JP2010114188A - Semiconductor manufacturing apparatus - Google Patents

Semiconductor manufacturing apparatus Download PDF

Info

Publication number
JP2010114188A
JP2010114188A JP2008284167A JP2008284167A JP2010114188A JP 2010114188 A JP2010114188 A JP 2010114188A JP 2008284167 A JP2008284167 A JP 2008284167A JP 2008284167 A JP2008284167 A JP 2008284167A JP 2010114188 A JP2010114188 A JP 2010114188A
Authority
JP
Japan
Prior art keywords
temah
reaction chamber
film
temperature
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008284167A
Other languages
Japanese (ja)
Inventor
Yoshinori Ikeda
吉則 池田
Yasuhiro Numata
康弘 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008284167A priority Critical patent/JP2010114188A/en
Publication of JP2010114188A publication Critical patent/JP2010114188A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that when an apparatus for forming an HfO<SB>2</SB>(hafnium oxide) film by an ALD (Atomic Layer Deposition) method supplies TEMAH and O<SB>3</SB>alternately to a reaction chamber to form the HfO<SB>2</SB>film, the TEMAH receives heat in the reaction chamber to be decomposed and then an Hf film is formed in a TEMAH supply nozzle and peels to become particles. <P>SOLUTION: In the vertical batch type semiconductor manufacturing apparatus which forms the HfO<SB>2</SB>film, piping temperature from a vaporizer to a gas intake of a supply means for TEMAH is controlled to above vaporization temperature of the vaporizer and below thermal decomposition temperature of the TEMAH. Consequently, thermal decomposition of TEMAH is not caused in TEMAH supply piping to suppress formation of the Hf film, thereby reducing particles. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は半導体ウェーハ(以下、ウェーハという)の表面にHfO2膜を形成して半導体装置を製造する、縦型のバッチ式半導体製造装置に関する。 The present invention relates to a vertical batch type semiconductor manufacturing apparatus for manufacturing a semiconductor device by forming an HfO 2 film on the surface of a semiconductor wafer (hereinafter referred to as a wafer).

縦型のバッチ式基盤処理装置として、反応ガスにTEMAH(Hf[NCH3254、テトラキスメチルエチルアミノハフニウム)と、酸化ガスとしてO3(オゾン)を用いALD(Atomic Layer Deposition)法によりHfO2(ハフニウムオキサイド)膜を形成する装置がある。この装置において、TEMAHは反応室内のウェーハ側の方向を避け、例えば反応室内の上部より供給するTEMAH供給ノズルにより供給され、O3はウェーハ側の方向に向けてガスを供給するO3供給ノズルにより供給される。そして、TEMAHとO3を交互に反応室へ供給することにより、膜厚均一性の良好なHfO2膜が形成できることが知られている。前記方法にてHfO2膜を形成すると、反応室内へ供給される前の段階で、TEMAHが反応室内の熱を受け加熱分解し、TEMAH供給ノズル内でHf膜が形成されてしまう。TEMAH供給ノズル内に形成されるHf膜は、累積膜厚0.5μm程度で剥がれパーティクルとなるため、累積膜厚0.5μm以下でTEMAH供給ノズルの交換、又はエッチングガスを用いたInsitu Cleaningが必要となる。HFをエッチングガスに用いたInsitu Cleaningを試みたところ、反応室内やウェーハ上に形成されるHfO2膜(組成比Hf:O=1:2)は除去できるが、TEMAHノズル内に形成されるHfO2膜(組成比Hf:O=30:1)はHfリッチであるため、エッチングにより完全に除去することができない。そこで、特許文献1ではTEMAHを反応室内に供給するステップにおいて、TEMAH供給ノズルからもO3を供給し、TEMAH供給ノズル内に形成されるHfO2膜を反応室内やウェーハ上に形成されるHfO2膜(組成比Hf:O=1:2)と同一にすることで、Insitu Cleaningを行うことが提案されている。
特開2008−78448号公報
As a vertical batch type substrate processing apparatus, ALD (Atomic Layer Deposition) using TEMAH (Hf [NCH 3 C 2 H 5 ] 4 , tetrakismethylethylaminohafnium) as a reaction gas and O 3 (ozone) as an oxidizing gas. There is an apparatus for forming an HfO 2 (hafnium oxide) film by a method. In this apparatus, TEMAH avoids the direction of the wafer in the reaction chamber and is supplied by, for example, a TEMAH supply nozzle that is supplied from the upper part of the reaction chamber, and O 3 is supplied by an O 3 supply nozzle that supplies gas in the direction of the wafer. Supplied. It is known that an HfO 2 film with good film thickness uniformity can be formed by alternately supplying TEMAH and O 3 to the reaction chamber. When the HfO 2 film is formed by the above-described method, TEMAH receives heat in the reaction chamber and is thermally decomposed before being supplied into the reaction chamber, and an Hf film is formed in the TEMAH supply nozzle. Since the Hf film formed in the TEMAH supply nozzle is peeled off when the cumulative film thickness is about 0.5 μm, replacement of the TEMAH supply nozzle or in situ cleaning using an etching gas is required when the cumulative film thickness is 0.5 μm or less. It becomes. When in situ cleaning was attempted using HF as an etching gas, the HfO 2 film (composition ratio Hf: O = 1: 2) formed in the reaction chamber or on the wafer could be removed, but HfO formed in the TEMAH nozzle. Since the two films (composition ratio Hf: O = 30: 1) are rich in Hf, they cannot be completely removed by etching. Therefore, in Patent Document 1, in the step of supplying TEMAH into the reaction chamber, O 3 is also supplied from the TEMAH supply nozzle, and the HfO 2 film formed in the TEMAH supply nozzle is replaced with the HfO 2 film formed on the reaction chamber or on the wafer. It has been proposed to perform in situ cleaning by making it the same as (composition ratio Hf: O = 1: 2).
JP 2008-78448 A

