JP2010114227A - Solid imaging device and method of manufacturing the same, and electronic information apparatus - Google Patents

Solid imaging device and method of manufacturing the same, and electronic information apparatus Download PDF

Info

Publication number
JP2010114227A
JP2010114227A JP2008284897A JP2008284897A JP2010114227A JP 2010114227 A JP2010114227 A JP 2010114227A JP 2008284897 A JP2008284897 A JP 2008284897A JP 2008284897 A JP2008284897 A JP 2008284897A JP 2010114227 A JP2010114227 A JP 2010114227A
Authority
JP
Japan
Prior art keywords
transfer electrode
layer
film
layer transfer
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008284897A
Other languages
Japanese (ja)
Inventor
Kimiharu Arimura
公晴 有村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008284897A priority Critical patent/JP2010114227A/en
Publication of JP2010114227A publication Critical patent/JP2010114227A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify a manufacturing process without forming a contact part as in the prior art, and also form a concave shape having an advantageous efficiency of light collection without shape variations. <P>SOLUTION: Transfer electrodes 4 of a first layer are coupled to each other in the line direction to form a plurality of T-forms and transfer electrodes 5 of a second layer are coupled to each other in the line direction to form a plurality of inverted T-forms. The transfer electrodes 4 of the first layer are superposed on the transfer electrodes 5 of the second layer in the line direction so that ends of the transfer electrodes 4 of the first layer projected between the lines are superposed on ends of the transfer electrodes 5 of the second layer projected between the lines. In regions over the transfer electrodes 5 of the second layer where the transfer electrodes 5 of the second layer are not superposed on the transfer electrodes 4 of the first layer, in areas smaller than the transfer electrodes 5 of the second layer (having a smaller width), columnar island-shaped dummy structures 6 (dummy films) are arranged. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、被写体からの画像光を光電変換して撮像する半導体素子で構成された固体撮像素子およびその製造方法、この固体撮像素子を、画像入力デバイスとして撮像部に用いた例えばデジタルビデオカメラおよびデジタルスチルカメラなどのデジタルカメラや、監視カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、テレビジョン電話装置、カメラ付き携帯電話装置などの電子情報機器に関する。   The present invention relates to a solid-state imaging device configured by a semiconductor element that photoelectrically converts image light from a subject to image and a manufacturing method thereof, for example, a digital video camera using the solid-state imaging device as an image input device in an imaging unit, and The present invention relates to an electronic information device such as a digital camera such as a digital still camera, an image input camera such as a surveillance camera, a scanner device, a facsimile device, a television telephone device, and a mobile phone device with a camera.

従来のCCD型固体撮像素子では、受光面にマトリクス状に配置された複数の受光部からなる複数の光電変換素子と、この光電変換素子の少なくとも一方側に配置された垂直CCDとを有し、この垂直CCDに駆動パルスを印加して信号電荷を垂直方向に電荷転送するための転送電極が配置されている。さらに、行方向に隣り合う受光部間上の転送電極に電極材を配線として使用している。この上部に、層間絶縁膜、遮光用の遮蔽膜さらに層間絶縁膜がこの順に配置され、その層間絶縁膜の表面は、受光部の上方で凹形状を有している。この凹形状部が、平面視でX方向、Y方向において、縦断面でその表面が同一角度に傾斜することにより、安定したレンズ効果を得て集光率が高くなり、受光部での受光感度が高い固体撮像素子を得ることが可能となっている。   A conventional CCD solid-state imaging device has a plurality of photoelectric conversion elements composed of a plurality of light receiving portions arranged in a matrix on a light receiving surface, and a vertical CCD arranged on at least one side of the photoelectric conversion elements, Transfer electrodes are arranged for applying a drive pulse to the vertical CCD to transfer signal charges in the vertical direction. Furthermore, an electrode material is used as a wiring for the transfer electrode between the light receiving portions adjacent in the row direction. On top of this, an interlayer insulating film, a light shielding shielding film, and an interlayer insulating film are arranged in this order, and the surface of the interlayer insulating film has a concave shape above the light receiving portion. When the concave portion is inclined in the X direction and Y direction in a plan view and the surface thereof is inclined at the same angle in the longitudinal section, a stable lens effect is obtained and the light collection rate is increased, and the light receiving sensitivity at the light receiving portion. Therefore, it is possible to obtain a solid-state imaging device having a high value.

なお、列方向の各受光部に隣接する垂直方向の垂直CCDに1層目の転送電極と2層目の転送電極との一部を重ねて形成すると、この部分の高さが、重なりの無い2層目転送電極の単層構造部の高さと異なる。また、横方向に隣合う転送電極への配線は、1層目、2層目の転送電極が重なる配線構造となる。このため、受光部上部に配置された層間絶縁膜の凹形状の表面傾斜が、X方向とY方向で角度が異なり、安定したレンズ効果を得ることができず、画素部への入射光の集光効率が低下する。このため、高画素化で各受光部を縮小する場合、更に受光感度の低下をまねくことになる。   In addition, when a part of the first-layer transfer electrode and the second-layer transfer electrode are overlapped with each other in the vertical vertical CCD adjacent to each light-receiving portion in the column direction, the height of this part does not overlap. It differs from the height of the single layer structure of the second layer transfer electrode. Further, the wiring to the transfer electrodes adjacent in the horizontal direction has a wiring structure in which the first-layer and second-layer transfer electrodes overlap. For this reason, the concave surface slope of the interlayer insulating film disposed on the upper part of the light receiving portion has different angles in the X direction and the Y direction, so that a stable lens effect cannot be obtained, and the incident light is not collected into the pixel portion. Light efficiency decreases. For this reason, when each light receiving part is reduced with an increase in the number of pixels, the light receiving sensitivity is further lowered.

この画素部への入射光の集光効率を向上させる方法が特許文献1に開示されている。   Patent Document 1 discloses a method for improving the light collection efficiency of incident light to the pixel portion.

図10は、特許文献1に開示されている従来の固体撮像素子の撮像領域の要部およびその電極パターンを示す平面図である。これは、受光部で受光した信号電荷を垂直方向に転送する垂直転送レジスタ上の転送電極パターンを示している。   FIG. 10 is a plan view showing the main part of the imaging region of the conventional solid-state imaging device disclosed in Patent Document 1 and its electrode pattern. This shows a transfer electrode pattern on the vertical transfer register for transferring the signal charge received by the light receiving unit in the vertical direction.

図10に示すように、従来の固体撮像素子100において、垂直転送レジスタ101の電荷転送路に沿う垂直方向部分は、転送電極102と、読み出し電極を兼ねた転送電極103とが互いに近接して交互に配置されている。多結晶シリコン層からなる転送電極102と、読み出し電極を兼ねた転送電極103とが、電荷転送方向、即ち、垂直方向に交互に繰り返えすように掛け渡されて配列されている。   As shown in FIG. 10, in the conventional solid-state imaging device 100, in the vertical direction portion along the charge transfer path of the vertical transfer register 101, the transfer electrode 102 and the transfer electrode 103 that also serves as the readout electrode are alternately adjacent to each other. Is arranged. A transfer electrode 102 made of a polycrystalline silicon layer and a transfer electrode 103 serving also as a readout electrode are arranged so as to be alternately repeated in the charge transfer direction, that is, the vertical direction.

転送電極102は、垂直転送レジスタ101内で、電荷転送路に沿って隣接する読み出し電極を兼ねた転送電極103と近接するように設けられた縁部102aと、受光部104を避けるように設けられた縁部102bと、これらの縁部102a、102bと反対側に設けられた縁部102cとを有するように形成されている。即ち、転送電極102は、垂直方向に隣り合う受光部104(画素)間に延長して設けられ、各垂直転送レジスタ101内に配置された各ライン(行)毎の各転送電極102同士が一体的に連結されるように、櫛歯状に形成されている。   The transfer electrode 102 is provided in the vertical transfer register 101 so as to avoid the light receiving part 104 and the edge part 102a provided so as to be close to the transfer electrode 103 that also serves as an adjacent readout electrode along the charge transfer path. The edge portion 102b and the edge portion 102c provided on the opposite side of the edge portions 102a and 102b are formed. That is, the transfer electrode 102 is provided to extend between the light receiving portions 104 (pixels) adjacent in the vertical direction, and the transfer electrodes 102 for each line (row) arranged in each vertical transfer register 101 are integrated. So as to be connected to each other.

一方、読み出し電極を兼ねた転送電極103は、左右に隣接する各受光部104間の垂直転送レジスタ101上に配置するように形成されており、電荷転送方向に沿って隣接する転送電極102と近接するように設けられた一方端の縁部103aと他方端の縁部103bを有するように形成されている。縁部103aは、転送電極102の縁部102aと対向して近接するように形成されており、縁部103bは、転送電極102の縁部102cと対向して近接するように形成されている。縁部103aと縁部102a、縁部103bと縁部102cとの間は、互いに所定の間隔を有するように形成されている。即ち、読み出し電極を兼ねた転送電極103は、図11(c)のY2方向断面図に示すように、いずれの電極に連結されることなく分離された状態で形成されており、いわゆる浮島状の電極として形成されている。   On the other hand, the transfer electrode 103 that also serves as the readout electrode is formed so as to be disposed on the vertical transfer register 101 between the light receiving units 104 adjacent to the left and right, and is close to the transfer electrode 102 adjacent in the charge transfer direction. It is formed so as to have an edge portion 103a at one end and an edge portion 103b at the other end. The edge portion 103a is formed so as to face and approach the edge portion 102a of the transfer electrode 102, and the edge portion 103b is formed so as to face and approach the edge portion 102c of the transfer electrode 102. The edge portion 103a and the edge portion 102a, and the edge portion 103b and the edge portion 102c are formed to have a predetermined distance from each other. That is, the transfer electrode 103 that also serves as the readout electrode is formed in a separated state without being connected to any electrode, as shown in the Y2 direction sectional view of FIG. It is formed as an electrode.

垂直転送レジスタ101内の転送電極102には、転送電極103に対向するように延長部が形成されている。この延長部の水平方向の幅W1は、対向する転送電極103の水平方向の幅W2と同じ幅になるように形成されている。同一の垂直転送レジスタ101上に存在する転送電極102、103の水平方向の幅W1,W2は、同じ幅になるように形成されている。このように、同一の垂直転送レジスタ101上に配置された転送電極102,103の水平方向の幅をそろえたことにより、垂直転送レジスタ101内の信号電荷の電荷転送をより効率よく行うことができる。   An extension portion is formed on the transfer electrode 102 in the vertical transfer register 101 so as to face the transfer electrode 103. The horizontal width W1 of the extension is formed to be the same width as the horizontal width W2 of the opposing transfer electrode 103. The horizontal widths W1 and W2 of the transfer electrodes 102 and 103 existing on the same vertical transfer register 101 are formed to have the same width. As described above, by aligning the horizontal widths of the transfer electrodes 102 and 103 arranged on the same vertical transfer register 101, the signal charges in the vertical transfer register 101 can be transferred more efficiently. .

