the extracorporeal electrodes 22a and 22b to induce an AC voltage in the intracorporeal electrodes 12a and 12b. The AC voltage induced in the intracorporeal electrodes 12a and 12b is rectified and applied to the electronic equipment as an operating voltage or is just applied to the electronic equipment as it is as an operating voltage. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、体内で使用される電子機器等に非接触で電力を供給する非接触電力電送システムと、非接触で電力の供給を受けて動作する電子装置に関する。   The present invention relates to a non-contact power transmission system that supplies electric power to an electronic device or the like used in the body in a non-contact manner, and an electronic apparatus that operates by receiving the supply of electric power in a non-contact manner.

体内に埋め込まれたペースメーカ、除細動機等体内に埋め込まれて動作する機器が存在する。また、カプセル型内視鏡のように、飲み込んで使用する電子機器も存在する。
これらの機器に共通する課題として、電源の確保がある。
There are devices that operate by being implanted in the body, such as pacemakers and defibrillators implanted in the body. There are electronic devices that are swallowed and used like a capsule endoscope.
A problem common to these devices is securing a power source.

通常これらの機器は、電池(バッテリ)で駆動されるが、電池容量に限界があるため、消費電力が大きくなる処理、例えば、高解像度での頻繁な撮影が困難、多機能化が困難などの課題を有する。   Normally, these devices are driven by batteries, but the battery capacity is limited, so processing that increases power consumption, for example, frequent shooting at high resolution is difficult, and multi-functionality is difficult. Has a problem.

このような問題を改善するため、体外より、体内の電子機器に電力を非接触で供給する手法が研究されている。例えば、体内機器に誘導コイル(アンテナ)を配置し、体外の送信コイルより、磁界を体内に向けて送信し、体内の電子機器の誘導コイルに電磁誘導による起電力を誘起させる手法が提案されている。   In order to improve such a problem, methods for supplying electric power from outside the body to electronic devices inside the body are being studied. For example, a method has been proposed in which an induction coil (antenna) is arranged in an in-vivo device, a magnetic field is transmitted from the transmission coil outside the body toward the inside of the body, and an electromotive force due to electromagnetic induction is induced in the induction coil of the internal electronic device. Yes.

しかし、この手法では、送信コイルが大型化すると共に磁界により生体に局所的に生ずる渦電流による熱・刺激等、生体への影響が大きいという問題がある。また、伝送できるエネルギーが100mW程度でさほど大きくできない。   However, this technique has a problem that the transmission coil becomes large and the influence on the living body is large, such as heat and stimulation due to eddy currents locally generated in the living body by the magnetic field. Moreover, the energy that can be transmitted cannot be increased so much at about 100 mW.

また、磁界を使用せずに、非接触で電力を伝達する手法として、例えば、特許文献1には、静電結合により、カードリーダライタと非接触式カードとの間で電力を伝送する技術が開示されている。   Moreover, as a technique for transmitting power without contact without using a magnetic field, for example, Patent Document 1 discloses a technique for transmitting power between a card reader / writer and a contactless card by electrostatic coupling. It is disclosed.

特許文献1に開示された技術は、カードリーダライタの電極と非接触式カードの電極とを対向させ、対向する電極の静電結合を用いてカードリーダライタから非接触式カードに電力を非接触で伝送する。   In the technique disclosed in Patent Document 1, the electrode of the card reader / writer and the electrode of the non-contact type card are opposed to each other, and electric power is not contacted from the card reader / writer to the non-contact type card using electrostatic coupling of the opposed electrodes. Transmit with.

特開2005−79786号公報JP-A-2005-79786

しかしながら、体内に埋設された電子機器或いは飲み込まれた電子機器の場合、これらの機器に配置された電極と体外の電極とを近接および対向させることは困難であり、特許文献1の技術をそのまま適用することはできない。また、生体への影響も考慮しなければならない。   However, in the case of an electronic device embedded in the body or a swallowed electronic device, it is difficult to make the electrodes arranged in these devices and the electrodes outside the body approach and face each other, and the technique of Patent Document 1 is applied as it is. I can't do it. In addition, the influence on the living body must be considered.

本発明は上記実状に鑑みてなされたものであり、生体に与える影響が小さく且つ生体内の電子機器に体外より電力を供給することを可能とすることを目的とする。
また、本発明は、生体内の電子機器に体外より効率的に非接触で電力を供給することを可能とすることを他の目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to have a small influence on a living body and to supply power from outside the body to an electronic device in the living body.
Another object of the present invention is to enable electric power to be supplied to an in-vivo electronic device more efficiently and non-contact than outside the body.

上記目的を達するため、本願発明の第1の観点に係る非接触電力伝送システムは、
体内に配置された少なくとも一対の体内電極と、
体内に配置され、前記少なくとも一対の体内電極に接続され、前記少なくとも一対の体内電極に誘起された電力を電子機器に供給するための電力供給手段と、
体表面に装着され、前記体内電極と誘電結合する少なくとも一対の体外電極と、
前記体外電極に交流電圧を印加する交流電源手段と、を備えることを特徴とする。
In order to achieve the above object, a non-contact power transmission system according to the first aspect of the present invention provides:
At least a pair of body electrodes disposed in the body;
Power supply means disposed in the body, connected to the at least one pair of body electrodes, and for supplying power induced in the at least one pair of body electrodes to an electronic device;
At least a pair of extracorporeal electrodes mounted on the body surface and inductively coupled with the in vivo electrodes;
AC power supply means for applying an AC voltage to the extracorporeal electrode.

例えば、前記体外電極は、前記体内電極よりも面積が大きく形成されている。
前記少なくとも一対の体内電極は、例えば、主面を対向させて配置されており、前記電力供給手段は、前記少なくとも一対の体内電極間の領域に配置されている。
For example, the external electrode has a larger area than the internal electrode.
For example, the at least one pair of body electrodes are arranged with their main surfaces facing each other, and the power supply means is arranged in a region between the at least one pair of body electrodes.