しかしながら、TEMAHを反応室内に供給するステップにおいて、TEMAH供給ノズルからもO3を供給する方法は、以下の課題がある。TEMAH供給ノズルは反応室内下部から反応室内上部まで延びているため、反応室内下部と反応室内上部の噴出し口付近ではガスが受ける熱量が異なる。このため、TEMAH供給ノズル内全面に均一なHfO2膜(組成比Hf:O=1:2)を形成することはできない。TEMAH供給ノズルの反応室内下部は熱量が小さいため、O3とHfが十分に反応せずHfリッチなHfO2膜が形成され、反応室内上部にいく程、熱量が大きくなり反応室内やウェーハ上に形成されるHfO2膜(組成比Hf:O=1:2)に近づく。また、TEMAH供給ノズル内の下部と上部で形成されるHfO2膜の膜厚も異なるためInsitu Cleaningを行ったとしても、ノズル内を均一にエッチングすることはできないため、膜残りやオーバーエッチを引き起こす。膜残りは膜剥がれによるパーティクルの原因となり、オーバーエッチは石英表面にダメージを与え、石英の交換周期を早めてしまう。 However, the method for supplying O 3 from the TEMAH supply nozzle in the step of supplying TEMAH into the reaction chamber has the following problems. Since the TEMAH supply nozzle extends from the lower part of the reaction chamber to the upper part of the reaction chamber, the amount of heat received by the gas is different between the lower part of the reaction chamber and the outlet near the upper part of the reaction chamber. For this reason, a uniform HfO 2 film (composition ratio Hf: O = 1: 2) cannot be formed on the entire surface of the TEMAH supply nozzle. Since the heat amount in the lower part of the reaction chamber of the TEMAH supply nozzle is small, O 3 and Hf do not react sufficiently to form a Hf-rich HfO 2 film, and the heat amount increases toward the upper part of the reaction chamber and increases in the reaction chamber and on the wafer. It approaches the HfO 2 film to be formed (composition ratio Hf: O = 1: 2). Further, since the film thickness of the HfO 2 film formed in the lower part and the upper part in the TEMAH supply nozzle is also different, even if in situ cleaning is performed, the inside of the nozzle cannot be uniformly etched. . The remaining film causes particles due to film peeling, and overetching damages the quartz surface and accelerates the quartz replacement cycle.

本発明は、TEMAH供給ノズル内に形成されるHfO2膜の剥がれによるパーティクルの抑制を目的とし、膜厚の均一性が良好な半導体製造装置を提供する。 The present invention aims to suppress particles due to peeling of the HfO 2 film formed in the TEMAH supply nozzle, and provides a semiconductor manufacturing apparatus with good film thickness uniformity.

前記課題を解決するため、本発明の半導体製造装置には、まず、複数のウェーハを積層した状態で収容する反応室と、前記ウェーハ及び前記反応室内の雰囲気を加熱する加熱手段とが設けられている。次に、TEMAHを反応室内へ供給する第1のガス供給手段と、TEMAHを気化するための気化手段と、O3を供給する第2のガス供給手段とが設けられている。次に、前記処理室内の雰囲気を排出する排出手段と、前記加熱手段と、前記第1のガス供給手段と、前記気化手段と、前期第2のガス供給手段と、前記排出手段を制御する制御部を備えている。また、前記第1のガス供給手段の反応室内へのガス導入口は、積層されたウェーハよりも高い位置で開口し、前記第2のガス供給手段の反応室へのガス導入口は、前記反応室内に積層されたウェーハ側の方向を向き開口されている。さらに、本発明の半導体製造装置は、前記制御部により、TEMAHとO3を交互に供給、排気し、前記ウェーハ上にHfO2膜を形成する。 In order to solve the above problems, the semiconductor manufacturing apparatus of the present invention is first provided with a reaction chamber that accommodates a plurality of wafers in a stacked state, and a heating unit that heats the atmosphere in the wafer and the reaction chamber. Yes. Next, a first gas supply means for supplying TEMAH into the reaction chamber, a vaporization means for vaporizing TEMAH, and a second gas supply means for supplying O 3 are provided. Next, control for controlling the discharge means for discharging the atmosphere in the processing chamber, the heating means, the first gas supply means, the vaporization means, the second gas supply means, and the discharge means. Department. The gas introduction port into the reaction chamber of the first gas supply means opens at a position higher than the stacked wafers, and the gas introduction port into the reaction chamber of the second gas supply means is the reaction chamber. An opening is made in the direction of the wafer stacked in the chamber. Further, in the semiconductor manufacturing apparatus of the present invention, the control unit alternately supplies and exhausts TEMAH and O 3 to form an HfO 2 film on the wafer.