また、同一の垂直転送レジスタ101上における転送電極103の形状は、他の転送電極103の形状と同じ形状となるように形成されている。このように、垂直転送レジスタ101上の転送電極102,103の形状をそろえることにより、垂直転送レジスタ101内の信号電荷の電荷転送をより効率よく行うことができる。   Further, the shape of the transfer electrode 103 on the same vertical transfer register 101 is formed to be the same as the shape of the other transfer electrodes 103. In this way, by aligning the shapes of the transfer electrodes 102 and 103 on the vertical transfer register 101, the signal charges in the vertical transfer register 101 can be transferred more efficiently.

垂直方向に隣り合う受光部104間に設けられた転送電極102上には、その水平方向に渡って、抵抗の小さい材質で作られた、例えば、多結晶シリコンからなるシャント配線105が形成されている。このシャント配線105は、その一部が垂直方向に延長され、読み出し電極を兼ねた各転送電極103上に延びるように延長部105aが形成されている。その延長部105aにはコンタクト部106が形成されている。このコンタクト部106において、シャント配線105が、層間絶縁膜に設けられたコンタクトホールを介して、転送電極103に接続されている。   On the transfer electrode 102 provided between the light receiving portions 104 adjacent in the vertical direction, a shunt wiring 105 made of, for example, polycrystalline silicon made of a material having a low resistance is formed in the horizontal direction. Yes. A part of the shunt wiring 105 is extended in the vertical direction, and an extension portion 105a is formed so as to extend on each transfer electrode 103 that also serves as a readout electrode. A contact portion 106 is formed on the extension portion 105a. In the contact portion 106, the shunt wiring 105 is connected to the transfer electrode 103 via a contact hole provided in the interlayer insulating film.

また、シャント配線105の垂直方向の幅W3は、転送電極102の垂直方向の幅W1よりも狭くなるように形成されている。また、転送電極103上に延びるシャント配線105の延長部105aは、その水平方向の幅W3が転送電極103の水平方向の幅W2よりも狭くなるように形成される。   The vertical width W3 of the shunt wiring 105 is formed to be narrower than the vertical width W1 of the transfer electrode 102. Further, the extension portion 105 a of the shunt wiring 105 extending on the transfer electrode 103 is formed such that the horizontal width W <b> 3 is smaller than the horizontal width W <b> 2 of the transfer electrode 103.

受光部104に蓄積された信号電荷が垂直転送レジスタ101に読み出されると、垂直転送レジスタ101に読み出された信号電荷は、転送電極102、103に印加される4相の駆動パルスφ1〜φ4によって垂直転送レジスタ101内を電荷転送される。   When the signal charges accumulated in the light receiving unit 104 are read to the vertical transfer register 101, the signal charges read to the vertical transfer register 101 are driven by four-phase drive pulses φ1 to φ4 applied to the transfer electrodes 102 and 103. Charges are transferred in the vertical transfer register 101.

このように、上記特許文献1に開示されている従来の固体撮像素子100は、図11(a)のX方向断面図に示すように、1層目の転送電極103上に酸化膜を配置し、さらにコンタクト部106を形成し、2層目のポリシリコン膜のシャント配線105としてシャント配線材を形成し、これらを1層目の転送電極103上に配置している。この積層形状とすることにより、上部に配置された層間絶縁膜107の凹形状部107aが、図11(a)の画素部のX方向断面および図11(b)の画素部のY1方向断面図に示すように、平面視でX、Y1方向共に同じ表面傾斜角度となる形状になっている。これによって、安定したレンズ効果を得て集光率が高くなり、各受光部での受光感度が高い固体撮像素子100を得ることができる。   As described above, the conventional solid-state imaging device 100 disclosed in Patent Document 1 has an oxide film disposed on the first transfer electrode 103 as shown in the X-direction cross-sectional view of FIG. Further, a contact portion 106 is formed, a shunt wiring material is formed as the shunt wiring 105 of the second-layer polysilicon film, and these are arranged on the transfer electrode 103 of the first layer. By adopting this laminated shape, the concave portion 107a of the interlayer insulating film 107 disposed on the upper portion has a cross section in the X direction of the pixel portion in FIG. 11A and a cross section in the Y1 direction of the pixel portion in FIG. As shown in FIG. 4, the X and Y1 directions have the same surface inclination angle in plan view. Accordingly, it is possible to obtain the solid-state imaging device 100 that obtains a stable lens effect, increases the light collection rate, and has high light receiving sensitivity at each light receiving unit.

次に、特許文献2では、プラズマCVD法を使用し、平面視で転送電極上から受光部上側に向かって断面構造が順次低くなる凹状(または、受光部上から転送電極上側に向かって順次高くなる山状)の酸化膜を形成し、その酸化膜に溝を形成後、溝部を含む領域に遮光用の遮蔽膜を配置している。この遮蔽膜によって各受光部に対して導波管が形成されて、凹状部の底にある受光部に入射光を導くことにより、各受光部に対して集光効率を向上させている。
特開2006−140411号公報 特開平10−154805号公報
Next, in Patent Document 2, a plasma CVD method is used, and in a plan view, a concave shape in which the cross-sectional structure sequentially decreases from above the transfer electrode to the upper side of the light receiving unit (or from the top of the light receiving unit to the upper side of the transfer electrode in order After forming a groove in the oxide film and forming a groove in the oxide film, a shielding film for light shielding is arranged in a region including the groove. A waveguide is formed for each light receiving portion by this shielding film, and the incident light is guided to the light receiving portion at the bottom of the concave portion, thereby improving the light collection efficiency for each light receiving portion.
JP 2006-140411 A JP-A-10-154805

しかしながら、上記特許文献1に開示されている従来の固体撮像素子100では、コンタクト部106を画素数分均等に形成しなければならず、製造工程が複雑になることと、コンタクト抵抗もばらつき、しかも抵抗の高いコンタクト部106を介してシャント配線105から1層目の転送電極103に駆動信号を伝達するため、駆動信号の電圧降下と共に、コンタクト部106の形成ずれによる形成ばらつきが発生する。これによって、画素部の受光感度特性のばらつきも発生する。   However, in the conventional solid-state imaging device 100 disclosed in Patent Document 1, the contact portions 106 must be formed uniformly for the number of pixels, the manufacturing process is complicated, and the contact resistance varies. Since a drive signal is transmitted from the shunt wiring 105 to the first-layer transfer electrode 103 via the contact portion 106 having high resistance, a variation in formation due to a formation deviation of the contact portion 106 occurs along with a voltage drop of the drive signal. This also causes variations in the light receiving sensitivity characteristics of the pixel portion.

上記特許文献2に開示されている従来の固体撮像素子では、受光部上から転送電極上側に向かって順次高くなる山状の酸化膜を形成しているため、レンズ/基板間距離が遠くなり、入射光のケラレにより、集光効率の低下が起こる。また、このように、基板上の積層膜の高さ方向が高くなるため、受光部の縮小が困難となる他、製造工程も複雑なものとなっている。   In the conventional solid-state imaging device disclosed in the above-mentioned Patent Document 2, a mountain-shaped oxide film that gradually increases from the light receiving portion toward the upper side of the transfer electrode is formed. Condensation efficiency decreases due to vignetting of incident light. Further, since the height direction of the laminated film on the substrate is increased as described above, it is difficult to reduce the light receiving portion, and the manufacturing process is complicated.

本発明は、上記従来の問題を解決するもので、従来のようなコンタクト部を形成しないことにより、製造工程が簡略化すると共に、形状ばらつきなく集光効率のよい凹部形状を形成することができる固体撮像素子およびその製造方法、この固体撮像素子を、画像入力デバイスとして撮像部に用いた例えばカメラ付き携帯電話装置などの電子情報機器を提供することを目的とする。   The present invention solves the above-described conventional problems. By not forming a conventional contact portion, the manufacturing process can be simplified and a concave shape with good light collection efficiency can be formed without variation in shape. It is an object of the present invention to provide a solid-state imaging device and a manufacturing method thereof, and an electronic information device such as a camera-equipped mobile phone device using the solid-state imaging device as an image input device in an imaging unit.

本発明の固体撮像素子は、半導体基板または半導体層上に、被写体からの画像光を光電変換する複数の受光部が二次元状に設けられ、該複数の受光部のうちの列方向の複数の受光部の少なくとも一方側に垂直電荷転送路が設けられ、該垂直電荷転送路上に駆動パルスを印加するための転送電極が配設された固体撮像素子において、該転送電極として、端部が絶縁膜を介して重なるように1層目の転送電極と2層目の転送電極とが交互に配置され、該2層目の転送電極が該1層目の転送電極と重なっていない部分の該2層目の転送電極上にダミー膜が配設されているものであり、そのことにより上記目的が達成される。   In the solid-state imaging device of the present invention, a plurality of light receiving units that photoelectrically convert image light from a subject are two-dimensionally provided on a semiconductor substrate or a semiconductor layer, and a plurality of light receiving units in the column direction among the plurality of light receiving units are provided. In a solid-state imaging device in which a vertical charge transfer path is provided on at least one side of the light receiving section, and a transfer electrode for applying a driving pulse is provided on the vertical charge transfer path, an end portion is an insulating film as the transfer electrode The first-layer transfer electrodes and the second-layer transfer electrodes are alternately arranged so as to overlap with each other, and the second-layer transfer electrodes are not overlapped with the first-layer transfer electrodes. A dummy film is disposed on the transfer electrode of the eye, thereby achieving the above object.

また、好ましくは、本発明の固体撮像素子において、前記1層目の転送電極が行方向に連結した複数のT字型に形成され、前記2層目の転送電極が行方向に連結した複数の逆T字型に形成されており、該1層目の転送電極と該2層目の転送電極が行方向に重なって、行間に突出した該1層目の転送電極の端部と、該行間に突出した該2層目の転送電極の端部とが重なっている。   Preferably, in the solid-state imaging device of the present invention, the first-layer transfer electrodes are formed in a plurality of T-shapes connected in the row direction, and the second-layer transfer electrodes are connected in the row direction. The first transfer electrode and the second transfer electrode overlap each other in the row direction, and end portions of the first transfer electrode projecting between the rows are formed between the rows. The end portion of the transfer electrode of the second layer that protrudes to overlap.