例えば、前記少なくとも一対の体内電極は、組み合わされて円筒形を構成する。   For example, the at least one pair of body electrodes are combined to form a cylindrical shape.

例えば、前記電力供給手段の出力する電力により動作する電子機器をさらに備えてもよい。   For example, you may further provide the electronic device which operate | moves with the electric power which the said electric power supply means outputs.

例えば、前記電子機器は、電池を備え、前記電池からの電力と前記電力供給手段からの電力とを用いて動作する。
前記電力供給手段は、例えば、前記少なくとも一対の体内電極に誘起された電圧を整流して前記電子機器に供給する整流回路を備える。また、前記電力供給手段は、前記少なくとも一対の体内電極に誘起された交流電圧を交流のまま前記電子機器に供給する配線回路等から構成されてもよい。
For example, the electronic device includes a battery and operates using power from the battery and power from the power supply unit.
The power supply unit includes, for example, a rectifier circuit that rectifies a voltage induced in the at least one pair of body electrodes and supplies the rectified voltage to the electronic device. Further, the power supply means may be configured by a wiring circuit or the like that supplies an AC voltage induced in the at least one pair of body electrodes to the electronic device while being AC.

前記交流電源手段は、例えば、その出力インピーダンスと生体のインピーダンスが整合する周波数の交流電圧を前記体外電極間に印加する。   The AC power supply means applies, for example, an AC voltage having a frequency at which the output impedance matches the impedance of the living body between the extracorporeal electrodes.

前記交流電源手段は、例えば、5MHz乃至10MHzの交流電圧を前記体外電極間に印加することが望ましい。   The AC power supply means preferably applies an AC voltage of, for example, 5 MHz to 10 MHz between the extracorporeal electrodes.

上記目的を達するため、本願発明の第2の観点に係る電子装置は、
体内で使用される電子機器と、
体外に配置された少なくとも一対の体外電極と容量結合され、交流電圧が印加された体外電極との容量結合により交流電圧が誘起される少なくとも一対の体内電極と、
前記少なくとも一対の体内電極に接続され、前記少なくとも一対の体内電極に誘起された交流電圧を前記電子機器に供給する電力供給手段と、
を備える。
In order to achieve the above object, an electronic device according to a second aspect of the present invention provides:
Electronic devices used in the body,
At least a pair of in-vivo electrodes that are capacitively coupled to at least a pair of extracorporeal electrodes disposed outside the body, and in which an alternating voltage is induced by capacitive coupling with the extracorporeal electrode to which an alternating voltage is applied;
Power supply means connected to the at least one pair of body electrodes and supplying the electronic device with an alternating voltage induced in the at least one pair of body electrodes;
Is provided.

本発明によれば、内部電極と外部電極とが、誘電体である生体を介して対向し、静電結合により内部電極に電圧が誘起され、外部電極から内部電極への電力の伝達が可能となる。   According to the present invention, the internal electrode and the external electrode face each other through a living body that is a dielectric, and a voltage is induced in the internal electrode by electrostatic coupling, so that power can be transmitted from the external electrode to the internal electrode. Become.

本発明の実施形態1に係る非接触電力伝送システムについて、図面を参照して説明する。
本実施形態の非接触電力伝送システムは、体内に留置された機器又は飲み込まれた機器に体外から電力を非接触で提供するシステムであり、体内装置1と体外装置2とを備える。
A non-contact power transmission system according to Embodiment 1 of the present invention will be described with reference to the drawings.
The non-contact power transmission system of the present embodiment is a system that provides electric power from outside the body to a device placed in the body or swallowed, and includes an in-vivo device 1 and an extra-corporeal device 2.

体内装置1は、図1(a)、(b)に示すように、カプセル(容器)11と該カプセルの外面に形成された一対の電極(体内電極)12a、12bと、体内電極12a、12bに接続された整流回路13(図2)と、を備える。   As shown in FIGS. 1A and 1B, the internal device 1 includes a capsule (container) 11, a pair of electrodes (internal electrodes) 12a and 12b formed on the outer surface of the capsule, and internal electrodes 12a and 12b. Rectifier circuit 13 (FIG. 2) connected to

カプセル11は、耐酸性の絶縁性の透明樹脂等から、両端が閉じた円筒状に構成されている。カプセル11は、人間又は動物が飲み下すことが可能なサイズ、例えば、長さ3cm以下、径1.5cm程度に形成されている。   The capsule 11 is made of an acid-resistant insulating transparent resin or the like and has a cylindrical shape with both ends closed. The capsule 11 is formed in a size that can be swallowed by a human or an animal, for example, a length of 3 cm or less and a diameter of about 1.5 cm.

体内電極12aと12bは、塩化銀箔や銅箔等の導電膜から構成され、カプセル11の外面に貼付されており、組み合わされて円筒形を成している。体内電極12aと12bは、例えば、1mm〜15mm×2mm〜30mmに形成されている。   The body electrodes 12a and 12b are made of a conductive film such as silver chloride foil or copper foil, and are affixed to the outer surface of the capsule 11, and are combined to form a cylindrical shape. The body electrodes 12a and 12b are formed in a size of 1 mm to 15 mm × 2 mm to 30 mm, for example.

整流回路13は、カプセル11内に収容されており、例えば、図2に例示するようなダイオードD1〜D4から構成された全波整流回路から構成されている。   The rectifier circuit 13 is accommodated in the capsule 11 and is formed of, for example, a full-wave rectifier circuit including diodes D1 to D4 as illustrated in FIG.