そして、このような半導体製造装置において、気化手段から第1のガス供給手段のガス導入口までの配管温度を気化器の気化温度以上、TEMAHの加熱分解温度以下に制御し、TEMAHを反応室内に供給することを特徴とする。   In such a semiconductor manufacturing apparatus, the piping temperature from the vaporization means to the gas inlet of the first gas supply means is controlled to be equal to or higher than the vaporization temperature of the vaporizer and equal to or lower than the thermal decomposition temperature of TEMAH, and TEMAH is placed in the reaction chamber. It is characterized by supplying.

本発明によれば、TEMAH供給ノズル内の温度を気化温度以上、加熱分解温度以下とすることで、気相で供給されるTEMAHの再液化を防止でき、且つTEMAH供給ノズル内のHf膜の堆積を抑制できるため、前記課題のHf膜の剥がれによるパーティクルを抑制できる。さらにエッチングガスを用いたInsitu Cleaningを実施する場合、本発明によりTEMAH供給ノズル内の温度を石英のエッチング温度以下に制御することで、TEMAH供給ノズル内をエッチングすることなく反応室内のCleanigが可能となる。よって、TEMAH供給ノズルの交換頻度を少なくすることができる。   According to the present invention, by setting the temperature in the TEMAH supply nozzle to be equal to or higher than the vaporization temperature and equal to or lower than the thermal decomposition temperature, it is possible to prevent re-liquefaction of TEMAH supplied in the gas phase and to deposit the Hf film in the TEMAH supply nozzle. Therefore, particles due to peeling off of the Hf film can be suppressed. Furthermore, when performing in-situ cleaning using an etching gas, the temperature in the TEMAH supply nozzle is controlled to be equal to or lower than the etching temperature of quartz according to the present invention, so that the cleaning in the reaction chamber can be performed without etching the TEMAH supply nozzle. Become. Therefore, the replacement frequency of the TEMAH supply nozzle can be reduced.

以下、本発明の一実施形態について図面を参照しながら説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の半導体製造装置の構成図である。この図1において、反応管5は石英等の耐熱性、耐食性金属で形成され、マニュホールド8に支持される。マニュホールド8は下方に臨んで開口していて、反応管5の炉口を下方に延長している。マニュホールド8には排気配管14が接続され、排気配管14には反応室1内を真空引きするポンプ10と反応室の圧力制御を行う、圧力制御バルブ9が接続される。またマニュホールド8には成膜に使用する反応ガスであるO3のO3供給ノズル13と反応室内の温度を監視するための熱伝対17が接続される。 FIG. 1 is a configuration diagram of a semiconductor manufacturing apparatus according to the present invention. In FIG. 1, a reaction tube 5 is formed of a heat-resistant and corrosion-resistant metal such as quartz and is supported by a manifold 8. The manifold 8 is open downward and extends the furnace port of the reaction tube 5 downward. An exhaust pipe 14 is connected to the manifold 8, and a pump 10 that evacuates the reaction chamber 1 and a pressure control valve 9 that controls the pressure of the reaction chamber are connected to the exhaust pipe 14. The thermocouple 17 for monitoring the temperature of the reaction chamber with O 3 supply nozzle 13 of the O 3 is a reaction gas used for film formation is connected to the Manufacturing hold 8.

反応室1を囲む様にヒータ室6内に円筒状のヒータ4が設けられ、反応室1内を所望の温度にするため、熱伝対17の値からコントローラ22で算出した必要電力を、ヒータ4にフィードバックし反応室1の温度を制御する。   A cylindrical heater 4 is provided in the heater chamber 6 so as to surround the reaction chamber 1, and the required electric power calculated by the controller 22 from the value of the thermocouple 17 is used to set the desired temperature in the reaction chamber 1. 4 is fed back to control the temperature of the reaction chamber 1.

シールキャップ23上に設置されたボート2にはウェーハ3が装填され、前記ボート2を反応室1へ装入するためのボートエレベータ(図示せず)がシールキャップ23部に連結される。そして、ウェーハ3が充填されたボート2とシールキャップ部23とボート回転機構7を上下に駆動させ、反応室1内への装入と取り出しを行う。   The boat 2 installed on the seal cap 23 is loaded with wafers 3, and a boat elevator (not shown) for loading the boat 2 into the reaction chamber 1 is connected to the seal cap 23 portion. Then, the boat 2 filled with the wafer 3, the seal cap portion 23, and the boat rotation mechanism 7 are driven up and down to perform loading and unloading into the reaction chamber 1.