さらに、好ましくは、本発明の固体撮像素子におけるダミー膜は、前記2層目の転送電極の前記行方向の幅よりも小さくする構成されている。   Further preferably, the dummy film in the solid-state imaging device of the present invention is configured to be smaller than the width in the row direction of the second-layer transfer electrode.

さらに、好ましくは、本発明の固体撮像素子におけるダミー膜は、その材質が酸化膜、窒化膜またはポリシリコン膜で形成されている。   Further preferably, the dummy film in the solid-state imaging device of the present invention is formed of an oxide film, a nitride film or a polysilicon film.

さらに、好ましくは、本発明の固体撮像素子におけるダミー膜は、その高さが、前記1層目の転送電極と前記2層目の転送電極が重なっている部分の高さと同じになる膜厚に形成されている。   More preferably, the height of the dummy film in the solid-state imaging device of the present invention is the same as the height of the portion where the first-layer transfer electrode and the second-layer transfer electrode overlap. Is formed.

さらに、好ましくは、本発明の固体撮像素子におけるダミー膜を含む全面に酸化膜が形成されて、前記受光部の周囲の平面視X方向およびこれに直交するY方向に対してその断面構造が均等の酸化膜表面傾斜を持つ凹形状に形成されている。   More preferably, an oxide film is formed on the entire surface including the dummy film in the solid-state imaging device of the present invention, and the cross-sectional structure is uniform in the X direction around the light receiving portion and the Y direction perpendicular thereto. It is formed in a concave shape having an inclined surface of the oxide film.

本発明の固体撮像素子の製造方法は、半導体基板または半導体層上に、被写体からの画像光を光電変換する複数の受光部が二次元状に形成され、該複数の受光部のうちの列方向の複数の受光部の少なくとも一方側に垂直電荷転送路が形成され、該垂直電荷転送路上に駆動パルスを印加するための転送電極が形成された固体撮像素子の製造方法において、該垂直電荷転送部路上に絶縁膜を介して、行方向に連結した複数のT字型の1層目の転送電極を形成する1層目転送電極形成工程と、該1層目の転送電極と行方向に沿って重なって、行間に突出した該1層目の転送電極の端部と2層目の転送電極の端部とが重なるように、行方向に連結した複数の逆T字型の該2層目の転送電極を形成する2層目転送電極形成工程と、該2層目転送電極が該1層目の転送電極と重なっていない部分の2層目の転送電極上にダミー膜を形成するダミー膜形成工程と、該ダミー膜を含む全面に酸化膜を形成して、該受光部の周囲の平面視X方向およびこれに直交するY方向に対してその断面構造が均等の酸化膜表面傾斜を持つ凹形状に形成する凹形状形成工程とを有するものであり、そのことにより上記目的が達成される。   In the method for manufacturing a solid-state imaging device according to the present invention, a plurality of light receiving portions that photoelectrically convert image light from a subject are formed two-dimensionally on a semiconductor substrate or semiconductor layer, and the column direction of the plurality of light receiving portions In the method of manufacturing a solid-state imaging device in which a vertical charge transfer path is formed on at least one side of the plurality of light receiving sections, and a transfer electrode for applying a drive pulse is formed on the vertical charge transfer path, the vertical charge transfer section A first-layer transfer electrode forming step of forming a plurality of T-shaped first-layer transfer electrodes connected in the row direction via an insulating film on the path; and the first-layer transfer electrode and the row direction A plurality of inverted T-shaped second layers connected in the row direction so that the end portions of the first-layer transfer electrodes protruding between the rows overlap the end portions of the second-layer transfer electrodes. A second-layer transfer electrode forming step for forming a transfer electrode; and A dummy film forming step of forming a dummy film on the transfer electrode of the second layer that does not overlap with the transfer electrode of the layer, and forming an oxide film on the entire surface including the dummy film, A concave shape forming step in which the cross-sectional structure is formed into a concave shape having a uniform oxide film surface inclination with respect to the X direction in plan view and the Y direction orthogonal thereto, thereby achieving the above object. The

本発明の固体撮像素子の製造方法は、半導体基板または半導体層上に、被写体からの画像光を光電変換する複数の受光部が二次元状に形成され、該複数の受光部のうちの列方向の複数の受光部の少なくとも一方側に垂直電荷転送路が形成され、該垂直電荷転送路上に駆動パルスを印加するための転送電極が形成された固体撮像素子の製造方法において、該垂直電荷転送部路上に絶縁膜を介して、行方向に連結した複数のT字型の1層目の転送電極を形成する1層目転送電極形成工程と、該1層目の転送電極を含む全面に、2層目転送電極材料を成膜し、その上にダミー膜材料を成膜する2層目転送電極材料・ダミー膜材料成膜工程と、2層目の転送電極が該1層目の転送電極と重ならない部分の2層目の転送電極上にダミー膜を形成するダミー膜形成工程と、該1層目の転送電極と行方向に沿って重なって、行間に突出した該1層目の転送電極の端部と該2層目の転送電極の端部とが重なるように、行方向に連結した複数の逆T字型の該2層目の転送電極を形成する2層目転送電極形成工程と、該ダミー膜を含む全面に酸化膜を形成して、該受光部の周囲の平面視X方向およびこれに直交するY方向に対してその断面構造が均等の酸化膜表面傾斜を持つ凹形状に形成する凹形状形成工程とを有するものであり、そのことにより上記目的が達成される。   In the method for manufacturing a solid-state imaging device according to the present invention, a plurality of light receiving portions that photoelectrically convert image light from a subject are formed two-dimensionally on a semiconductor substrate or semiconductor layer, and the column direction of the plurality of light receiving portions In the method of manufacturing a solid-state imaging device in which a vertical charge transfer path is formed on at least one side of the plurality of light receiving sections, and a transfer electrode for applying a drive pulse is formed on the vertical charge transfer path, the vertical charge transfer section A first-layer transfer electrode forming step of forming a plurality of T-shaped first-layer transfer electrodes connected in the row direction via an insulating film on the path; A second layer transfer electrode material / dummy film material film forming step in which a layer transfer electrode material is formed and a dummy film material is formed thereon, and a second layer transfer electrode is connected to the first layer transfer electrode. Dummy that forms a dummy film on the second-layer transfer electrode that does not overlap The film forming step overlaps with the first-layer transfer electrode along the row direction so that the end of the first-layer transfer electrode protruding between the rows overlaps with the end of the second-layer transfer electrode. A second-layer transfer electrode forming step of forming a plurality of inverted T-shaped transfer electrodes connected in the row direction, and forming an oxide film on the entire surface including the dummy film, And a concave shape forming step in which the cross-sectional structure is formed into a concave shape having a uniform oxide film surface inclination with respect to the X direction around the plane and the Y direction perpendicular thereto. Is achieved.

また、好ましくは、本発明の固体撮像素子の製造方法における1層目転送電極形成工程の前工程として、一導電型半導体基板または一導電型半導体層に他導電型不純物をイオン注入して他導電型半導体領域を形成する第1イオン注入工程と、該他導電型半導体領域に一導電型不純物をイオン注入して、前記受光部およびこれに隣接する前記垂直電荷転送部路を形成する第2イオン注入工程とを有する。   Preferably, as a pre-process of the first-layer transfer electrode forming step in the method for manufacturing a solid-state imaging device according to the present invention, other conductivity type impurities are ion-implanted into the one conductivity type semiconductor substrate or the one conductivity type semiconductor layer to perform other conductivity. A first ion implantation step for forming a semiconductor region, and a second ion for ion-implanting one conductivity type impurity into the other conductivity type semiconductor region to form the light receiving portion and the vertical charge transfer portion adjacent thereto. Injection step.

本発明の電子情報機器は、本発明の上記固体撮像素子を画像入力デバイスとして撮像部に用いたものであり、そのことにより上記目的が達成される。   The electronic information device of the present invention uses the solid-state imaging device of the present invention as an image input device in an imaging unit, and thereby achieves the above object.

上記構成により、以下、本発明の作用を説明する。   With the above configuration, the operation of the present invention will be described below.

本発明においては、端部が絶縁膜を介して重なるように1層目の転送電極と2層目の転送電極とが交互に配置され、2層目の転送電極が1層目の転送電極と重なっていない部分の2層目の転送電極上にダミー膜が配設されている。このように、ダミー膜を設けることにより受光部の周囲の基板上の高さを同一にして均一なレンズ効果を得ることが可能となる。1層目の転送電極と2層目の転送電極とが重なっているため、転送電極の作成が容易であると共に、電荷転送劣化が抑制可能となる。   In the present invention, the first-layer transfer electrodes and the second-layer transfer electrodes are alternately arranged so that the end portions overlap with each other via the insulating film, and the second-layer transfer electrodes are connected to the first-layer transfer electrodes. A dummy film is disposed on the transfer electrode of the second layer that does not overlap. Thus, by providing the dummy film, it is possible to obtain a uniform lens effect with the same height on the substrate around the light receiving portion. Since the first-layer transfer electrode and the second-layer transfer electrode overlap, it is easy to create the transfer electrode, and it is possible to suppress charge transfer deterioration.

また、1層目の転送電極が行方向に連結したT字型に形成され、2層目の転送電極が行方向に連結した逆T字型に形成されて、1層目の転送電極と2層目の転送電極が行方向に重なって、行間に突出した1層目の転送電極の端部と、行間に突出した2層目の転送電極の端部とが重なっている。これによって、1層目の転送電極と2層目の転送電極にそれぞれ駆動パルスを供給すればよく、従来のように、島状の1層目の転送電極にシャント配線からコンタクト部を介して駆動パルスを供給する必要がなくなり、従来のようなコンタクト部を不要とすることが可能となる。したがって、画素部毎のコンタクト部の形成ずれによる形成ばらつきがなく、画素部の受光感度特性のばらつきも発生しない。よって、製造工程が簡略化すると共に、集光効率のよい凹部形状を形状ばらつきなく形成することが可能となる。   Further, the first-layer transfer electrode is formed in a T-shape connected in the row direction, and the second-layer transfer electrode is formed in an inverted T-shape connected in the row direction. The transfer electrodes of the layers overlap in the row direction, and the end portions of the first-layer transfer electrodes protruding between the rows overlap the end portions of the second-layer transfer electrodes protruding between the rows. As a result, it is only necessary to supply drive pulses to the first-layer transfer electrode and the second-layer transfer electrode, respectively, and the island-shaped first-layer transfer electrode is driven from the shunt wiring via the contact portion as in the conventional case. There is no need to supply a pulse, and a conventional contact portion can be dispensed with. Therefore, there is no variation in formation due to a shift in the formation of the contact portion for each pixel portion, and there is no variation in the light receiving sensitivity characteristics of the pixel portion. Therefore, it is possible to simplify the manufacturing process and form a concave shape with good light collection efficiency without variation in shape.