さらに、カプセル11内には、電池14と電子機器17が収容されている。この電子機器17は、例えば、撮像装置と撮像画像を記憶するメモリを備えたカメラ装置、すなわち、カプセル型の内視鏡装置から構成される。
体内電極12a,12bと後述する体外電極22a,22bとの容量結合を阻害しないように、整流回路13,電子機器17等は、体内電極12aと12bとの間の空間に配置されていることが望ましい。
Further, a battery 14 and an electronic device 17 are accommodated in the capsule 11. The electronic device 17 is configured by, for example, a camera device including an imaging device and a memory that stores a captured image, that is, a capsule endoscope device.
The rectifier circuit 13, the electronic device 17 and the like may be arranged in a space between the internal electrodes 12a and 12b so as not to hinder capacitive coupling between the internal electrodes 12a and 12b and external electrodes 22a and 22b described later. desirable.

図3に示すように、整流回路13の出力する電圧と、電池14からダイオード15を介して印加される電圧とが、コンデンサ16により安定化され、電子機器17に動作電圧として供給される。ダイオード15の作用により、整流回路13の出力電圧およびコンデンサ16の電圧が一定レベル以下となったときにのみ電池14から出力され、電池14の消費が抑えられる   As shown in FIG. 3, the voltage output from the rectifier circuit 13 and the voltage applied from the battery 14 via the diode 15 are stabilized by the capacitor 16 and supplied to the electronic device 17 as an operating voltage. Due to the action of the diode 15, it is output from the battery 14 only when the output voltage of the rectifier circuit 13 and the voltage of the capacitor 16 are below a certain level, and consumption of the battery 14 is suppressed.

一方、体外装置2は、図4に示すように、人体41に装着される一対の体外電極22a、22bと、該一対の体外電極22a,22bの間に交流電圧を印加する交流電源23と、から構成されている。   On the other hand, as shown in FIG. 4, the extracorporeal device 2 includes a pair of extracorporeal electrodes 22a and 22b attached to a human body 41, and an AC power source 23 that applies an AC voltage between the pair of extracorporeal electrodes 22a and 22b. It is composed of

体外電極22a,22bは、比較的大きなサイズ、例えば、縦3〜20cm横10〜35cm程度の、塩化銀板や銅板等の導電性の板から構成され、金属アレルギーや感染防止のために、表面が絶縁体でカバーされている。   The extracorporeal electrodes 22a and 22b are composed of a conductive plate such as a silver chloride plate or a copper plate having a relatively large size, for example, a length of about 3 to 20 cm and a width of about 10 to 35 cm. Is covered with an insulator.

体外電極22a、22bは、体内装置1が位置する領域を挟むように、人体41に装着される。体外電極22a,22bは、体表面に直接装着されるか或いは体表面に比較的近い位置に配置されることが望ましい。なお、人体41に装着しやすいように、人体41の体型に合致する形状に加工したり、クッションを配置する等してもよい。
体外電極22a、22bを配置する位置は、任意である。例えば、体外電極22aを腹部に、体外電極22bを腰の部分に配置したり、体外電極22aを胸部に、体外電極22bを背中の部分に配置したり、体外電極22aを右の腰の部分、体外電極22bを左の腰の部分に配置する等してもよい。
The extracorporeal electrodes 22a and 22b are attached to the human body 41 so as to sandwich the region where the in-vivo device 1 is located. It is desirable that the extracorporeal electrodes 22a and 22b are directly attached to the body surface or disposed at a position relatively close to the body surface. In addition, it may be processed into a shape that matches the body shape of the human body 41, or a cushion may be disposed so as to be easily attached to the human body 41.
The positions where the extracorporeal electrodes 22a and 22b are arranged are arbitrary. For example, the extracorporeal electrode 22a is placed on the abdomen, the extracorporeal electrode 22b is placed on the waist, the extracorporeal electrode 22a is placed on the chest, the extracorporeal electrode 22b is placed on the back, the extracorporeal electrode 22a is placed on the right waist, The extracorporeal electrode 22b may be disposed on the left waist.

交流電源23は、所定周波数の交流電圧を発生し、体外電極22a、22b間に印加する。体外装置2から体内装置1に伝達されるエネルギーは、図8に模式的に示すように、周波数に依存し、交流電源23の出力インピーダンスと生体組織の負荷インピーダンスとが整合する周波数で最大となる。人体の場合には、この周波数はおよそ5MHz〜10MHzであり、交流電源23はこの周波数の交流電圧を発生する。   The AC power supply 23 generates an AC voltage having a predetermined frequency and applies it between the extracorporeal electrodes 22a and 22b. As schematically shown in FIG. 8, the energy transmitted from the extracorporeal device 2 to the intracorporeal device 1 depends on the frequency, and becomes maximum at a frequency at which the output impedance of the AC power supply 23 matches the load impedance of the living tissue. . In the case of a human body, this frequency is about 5 MHz to 10 MHz, and the AC power supply 23 generates an AC voltage of this frequency.

上記構成においては、カプセル11が体外電極22a,22bと対向する領域に位置すると体外電極22a,22bと体内電極12a,12bとが誘電体である人体を介して容量結合する。このときの等価回路を図5に示す。なお、図5の等価回路は、体内電極12a,12bと体外電極22a、22bとが対向していると仮定した場合の回路図である。   In the above configuration, when the capsule 11 is located in a region facing the extracorporeal electrodes 22a and 22b, the extracorporeal electrodes 22a and 22b and the intracorporeal electrodes 12a and 12b are capacitively coupled through a human body that is a dielectric. An equivalent circuit at this time is shown in FIG. The equivalent circuit in FIG. 5 is a circuit diagram when it is assumed that the internal electrodes 12a and 12b and the external electrodes 22a and 22b face each other.

図5の等価回路からも明らかなように、体外電極22a,22bに交流電圧を印加すると、図6(a)、(b)に模式的に示すように、体内電極12a,12bには、対向する体外電極22a、22bに印加されている電圧とは逆極性の電圧が誘起される。このため、体内電極12a,12bには、交流電圧が誘起される。   As is apparent from the equivalent circuit of FIG. 5, when an AC voltage is applied to the extracorporeal electrodes 22a and 22b, the internal electrodes 12a and 12b are opposed to each other as schematically shown in FIGS. 6 (a) and 6 (b). A voltage having a polarity opposite to that applied to the extracorporeal electrodes 22a and 22b is induced. For this reason, an alternating voltage is induced in the body electrodes 12a and 12b.