前記ボート2は、前記シールキャップ23の軸心部を上下に貫通する回転軸(図示せず)の先端部に取り付けられたボート支持台24の中央部に支持されており、回転軸はシールキャップ23の下部に取り付けられる。そして、シールキャップ23を固定系として回転駆動力を伝達するボート回転機構7に連結される。ボート回転機構7を駆動すると、回転軸が回転し、ボート支持台24を介してボート2が回転するので、反応管5内部の反応室1に供給されるTEMAHとO3が、各ウェーハ3に均等に接触するため面内膜厚の均一な環境が得られる。 The boat 2 is supported by a central portion of a boat support base 24 attached to the tip of a rotating shaft (not shown) that passes through the axial center of the seal cap 23 up and down, and the rotating shaft is a seal cap. It is attached to the lower part of 23. And it connects with the boat rotation mechanism 7 which transmits rotational driving force by making the seal cap 23 into a fixed system. When the boat rotation mechanism 7 is driven, the rotation shaft rotates and the boat 2 rotates via the boat support 24, so that TEMAH and O 3 supplied to the reaction chamber 1 inside the reaction tube 5 are transferred to each wafer 3. Since the contact is even, an environment with a uniform in-plane film thickness can be obtained.

次に、成膜に用いるTEMAHとO3の供給系について説明する。 Next, a TEMAH and O 3 supply system used for film formation will be described.

TEMAHは常温で液体の液化ガスであるため、TEMAH流量制御部15にて所望の流量に制御されたTEMAHを気化器16により気化させ、反応室1内へ供給される。TEMAH流量制御部15の上流にはバルブ11aが設けられ、TEMAH使用時はバルブ11aを開け、未使用時は閉じる。気化器16の温度はTEMAHの気化温度以上であって、例えば150℃になるように温度が設定される。   Since TEMAH is a liquefied gas that is liquid at room temperature, TEMAH controlled to a desired flow rate by the TEMAH flow rate control unit 15 is vaporized by the vaporizer 16 and supplied into the reaction chamber 1. A valve 11a is provided upstream of the TEMAH flow control unit 15, and the valve 11a is opened when the TEMAH is used, and closed when the TEMAH is not used. The temperature of the vaporizer 16 is equal to or higher than the vaporization temperature of TEMAH, and the temperature is set to 150 ° C., for example.

次に、図2、3を用い、TEMAH供給配管21について説明する。図3A,Bは、それぞれ図2における矢印A,Bによる断面の様子を表わしている。即ち図3AはTEMAH供給配管21の断面図であり、図3BはTEMHA供給配管21の断面を含む斜視図である。   Next, the TEMAH supply pipe 21 will be described with reference to FIGS. 3A and 3B show the states of the cross sections along arrows A and B in FIG. 2, respectively. 3A is a cross-sectional view of the TEMAH supply pipe 21, and FIG. 3B is a perspective view including a cross section of the TEMHA supply pipe 21.

TEMAH供給配管21は気化器16に接続され、ヒータ室6を通り、反応管5の上部中央に接続される。TEMAH供給配管21は図3Aに示すよう、内管28と外管29を含む2重管構造とし、内管28内はTEMAHが流れる(TEMAH流路31)。また、内管28と外管29の間はTEMAH供給配管21の温度を制御する冷媒が流れる(冷媒流路32)。また、内管28と外管29の間には、図3A,Bに示すように、内管28と外管29に対し垂直で、長手方向に内管28と外管29管の体積を等分するように仕切り板30が設けられる。仕切り板30により分けられた、内管28と外管29間の空間の一方は冷媒供給路25となり、もう一方は冷媒排出路26となる。チラー20により所望の温度に冷媒の温度を制御し冷媒供給配管18から、冷媒供給路26に冷媒が供給され、冷媒排出路27から冷媒排出配管19を通りチラー20に戻る。前記サイクルを繰り返すことで、TEMAH供給配管21の温度を所望の温度に制御することができる。   The TEMAH supply pipe 21 is connected to the vaporizer 16, passes through the heater chamber 6, and is connected to the upper center of the reaction tube 5. As shown in FIG. 3A, the TEMAH supply pipe 21 has a double pipe structure including an inner pipe 28 and an outer pipe 29, and TEMAH flows in the inner pipe 28 (TEMAH flow path 31). A refrigerant for controlling the temperature of the TEMAH supply pipe 21 flows between the inner pipe 28 and the outer pipe 29 (refrigerant flow path 32). Further, between the inner tube 28 and the outer tube 29, as shown in FIGS. 3A and 3B, the volumes of the inner tube 28 and the outer tube 29 are equal to each other perpendicular to the inner tube 28 and the outer tube 29 in the longitudinal direction. A partition plate 30 is provided so as to be divided. One of the spaces between the inner pipe 28 and the outer pipe 29 divided by the partition plate 30 is a refrigerant supply path 25 and the other is a refrigerant discharge path 26. The temperature of the refrigerant is controlled to a desired temperature by the chiller 20, the refrigerant is supplied from the refrigerant supply pipe 18 to the refrigerant supply path 26, and returns from the refrigerant discharge path 27 to the chiller 20 through the refrigerant discharge pipe 19. By repeating the cycle, the temperature of the TEMAH supply pipe 21 can be controlled to a desired temperature.