以上により、本発明によれば、1層目の転送電極が行方向に連結した複数のT字型に形成され、2層目の転送電極が行方向に連結した複数の逆T字型に形成されており、1層目の転送電極と2層目の転送電極が行方向に重なって、行間に突出した1層目の転送電極の端部と、行間に突出した2層目の転送電極の端部とが重なって配置されている。この2層目の転送電極が1層目の転送電極に重なってない2層目の転送電極上に、2層目の転送電極よりも小さい領域(狭い幅)に柱状で島状のダミー膜が配置されている。このため、従来のようなコンタクト部を形成しないことにより、製造工程が簡略化すると共に、形状ばらつきなく集光効率のよい凹部形状を形成することができる。また、本発明の製造方法による構造を有する固体撮像素子では、転送電極上の酸化膜のメルト角がX方向およびY方向で同等の表面傾斜となって、集光効率が高く、受光感度が高くなる。   As described above, according to the present invention, the first-layer transfer electrodes are formed in a plurality of T-shapes connected in the row direction, and the second-layer transfer electrodes are formed in a plurality of inverted T-shapes connected in the row direction. The first transfer electrode and the second transfer electrode overlap in the row direction, and the end of the first transfer electrode protruding between the rows and the second transfer electrode protruding between the rows It is arranged to overlap the end. A columnar island-shaped dummy film is formed in a region (narrow width) smaller than the second-layer transfer electrode on the second-layer transfer electrode where the second-layer transfer electrode does not overlap the first-layer transfer electrode. Has been placed. For this reason, by not forming a conventional contact portion, the manufacturing process can be simplified and a concave shape with good light collection efficiency can be formed without variation in shape. Further, in the solid-state imaging device having the structure according to the manufacturing method of the present invention, the melt angle of the oxide film on the transfer electrode becomes the same surface inclination in the X direction and the Y direction, so that the light collection efficiency is high and the light receiving sensitivity is high. Become.

以下に、本発明の固体撮像素子およびその製造方法の実施形態1、この固体撮像素子の実施形態1を画像入力デバイスとして撮像部に用いた例えばカメラ付き携帯電話装置などの電子情報機器の実施形態2について図面を参照しながら詳細に説明する。   Embodiment 1 of a solid-state imaging device and manufacturing method thereof according to the present invention, Embodiment of an electronic information device such as a mobile phone device with a camera using Embodiment 1 of the solid-state imaging device as an image input device in an imaging unit 2 will be described in detail with reference to the drawings.

(実施形態1)
図1は、本発明の実施形態1における固体撮像素子の撮像領域の要部およびその電極パターンを示す平面図である。図2(a)は、図1のX方向縦断面図、図2(b)は、図1のY1方向縦断面図、図2(c)は、図1のY2方向縦断面図である。
(Embodiment 1)
FIG. 1 is a plan view showing an essential part of an imaging region of the solid-state imaging device and an electrode pattern thereof in Embodiment 1 of the present invention. 2A is a longitudinal sectional view in the X direction of FIG. 1, FIG. 2B is a longitudinal sectional view in the Y1 direction of FIG. 1, and FIG. 2C is a longitudinal sectional view in the Y2 direction of FIG.

図1および図2(a)〜図2(c)において、本実施形態1の固体撮像素子1は、半導体基板または半導体層上に、被写体からの画像光を光電変換する複数の受光部(開口部2)が二次元状に設けられ、複数の受光部(開口部2)の一方側(左側)に垂直電荷転送路3としての垂直CCD3が設けられ、この垂直電荷転送路3としての垂直CCD3上に駆動パルスを印加するための1層目の転送電極4と2層目の転送電極5とが交互に繰り返し配設されている。この場合、1層目の転送電極4が行方向に連結した複数のT字型に形成され、2層目の転送電極5が行方向に連結した複数の逆T字型に形成されており、1層目の転送電極4と2層目の転送電極5が行方向に上下に重なって、行間に突出した1層目の転送電極4の端部と、行間に突出した2層目の転送電極5の端部とが重なって配置されている。2層目の転送電極5の端部が絶縁膜を介して1層目の転送電極4の端部上に重なっている。   1 and FIGS. 2A to 2C, the solid-state imaging device 1 of Embodiment 1 includes a plurality of light receiving units (openings) that photoelectrically convert image light from a subject on a semiconductor substrate or semiconductor layer. 2) is provided in a two-dimensional manner, and a vertical CCD 3 as a vertical charge transfer path 3 is provided on one side (left side) of a plurality of light receiving sections (openings 2), and the vertical CCD 3 as the vertical charge transfer path 3 is provided. The first-layer transfer electrodes 4 and the second-layer transfer electrodes 5 for applying the drive pulse are alternately and repeatedly disposed thereon. In this case, the first-layer transfer electrodes 4 are formed in a plurality of T-shapes connected in the row direction, and the second-layer transfer electrodes 5 are formed in a plurality of inverted T-shapes connected in the row direction. The first-layer transfer electrode 4 and the second-layer transfer electrode 5 overlap each other in the row direction, and the end of the first-layer transfer electrode 4 protruding between the rows and the second-layer transfer electrode protruding between the rows 5 is overlapped with the end portion. The end portion of the second-layer transfer electrode 5 overlaps the end portion of the first-layer transfer electrode 4 via the insulating film.

2層目の転送電極5が1層目の転送電極4に重なってない2層目の転送電極5上に、2層目の転送電極5よりも小さい領域(狭い幅)に柱状で島状のダミー構造部6(ダミー膜)が配置されている。   On the second transfer electrode 5 where the second transfer electrode 5 does not overlap the first transfer electrode 4, a columnar and island-like region is formed in a smaller area (narrow width) than the second transfer electrode 5. A dummy structure 6 (dummy film) is disposed.

このダミー構造部6(ダミー膜)は、酸化膜または窒化膜、ポリシリコン膜などにより形成され、受光部(開口部2)の周囲の高さを揃えるための凸部として形成されている。このダミー構造部6の形成後に、一般的な方法を用いて、基板全面に層間絶縁膜となる酸化膜、およびパターニングされた遮蔽膜(遮光膜)が配置される。さらに、その上に層間絶縁膜7が配置されてメルト処理が行われ、各画素部の断面構造において、平面視X方向およびY1方向で同じ表面角度となる凹形状部7aが形成される。本実施形態1の固体撮像素子1では、転送電極5上の層間酸化膜7の表面のメルト角およびその高さが、平面視X方向およびY1方向で同等となり、集光効率が高く、しかも受光感度の高い固体撮像素子1を得ることができる。   The dummy structure portion 6 (dummy film) is formed of an oxide film, a nitride film, a polysilicon film, or the like, and is formed as a convex portion for aligning the height around the light receiving portion (opening portion 2). After the formation of the dummy structure portion 6, an oxide film serving as an interlayer insulating film and a patterned shielding film (light shielding film) are disposed on the entire surface of the substrate using a general method. Further, the interlayer insulating film 7 is disposed thereon and melt processing is performed, so that in the cross-sectional structure of each pixel portion, a concave portion 7a having the same surface angle in the X direction and the Y1 direction in plan view is formed. In the solid-state imaging device 1 according to the first embodiment, the melt angle and the height of the surface of the interlayer oxide film 7 on the transfer electrode 5 are equal in the X direction and the Y1 direction in plan view, and the light collection efficiency is high, and the light is received. A highly sensitive solid-state imaging device 1 can be obtained.

さらに、本実施形態1の固体撮像素子1では、従来のようなコンタクト部を形成しないため、コンタクト部を画素数分均等に形成する必要がないことから、製造工程を簡略化すると共に、形状ばらつきなく集光効率のよい凹形状部7aを形成することができて、コンタクト部の形成ばらつき(コンタクト部の形成ずれ)による画素部の受光感度特性のばらつきも発生しない。   Further, in the solid-state imaging device 1 according to the first embodiment, since the conventional contact portion is not formed, it is not necessary to form the contact portion evenly for the number of pixels. Therefore, the concave portion 7a having high light collection efficiency can be formed, and the variation in the light receiving sensitivity characteristic of the pixel portion due to the variation in the formation of the contact portion (displacement of the contact portion) does not occur.

以下、従来のようなコンタクト部を形成しない本実施形態1の固体撮像素子1の製造方法について説明する。   Hereinafter, a method for manufacturing the solid-state imaging device 1 according to the first embodiment in which a contact portion is not formed as in the related art will be described.

図3〜図8は、図1の固体撮像素子1の製造方法における各工程を説明するための要部縦断面図であって、(a)は、図1のX方向縦断面図、(b)は、図1のY1方向縦断面図、(c)は、図1のY2方向縦断面図である。   3 to 8 are main part longitudinal cross-sectional views for explaining each step in the method of manufacturing the solid-state imaging device 1 of FIG. 1, wherein (a) is a vertical cross-sectional view in the X direction of FIG. ) Is a longitudinal sectional view in the Y1 direction of FIG. 1, and (c) is a longitudinal sectional view in the Y2 direction of FIG.

まず、図3(a)〜図3(c)のイオン注入工程に示すように、N型半導体基板であるシリコン基板10上に、イオン注入による表面荒れを防ぐための犠牲酸化膜としての熱酸化膜11を100オングストローム〜1000オングストローム程度の膜厚に形成し、その上からP型不純物のイオン注入(一般的にはイオン種にはボロンを使用)を行って、Pウェル部12を形成する。   First, as shown in the ion implantation steps of FIGS. 3A to 3C, thermal oxidation as a sacrificial oxide film for preventing surface roughness due to ion implantation on a silicon substrate 10 which is an N-type semiconductor substrate. The film 11 is formed to a thickness of about 100 angstroms to 1000 angstroms, and ion implantation of P-type impurities (generally, boron is used as the ion species) is formed thereon to form the P well portion 12.

この後、N型不純物のイオン注入(一般的にはイオン種にはリンを使用)を行って、垂直電荷転送路としてのN型拡散層の垂直CCD3およびその横にN型拡散層の受光部14をそれぞれ交互に形成する。なお、この場合、これらの垂直CCD3および受光部14の表面部には砒素がイオン注入されている。   Thereafter, ion implantation of N-type impurities (generally, phosphorus is used as the ion species) is performed, and the vertical CCD 3 of the N-type diffusion layer as a vertical charge transfer path and a light receiving portion of the N-type diffusion layer beside it. 14 are formed alternately. In this case, arsenic ions are implanted into the surface portions of the vertical CCD 3 and the light receiving unit 14.

次に、図4(a)〜図4(c)の1層目転送電極形成工程に示すように、熱酸化膜11を剥離した後に、基板上に、SiN膜を含むONO膜などからなるゲート絶縁膜15を形成する。その上に1層目の転送電極4の材料膜を成膜する。この場合、1層目の転送電極4の材料膜としてポリシリコン膜を使用する。1層目の転送電極4の材料膜を、列方向の垂直電荷転送路に直交し行方向に連結するT字状の所定形状にパターニングして1層目の転送電極4を形成する。これに対して、熱酸化処理を行う。   Next, as shown in the first-layer transfer electrode forming step in FIGS. 4A to 4C, after the thermal oxide film 11 is peeled off, a gate made of an ONO film including a SiN film is formed on the substrate. An insulating film 15 is formed. A material film for the first transfer electrode 4 is formed thereon. In this case, a polysilicon film is used as the material film of the first transfer electrode 4. The material film of the first transfer electrode 4 is patterned into a predetermined T-shape that is orthogonal to the vertical charge transfer path in the column direction and connected in the row direction to form the first transfer electrode 4. In contrast, a thermal oxidation process is performed.

続いて、図5(a)〜図5(c)のポリシリコン膜・酸化膜成膜工程に示すように、基板上に、ゲート絶縁膜17となるシリコン窒化膜(SiN膜)、酸化膜を配置する。その後、2層目の転送電極5となる材料膜のポリシリコン膜5aを配置する。このポリシリコン膜5aは、N型不純物を、1E20〜1E21(atms/cm−3)含んでいるものを使用する。このN型不純物としては、一般的に、燐(P)であるが、ポリシリコン堆積中ガス添加法や、ポリシリコン膜5aの配置後のイオン注入と熱拡散による方法を使用すればよい。 Subsequently, as shown in the polysilicon film / oxide film forming process of FIGS. 5A to 5C, a silicon nitride film (SiN film) and an oxide film to be the gate insulating film 17 are formed on the substrate. Deploy. After that, a polysilicon film 5a which is a material film to be the second transfer electrode 5 is disposed. As the polysilicon film 5a, one containing N-type impurities 1E20 to 1E21 (atms / cm −3 ) is used. The N-type impurity is generally phosphorus (P), but a gas addition method during polysilicon deposition or a method using ion implantation and thermal diffusion after the polysilicon film 5a is disposed may be used.

さらに、このポリシリコン膜5a上に、ダミー構造部6(ダミー膜)となる酸化膜または窒化膜6a(シリコン酸化膜またはシリコン窒化膜)を配置する。この酸化膜または窒化膜6aの膜厚は、単層で形成される2層目の転送電極5の部分上の酸化膜または窒化膜6aの高さが、1層目の転送電極4および2層目の転送電極5が重なり合う部分の2層目の転送電極5の上面高さと等しくなる膜厚に調整する。さらに、2層目の転送電極5を形成するために、単層で形成される部分上にフォトレジスト膜をパターニングしてフォトレジストマスク16を残す。   Further, an oxide film or nitride film 6a (silicon oxide film or silicon nitride film) to be the dummy structure portion 6 (dummy film) is disposed on the polysilicon film 5a. The thickness of the oxide film or nitride film 6a is such that the height of the oxide film or nitride film 6a above the portion of the second transfer electrode 5 formed as a single layer is the same as that of the first transfer electrode 4 and the second layer. The film thickness is adjusted to be equal to the height of the upper surface of the second-layer transfer electrode 5 at the portion where the transfer electrode 5 of the eye overlaps. Further, in order to form the transfer electrode 5 of the second layer, the photoresist film is patterned on the portion formed by the single layer, and the photoresist mask 16 is left.

さらに、図6(a)〜図6(c)のダミー構造部形成工程に示すように、所定形状にパターニングされたフォトレジストマスク16をマスクとして、ドライエッチ法による酸化膜または窒化膜除去を行って、島状のダミー構造部6(ダミー膜)として、フォトレジストマスク16下の酸化膜または窒化膜6aを残す。このときのエッチング方法は、ウエット法を用いてもよい。   Further, as shown in the dummy structure forming step in FIGS. 6A to 6C, the oxide film or nitride film is removed by dry etching using the photoresist mask 16 patterned in a predetermined shape as a mask. Thus, the oxide film or nitride film 6a under the photoresist mask 16 is left as the island-like dummy structure portion 6 (dummy film). As the etching method at this time, a wet method may be used.

その後、図7(a)〜図7(c)の2層目転送電極形成工程に示すように、ポリシリコン膜5a上にフォトレジスト膜を形成し、フォトレジスト膜を所定のパターンに形成して2層目の転送電極5を形成する。ダミー構造部6の酸化膜または窒化膜6aは、2層目の転送電極5の幅よりも小さく形成する。   Thereafter, as shown in the second-layer transfer electrode forming step in FIGS. 7A to 7C, a photoresist film is formed on the polysilicon film 5a, and the photoresist film is formed in a predetermined pattern. A second-layer transfer electrode 5 is formed. The oxide film or nitride film 6 a of the dummy structure portion 6 is formed to be smaller than the width of the second-layer transfer electrode 5.

さらに、図8(a)〜図8(c)の酸化膜凹形状形成工程に示すように、このダミー構造部6を含む基板全面に不図示の絶縁膜を配置し、その後、垂直CCD3の上方を遮光するための不図示の遮蔽膜(遮光膜)を成膜し、受光部14上を開口した遮蔽膜上に酸化膜7を形成してリフロー処理を行うことにより、受光部14に対してX方向およびY1方向に均等の表面傾斜を持つ凹形状7aを形成することができる。   Further, as shown in the oxide film concave shape forming step in FIGS. 8A to 8C, an insulating film (not shown) is disposed on the entire surface of the substrate including the dummy structure portion 6, and thereafter, above the vertical CCD 3. A light-shielding film (light-shielding film) (not shown) for light shielding is formed, and the oxide film 7 is formed on the light-shielding film opened on the light-receiving part 14 and is subjected to a reflow process. A concave shape 7a having a uniform surface inclination in the X direction and the Y1 direction can be formed.

ここでは、特に、絶縁膜および遮蔽膜を図示していないが、受光部14の周囲が同一高さになるように、絶縁膜および遮蔽膜を受光部14の周囲に設ければよい。このリフロー処理を行う酸化膜7は、ボロンおよびリンを添加した酸化膜を使用してリフロー特性を上げることができる。   Here, in particular, although the insulating film and the shielding film are not illustrated, the insulating film and the shielding film may be provided around the light receiving unit 14 so that the periphery of the light receiving unit 14 has the same height. The oxide film 7 that performs this reflow treatment can improve the reflow characteristics by using an oxide film to which boron and phosphorus are added.

この後、図示しないが、酸化膜7上に、図2(a)および図2(b)に点線で示すようなインナーレンズを形成したり、これに代えて屈折率の高い透明膜を形成したりしてレンズ効果を持たせたることができる。さらに、必要に応じて、その上に平坦化膜を形成した後に、カラーフィルタおよびその上にオンチップマイクロレンズなどを形成することができる。   Thereafter, although not shown, an inner lens as shown by a dotted line in FIGS. 2 (a) and 2 (b) is formed on the oxide film 7, or a transparent film having a high refractive index is formed instead. To give a lens effect. Furthermore, if necessary, after forming a planarizing film thereon, a color filter and an on-chip microlens can be formed thereon.

以上により、本実施形態1によれば、1層目の転送電極4が行方向に連結したT字型に形成され、2層目の転送電極5が行方向に連結した逆T字型に形成されており、1層目の転送電極4と2層目の転送電極5が行方向に重なって、行間に突出した1層目の転送電極4の端部と、行間に突出した2層目の転送電極5の端部とが重なって配置されている。このため、特許文献1のようなコンタクト部を形成する必要がなく、したがって、コンタクト抵抗のばらつきもなく、製造工程が簡略化すると共に、特許文献2に比べて基板高さが低いことからも、集光効率のよい凹部形状を形状ばらつきなく形成することができる。この場合、2層目の転送電極5が1層目の転送電極4に重なってない2層目の転送電極5上に、2層目の転送電極5よりも小さい領域(狭い幅)に柱状で島状のダミー構造部6(ダミー膜)が配置されているため、凹形状部7aにおいて、転送電極5上の層間酸化膜のメルト角がX方向およびY1方向で同等となることからも、集光効率が高く、受光感度の高い固体撮像素子1を得ることができる。   As described above, according to the first embodiment, the first-layer transfer electrode 4 is formed in a T-shape connected in the row direction, and the second-layer transfer electrode 5 is formed in an inverted T-shape connected in the row direction. The first transfer electrode 4 and the second transfer electrode 5 are overlapped in the row direction, and the end of the first transfer electrode 4 protruding between the rows and the second layer protruding between the rows The end of the transfer electrode 5 is arranged so as to overlap. For this reason, it is not necessary to form a contact portion as in Patent Document 1, and therefore, there is no variation in contact resistance, the manufacturing process is simplified, and the substrate height is lower than that in Patent Document 2, It is possible to form a concave shape with good light collection efficiency without variation in shape. In this case, the second-layer transfer electrode 5 is columnar in a region (narrow width) smaller than the second-layer transfer electrode 5 on the second-layer transfer electrode 5 that does not overlap the first-layer transfer electrode 4. Since the island-like dummy structure portion 6 (dummy film) is disposed, the melt angle of the interlayer oxide film on the transfer electrode 5 is equal in the X direction and the Y1 direction in the concave portion 7a. The solid-state imaging device 1 having high light efficiency and high light receiving sensitivity can be obtained.

なお、上記実施形態1の場合の他に、ポリシリコン膜を配置し、このポリシリコン膜から2層目の転送電極5を形成し、その上に絶縁膜を配置した後に、絶縁膜上にポリシリコン膜を配置し、この絶縁膜上のポリシリコン膜を用いて所定形状のダミー構造部6を形成するようにしてもよい。   In addition to the case of the first embodiment, a polysilicon film is disposed, a second transfer electrode 5 is formed from the polysilicon film, an insulating film is disposed thereon, and then a polysilicon film is formed on the insulating film. A silicon film may be disposed, and the dummy structure 6 having a predetermined shape may be formed using the polysilicon film on the insulating film.

また、本実施形態1の固体撮像素子1では、複数の受光部はマトリクス状に行列方向に配列して撮像部を形成するようにしたが、これに限らず、複数の受光部はライン毎に千鳥状に配置してもよい。垂直電荷転送方向も同一方向に電荷転送するように構成したが、互いに逆方向であってもよい。   In the solid-state imaging device 1 according to the first embodiment, the plurality of light receiving units are arranged in a matrix in the matrix direction to form the imaging unit. However, the present invention is not limited to this, and the plurality of light receiving units are arranged for each line. You may arrange in a staggered pattern. Although the vertical charge transfer direction is configured to transfer charges in the same direction, they may be in opposite directions.

なお、本実施形態1の固体撮像素子1の製造方法では、垂直電荷転送部路である垂直CCD3上に絶縁膜を介して、行方向に連結したT字型の1層目の転送電極4を形成する1層目転送電極形成工程と、1層目の転送電極4を含む全面に、2層目転送電極材料であるポリシリコン膜5aを成膜し、その上にダミー膜材料である酸化膜または窒化膜6aを成膜する2層目転送電極材料・ダミー膜材料成膜工程と、2層目転送電極5が1層目の転送電極4と重ならない部分の2層目の転送電極5上にダミー膜6を形成するダミー膜形成工程と、1層目の転送電極4と行方向に沿って重なって、行間に突出した1層目の転送電極4の端部と2層目の転送電極5の端部とが重なるように、行方向に連結した逆T字型の2層目の転送電極5を形成する2層目転送電極形成工程と、ダミー膜6を含む全面に酸化膜7を形成して、受光部14に対して平面視X方向およびこれに直交するY方向にその断面構造が均等の表面傾斜を持つ凹形状7aに形成する凹形状形成工程とを有するように構成したが、これに限らず、本実施形態1の他の事例の固体撮像素子1の製造方法として、垂直電荷転送部路である垂直CCD3上に絶縁膜を介して、行方向に連結したT字型の1層目の転送電極4を形成する1層目転送電極形成工程と、1層目の転送電極4と行方向に沿って重なって、行間に突出した1層目の転送電極4の端部と2層目の転送電極5の端部とが重なるように、行方向に連結した逆T字型の2層目の転送電極5を形成する2層目転送電極形成工程と、2層目の転送電極5が1層目の転送電極4と重なっていない部分の2層目の転送電極5上にダミー膜6を形成するダミー膜形成工程と、ダミー膜6を含む全面に酸化膜7を形成して、受光部14に対して平面視X方向およびこれに直交するY方向にその断面構造が均等の表面傾斜を持つ凹形状7aに形成する凹形状形成工程とを有するように構成することもできる。   In the method of manufacturing the solid-state imaging device 1 according to the first embodiment, the T-shaped first transfer electrode 4 connected in the row direction via the insulating film on the vertical CCD 3 serving as the vertical charge transfer path. A polysilicon film 5a as a second-layer transfer electrode material is formed on the entire surface including the first-layer transfer electrode forming step and the first-layer transfer electrode 4, and an oxide film as a dummy film material is formed thereon. Alternatively, the second-layer transfer electrode material / dummy film material film-forming step for forming the nitride film 6a and the second-layer transfer electrode 5 on the portion where the second-layer transfer electrode 5 does not overlap the first-layer transfer electrode 4 A dummy film forming step of forming a dummy film 6 on the first layer, and an end portion of the first-layer transfer electrode 4 projecting between the rows and the second-layer transfer electrode, overlapping with the first-layer transfer electrode 4 in the row direction. Forming a second-layer transfer electrode 5 of an inverted T-shape connected in the row direction so that the end of 5 is overlapped 2 The oxide transfer film 7 is formed on the entire surface including the dummy transfer electrode 6 and the dummy transfer film 6, and the cross-sectional structure of the light receiving portion 14 has a uniform surface inclination in the X direction in plan view and in the Y direction perpendicular thereto. However, the present invention is not limited to this, and as a manufacturing method of the solid-state imaging device 1 of another example of the first embodiment, a vertical charge transfer path is a vertical charge transfer path. A first-layer transfer electrode forming step for forming a T-shaped first-layer transfer electrode 4 connected in the row direction via an insulating film on the CCD 3, and the first-layer transfer electrode 4 along the row direction An inverted T-shaped second-layer transfer electrode connected in the row direction so that the end of the first-layer transfer electrode 4 protruding between the rows overlaps with the end of the second-layer transfer electrode 5. 5 and the second-layer transfer electrode forming step, and the second-layer transfer electrode 5 is the first-layer transfer electrode 4. A dummy film forming step for forming the dummy film 6 on the second-layer transfer electrode 5 in the non-overlapping portion, and an oxide film 7 is formed on the entire surface including the dummy film 6 so that the light receiving unit 14 is viewed in plan X And a concave shape forming step in which the cross-sectional structure is formed into a concave shape 7a having a uniform surface inclination in the Y direction perpendicular to the direction.

また、本実施形態1の固体撮像素子1の製造方法では、1層目転送電極形成工程の前工程として、N型半導体基板10またはN型半導体層にP型不純物をイオン注入してP型半導体領域としてのPウェル12を形成する第1イオン注入工程と、N型とP型は逆であってもよく、要するに、一導電型半導体基板または一導電型半導体層に他導電型不純物をイオン注入して他導電型半導体領域を形成する第1イオン注入工程と、他導電型半導体領域に一導電型不純物をイオン注入して、受光部14およびこれに隣接する垂直電荷転送部路としての垂直CCD3を形成する第2イオン注入工程とを有するように構成することができる。   Further, in the method for manufacturing the solid-state imaging device 1 according to the first embodiment, as a pre-process of the first-layer transfer electrode forming process, P-type impurities are ion-implanted into the N-type semiconductor substrate 10 or the N-type semiconductor layer to form a P-type semiconductor. The first ion implantation step for forming the P well 12 as the region and the N type and P type may be reversed. In short, other conductivity type impurities are ion implanted into the one conductivity type semiconductor substrate or one conductivity type semiconductor layer. Then, a first ion implantation step for forming the other conductivity type semiconductor region, and one conductivity type impurity is ion implanted into the other conductivity type semiconductor region, and the vertical CCD 3 as a vertical charge transfer path adjacent to the light receiving portion 14. And a second ion implantation step for forming the structure.

(実施形態2)
図9は、本発明の実施形態2として、本発明の実施形態1の固体撮像素子1を含む固体撮像装置を撮像部に用いた電子情報機器の概略構成例を示すブロック図である。
(Embodiment 2)
FIG. 9 is a block diagram illustrating a schematic configuration example of an electronic information device using, as an imaging unit, a solid-state imaging device including the solid-state imaging device 1 according to the first embodiment of the present invention as the second embodiment of the present invention.

図9において、本実施形態2の電子情報機器90は、上記実施形態1の固体撮像素子1からの撮像信号を各種信号処理してカラー画像信号を得る固体撮像装置91と、この固体撮像装置91からのカラー画像信号を記録用に所定の信号処理した後にデータ記録可能とする記録メディアなどのメモリ部92と、この固体撮像装置91からのカラー画像信号を表示用に所定の信号処理した後に液晶表示画面などの表示画面上に表示可能とする液晶表示装置などの表示手段93と、この固体撮像装置91からのカラー画像信号を通信用に所定の信号処理をした後に通信処理可能とする送受信装置などの通信手段94と、この固体撮像装置91からのカラー画像信号を印刷用に所定の印刷信号処理をした後に印刷処理可能とするプリンタなどの画像出力手段95とを有している。なお、この電子情報機器90として、これに限らず、固体撮像装置91の他に、メモリ部92と、表示手段93と、通信手段94と、プリンタなどの画像出力手段95とのうちの少なくともいずれかを有していてもよい。   In FIG. 9, the electronic information device 90 of the second embodiment includes a solid-state imaging device 91 that obtains a color image signal by performing various signal processing on the imaging signal from the solid-state imaging device 1 of the first embodiment, and the solid-state imaging device 91. A memory unit 92 such as a recording medium that can record data after a predetermined signal processing for recording a color image signal from the recording medium, and a liquid crystal after a predetermined signal processing for display of the color image signal from the solid-state imaging device 91 Display means 93 such as a liquid crystal display device which can be displayed on a display screen such as a display screen, and a transmission / reception device which can perform communication processing after performing predetermined signal processing for color image signals from the solid-state imaging device 91 for communication Communication means 94 such as a printer and the like, and a color image signal from the solid-state image pickup device 91 and an image output such as a printer that can perform print processing after performing predetermined print signal processing for printing. And a means 95. The electronic information device 90 is not limited to this, but in addition to the solid-state imaging device 91, at least one of a memory unit 92, a display unit 93, a communication unit 94, and an image output unit 95 such as a printer. You may have.

この電子情報機器90としては、前述したように例えばデジタルビデオカメラ、デジタルスチルカメラなどのデジタルカメラや、監視カメラ、ドアホンカメラ、車載用後方監視カメラなどの車載用カメラおよびテレビジョン電話用カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、カメラ付き携帯電話装置および携帯端末装置(PDA)などの画像入力デバイスを有した電子機器が考えられる。   As described above, the electronic information device 90 includes, for example, a digital camera such as a digital video camera and a digital still camera, an in-vehicle camera such as a surveillance camera, a door phone camera, and an in-vehicle rear surveillance camera, and a video phone camera. An electronic device having an image input device such as an image input camera, a scanner device, a facsimile device, a camera-equipped mobile phone device, and a portable terminal device (PDA) is conceivable.

したがって、本実施形態2によれば、この固体撮像装置91からのカラー画像信号に基づいて、これを表示画面上に良好に表示したり、これを紙面にて画像出力装置95により良好にプリントアウト(印刷)したり、これを通信データとして有線または無線にて良好に通信したり、これをメモリ部92に所定のデータ圧縮処理を行って良好に記憶したり、各種データ処理を良好に行うことができる。   Therefore, according to the second embodiment, based on the color image signal from the solid-state imaging device 91, it can be displayed on the display screen, or can be printed out on the paper by the image output device 95. (Printing), communicating this as communication data in a wired or wireless manner, performing a predetermined data compression process in the memory unit 92 and storing it in a good manner, or performing various data processings satisfactorily Can do.

なお、本実施形態1では、端部が絶縁膜を介して重なるように1層目の転送電極4と2層目の転送電極5とが交互に配置され、2層目の転送電極5が1層目の転送電極4と重なっていない中央部分の2層目の転送電極5上にダミー膜6が配設されていることにより、従来のようなコンタクト部を形成する必要がなくなり、製造工程が簡略化すると共に、集光効率のよい凹部形状を形状ばらつきなく形成することができる本発明の目的を達成することができる。   In the first embodiment, the first-layer transfer electrodes 4 and the second-layer transfer electrodes 5 are alternately arranged so that the end portions overlap with each other via an insulating film, and the second-layer transfer electrode 5 is 1 Since the dummy film 6 is disposed on the second-layer transfer electrode 5 in the central portion that does not overlap with the transfer electrode 4 in the layer, it is not necessary to form a contact portion as in the prior art, and the manufacturing process is reduced. While simplifying, the objective of this invention which can form a recessed part shape with sufficient condensing efficiency without shape variation can be achieved.