整流回路13は、体内電極12a,12bに発生した交流電圧を整流して出力する。
電圧安定化用コンデンサ16は、整流回路13から出力された電力と電池14からダイオード15を介して供給される電力とにより、充電され、電圧を安定化して電子機器17に供給する。
The rectifier circuit 13 rectifies and outputs the AC voltage generated in the body electrodes 12a and 12b.
The voltage stabilizing capacitor 16 is charged by the power output from the rectifier circuit 13 and the power supplied from the battery 14 via the diode 15, stabilizes the voltage, and supplies the voltage to the electronic device 17.

電子機器17は、電圧安定化用コンデンサ16に蓄積された電力を用いて動作する。   The electronic device 17 operates using the electric power stored in the voltage stabilizing capacitor 16.

以上説明したように、本実施の形態によれば、体内の電子機器17に、体外より、非接触で電力を伝送することができる。
このため、電池14と併用することにより、電子機器17の体内での動作時間を長くしたり、電子機器17をより高性能化することも可能となる。
さらに、磁界を使用しないため、局所的な渦電流による人体への負担も小さくて済む。
As described above, according to the present embodiment, electric power can be transmitted to the electronic device 17 in the body in a non-contact manner from outside the body.
For this reason, by using together with the battery 14, the operation time in the body of the electronic device 17 can be lengthened, and the electronic device 17 can be improved in performance.
Furthermore, since no magnetic field is used, the burden on the human body due to local eddy currents can be reduced.

なお、人体41のなかで、カプセル11の向きおよび位置は変化し、体内電極12a,12bの向きは一定ではない。このため、例えば、図7(a)〜(c)に模式的に示すように、体内電極12a,12bと体外電極22a,22bの相対的な向きや位置は変化する。しかし、体外電極22a、22bを体内電極12a,12bより十分に大きく形成していること、体内電極12a、12bを円筒状に形成していること、誘電体である人体41を介した電界の回り込み等により、カプセル11の向きや体内の位置に関わらず、電力を安定してカプセル11に伝送することが可能である。   In the human body 41, the direction and position of the capsule 11 change, and the directions of the body electrodes 12a and 12b are not constant. For this reason, for example, as schematically shown in FIGS. 7A to 7C, the relative orientations and positions of the in-body electrodes 12a and 12b and the out-of-body electrodes 22a and 22b change. However, the extracorporeal electrodes 22a and 22b are formed to be sufficiently larger than the intracorporeal electrodes 12a and 12b, the intracorporeal electrodes 12a and 12b are formed in a cylindrical shape, and the electric field wraps around the human body 41 which is a dielectric. For example, the power can be stably transmitted to the capsule 11 regardless of the orientation of the capsule 11 or the position in the body.

(第2の実施の形態)
第1の実施の形態において、体外電極22a、22bより体内電極12a,12bに流れる電流が大きすぎると、熱作用および刺激作用により、人体に悪影響を与えてしまう。一般に、熱作用は、SAR=σ|E|/ρで表され、刺激作用(電流密度)は、J=σEで表される。ここで、σは、生体の導電率(S/m)、Eは電界強度[V/m]、ρは、生体の密度である。この点に関して、国際非電離放射線防護委員会により、暴露量に制限基準が設定されている(GUIDELINES FOR LIMITING EXPOSURE TO TIME-VARYING ELECTRIC, MAGNETIC, AND ELECTROMAGNETIC FIELDS(ICNIRP),1998)。具体的には、熱作用については、病院などの職業的暴露は、10[W/kg]、公衆の暴露は、2[W/kg]に制限され、刺激作用については、病院などの職業的暴露は、f/100[mA/m]、公衆の暴露は、f/500[mA/m]に制限されている(fは周波数、単位は[Hz]である)。そこで、交流電源23はこの基準を充足するように、電流(電力)および周波数を調整することが望ましい。
(Second Embodiment)
In the first embodiment, if the current flowing through the internal electrodes 12a and 12b is too large from the external electrodes 22a and 22b, the human body is adversely affected by the thermal action and stimulation action. In general, the thermal action is represented by SAR = σ | E | 2 / ρ, and the stimulating action (current density) is represented by J = σE. Here, σ is the electrical conductivity (S / m) of the living body, E is the electric field strength [V / m], and ρ is the density of the living body. In this regard, the International Non-Ionizing Radiation Protection Committee has set limits on exposure (GUIDELINES FOR LIMITING EXPOSURE TO TIME-VARYING ELECTRIC, MAGNETIC, AND ELECTROMAGNETIC FIELDS (ICNIRP), 1998). Specifically, regarding the thermal effect, occupational exposure in hospitals and the like is limited to 10 [W / kg], public exposure is limited to 2 [W / kg], and in terms of stimulation effects, occupational exposures such as hospitals Exposure is limited to f / 100 [mA / m 2 ] and public exposure is limited to f / 500 [mA / m 2 ] (f is frequency, unit is [Hz]). Therefore, it is desirable that the AC power source 23 adjusts the current (power) and frequency so as to satisfy this standard.

さらに、交流電源23の出力周波数を5MHz〜10MHzのいずれかに設定したとしても、交流電源23の出力インピーダンスと生体組織の負荷インピーダンスとが整合するとは限らず、交流電源23からカプセル11への電力の供給が効率的に行われないおそれがある。   Furthermore, even if the output frequency of the AC power supply 23 is set to any of 5 MHz to 10 MHz, the output impedance of the AC power supply 23 and the load impedance of the living tissue do not always match, and the power from the AC power supply 23 to the capsule 11 is not necessarily matched. May not be supplied efficiently.

そこで、第2実施形態においては、交流電源23をインテリジェント化し、最適な周波数および電流値を自動的に設定することとする。   Therefore, in the second embodiment, the AC power supply 23 is made intelligent and the optimum frequency and current value are automatically set.