図4を用い、TEMAH供給配管21に供給する冷媒の最適温度について説明する。図4はTEMAHの加熱分解度合いを示す図面である。TEMAHは180℃近傍から加熱分解を始め、温度上昇に伴い増加していくが、160℃未満では加熱分解しない。つまり、TEMAH供給配管内21の温度を160℃以下とすることで、配管内へのHfO2膜の形成を防止できる。しかし、冷媒の温度を気化器16温度の150℃以下に設定すると、TEMAHは気相状態から液状態となる再液化が発生し、パーティクルの原因や膜質異常を引き起こす。前記に鑑み、本発明は、TEMAH供給配管21に供給する冷媒の温度は、気化器の温度以上、TEMAHの加熱分解温度以下に制御することを特徴とする。 The optimal temperature of the refrigerant | coolant supplied to the TEMAH supply piping 21 is demonstrated using FIG. FIG. 4 is a drawing showing the degree of thermal decomposition of TEMAH. TEMAH begins to thermally decompose from around 180 ° C. and increases with increasing temperature, but does not thermally decompose at temperatures below 160 ° C. That is, by setting the temperature in the TEMAH supply pipe 21 to 160 ° C. or less, formation of the HfO 2 film in the pipe can be prevented. However, when the temperature of the refrigerant is set to 150 ° C. or lower of the vaporizer 16 temperature, TEMAH is reliquefied from a gas phase state to a liquid state, causing particles and abnormal film quality. In view of the above, the present invention is characterized in that the temperature of the refrigerant supplied to the TEMAH supply pipe 21 is controlled to be not lower than the temperature of the vaporizer and not higher than the thermal decomposition temperature of TEMAH.

3はガス流量制御部12により、所望の流量に制御され、O3供給ノズルにより反応室1内へ供給される。ガス流量制御部12の下流にはバルブ11bが設けられ、O3使用時はバルブ11bを開け、未使用時は閉じる。O3供給ノズル13はボート2に充填されているウェーハ3に沿って反応管5の天井付近まで延び、反応室1内への導入口は複数の供給孔が設けられており、各ウェーハ3間にそれぞれ水平に導入されるように上下方向に所定間隔を隔てて設けられている。 O 3 is controlled to a desired flow rate by the gas flow rate controller 12 and is supplied into the reaction chamber 1 by the O 3 supply nozzle. A valve 11b is provided downstream of the gas flow control unit 12, and the valve 11b is opened when O 3 is used and closed when not used. The O 3 supply nozzle 13 extends to the vicinity of the ceiling of the reaction tube 5 along the wafer 3 filled in the boat 2, and the introduction port into the reaction chamber 1 is provided with a plurality of supply holes. Are provided at predetermined intervals in the vertical direction so as to be introduced horizontally.

制御手段として動作するコントローラ22は、前記ガス流量制御部12、TEMAH流量制御部15の流量制御、バルブ12の開閉動作、圧力制御バルブ9の圧力調整動作、ヒータ4の温度調整、排出手段である真空ポンプ10の起動・停止動作、ボート回転機構7の回転速度調節を実行し、成膜レシピに基づいて制御する。   The controller 22 that operates as control means is the flow control of the gas flow control unit 12 and the TEMAH flow control unit 15, the opening and closing operation of the valve 12, the pressure adjustment operation of the pressure control valve 9, the temperature adjustment of the heater 4, and the discharge means. The start / stop operation of the vacuum pump 10 and the rotation speed adjustment of the boat rotation mechanism 7 are executed and controlled based on the film forming recipe.

次に、ALD(Atomic Layer Deposition)法を用いた成膜処理の一例として、半導体デバイスの製造工程の一つである、TEMAH及びO3を用いてHfO2膜を成膜する場合を説明する。ALD法は、ある成膜条件(温度、時間等)の下で、成膜に用いる少なくとも2種類の原料となる反応性ガスを1種類ずつ交互に基板上に供給し、1原子単位でウェーハ3の成膜面に吸着させ、表面反応を利用して成膜を行う手法である。このとき、膜厚の制御は、反応性ガスを供給するサイクル数で行う。 Next, as an example of a film forming process using an ALD (Atomic Layer Deposition) method, a case where an HfO 2 film is formed using TEMAH and O 3 , which is one of semiconductor device manufacturing processes, will be described. In the ALD method, under certain film forming conditions (temperature, time, etc.), at least two kinds of reactive gases used as film forming materials are alternately supplied onto the substrate one by one, and the wafer 3 is obtained in units of one atom. In this method, the film is adsorbed on the film formation surface and film formation is performed using a surface reaction. At this time, the film thickness is controlled by the number of cycles for supplying the reactive gas.

<実施例1>
まず、上述したようにウェーハ3をボート2に充填し、反応室1に装入する。ボート2を反応室1に搬入後、後述する3つのステップを順次実行する。
<Example 1>
First, as described above, the wafer 3 is filled in the boat 2 and charged into the reaction chamber 1. After carrying the boat 2 into the reaction chamber 1, the following three steps are sequentially executed.