以上のように、本発明の好ましい実施形態1,2を用いて本発明を例示してきたが、本発明は、この実施形態1,2に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態1,2の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。   As mentioned above, although this invention was illustrated using preferable Embodiment 1, 2 of this invention, this invention should not be limited and limited to this Embodiment 1,2. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range based on the description of the present invention and the common general technical knowledge from the description of the specific preferred embodiments 1 and 2 of the present invention. Patents, patent applications, and documents cited herein should be incorporated by reference in their entirety, as if the contents themselves were specifically described herein. Understood.

本発明は、被写体からの画像光を光電変換して撮像する半導体素子で構成された固体撮像素子、この固体撮像素子を、画像入力デバイスとして撮像部に用いた例えばデジタルビデオカメラおよびデジタルスチルカメラなどのデジタルカメラや、監視カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、テレビジョン電話装置、カメラ付き携帯電話装置などの電子情報機器の分野において、従来のようなコンタクト部を形成しないことにより、製造工程が簡略化すると共に、集光効率のよい凹部形状を形状ばらつきなく形成することができる。   The present invention relates to a solid-state imaging device composed of a semiconductor element that photoelectrically converts image light from a subject and captures the image, and uses this solid-state imaging device as an image input device in an imaging unit, such as a digital video camera and a digital still camera In the field of electronic information equipment such as digital camera, image input camera such as surveillance camera, scanner device, facsimile device, television phone device, mobile phone device with camera, etc. The manufacturing process is simplified, and a concave shape with good light collection efficiency can be formed without variation in shape.

本発明の実施形態1における固体撮像素子の撮像領域の要部およびその電極パターンを示す平面図である。It is a top view which shows the principal part of the imaging region of the solid-state image sensor in Embodiment 1 of this invention, and its electrode pattern. (a)は、図1のX方向縦断面図、(b)は、図1のY1方向縦断面図、(c)は、図1のY2方向縦断面図である。1A is a longitudinal sectional view in the X direction in FIG. 1, FIG. 1B is a longitudinal sectional view in the Y1 direction in FIG. 1, and FIG. 2C is a longitudinal sectional view in the Y2 direction in FIG. 図1の固体撮像素子1の製造方法におけるイオン注入工程を説明するための要部縦断面図であって、(a)は、図1のX方向縦断面図、(b)は、図1のY1方向縦断面図、(c)は、図1のY2方向縦断面図である。FIG. 2 is a longitudinal sectional view of an essential part for explaining an ion implantation step in the method for manufacturing the solid-state imaging device 1 in FIG. 1, wherein (a) is a longitudinal sectional view in the X direction of FIG. 1, and (b) is a sectional view of FIG. Y1 direction longitudinal cross-sectional view, (c) is a Y2 direction vertical cross-sectional view of FIG. 図1の固体撮像素子1の製造方法における1層目転送電極形成工程を説明するための要部縦断面図であって、(a)は、図1のX方向縦断面図、(b)は、図1のY1方向縦断面図、(c)は、図1のY2方向縦断面図である。FIG. 2 is a longitudinal sectional view of a main part for explaining a first-layer transfer electrode forming step in the method for manufacturing the solid-state imaging device 1 of FIG. 1, wherein (a) is a longitudinal sectional view in the X direction of FIG. 1 is a longitudinal sectional view in the Y1 direction of FIG. 1, and FIG. 1C is a longitudinal sectional view in the Y2 direction of FIG. 図1の固体撮像素子1の製造方法におけるポリシリコン膜・酸化膜成膜工程を説明するための要部縦断面図であって、(a)は、図1のX方向縦断面図、(b)は、図1のY1方向縦断面図、(c)は、図1のY2方向縦断面図である。FIG. 2 is a longitudinal sectional view of a main part for explaining a polysilicon film / oxide film forming step in the method of manufacturing the solid-state imaging device 1 of FIG. 1, wherein (a) is a longitudinal sectional view in the X direction of FIG. ) Is a longitudinal sectional view in the Y1 direction of FIG. 1, and (c) is a longitudinal sectional view in the Y2 direction of FIG. 図1の固体撮像素子1の製造方法におけるダミー構造部形成工程を説明するための要部縦断面図であって、(a)は、図1のX方向縦断面図、(b)は、図1のY1方向縦断面図、(c)は、図1のY2方向縦断面図である。2A and 2B are main part longitudinal cross-sectional views for explaining a dummy structure part forming step in the method for manufacturing the solid-state imaging device 1 in FIG. 1, wherein FIG. 1A is a vertical cross-sectional view in the X direction of FIG. 1, and FIG. 1 is a longitudinal sectional view in the Y1 direction, and FIG. 1C is a longitudinal sectional view in the Y2 direction in FIG. 図1の固体撮像素子1の製造方法における2層目転送電極形成工程を説明するための要部縦断面図であって、(a)は、図1のX方向縦断面図、(b)は、図1のY1方向縦断面図、(c)は、図1のY2方向縦断面図である。FIG. 2 is a longitudinal sectional view of a main part for explaining a second-layer transfer electrode forming step in the method for manufacturing the solid-state imaging device 1 in FIG. 1, wherein (a) is a longitudinal sectional view in the X direction of FIG. 1 is a longitudinal sectional view in the Y1 direction of FIG. 1, and FIG. 1C is a longitudinal sectional view in the Y2 direction of FIG. 図1の固体撮像素子1の製造方法における酸化膜凹形状形成工程を説明するための要部縦断面図であって、(a)は、図1のX方向縦断面図、(b)は、図1のY1方向縦断面図、(c)は、図1のY2方向縦断面図である。It is a principal part longitudinal cross-sectional view for demonstrating the oxide film recessed shape formation process in the manufacturing method of the solid-state image sensor 1 of FIG. 1, Comprising: (a) is a X direction longitudinal cross-sectional view of FIG. 1 is a longitudinal sectional view in the Y1 direction of FIG. 1, and (c) is a longitudinal sectional view in the Y2 direction of FIG. 本発明の実施形態2として、本発明の実施形態1の固体撮像素子を含む固体撮像装置を撮像部に用いた電子情報機器の概略構成例を示すブロック図である。As Embodiment 2 of this invention, it is a block diagram which shows the schematic structural example of the electronic information device which used the solid-state imaging device containing the solid-state image sensor of Embodiment 1 of this invention for the imaging part. 特許文献1に開示されている従来の固体撮像素子の撮像領域の要部およびその電極パターンを示す平面図である。It is a top view which shows the principal part of the imaging region of the conventional solid-state image sensor currently disclosed by patent document 1, and its electrode pattern. (a)は図10のX方向断面図、(b)は図10のY1方向断面図、(c)は図10のY2方向断面図である。10A is a sectional view in the X direction of FIG. 10, FIG. 10B is a sectional view in the Y1 direction of FIG. 10, and FIG. 10C is a sectional view in the Y2 direction of FIG.

符号の説明Explanation of symbols

1 固体撮像素子
2 開口部
3 垂直CCD
4 1層目の転送電極
5 2層目の転送電極
5a ポリシリコン膜
6 ダミー構造部(ダミー膜)
6a 酸化膜または窒化膜
7 層間酸化膜
7a 凹形状部
10 シリコン基板
11 熱酸化膜
12 Pウェル部
14 受光部
15 第1ゲート絶縁膜
16 フォトレジストマスク
17 第2ゲート絶縁膜
90 電子情報機器
91 固体撮像装置
92 メモリ部
93 表示手段
94 通信手段
95 画像出力手段
1 Solid-state image sensor 2 Aperture 3 Vertical CCD
4 First-layer transfer electrode 5 Second-layer transfer electrode 5a Polysilicon film 6 Dummy structure (dummy film)
6a Oxide film or nitride film 7 Interlayer oxide film 7a Concave shaped part 10 Silicon substrate 11 Thermal oxide film 12 P well part 14 Light receiving part 15 First gate insulating film 16 Photoresist mask 17 Second gate insulating film 90 Electronic information equipment 91 Solid Imaging device 92 Memory unit 93 Display means 94 Communication means 95 Image output means

Claims (10)