図9に示すように、本実施の形態の交流電源23は、周波数コンバータ31と、高周波パワーアンプ32と、電流計33と、電圧計34と、コントローラ35と、を備える。   As shown in FIG. 9, the AC power supply 23 according to the present embodiment includes a frequency converter 31, a high-frequency power amplifier 32, an ammeter 33, a voltmeter 34, and a controller 35.

コントローラ35には、事前に、職業的暴露であるか公衆の暴露であるかが設定される。
また、体外電極22a、22bを装着する人物の体重のうち、体外電極22a,22bが対向する部分の重量が設定される。
The controller 35 is set in advance as to whether it is occupational exposure or public exposure.
In addition, the weight of the portion of the person wearing the extracorporeal electrodes 22a and 22b facing the extracorporeal electrodes 22a and 22b is set.

体外電極22a,22bへの交流電圧の印加を開始すると、コントローラ35は、まず、周波数コンバータ31を制御して、比較的低電力で、体外電極22a、22bに印加する電圧の周波数を低周波から高周波までスキャンし、電流および電圧を測定し、最も効率が高くなる周波数fを特定する。   When the application of the alternating voltage to the extracorporeal electrodes 22a and 22b is started, the controller 35 first controls the frequency converter 31 to reduce the frequency of the voltage applied to the extracorporeal electrodes 22a and 22b from a low frequency with relatively low power. Scan up to a high frequency, measure current and voltage, and identify the frequency f at which efficiency is highest.

続いて、コントローラ35は、特定された周波数fとなるように周波数コンバータ31を制御し且つ設定された暴露条件(制限)を充足するように、電流計33および電圧計34の測定値をモニタし、高周波パワーアンプ32の増幅率を制御する。   Subsequently, the controller 35 monitors the measured values of the ammeter 33 and the voltmeter 34 so as to control the frequency converter 31 so as to achieve the specified frequency f and satisfy the set exposure condition (limit). The amplification factor of the high frequency power amplifier 32 is controlled.

このような構成とすることにより、体外装置2から体内装置1への電力の供給を効率良く、さらに、生体への影響無く行うことができる。   By adopting such a configuration, it is possible to efficiently supply power from the extracorporeal device 2 to the intracorporeal device 1 and without affecting the living body.

なお、上記説明では、飲み込むタイプの電子機器17に電力を供給する例を説明したが、電子機器17の構成は任意である。例えば、埋め込み型のペースメーカのように、位置が固定されている電子機器に体外より電力を供給する場合にも適用可能である。
また、体外電極22a,22bを装着する位置は任意であり、適宜変化させてもよい。例えば、電子機器17が胃内に位置している場合には、体外電極22a,22bを上腹部と対向する位置に配置し、電子機器17が腸内に位置している時間帯には、体外電極22a,22bを下腹部と対向する位置に配置する等してもよい。
In addition, although the example which supplies electric power to the electronic device 17 of the swallowing type was demonstrated in the said description, the structure of the electronic device 17 is arbitrary. For example, the present invention can also be applied to the case where power is supplied from outside the body to an electronic device whose position is fixed, such as an implantable pacemaker.
The positions where the extracorporeal electrodes 22a and 22b are mounted are arbitrary and may be changed as appropriate. For example, when the electronic device 17 is located in the stomach, the extracorporeal electrodes 22a and 22b are arranged at positions facing the upper abdomen, and during the time zone in which the electronic device 17 is located in the intestine, The electrodes 22a and 22b may be arranged at positions facing the lower abdomen.

また、体外から供給する電力と電池14からの電力を併用して電子機器17を駆動する例を示したが、電池14を使用せず、体外から供給する電力のみで電子機器17を駆動するように構成してもよい。この場合も、電圧安定化用コンデンサ16を配置することが望ましい。   Moreover, although the example which drives the electronic device 17 using together the electric power supplied from the body and the electric power from the battery 14 was shown, the electronic device 17 is driven only by the electric power supplied from the outside without using the battery 14. You may comprise. Also in this case, it is desirable to arrange the voltage stabilizing capacitor 16.

整流回路13として、ダイオードブリッジによる全波整流回路を例示したが、他の回路構成を採用可能である。
図3の回路も適宜変更可能である。例えば、ダイオード15を除去したり、より高性能な電圧安定化回路を採用してもよい。
さらに、電池14として充電可能な二次電池を使用し、図3の回路から、ダイオード15を除去し、整流回路13の出力で電池14を充電できるように構成してもよい。
As the rectifier circuit 13, a full-wave rectifier circuit using a diode bridge is illustrated, but other circuit configurations can be adopted.
The circuit of FIG. 3 can also be changed as appropriate. For example, the diode 15 may be removed or a higher performance voltage stabilizing circuit may be employed.
Further, a rechargeable secondary battery may be used as the battery 14, the diode 15 may be removed from the circuit of FIG. 3, and the battery 14 may be charged with the output of the rectifier circuit 13.

また、体内電極12a、12bに誘起された交流電圧を整流回路13により整流して電子機器17に電力を供給する例を示したが、交流電圧で動作可能な電子機器17或いは回路要素など、例えば、カプセル内視鏡に搭載されている光源用のLEDなどには、体内電極12a、12bに誘起された交流電圧を配線等の電力供給手段を用いて交流のまま供給する等してもよい。また、一部の回路要素には、整流した電圧を、他の一部の要素には交流を印加する等してもよい。例えば、カプセル内視鏡等は、光源の部分で最も大きい消費電力があり、電池のエネルギーだけでは供給電力が不足する場合には、光源の部分には容量結合方式で体外から電力を送って、交流のまま供給し、他の直流回路部には電池から電力を供給する等してもよい。   Moreover, although the example which supplies the electric power to the electronic device 17 by rectifying the AC voltage induced in the body electrodes 12a and 12b by the rectifier circuit 13 has been shown, the electronic device 17 or circuit elements that can operate with the AC voltage, for example, For the LED for the light source mounted on the capsule endoscope, the AC voltage induced in the body electrodes 12a and 12b may be supplied as AC using power supply means such as wiring. Further, a rectified voltage may be applied to some circuit elements, and an alternating current may be applied to some other elements. For example, the capsule endoscope or the like has the largest power consumption in the light source part, and when the supply power is insufficient with only the energy of the battery, the power is sent to the light source part from outside the body by the capacitive coupling method. The alternating current may be supplied as it is, and other DC circuit units may be supplied with electric power from the battery.