(ステップ1)
ステップ1では、バルブ11aを開け、TEMAH流量制御部15により0.01〜0.2g/minに流量を制御された液状のTEMAHを気化器16により気化させる。気化器の温度はTEMAHの気化温度以上、例えば150℃に設定する。この時、TEMAH供給配管21の温度を気化器16の温度以上、例えば150℃以上、TEMAHの加熱分解温度以下となるよう、チラー20の温度を設定し、TEMAH供給配管21内に冷媒を供給する。また、圧力制御バルブ9のバルブ開度は適正に調整され、反応室1内は所定の圧力に維持される。TEMAHガスにウェーハ30を晒す時間は30〜180秒間であり、このときヒータ4の温度はウェーハ3の温度が180〜250℃の範囲であって、例えば250℃になるように温度が設定される。TEMAHは、反応室1内に供給されることで、ウェーハ3上の下地膜などの表面部分と表面反応(化学吸着)される。
(Step 1)
In step 1, the valve 11 a is opened, and the liquid TEMAH whose flow rate is controlled to 0.01 to 0.2 g / min by the TEMAH flow rate control unit 15 is vaporized by the vaporizer 16. The temperature of the vaporizer is set to be equal to or higher than the vaporization temperature of TEMAH, for example, 150 ° C. At this time, the temperature of the chiller 20 is set so that the temperature of the TEMAH supply pipe 21 is equal to or higher than the temperature of the vaporizer 16, for example, 150 ° C. or higher and equal to or lower than the thermal decomposition temperature of TEMAH, and the refrigerant is supplied into the TEMAH supply pipe 21. . Further, the valve opening degree of the pressure control valve 9 is appropriately adjusted, and the inside of the reaction chamber 1 is maintained at a predetermined pressure. The time for exposing the wafer 30 to the TEMAH gas is 30 to 180 seconds. At this time, the temperature of the heater 4 is set so that the temperature of the wafer 3 is in the range of 180 to 250 ° C., for example, 250 ° C. . When TEMAH is supplied into the reaction chamber 1, it undergoes surface reaction (chemical adsorption) with a surface portion such as a base film on the wafer 3.

(ステップ2)
TEMAHの供給後は、バルブ11aを閉め、TEMAHガスの供給を停止し、余剰分を排気(パージ)する。このとき圧力制御バルブ9は開の状態で保持し、真空ポンプ10によって排気し、残留TEMAHガスを反応室1内から排除する。このときN2等の不活性ガスを反応室1内へ供給すると、残留TEMAHガスの排気効率が向上する。
(Step 2)
After the supply of TEMAH, the valve 11a is closed, the supply of TEMAH gas is stopped, and the surplus is exhausted (purged). At this time, the pressure control valve 9 is held in an open state, exhausted by the vacuum pump 10, and residual TEMAH gas is removed from the reaction chamber 1. At this time, if an inert gas such as N 2 is supplied into the reaction chamber 1, the exhaust efficiency of the residual TEMAH gas is improved.

(ステップ3)
バルブ11bを開け、ガス流量制御部12により所望の流量に制御されたO3をO3供給ノズル13により反応室1内へ供給される。このとき、排出手段としての真空ポンプ10により反応室1の排気が継続され、余剰分は排気配管14より排気される。この時、圧力制御バルブ9を適正に調整することで、反応室1内は所定の圧力に維持される。O3にウェーハ3を晒す時間は10〜120秒間であり、この時のウェーハ3の温度は、ステップ1のTEMAHガスの供給時と同じく180〜250℃の所定温度に維持するようにヒータ4の温度が設定される。O3の供給により、ウェーハ3の表面に化学吸着したTEMAHとO3との表面反応により、ウェーハ3上にHfO2膜が成膜される。成膜後、バルブ11bは閉の状態で保持し、真空ポンプ10により反応室1のガス雰囲気が真空排気される。この排気により、反応室1内に残留するO3が排除されるが、この際に、N2等の不活性ガスを反応室1内に供給した場合には、残留O3ガスの排気効率が大幅に向上する。上述したステップ1〜3を1サイクルとしてこのサイクルを複数回繰り返すと、ウェーハ3上に所定の膜厚のHfO2膜が成膜される。
(Step 3)
Opening the valve 11b, it is supplied into the reaction chamber 1 a O 3 controlled to a desired flow rate by the gas flow control unit 12 by the O 3 supply nozzle 13. At this time, the exhaust of the reaction chamber 1 is continued by the vacuum pump 10 as a discharge means, and the excess is exhausted from the exhaust pipe 14. At this time, the inside of the reaction chamber 1 is maintained at a predetermined pressure by appropriately adjusting the pressure control valve 9. The time for exposing the wafer 3 to O 3 is 10 to 120 seconds. At this time, the temperature of the wafer 4 is maintained at a predetermined temperature of 180 to 250 ° C. as in the supply of the TEMAH gas in Step 1. The temperature is set. By supplying O 3, the surface reaction between TEMAH and O 3 chemically adsorbed on the surface of the wafer 3, HfO 2 film is formed on the wafer 3. After the film formation, the valve 11b is kept closed, and the gas atmosphere in the reaction chamber 1 is evacuated by the vacuum pump 10. By this exhaust, O 3 remaining in the reaction chamber 1 is excluded. At this time, when an inert gas such as N 2 is supplied into the reaction chamber 1, the exhaust efficiency of the residual O 3 gas is increased. Greatly improved. When the above steps 1 to 3 are set as one cycle and this cycle is repeated a plurality of times, an HfO 2 film having a predetermined thickness is formed on the wafer 3.