半導体基板または半導体層上に、被写体からの画像光を光電変換する複数の受光部が二次元状に設けられ、該複数の受光部のうちの列方向の複数の受光部の少なくとも一方側に垂直電荷転送路が設けられ、該垂直電荷転送路上に駆動パルスを印加するための転送電極が配設された固体撮像素子において、
該転送電極として、端部が絶縁膜を介して重なるように1層目の転送電極と2層目の転送電極とが交互に配置され、該2層目の転送電極が該1層目の転送電極と重なっていない部分の該2層目の転送電極上にダミー膜が配設されている固体撮像素子。
A plurality of light receiving portions that photoelectrically convert image light from a subject are provided on a semiconductor substrate or semiconductor layer in a two-dimensional shape, and are perpendicular to at least one side of the plurality of light receiving portions in the column direction among the plurality of light receiving portions. In a solid-state imaging device in which a charge transfer path is provided and a transfer electrode for applying a drive pulse on the vertical charge transfer path is provided.
As the transfer electrode, the first-layer transfer electrode and the second-layer transfer electrode are alternately arranged so that the end portions overlap with each other via an insulating film, and the second-layer transfer electrode is transferred to the first-layer transfer electrode. A solid-state imaging device in which a dummy film is disposed on the second-layer transfer electrode in a portion not overlapping with the electrode.
前記1層目の転送電極が行方向に連結した複数のT字型に形成され、前記2層目の転送電極が行方向に連結した複数の逆T字型に形成されており、該1層目の転送電極と該2層目の転送電極が行方向に重なって、行間に突出した該1層目の転送電極の端部と、該行間に突出した該2層目の転送電極の端部とが重なっている請求項1に記載の固体撮像素子。   The first-layer transfer electrodes are formed in a plurality of T-shapes connected in the row direction, and the second-layer transfer electrodes are formed in a plurality of inverted T-shapes connected in the row direction. The transfer electrode of the second layer and the transfer electrode of the second layer overlap in the row direction, the end of the transfer electrode of the first layer protruding between the rows, and the end of the transfer electrode of the second layer protruding between the rows The solid-state imaging device according to claim 1, wherein 前記ダミー膜は、前記2層目の転送電極の前記行方向の幅よりも小さくする構成されている請求項1に記載の固体撮像素子。   The solid-state imaging device according to claim 1, wherein the dummy film is configured to be smaller than a width in the row direction of the second-layer transfer electrode. 前記ダミー膜は、その材質が酸化膜、窒化膜またはポリシリコン膜で形成されている請求項1に記載の固体撮像素子。   The solid-state imaging device according to claim 1, wherein the dummy film is made of an oxide film, a nitride film, or a polysilicon film. 前記ダミー膜は、その高さが、前記1層目の転送電極と前記2層目の転送電極が重なっている部分の高さと同じになる膜厚に形成されている請求項1に記載の固体撮像素子。   2. The solid according to claim 1, wherein the dummy film is formed to have a thickness that is the same as a height of a portion where the first-layer transfer electrode and the second-layer transfer electrode overlap each other. Image sensor. 前記ダミー膜を含む全面に酸化膜が形成されて、前記受光部の周囲の平面視X方向およびこれに直交するY方向に対してその断面構造が均等の酸化膜表面傾斜を持つ凹形状に形成されている請求項1に記載の固体撮像素子。   An oxide film is formed on the entire surface including the dummy film, and the cross-sectional structure is formed in a concave shape having an even oxide film surface inclination with respect to the X direction around the light receiving portion and the Y direction perpendicular thereto. The solid-state imaging device according to claim 1. 半導体基板または半導体層上に、被写体からの画像光を光電変換する複数の受光部が二次元状に形成され、該複数の受光部のうちの列方向の複数の受光部の少なくとも一方側に垂直電荷転送路が形成され、該垂直電荷転送路上に駆動パルスを印加するための転送電極が形成された固体撮像素子の製造方法において、
該垂直電荷転送部路上に絶縁膜を介して、行方向に連結した複数のT字型の1層目の転送電極を形成する1層目転送電極形成工程と、
該1層目の転送電極と行方向に沿って重なって、行間に突出した該1層目の転送電極の端部と2層目の転送電極の端部とが重なるように、行方向に連結した複数の逆T字型の該2層目の転送電極を形成する2層目転送電極形成工程と、
該2層目転送電極が該1層目の転送電極と重なっていない部分の2層目の転送電極上にダミー膜を形成するダミー膜形成工程と、
該ダミー膜を含む全面に酸化膜を形成して、該受光部の周囲の平面視X方向およびこれに直交するY方向に対してその断面構造が均等の酸化膜表面傾斜を持つ凹形状に形成する凹形状形成工程とを有する固体撮像素子の製造方法。
A plurality of light receiving portions that photoelectrically convert image light from a subject are two-dimensionally formed on a semiconductor substrate or semiconductor layer, and perpendicular to at least one side of the plurality of light receiving portions in the column direction among the plurality of light receiving portions. In a method of manufacturing a solid-state imaging device in which a charge transfer path is formed and a transfer electrode for applying a drive pulse is formed on the vertical charge transfer path.
A first-layer transfer electrode forming step of forming a plurality of T-shaped first-layer transfer electrodes connected in the row direction via an insulating film on the vertical charge transfer portion path;
Connected in the row direction so that the end of the first-layer transfer electrode and the end of the second-layer transfer electrode overlap with the first-layer transfer electrode along the row direction. A second-layer transfer electrode forming step of forming the plurality of inverted T-shaped transfer electrodes of the second layer,
A dummy film forming step of forming a dummy film on the second-layer transfer electrode in a portion where the second-layer transfer electrode does not overlap the first-layer transfer electrode;
An oxide film is formed on the entire surface including the dummy film, and the cross-sectional structure is formed in a concave shape having an even oxide film surface inclination with respect to the X direction around the light receiving portion and the Y direction perpendicular thereto. The manufacturing method of the solid-state image sensor which has a concave shape formation process to do.
半導体基板または半導体層上に、被写体からの画像光を光電変換する複数の受光部が二次元状に形成され、該複数の受光部のうちの列方向の複数の受光部の少なくとも一方側に垂直電荷転送路が形成され、該垂直電荷転送路上に駆動パルスを印加するための転送電極が形成された固体撮像素子の製造方法において、
該垂直電荷転送部路上に絶縁膜を介して、行方向に連結した複数のT字型の1層目の転送電極を形成する1層目転送電極形成工程と、
該1層目の転送電極を含む全面に、2層目転送電極材料を成膜し、その上にダミー膜材料を成膜する2層目転送電極材料・ダミー膜材料成膜工程と、
2層目の転送電極が該1層目の転送電極と重ならない部分の2層目の転送電極上にダミー膜を形成するダミー膜形成工程と、
該1層目の転送電極と行方向に沿って重なって、行間に突出した該1層目の転送電極の端部と該2層目の転送電極の端部とが重なるように、行方向に連結した複数の逆T字型の該2層目の転送電極を形成する2層目転送電極形成工程と、
該ダミー膜を含む全面に酸化膜を形成して、該受光部の周囲の平面視X方向およびこれに直交するY方向に対してその断面構造が均等の酸化膜表面傾斜を持つ凹形状に形成する凹形状形成工程とを有する固体撮像素子の製造方法。
A plurality of light receiving portions that photoelectrically convert image light from a subject are two-dimensionally formed on a semiconductor substrate or semiconductor layer, and perpendicular to at least one side of the plurality of light receiving portions in the column direction among the plurality of light receiving portions. In a method of manufacturing a solid-state imaging device in which a charge transfer path is formed and a transfer electrode for applying a drive pulse is formed on the vertical charge transfer path.
A first-layer transfer electrode forming step of forming a plurality of T-shaped first-layer transfer electrodes connected in the row direction via an insulating film on the vertical charge transfer portion path;
A second layer transfer electrode material / dummy film material film forming step of forming a second layer transfer electrode material on the entire surface including the first layer transfer electrode and forming a dummy film material thereon;
A dummy film forming step of forming a dummy film on the second transfer electrode in a portion where the second transfer electrode does not overlap with the first transfer electrode;
The first transfer electrode overlaps in the row direction, and the end of the first transfer electrode protruding between the rows overlaps the end of the second transfer electrode in the row direction. A second layer transfer electrode forming step of forming a plurality of connected inverted T-shaped second layer transfer electrodes;
An oxide film is formed on the entire surface including the dummy film, and the cross-sectional structure is formed in a concave shape having an even oxide film surface inclination with respect to the X direction around the light receiving portion and the Y direction perpendicular thereto. The manufacturing method of the solid-state image sensor which has a concave shape formation process.
前記1層目転送電極形成工程の前工程として、
一導電型半導体基板または一導電型半導体層に他導電型不純物をイオン注入して他導電型半導体領域を形成する第1イオン注入工程と、
該他導電型半導体領域に一導電型不純物をイオン注入して、前記受光部およびこれに隣接する前記垂直電荷転送部路を形成する第2イオン注入工程とを有する請求項7または8に記載の固体撮像素子の製造方法。
As a pre-process of the first layer transfer electrode forming process,
A first ion implantation step of ion-implanting other conductivity type impurities into one conductivity type semiconductor substrate or one conductivity type semiconductor layer to form another conductivity type semiconductor region;
9. The method according to claim 7, further comprising: a second ion implantation step of ion-implanting one conductivity type impurity into the other conductivity type semiconductor region to form the light receiving unit and the vertical charge transfer unit path adjacent thereto. Manufacturing method of solid-state image sensor.
請求項1〜6のいずれかに記載の固体撮像素子を画像入力デバイスとして撮像部に用いた電子情報機器。   An electronic information device using the solid-state imaging device according to claim 1 as an image input device in an imaging unit.
JP2008284897A 2008-11-05 2008-11-05 Solid imaging device and method of manufacturing the same, and electronic information apparatus Withdrawn JP2010114227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008284897A JP2010114227A (en) 2008-11-05 2008-11-05 Solid imaging device and method of manufacturing the same, and electronic information apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008284897A JP2010114227A (en) 2008-11-05 2008-11-05 Solid imaging device and method of manufacturing the same, and electronic information apparatus

Publications (1)

Publication Number Publication Date
JP2010114227A true JP2010114227A (en) 2010-05-20

Family

ID=42302571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008284897A Withdrawn JP2010114227A (en) 2008-11-05 2008-11-05 Solid imaging device and method of manufacturing the same, and electronic information apparatus

Country Status (1)

Country Link
JP (1) JP2010114227A (en)

Similar Documents

Publication Publication Date Title
JP5149143B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic information device
JP5219348B2 (en) Image sensor including active pixel sensor array
JP4384198B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic information device
US7541628B2 (en) Image sensors including active pixel sensor arrays
JP2009088255A (en) Color solid-state imaging device and electronic information equipment
US20100259658A1 (en) Solid-state image capturing element and driving method for the same, method for manufacturing solid-state image capturing element, and electronic information device
US20100177231A1 (en) Solid-state image capturing apparatus, method for manufacturing the same, and electronic information device
WO2012086163A1 (en) Lens, method for producing same, solid-state imaging element, method for producing same, and electronic information apparatus
US7541631B2 (en) Solid-state imaging device
JP2010245177A (en) Imaging element, method of manufacturing imaging element, method of driving imaging element, and imaging apparatus
JP5408964B2 (en) Solid-state imaging device and electronic information device
JP2008147409A (en) Solid-state image pickup device, its manufacturing method, and electronic information device
JP2012049270A (en) In-layer lens and formation method thereof, solid photographing element and manufacturing method thereof, and electronic information equipment
JP2010114227A (en) Solid imaging device and method of manufacturing the same, and electronic information apparatus
JP5134853B2 (en) Semiconductor device manufacturing method, solid-state imaging device, and electronic information device
JP5309559B2 (en) Manufacturing method of solid-state imaging device
JP4645578B2 (en) Solid-state imaging device and method for manufacturing solid-state imaging device
JP2014045040A (en) Solid state imaging device and manufacturing method of the same, and electronic information equipment
JP2009129931A (en) Solid-state image sensor and method of manufacturing the same, and electronic information device
JP2008305872A (en) Solid-state imaging device and electronic information device
JP2003224255A (en) Solid-state image pickup element and image pickup device using the same
JP4715110B2 (en) Manufacturing method of solid-state imaging device
JP2014033149A (en) Solid state image sensor and manufacturing method thereof and electronic information apparatus
JP2011066685A (en) Solid-state image sensing element, method for driving the same, and image sensing device
JP2011222572A (en) Solid-state imaging element, method of manufacturing the same and electronic information apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120110