体内電極の構造として、一対の、全体として円筒(の一部)を構成するものを開示したが、他の構成、例えば、平行平板型の電極構造も可能である。また、円筒は、断面が完全な円である必要はなく、断面が楕円、多角形(4角形、6角形、8角形、5角形等)等でもよい。また、体内電極、体外電極共に一対に限定されず、複数対でもよい。
体内電極12a、12bの配置位置も、カプセル1の外面に限定されず、内面等でもよい。
As a structure of the body electrode, a structure that forms a pair of (a part of) a cylinder as a whole is disclosed, but other structures such as a parallel plate type electrode structure are also possible. Further, the cylinder does not have to be a complete circle in cross section, and the cross section may be an ellipse, a polygon (a quadrangle, a hexagon, an octagon, a pentagon, or the like). In addition, both the body electrode and the body electrode are not limited to a pair, and a plurality of pairs may be used.
The arrangement position of the body electrodes 12a and 12b is not limited to the outer surface of the capsule 1, and may be the inner surface or the like.

さらに、カプセル11も、円筒状のものに限定されず、球形でも、箱状でもよい。カプセル11が球形の場合、例えば、体内電極12a,12bも全体として球面(の一部)を構成する。また、カプセル11が箱型の場合には、体内電極12a,12bは平行平板となる。体内装置1として、口から飲み込むタイプのものを例示したが、カプセル11を留置型とし、電子機器17を、例えば、ペースメーカ、除細動機等として、これらの電気機器に体外から電力を供給する場合にも、同様に本願発明を適用可能である。   Furthermore, the capsule 11 is not limited to a cylindrical shape, and may be spherical or box-shaped. When the capsule 11 is spherical, for example, the internal electrodes 12a and 12b also form a spherical surface (a part thereof) as a whole. When the capsule 11 is box-shaped, the body electrodes 12a and 12b are parallel plates. The intracorporeal device 1 is exemplified as a device that is swallowed from the mouth. However, when the capsule 11 is an indwelling type and the electronic device 17 is, for example, a pacemaker or a defibrillator, power is supplied to these electrical devices from outside the body. Similarly, the present invention can also be applied.

カプセルを使用せず、電子機器17の筐体の外表面に体内電極12a,12bを配置することも可能である。   It is also possible to arrange the body electrodes 12a and 12b on the outer surface of the casing of the electronic device 17 without using a capsule.

以上、説明したように、本発明は、非接触で電力を伝達するシステムに広く利用可能であり、さらに、外部電源に直接接続することが困難な環境下で動作する電子機器の電源として利用可能である。   As described above, the present invention can be widely used in systems that transmit power in a non-contact manner, and can also be used as a power source for electronic devices that operate in environments where it is difficult to directly connect to an external power source. It is.

本発明の第1の実施の形態に係る非接触電力伝送システムを構成する体内装置の構成を示す図であり、(a)は外観図、(b)は、(a)のI−I線での拡大断面図である。It is a figure which shows the structure of the in-vivo apparatus which comprises the non-contact electric power transmission system which concerns on the 1st Embodiment of this invention, (a) is an external view, (b) is the II line | wire of (a). FIG. 図1に示す体内装置に収容される整流回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the rectifier circuit accommodated in the intracorporeal apparatus shown in FIG. 体内装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of an internal device. 外部装置の構成と人体に装着した様子を示す図である。It is a figure which shows a mode that the structure of the external apparatus and the human body were mounted | worn. 体内装置および体外装置の等価回路の回路図である。It is a circuit diagram of the equivalent circuit of an internal device and an external device. (a)、(b)は、体外電極に交流を印加することにより、体内電極に交流電圧が誘起されることを説明するための図面である。(A), (b) is drawing for demonstrating that an alternating voltage is induced in an internal body electrode by applying alternating current to an external body electrode. 体内電極と体外電極の相対位置および向きが変換する様子を模式的に示す図である。It is a figure which shows typically a mode that the relative position and direction of an internal electrode and an external electrode change. 体外電極に印加する交流電圧の周波数と伝送パワー(伝送効率)との関係を示す特性図である。It is a characteristic view which shows the relationship between the frequency of the alternating voltage applied to an extracorporeal electrode, and transmission power (transmission efficiency). 本発明の第2の実施の形態に係る交流電源の構成図である。It is a block diagram of the alternating current power supply which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 体内装置
2 体外装置
11 カプセル
12a、12b 体内電極
13 整流回路
14 電池
15 ダイオード
16 電圧安定化用コンデンサ
17 電子機器
22 体外電極
23 交流電源
31 周波数コンバータ
32 高周波パワーアンプ
D1〜D3 ダイオード
I 電流計
V 電圧計
DESCRIPTION OF SYMBOLS 1 Internal device 2 External device 11 Capsule 12a, 12b Internal electrode 13 Rectifier circuit 14 Battery 15 Diode 16 Capacitor for voltage stabilization 17 Electronic device 22 External electrode
23 AC power supply 31 Frequency converter 32 High frequency power amplifier D1-D3 Diode I Ammeter V Voltmeter

Claims (10)

体内に配置された少なくとも一対の体内電極と、
体内に配置され、前記少なくとも一対の体内電極に接続され、前記少なくとも一対の体内電極に誘起された電力を電子機器に供給するための電力供給手段と、
体表面に装着され、前記体内電極と誘電結合する少なくとも一対の体外電極と、
前記体外電極に交流電圧を印加する交流電源手段と、
を備えることを特徴とする非接触電力伝送システム。
At least a pair of body electrodes disposed in the body;
Power supply means disposed in the body, connected to the at least one pair of body electrodes, and for supplying power induced in the at least one pair of body electrodes to an electronic device;
At least a pair of extracorporeal electrodes mounted on the body surface and inductively coupled with the in vivo electrodes;
AC power supply means for applying an AC voltage to the extracorporeal electrode;
A non-contact power transmission system comprising:
前記体外電極は、前記体内電極よりも面積が大きく形成されている、ことを特徴とする請求項1に記載の非接触電力伝送システム。   The non-contact power transmission system according to claim 1, wherein the extracorporeal electrode has a larger area than the intracorporeal electrode. 前記少なくとも一対の体内電極は、主面を対向させて配置されており、前記電力供給手段は、前記少なくとも一対の体内電極間の領域に配置されている、ことを特徴とする請求項1又は2に記載の非接触電力伝送システム。   3. The at least one pair of body electrodes are disposed with their main surfaces facing each other, and the power supply means is disposed in a region between the at least one pair of body electrodes. The contactless power transmission system described in 1. 前記少なくとも一対の体内電極は、組み合わされて円筒形を構成する、ことを特徴とする請求項1、2又は3に記載の非接触電力伝送システム。   The contactless power transmission system according to claim 1, 2, or 3, wherein the at least one pair of body electrodes are combined to form a cylindrical shape. 前記電力供給手段の出力する電力により動作する電子機器をさらに備える、ことを特徴とする請求項1、2又は3に記載の非接触電力伝送システム。   The contactless power transmission system according to claim 1, further comprising: an electronic device that operates with power output from the power supply unit. 前記電子機器は、電池を備え、前記電池からの電力と前記電力供給手段からの電力とを用いて動作する、ことを特徴とする請求項5に記載の非接触電力伝送システム。   The non-contact power transmission system according to claim 5, wherein the electronic device includes a battery and operates using power from the battery and power from the power supply unit. 前記電力供給手段は、前記少なくとも一対の体内電極に誘起された電圧を整流して前記電子機器に供給する整流回路又は前記少なくとも一対の体内電極に誘起された交流電圧を交流電圧のまま前記電子機器に供給する配線回路を備える、ことを特徴とする請求項1乃至6のいずれか1項に記載の非接触電力伝送システム。   The power supply means rectifies a voltage induced in the at least one pair of body electrodes and supplies the rectified voltage to the electronic device, or an AC voltage induced in the at least one pair of body electrodes remains an AC voltage as the electronic device. The contactless power transmission system according to claim 1, further comprising a wiring circuit that supplies the wiring circuit. 前記交流電源手段は、その出力インピーダンスと生体のインピーダンスが整合する周波数の交流電圧を前記体外電極間に印加する、ことを特徴とする請求項1乃至7のいずれか1項に記載の非接触電力伝送システム。   8. The non-contact power according to claim 1, wherein the AC power supply means applies an AC voltage having a frequency at which an output impedance thereof matches an impedance of a living body between the external electrodes. Transmission system. 前記交流電源手段は、5MHz乃至10MHzの交流電圧を前記体外電極間に印加する、ことを特徴とする請求項1乃至8のいずれか1項に記載の非接触電力伝送システム。   The contactless power transmission system according to any one of claims 1 to 8, wherein the AC power supply means applies an AC voltage of 5 MHz to 10 MHz between the external electrodes. 体内で使用される電子機器と、
体外に配置された少なくとも一対の体外電極と容量結合され、交流電圧が印加された体外電極との容量結合により交流電圧が誘起される少なくとも一対の体内電極と、
前記少なくとも一対の体内電極に接続され、前記少なくとも体内電極に誘起された交流電圧を前記電子機器に供給する電力供給手段と、
を備える電子装置。
Electronic devices used in the body,
At least a pair of in-vivo electrodes that are capacitively coupled to at least a pair of extracorporeal electrodes disposed outside the body, and in which an alternating voltage is induced by capacitive coupling with the extracorporeal electrode to which an alternating voltage is applied;
Power supply means connected to the at least one pair of body electrodes and supplying an alternating voltage induced in the at least body electrodes to the electronic device;
An electronic device comprising:
JP2008285998A 2008-11-06 2008-11-06 Non-contact power transmission system and electronic device Active JP5460022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008285998A JP5460022B2 (en) 2008-11-06 2008-11-06 Non-contact power transmission system and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008285998A JP5460022B2 (en) 2008-11-06 2008-11-06 Non-contact power transmission system and electronic device

Publications (2)

Publication Number Publication Date
JP2010115025A true JP2010115025A (en) 2010-05-20
JP5460022B2 JP5460022B2 (en) 2014-04-02

Family

ID=42303127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008285998A Active JP5460022B2 (en) 2008-11-06 2008-11-06 Non-contact power transmission system and electronic device

Country Status (1)

Country Link
JP (1) JP5460022B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510374A (en) * 2009-11-04 2013-03-21 プロテウス デジタル ヘルス, インコーポレイテッド System for supply chain management
KR101360971B1 (en) * 2012-04-16 2014-02-12 조선대학교산학협력단 Wireless power transmission system in human body
JP2014524728A (en) * 2011-08-16 2014-09-22 コーニンクレッカ フィリップス エヌ ヴェ Capacitive wireless power feeding inside tube-shaped structures
KR20150069298A (en) * 2013-12-13 2015-06-23 엘지전자 주식회사 Cooking apparatus using radio frequency heating
KR101763882B1 (en) * 2015-02-23 2017-08-01 김정현 Wireless Charging Device
WO2018043158A1 (en) * 2016-09-02 2018-03-08 株式会社資生堂 Artificial nail system
WO2018043670A1 (en) * 2016-08-31 2018-03-08 国立大学法人九州大学 Power supply system
WO2020246539A1 (en) * 2019-06-04 2020-12-10 学校法人早稲田大学 Batteryless electronic device and transmission system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170317530A1 (en) * 2016-04-29 2017-11-02 Qualcomm Incorporated Methods and system for wireless power transmission via a shielding antenna