上述の実施の形態によれば、TEMAHを反応室1内に供給するためのノズルを反応室1内に持たないため、TEMAHが反応室1内に供給する前の段階でヒータ4の熱を受け、TEMAHの加熱分解は起きない。しかし、TEMAHの反応室1内へ供給される導入口を反応管5の上部に接続する本発明の形態においても、TEMAH供給配管21はヒータ室6を経由する必要があるため、ヒータ室6の熱を受けてしまう。成膜温度を、250℃とした場合のヒータ室の温度を測定した結果、200〜205℃となるため、前記ヒータ室6内でTEMAHの加熱分解がおきてしまう。本発明では、前記の課題を解決するため、TEMAH供給配管21内の温度を気化器の温度以上、TEMAHの加熱分解温度以下とすることで、HfO2膜剥がれによるパーティクルを抑制し、膜厚均一性の良好な半導体製造装置を実現できる。 According to the above-described embodiment, since the reaction chamber 1 does not have a nozzle for supplying TEMAH into the reaction chamber 1, the heat of the heater 4 is received before TEMAH is supplied into the reaction chamber 1. The thermal decomposition of TEMAH does not occur. However, also in the embodiment of the present invention in which the inlet for supplying the TEMAH to the reaction chamber 1 is connected to the upper portion of the reaction tube 5, the TEMAH supply pipe 21 needs to pass through the heater chamber 6. Receives heat. As a result of measuring the temperature of the heater chamber when the film forming temperature is 250 ° C., the temperature becomes 200 to 205 ° C., so that TEMAH is thermally decomposed in the heater chamber 6. In the present invention, in order to solve the above-described problem, the temperature in the TEMAH supply pipe 21 is set to be equal to or higher than the vaporizer temperature and equal to or lower than the thermal decomposition temperature of TEMAH, thereby suppressing particles due to HfO 2 film peeling and uniform film thickness. A semiconductor manufacturing apparatus with good performance can be realized.

以上説明したように、本発明はHfO2膜を形成する縦型のバッチ式半導体製造装置において、パーティクルを抑制でき、且つ膜厚均一性の良好な半導体製造装置であり、半導体装置の品質を向上させることができる。 As described above, the present invention is a vertical batch type semiconductor manufacturing apparatus for forming an HfO 2 film, which is a semiconductor manufacturing apparatus capable of suppressing particles and having good film thickness uniformity, and improving the quality of the semiconductor device. Can be made.

本発明の半導体装置の構成図。1 is a configuration diagram of a semiconductor device of the present invention. 本発明の供給配管の構成図。The block diagram of the supply piping of this invention. 本発明の供給配管の断面図。Sectional drawing of the supply piping of this invention. TEMAHの加熱分解度合いを示すグラフ。The graph which shows the thermal decomposition degree of TEMAH.

符号の説明Explanation of symbols

1 反応室
2 ボート
3 ウェーハ
4 ヒータ
5 反応管
6 ヒータ室
7 ボート回転機構
8 マニュホールド
9 圧力制御バルブ
10 真空ポンプ
11 バルブ
12 ガス流量制御部
13 O3供給ノズル
14 排気配管
15 TEMAH流量制御部
16 気化器
17 熱伝対
18 冷媒供給配管
19 冷媒排出配管
20 チラー
21 TEMAH供給配管
22 コントローラ
23 シールキャップ
24 ボート支持台
25 TEMAH流路
26 冷媒供給流路
27 冷媒排出流路
28 内管
29 外管
30 仕切り板
31 TEMAH流路
32 冷媒流路
1 reaction chamber 2 boat 3 wafer 4 heater 5 reaction tube 6 heater chamber 7 boat rotating mechanism 8 Manufacturing hold 9 pressure control valve 10 vacuum pump 11 valve 12 gas flow controller 13 O 3 supply nozzle 14 exhaust pipe 15 TEMAH flow control unit 16 Vaporizer 17 Thermocouple 18 Refrigerant supply pipe 19 Refrigerant discharge pipe 20 Chiller 21 TEMAH supply pipe 22 Controller 23 Seal cap 24 Boat support base 25 TEMAH flow path 26 Refrigerant supply flow path 27 Refrigerant discharge flow path 28 Inner pipe 29 Outer pipe 30 Partition plate 31 TEMAH flow path 32 Refrigerant flow path

Claims (1)