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356134A (en) * 1986-08-25 1988-03-10 沖電気工業株式会社 Non-contact charging portable electronic equipment
JPH01156890A (en) * 1987-12-15 1989-06-20 Iwaki Denshi Kk Ic card and its feeding device
JP2004159456A (en) * 2002-11-07 2004-06-03 Iden Videotronics:Kk Energy supplier
JP2006513670A (en) * 2003-01-25 2006-04-20 コリア インスティテュート オブ サイエンス アンド テクノロジー Data communication method through human body, data communication system through human body, and sensing device used therefor
US20060143004A1 (en) * 2004-12-08 2006-06-29 Sung-Eun Kim Sound transmission system
WO2007069483A1 (en) * 2005-12-16 2007-06-21 Olympus Corporation System for detecting position in subject

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356134A (en) * 1986-08-25 1988-03-10 沖電気工業株式会社 Non-contact charging portable electronic equipment
JPH01156890A (en) * 1987-12-15 1989-06-20 Iwaki Denshi Kk Ic card and its feeding device
JP2004159456A (en) * 2002-11-07 2004-06-03 Iden Videotronics:Kk Energy supplier
JP2006513670A (en) * 2003-01-25 2006-04-20 コリア インスティテュート オブ サイエンス アンド テクノロジー Data communication method through human body, data communication system through human body, and sensing device used therefor
US20060143004A1 (en) * 2004-12-08 2006-06-29 Sung-Eun Kim Sound transmission system
WO2007069483A1 (en) * 2005-12-16 2007-06-21 Olympus Corporation System for detecting position in subject

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013017222; Namjun Cho: 'The Human Body Characteristics as a Signal Transmission Medium for Tntrabody Communication' IEEE TRANSACTION ON MICROWAVE THEORY AND TECHNIQUES VOL.55, NO.5, 200705, 1080-1086, IEEE *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510374A (en) * 2009-11-04 2013-03-21 プロテウス デジタル ヘルス, インコーポレイテッド System for supply chain management
JP2015133125A (en) * 2009-11-04 2015-07-23 プロテウス デジタル ヘルス, インコーポレイテッド system for supply chain management
JP2014524728A (en) * 2011-08-16 2014-09-22 コーニンクレッカ フィリップス エヌ ヴェ Capacitive wireless power feeding inside tube-shaped structures
KR101360971B1 (en) * 2012-04-16 2014-02-12 조선대학교산학협력단 Wireless power transmission system in human body
KR20150069298A (en) * 2013-12-13 2015-06-23 엘지전자 주식회사 Cooking apparatus using radio frequency heating
KR102134684B1 (en) 2013-12-13 2020-07-16 엘지전자 주식회사 Cooking apparatus using radio frequency heating
KR101763882B1 (en) * 2015-02-23 2017-08-01 김정현 Wireless Charging Device
JPWO2018043670A1 (en) * 2016-08-31 2019-08-29 国立大学法人九州大学 Power supply system
WO2018043670A1 (en) * 2016-08-31 2018-03-08 国立大学法人九州大学 Power supply system
US11278344B2 (en) 2016-08-31 2022-03-22 Kyushu University, National University Corporation Power feed system
JP7284897B2 (en) 2016-08-31 2023-06-01 哲夫 池田 power supply system
JPWO2018043158A1 (en) * 2016-09-02 2019-06-24 株式会社 資生堂 Nail system
WO2018043158A1 (en) * 2016-09-02 2018-03-08 株式会社資生堂 Artificial nail system
WO2020246539A1 (en) * 2019-06-04 2020-12-10 学校法人早稲田大学 Batteryless electronic device and transmission system

Also Published As

Publication number Publication date
JP5460022B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5460022B2 (en) Non-contact power transmission system and electronic device
US11065462B2 (en) Wireless recharging system and method for flexible implantable subcutaneous medical device
Agarwal et al. Wireless power transfer strategies for implantable bioelectronics
US11351360B2 (en) Transcutaneous energy transfer systems
US20190076587A1 (en) Transcutaneous energy transfer systems
Abiri et al. Inductively powered wireless pacing via a miniature pacemaker and remote stimulation control system
ES2561030T3 (en) Connection charger - automatic disconnection of an implantable medical device
Xin et al. Study of a wireless power transmission system for an active capsule endoscope
US10881869B2 (en) Wireless re-charge of an implantable medical device
US9399131B2 (en) Moldable charger with support members for charging an implantable pulse generator
CN107847749B (en) Focused power transfer for implantable medical devices
US20130046361A1 (en) Moldable charger with shape-sensing means for an implantable pulse generator
US20070191908A1 (en) Method and apparatus for stimulating a denervated muscle
EP3541472B1 (en) Implantable medical device with a magnetically permeable housing and an inductive coil disposed about the housing
US9806536B2 (en) Method and apparatus for wireless magnetic power transmission
TW201818993A (en) System for wirelessly coupling in vivo
CN107929943B (en) Wireless charging cardiac pacemaker
Kilgore et al. Powering strategies for implanted multi‐function neuroprostheses for spinal cord injury
Fadhel et al. General principle of wireless power transmission and its applications in implantable medical devices
JP7284897B2 (en) power supply system
Shiba Electrically induced energy transmission used for implantable medical devices deep inside the body: Measurement of received voltage in consideration of biological effect
Abduljaleel et al. Survey of near-field wireless communication and power transfer for biomedical implants
Khan et al. Wireless power transfer techniques for implantable medical devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111007

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

R150 Certificate of patent or registration of utility model

Ref document number: 5460022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250