複数のウェーハを積層した状態で収容する反応室と、前記ウェーハ及び前記反応室内の雰囲気を加熱する加熱手段と、TEMAHを反応室内へ供給する第1のガス供給手段と、TEMAHを気化するための気化手段と、O3を供給する第2のガス供給手段と、前記処理室内の雰囲気を排出する排出手段と、前記加熱手段と、前記第1のガス供給手段と、前記気化手段と、前記第2のガス供給手段と、前記排出手段を制御する制御部とを備え、
前記第1のガス供給手段の反応室内へのガス導入口は、積層されたウェーハよりも高い位置で開口し、前記第2のガス供給手段の反応室へのガス導入口は、前記反応室内に積層されたウェーハ側の方向を向き開口され、前記制御部により、TEMAHとO3を交互に供給、排気し、前記ウェーハ上にHfO2膜を形成する縦型のバッチ式半導体製造装置において、
前記気化手段から前記第1のガス供給手段のガス導入口までの配管温度を気化器の気化温度以上、TEMAHの加熱分解温度以下に制御し、TEMAHを反応室内に供給することを特徴とする半導体製造装置。
A reaction chamber for storing a plurality of wafers in a stacked state, a heating means for heating the atmosphere in the wafer and the reaction chamber, a first gas supply means for supplying TEMAH into the reaction chamber, and for vaporizing TEMAH A vaporization means; a second gas supply means for supplying O 3 ; a discharge means for discharging the atmosphere in the processing chamber; the heating means; the first gas supply means; the vaporization means; 2 gas supply means, and a control unit for controlling the discharge means,
The gas introduction port into the reaction chamber of the first gas supply unit opens at a position higher than the stacked wafers, and the gas introduction port into the reaction chamber of the second gas supply unit enters into the reaction chamber. In the vertical batch type semiconductor manufacturing apparatus in which the direction toward the laminated wafer is opened and the control unit alternately supplies and exhausts TEMAH and O 3 to form an HfO 2 film on the wafer.
A pipe temperature from the vaporization means to the gas inlet of the first gas supply means is controlled to be not less than the vaporization temperature of the vaporizer and not more than the thermal decomposition temperature of TEMAH, and TEMAH is supplied into the reaction chamber Manufacturing equipment.
JP2008284167A 2008-11-05 2008-11-05 Semiconductor manufacturing apparatus Pending JP2010114188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008284167A JP2010114188A (en) 2008-11-05 2008-11-05 Semiconductor manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008284167A JP2010114188A (en) 2008-11-05 2008-11-05 Semiconductor manufacturing apparatus

Publications (1)

Publication Number Publication Date
JP2010114188A true JP2010114188A (en) 2010-05-20

Family

ID=42302542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008284167A Pending JP2010114188A (en) 2008-11-05 2008-11-05 Semiconductor manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP2010114188A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990522A (en) * 2022-04-14 2022-09-02 重庆理工大学 Thermal decomposition film preparation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990522A (en) * 2022-04-14 2022-09-02 重庆理工大学 Thermal decomposition film preparation device
CN114990522B (en) * 2022-04-14 2023-08-08 重庆理工大学 Thermal decomposition film preparation device

Similar Documents

Publication Publication Date Title
JP5616591B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP5219562B2 (en) Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
JP5720406B2 (en) GAS SUPPLY DEVICE, HEAT TREATMENT DEVICE, GAS SUPPLY METHOD, AND HEAT TREATMENT METHOD
US9206931B2 (en) Substrate processing apparatus and method of manufacturing semiconductor device
JP2008078448A (en) Substrate treatment device
JP2008109093A (en) Film forming method, and film forming apparatus
JP2009123795A (en) Manufacturing method of semiconductor device and substrate treatment apparatus
JP2010062230A (en) Method of manufacturing semiconductor device and substrate processing apparatus
JP6894521B2 (en) Substrate processing equipment, quartz reaction tube, cleaning method and program
JP2013229575A (en) Manufacturing method of semiconductor device, cleaning method, substrate processing apparatus, and recording medium
JP2008091805A (en) Method of fabricating semiconductor device, and substrate processing apparatus
JP2013151722A (en) Method for manufacturing semiconductor device
WO2005024926A1 (en) Substrate treating device and method of manufacturing semiconductor device
WO2011040173A1 (en) Film forming apparatus, film forming method and substrate processing apparatus
JP2010114188A (en) Semiconductor manufacturing apparatus
WO2018179251A1 (en) Method for producing semiconductor device
JP6123021B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP5421812B2 (en) Semiconductor substrate deposition apparatus and method
JP2008160081A (en) Substrate processing apparatus and substrate processing method
JP2007227804A (en) Manufacturing method of semiconductor device
JP2013065791A (en) Substrate processing apparatus and manufacturing method of semiconductor device
JP2012023138A (en) Substrate processing apparatus
JP2009130108A (en) Substrate treating device and method of manufacturing semiconductor device
JP2005129579A (en) Substrate treatment equipment and manufacturing method for semiconductor device
JP5356569B2 (en) Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus