JP2010114020A - Manufacturing method of polyelectrolyte membrane, the polyelectrolyte membrane, and solid polymer fuel cell - Google Patents

Manufacturing method of polyelectrolyte membrane, the polyelectrolyte membrane, and solid polymer fuel cell Download PDF

Info

Publication number
JP2010114020A
JP2010114020A JP2008287388A JP2008287388A JP2010114020A JP 2010114020 A JP2010114020 A JP 2010114020A JP 2008287388 A JP2008287388 A JP 2008287388A JP 2008287388 A JP2008287388 A JP 2008287388A JP 2010114020 A JP2010114020 A JP 2010114020A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
electrolyte membrane
membrane
acid
polyelectrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008287388A
Other languages
Japanese (ja)
Inventor
Shinya Takeshita
慎也 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008287388A priority Critical patent/JP2010114020A/en
Publication of JP2010114020A publication Critical patent/JP2010114020A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a polyelectrolyte membrane in which metal oxide particulates are uniformly dispersed in the polyelectrolyte membrane, and which is superior in chemical durability, and to provide the polyelectrolyte membrane manufactured by the method. <P>SOLUTION: This manufacturing method of the polyelectrolyte membrane includes a first process of dissolving metal salt of perfluorosulfonic acid and/or metal salt of perfluorocarboxylic acid, in a polymer dispersion liquid containing a polyelectrolyte precursor, to exhibit proton conductivity by alkaline hydrolysis and acid treatment; a second process of film-forming a polyelectrolyte precursor membrane obtained by the first process; a third process of preparing the polyelectrolyte precursor membrane by alkaline hydrolysis and acid treatment of the polyelectrolyte membrane obtained by the second process; and a fourth process of precipitating the metal oxide to the polyelectrolyte membrane by heating/drying the polyelectrolyte membrane obtained by the third process. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高分子電解質膜中に金属酸化物微粒子が均一に分散され、化学的耐久性に優れた高分子電解質膜の製造方法、及び該方法で製造された高分子電解質膜に関する。また、該高分子電解質膜を有する固体高分子型燃料電池に関する。   The present invention relates to a method for producing a polymer electrolyte membrane in which metal oxide fine particles are uniformly dispersed in the polymer electrolyte membrane and excellent in chemical durability, and a polymer electrolyte membrane produced by the method. The present invention also relates to a polymer electrolyte fuel cell having the polymer electrolyte membrane.

固体高分子電解質型燃料電池は、電解質として固体高分子電解質膜を用い、この膜の両面に触媒電極層を接合した構造を有する。このような固体高分子電解質型燃料電池を構成する固体電解質膜や触媒電極層は、プロトン伝導性を有する高分子電解質材料を用いて形成されるのが一般的である。このような電解質材料としては、ナフィオン(登録商標:Nafion、デュポン株式会社製)等のパーフルオロスルホン酸系樹脂が広く用いられてきた。   A solid polymer electrolyte fuel cell has a structure in which a solid polymer electrolyte membrane is used as an electrolyte and a catalyst electrode layer is bonded to both surfaces of the membrane. The solid electrolyte membrane and the catalyst electrode layer constituting such a solid polymer electrolyte fuel cell are generally formed using a polymer electrolyte material having proton conductivity. As such an electrolyte material, perfluorosulfonic acid resins such as Nafion (registered trademark: Nafion, manufactured by DuPont) have been widely used.

固体高分子形燃料電池に用いられるフッ素系及び炭化水素系電解質膜は、発電時に発生するOHラジカルにより電解質ポリマーが劣化して膜痩せを起こす。劣化抑制の手段としてCeOに代表されるような金属酸化物をラジカル捕捉剤として膜電極接合体(MEA)の触媒層又は拡散層に添加することによりMEAの耐ラジカル性を向上させている。この場合、触媒層又は拡散層に添加されたラジカル捕捉剤は時間と共に膜中へ移動する。 Fluorine-based and hydrocarbon-based electrolyte membranes used in polymer electrolyte fuel cells are deteriorated due to deterioration of the electrolyte polymer by OH radicals generated during power generation. As a means for suppressing deterioration, the radical resistance of MEA is improved by adding a metal oxide typified by CeO 2 as a radical scavenger to the catalyst layer or diffusion layer of the membrane electrode assembly (MEA). In this case, the radical scavenger added to the catalyst layer or the diffusion layer moves into the membrane with time.

例えば、下記特許文献1には、高分子電解質膜の耐久性を向上させる目的で、過酸化水素分解剤、ラジカル捕捉剤、または酸化防止剤を拡散層に含有させることが好ましい開示されている。   For example, Patent Document 1 below preferably discloses that a diffusion layer contains a hydrogen peroxide decomposing agent, a radical scavenger, or an antioxidant for the purpose of improving the durability of the polymer electrolyte membrane.

これとは別にラジカル捕捉剤を直接電解質膜に添加する方法も存在する。ラジカル捕捉剤を直接電解質膜に添加する方法としては、製膜後にイオン交換法等で添加する方法、製膜前に電解質ポリマーにラジカル捕捉剤を混入する方法に大別され、特に金属酸化物の様な固形物を添加する場合は後者が望ましい。更に、キャストで製膜する際はキャスト液にあらかじめラジカル捕捉剤を添加・混合してキャスティングし、溶融成形で製膜する際には電解質の前駆体構造である−SOF型ポリマーにラジカル捕捉剤を混合し、溶融製膜後、加水分解処理を行う事でプロトンを伝導可能な−SOH型ポリマーに変換する。 Apart from this, there is also a method of adding a radical scavenger directly to the electrolyte membrane. The method of adding the radical scavenger directly to the electrolyte membrane is roughly classified into a method of adding by ion exchange after film formation, a method of mixing a radical scavenger in the electrolyte polymer before film formation, The latter is desirable when such solids are added. Furthermore, when forming a film by casting, a radical scavenger is added and mixed in advance in the casting solution, and casting is performed. When forming a film by melt molding, radical scavenging is performed on the -SO 2 F type polymer that is the precursor structure of the electrolyte. The agent is mixed, melted to form a film, and then subjected to hydrolysis treatment to convert it into —SO 3 H type polymer that can conduct protons.

このように、燃料電池の高機能化を目的に高分子電解質膜に金属酸化物を添加することは知られているが、添加効果を大きくするためには、均一分散及び大表面積化が有効と考えられる。本発明者らは、溶融含浸膜の製造過程において、金属酸化物の添加方法や添加金属酸化物の微粒化により、分散性及び表面積増加を試みてきたが、従来の添加方法では溶融含浸膜への金属酸化物の均一分散と大表面積化を両立する事が困難であった。   As described above, it is known to add a metal oxide to the polymer electrolyte membrane for the purpose of enhancing the functionality of the fuel cell. However, in order to increase the effect of addition, uniform dispersion and a large surface area are effective. Conceivable. The inventors of the present invention have attempted to increase dispersibility and surface area by adding a metal oxide or atomizing an added metal oxide in the process of manufacturing a melt-impregnated film. It was difficult to achieve both uniform dispersion of the metal oxide and an increase in surface area.

金属酸化物の均一分散と大表面積化を両立する事が困難である原因として、高分子電解質膜の製造方法が関係している。図1に、高分子電解質膜製造スキームにおける従来の金属酸化物の添加時期を示す。また、図2に、従来の金属酸化物の添加方法とその概要を一覧で示す。   As a cause of difficulty in achieving both uniform dispersion of metal oxide and an increase in surface area, a method for producing a polymer electrolyte membrane is involved. FIG. 1 shows the conventional metal oxide addition time in the polymer electrolyte membrane production scheme. FIG. 2 shows a list of conventional metal oxide addition methods and their outlines.

図1、図2に示すように、従来の金属酸化物の添加方法としては、製膜前のポリマーに金属酸化物を物理的に混合する方法((1法)、(2法))と、製膜後イオン交換により膜中に導入する方法(3法)とに大きく分けられるが、前者の場合(1法)、乾粉体の金属酸化物を添加するため、添加前に既にミクロンサイズに凝集しており、微粒子化が望めなかった。また、分散性についても、固体のポリマー粉末と金属酸化物粉末では混合状態が粗く、繊密な分散性を得る事が難しい。ポリマー溶液への金属酸化物添加(2法)では幾分分散性は改善されるが、凝集粒子以上には分散せず、また分散媒であるフッ素系溶媒と酸化物の親媒性も乏しい為、分散は望めない。一方後者の場合(3法)、イオンの状態で電解質中に導入するので、続いて塩を析出させた場合微細な粒子が電解質中に析出するが、イオン導入の際濃度勾配により膜表面にイオン交換が集中し、添加状態に偏りができるので均一分散が難しかった。また、カチオン交換のみの場合にはスルホン酸基の減少による伝導性低下の問題もあった。   As shown in FIGS. 1 and 2, as a conventional method of adding a metal oxide, a method of physically mixing a metal oxide with a polymer before film formation ((1 method), (2 method)), It can be broadly divided into the method of introducing into the membrane by ion exchange after film formation (3 methods). In the former case (1 method), since the metal oxide of the dry powder is added, it is already reduced to a micron size before the addition. Agglomeration was not possible. As for dispersibility, solid polymer powder and metal oxide powder are coarsely mixed, and it is difficult to obtain fine dispersibility. Addition of metal oxide to the polymer solution (2 methods) improves the dispersibility somewhat, but it does not disperse more than the aggregated particles, and it is also poor in the affinity of the fluorinated solvent and oxide as the dispersion medium. I can't hope for dispersion. On the other hand, in the latter case (method 3), since it is introduced into the electrolyte in an ionic state, fine particles are deposited in the electrolyte when the salt is subsequently precipitated. Since the exchange was concentrated and the addition state could be biased, uniform dispersion was difficult. Further, in the case of only cation exchange, there is also a problem of a decrease in conductivity due to a decrease in sulfonic acid groups.

なお、金属酸化物の添加に関する上記従来技術として、下記特許文献1及び2が例示される。特許文献1には、高分子電解質前駆体を金属塩のアルカリ水溶液に浸漬して、金属酸化物を高分子電解質膜に析出させることが開示され、特許文献2には、カチオン交換膜に金属塩溶液を浸漬し、不溶化した金属酸化物を電解質膜中に分散させることが開示されている。   In addition, the following patent documents 1 and 2 are illustrated as said prior art regarding addition of a metal oxide. Patent Document 1 discloses that a polymer electrolyte precursor is immersed in an alkaline aqueous solution of a metal salt to precipitate a metal oxide on the polymer electrolyte membrane. Patent Document 2 discloses a metal salt on a cation exchange membrane. It is disclosed to immerse the solution and disperse the insolubilized metal oxide in the electrolyte membrane.

特開2005−19232号公報JP 2005-19232 A 特開2001−118591号公報JP 2001-118591 A

本発明は、上記従来技術の問題点に鑑みて発明されたものであり、高分子電解質膜中に金属酸化物微粒子が均一に分散され、化学的耐久性に優れた高分子電解質膜の製造方法、及び該方法で製造された高分子電解質膜を提供することを目的とする。また、これにより、固体高分子型燃料電池の耐久性の向上を図ることを目的とする。   The present invention was invented in view of the above-mentioned problems of the prior art, and a method for producing a polymer electrolyte membrane having excellent chemical durability in which metal oxide fine particles are uniformly dispersed in the polymer electrolyte membrane. And a polymer electrolyte membrane produced by the method. Another object of the present invention is to improve the durability of the polymer electrolyte fuel cell.

本発明者は、特定の手段により、高分子電解質中にラジカル捕捉剤である金属酸化物微粒子を均一に高分散させる方法を見出し、本発明に到達した。   The present inventor has found a method for uniformly and highly dispersing metal oxide fine particles as a radical scavenger in a polymer electrolyte by specific means, and has reached the present invention.

即ち、第1に、本発明は、高分子電解質膜中に金属酸化物微粒子が均一に分散された高分子電解質膜の製造方法の発明であり、アルカリ加水分解及び酸処理によりプロトン伝導性を発揮する高分子電解質前駆体を含有するポリマー分散液にパーフルオロスルホン酸の金属塩及び/又はパーフルオロカルボン酸の金属塩を溶解させる第1工程と、第1工程で得られた分散液から高分子電解質前駆体膜を製膜する第2工程と、第2工程で得られた高分子電解質前駆体膜をアルカリ加水分解及び酸処理し高分子電解質膜とする第3工程と、第3工程で得られた高分子電解質膜を加熱・乾燥し高分子電解質膜中に金属酸化物を析出する第4工程とを含む。   That is, first, the present invention is an invention of a method for producing a polymer electrolyte membrane in which metal oxide fine particles are uniformly dispersed in the polymer electrolyte membrane, and exhibits proton conductivity by alkali hydrolysis and acid treatment. A first step of dissolving a metal salt of perfluorosulfonic acid and / or a metal salt of perfluorocarboxylic acid in a polymer dispersion containing a polyelectrolyte precursor, and a polymer from the dispersion obtained in the first step Obtained in a second step of forming an electrolyte precursor film, a third step of alkali hydrolysis and acid treatment of the polymer electrolyte precursor film obtained in the second step to obtain a polymer electrolyte membrane, and a third step A fourth step of heating and drying the obtained polymer electrolyte membrane to deposit a metal oxide in the polymer electrolyte membrane.

本発明の高分子電解質膜は、単に金属酸化物を混合・分散させた場合と比べて、金属酸化物が凝集することなく高分子電解質膜中に高分散しており、金属酸化物の機能を最大限に発揮させることが可能となる。即ち、高分子電解質膜に金属酸化物微粒子を均一に添加する事で化学耐久性が向上する。   Compared to the case where the metal oxide is simply mixed and dispersed, the polymer electrolyte membrane of the present invention is highly dispersed in the polymer electrolyte membrane without agglomeration of the metal oxide. It will be possible to make the most of it. That is, chemical durability is improved by uniformly adding metal oxide fine particles to the polymer electrolyte membrane.

本発明で用いられるパーフルオロスルホン酸の金属塩及び/又はパーフルオロカルボン酸の金属塩としては、パーフルオロスルホン酸及びパーフルオロカルボン酸のセリウム塩、銀塩、チタン塩、珪素塩及びジルコニウム塩から選択される1種以上が好ましく例示される。   The metal salt of perfluorosulfonic acid and / or the metal salt of perfluorocarboxylic acid used in the present invention includes cerium salt, silver salt, titanium salt, silicon salt and zirconium salt of perfluorosulfonic acid and perfluorocarboxylic acid. One or more selected are preferably exemplified.

本発明で用いられるポリマー分散液の溶媒としては、アルカリ加水分解及び酸処理によりプロトン伝導性を発揮する高分子電解質前駆体、並びにパーフルオロスルホン酸の金属塩及び/又はパーフルオロカルボン酸の金属塩との相溶性に優れたフッ素系溶媒が好ましい。   Examples of the solvent for the polymer dispersion used in the present invention include a polymer electrolyte precursor that exhibits proton conductivity by alkali hydrolysis and acid treatment, and a metal salt of perfluorosulfonic acid and / or a metal salt of perfluorocarboxylic acid. A fluorine-based solvent that is excellent in compatibility with is preferable.

第2に、本発明は、上記の方法で製造された高分子電解質膜である。   Second, the present invention is a polymer electrolyte membrane produced by the above method.

第3に、本発明は、上記で製造された高分子電解質膜を有する固体高分子型燃料電池である。   Thirdly, the present invention is a polymer electrolyte fuel cell having the polymer electrolyte membrane produced as described above.

本発明の高分子電解質膜は、(1)高分子電解質へのラジカル捕捉剤である金属酸化物微粒子を従来より細かく、均一に分散出来るので、成形性の向上、品質向上、更には安定した耐ラジカル性が確保出来る、(2)高分子電解質中へ金属酸化物を固定化できるので、高分子電解質中での金属酸化物の移動及び脱落が抑制され、その結果安定した耐ラジカル性の確保や、長寿命化が可能になる、などの作用・効果を奏する。これにより、固体高分子電解質型燃料電池の発電性能と耐久性を向上させることができる。   In the polymer electrolyte membrane of the present invention, (1) metal oxide fine particles, which are radical scavengers to the polymer electrolyte, can be finely and evenly dispersed than before, so that the moldability is improved, the quality is improved, and the stable resistance (2) Since the metal oxide can be immobilized in the polymer electrolyte, the migration and removal of the metal oxide in the polymer electrolyte is suppressed, and as a result, stable radical resistance can be ensured. It has the effect of being able to extend the service life. Thereby, the power generation performance and durability of the solid polymer electrolyte fuel cell can be improved.

図3に、本発明の高分子電解質膜製造プロセスを示す。アルカリ加水分解及び酸処理によりプロトン伝導性を発揮する高分子電解質前駆体(−SOF型)を含有するポリマー分散液にパーフルオロスルホン酸の金属塩及び/又はパーフルオロカルボン酸の金属塩を溶解させる。得られた分散液を混合・乾燥させてから高分子電解質前駆体膜を製膜する。得られた高分子電解質前駆体膜をアルカリ加水分解及び酸処理し高分子電解質膜(−SOH型)とする。得られた高分子電解質膜を加熱・乾燥し高分子電解質膜中に金属酸化物微粒子を均一に析出する。 FIG. 3 shows the polymer electrolyte membrane production process of the present invention. A metal salt of perfluorosulfonic acid and / or a metal salt of perfluorocarboxylic acid is added to a polymer dispersion containing a polymer electrolyte precursor (-SO 2 F type) that exhibits proton conductivity by alkali hydrolysis and acid treatment. Dissolve. After the obtained dispersion is mixed and dried, a polymer electrolyte precursor film is formed. The resulting polymer electrolyte precursor membrane to alkali hydrolysis and acid treatment to the polymer electrolyte membrane (-SO 3 H type). The obtained polymer electrolyte membrane is heated and dried to uniformly deposit metal oxide fine particles in the polymer electrolyte membrane.

アルカリ加水分解処理により高分子電解質の側鎖末端が−SOF型から−SOH型に変換され、疎水性から親水性に変化する。それに伴いアルカリ溶液が膜中に浸透し、膜中に散在する金属塩を加水分解し、金属水酸化物の微粒子が析出する。更に乾燥加熱により脱水を行うことで、金属酸化物微粒子の形態を有す。 The side chain terminal of the polymer electrolyte is converted from -SO 2 F type to -SO 3 H type by alkali hydrolysis treatment, and changes from hydrophobic to hydrophilic. Along with this, the alkaline solution penetrates into the film, hydrolyzes the metal salt scattered in the film, and deposits metal hydroxide fine particles. Furthermore, by performing dehydration by drying and heating, it has a form of metal oxide fine particles.

本発明では、高分子電解質膜は単膜として用いても良く、強度と耐久性の観点から、多孔性膜と高分子電解質膜とを複合させた複合高分子電解質膜として用いても良い。多孔性膜と高分子電解質とを複合させて複合高分子電解質膜とする方法については特に限定されず、各種公知の方法を採用することができる。複合高分子電解質膜を用いることにより、固体高分子電解質膜の厚さを薄くすることが可能であり、また、高分子フィルム又は高分子シート基材を電解質膜の支持体として用いるため、電解質膜の強度を補強することができるので、複合高分子電解質膜を備えた燃料電池は、高耐久性であるとともに、燃料ガスのクロスリーク量が少なく、電流−電圧特性を向上することができる。   In the present invention, the polymer electrolyte membrane may be used as a single membrane, or may be used as a composite polymer electrolyte membrane in which a porous membrane and a polymer electrolyte membrane are combined from the viewpoint of strength and durability. The method of combining the porous membrane and the polymer electrolyte to form the composite polymer electrolyte membrane is not particularly limited, and various known methods can be employed. By using the composite polymer electrolyte membrane, it is possible to reduce the thickness of the solid polymer electrolyte membrane, and since the polymer film or the polymer sheet substrate is used as a support for the electrolyte membrane, the electrolyte membrane Therefore, the fuel cell provided with the composite polymer electrolyte membrane is highly durable, has a small amount of fuel gas cross-leakage, and can improve current-voltage characteristics.

以下、本発明の実施例を示す。
[実施例]
パーフルオロスルホン酸(CSOH)と酸化セリウム(CeO)を混合し、パーフルオロスルホン酸セリウム塩を作製した。これをNafion前駆体溶液(−SOF型アイオノマ、フッ素系溶媒HFE7300)に溶解し、攪拌した後に、溶媒を揮発除去し、高分子電解質を得る。これを製膜後、1NNaOH/DMSO混合溶液で加水分解し、1N硫酸で処理した後に、100℃で加熱・脱水処理を行い、高分子電解質膜を得た(高分子電解質膜1)。
Examples of the present invention will be described below.
[Example]
Perfluorosulfonic acid (C 4 H 9 SO 3 H) and cerium oxide (CeO 2 ) were mixed to prepare a cerium salt of perfluorosulfonic acid. This is dissolved in a Nafion precursor solution (—SO 2 F type ionomer, fluorine-based solvent HFE7300) and stirred, and then the solvent is removed by volatilization to obtain a polymer electrolyte. This was formed into a film, hydrolyzed with a 1N NaOH / DMSO mixed solution, treated with 1N sulfuric acid, and then heated and dehydrated at 100 ° C. to obtain a polymer electrolyte membrane (polymer electrolyte membrane 1).

[比較例]
Nafion前駆体溶液(−SOF型アイオノマ、フッ素系溶媒HFE7300)に酸化セリウム粉末(粒径約1μm)を添加し、攪拌した後に、溶媒を揮発除去し、高分子電解質を得た。これを製膜後、1NNaOH/DMSO混合溶液で加水分解、1N硫酸で処理した後に、100℃で加熱・脱水処理を行い、高分子電解質膜を得た(高分子電解質膜2)。
[Comparative example]
A cerium oxide powder (particle size: about 1 μm) was added to a Nafion precursor solution (—SO 2 F type ionomer, fluorine-based solvent HFE7300) and stirred, and then the solvent was removed by volatilization to obtain a polymer electrolyte. This was formed into a film, hydrolyzed with a 1N NaOH / DMSO mixed solution, treated with 1N sulfuric acid, and then heated and dehydrated at 100 ° C. to obtain a polymer electrolyte membrane (polymer electrolyte membrane 2).

一方、Nafion前駆体溶液(−SOF型アイオノマ、フッ素系溶媒HFE7300)を揮発除去し、高分子電解質を得た。これを製膜後、1NNaOH/DMSO混合溶液で加水分解、1N硫酸で処理した後に、所定濃度のCe(NO溶液に浸漬、さらに1Nリン酸溶液に浸漬し、100℃で加熱・脱水処理を行い、高分子電解質膜を得た(高分子電解質膜3)。 On the other hand, Nafion precursor solution (-SO 2 F type ionomer, a fluorine-based solvent HFE7300) and the volatiles removed to obtain a polymer electrolyte. After film formation, hydrolysis with 1N NaOH / DMSO mixed solution, treatment with 1N sulfuric acid, immersion in a predetermined concentration of Ce (NO 3 ) 3 solution, immersion in 1N phosphoric acid solution, and heating and dehydration at 100 ° C. The treatment was performed to obtain a polymer electrolyte membrane (polymer electrolyte membrane 3).

[評価1]
下記表1に、高分子電解質膜1〜3の断面をSEM、TEMで観察し、添加物粒子径と存在状態を比較した結果を示す。
[Evaluation 1]
Table 1 below shows the results of observing the cross sections of the polymer electrolyte membranes 1 to 3 with SEM and TEM, and comparing the additive particle diameter with the existing state.

Figure 2010114020
Figure 2010114020

[評価2]
図4に、高分子電解質膜1〜3における添加剤効果をフェントン試験(耐ラジカル性試験)で比較した結果を示す。なお、添加量は全て1wt%とする。
図4の結果より、本発明の高分子電解質膜が耐ラジカル性に優れていることが分かる。
[Evaluation 2]
In FIG. 4, the result of having compared the additive effect in the polymer electrolyte membranes 1-3 by the Fenton test (radical resistance test) is shown. In addition, all addition amounts shall be 1 wt%.
From the results of FIG. 4, it can be seen that the polymer electrolyte membrane of the present invention is excellent in radical resistance.

本発明により、高分子電解質膜中にラジカル捕捉剤である金属酸化物微粒子を高分散でき、耐ラジカル性が確保出来る。これにより、固体高分子電解質型燃料電池の発電性能と耐久性を向上させることができる。   According to the present invention, metal oxide fine particles as a radical scavenger can be highly dispersed in the polymer electrolyte membrane, and radical resistance can be ensured. Thereby, the power generation performance and durability of the solid polymer electrolyte fuel cell can be improved.

高分子電解質膜製造スキームにおける従来の金属酸化物の添加時期を示す。The conventional metal oxide addition time in the polymer electrolyte membrane production scheme is shown. 従来の金属酸化物の添加方法とその概要を一覧で示す。A list of conventional addition methods and outlines of metal oxides are shown. 本発明の高分子電解質膜製造プロセスを示す。The polymer electrolyte membrane manufacturing process of this invention is shown. 高分子電解質膜1〜3における添加剤効果をフェントン試験(耐ラジカル性試験)で比較した結果を示す。The result of having compared the additive effect in the polymer electrolyte membranes 1-3 by the Fenton test (radical resistance test) is shown.

Claims (5)

アルカリ加水分解及び酸処理によりプロトン伝導性を発揮する高分子電解質前駆体を含有するポリマー分散液にパーフルオロスルホン酸の金属塩及び/又はパーフルオロカルボン酸の金属塩を溶解させる第1工程と、第1工程で得られた分散液から高分子電解質前駆体膜を製膜する第2工程と、第2工程で得られた高分子電解質前駆体膜をアルカリ加水分解及び酸処理し高分子電解質膜とする第3工程と、第3工程で得られた高分子電解質膜を加熱・乾燥し高分子電解質膜中に金属酸化物を析出する第4工程とを含むことを特徴とする高分子電解質膜の製造方法。   A first step of dissolving a metal salt of perfluorosulfonic acid and / or a metal salt of perfluorocarboxylic acid in a polymer dispersion containing a polymer electrolyte precursor that exhibits proton conductivity by alkaline hydrolysis and acid treatment; A second step of forming a polymer electrolyte precursor membrane from the dispersion obtained in the first step, and a polymer electrolyte membrane obtained by subjecting the polymer electrolyte precursor membrane obtained in the second step to alkali hydrolysis and acid treatment And a fourth step of heating and drying the polymer electrolyte membrane obtained in the third step to deposit a metal oxide in the polymer electrolyte membrane. Manufacturing method. 前記パーフルオロスルホン酸の金属塩及び/又はパーフルオロカルボン酸の金属塩が、パーフルオロスルホン酸及びパーフルオロカルボン酸のセリウム塩、銀塩、チタン塩、珪素塩及びジルコニウム塩から選択される1種以上であることを特徴とする請求項1に記載の高分子電解質膜の製造方法。   The metal salt of perfluorosulfonic acid and / or the metal salt of perfluorocarboxylic acid is selected from cerium salt, silver salt, titanium salt, silicon salt and zirconium salt of perfluorosulfonic acid and perfluorocarboxylic acid It is the above, The manufacturing method of the polymer electrolyte membrane of Claim 1 characterized by the above-mentioned. 前記ポリマー分散液の溶媒がフッ素系溶媒であることを特徴とする請求項1または2に記載の高分子電解質膜の製造方法。   The method for producing a polymer electrolyte membrane according to claim 1 or 2, wherein the solvent of the polymer dispersion is a fluorine-based solvent. 請求項1乃至3のいずれかに記載の方法で製造された高分子電解質膜。   A polymer electrolyte membrane produced by the method according to claim 1. 請求項1乃至3のいずれかに記載の方法で製造された高分子電解質膜を有する固体高分子型燃料電池。   A polymer electrolyte fuel cell having a polymer electrolyte membrane produced by the method according to claim 1.
JP2008287388A 2008-11-10 2008-11-10 Manufacturing method of polyelectrolyte membrane, the polyelectrolyte membrane, and solid polymer fuel cell Pending JP2010114020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008287388A JP2010114020A (en) 2008-11-10 2008-11-10 Manufacturing method of polyelectrolyte membrane, the polyelectrolyte membrane, and solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008287388A JP2010114020A (en) 2008-11-10 2008-11-10 Manufacturing method of polyelectrolyte membrane, the polyelectrolyte membrane, and solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2010114020A true JP2010114020A (en) 2010-05-20

Family

ID=42302422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008287388A Pending JP2010114020A (en) 2008-11-10 2008-11-10 Manufacturing method of polyelectrolyte membrane, the polyelectrolyte membrane, and solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2010114020A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222175A (en) * 2010-04-06 2011-11-04 Toyota Motor Corp Method for manufacturing membrane electrode assembly having diffusion-catalyst integrated layer
JP2016177929A (en) * 2015-03-19 2016-10-06 トヨタ自動車株式会社 Method for manufacturing electrolyte film
CN111354962A (en) * 2018-12-20 2020-06-30 现代自动车株式会社 Electrolyte membrane of membrane-electrode assembly having improved chemical durability and method for manufacturing same
CN111785996A (en) * 2019-04-03 2020-10-16 现代自动车株式会社 Method of manufacturing fuel cell electrolyte membrane and electrolyte membrane manufactured thereby
US10950882B2 (en) 2018-02-05 2021-03-16 Toyota Jidosha Kabushiki Kaisha Proton-conductive membrane and fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222175A (en) * 2010-04-06 2011-11-04 Toyota Motor Corp Method for manufacturing membrane electrode assembly having diffusion-catalyst integrated layer
JP2016177929A (en) * 2015-03-19 2016-10-06 トヨタ自動車株式会社 Method for manufacturing electrolyte film
US10950882B2 (en) 2018-02-05 2021-03-16 Toyota Jidosha Kabushiki Kaisha Proton-conductive membrane and fuel cell
CN111354962A (en) * 2018-12-20 2020-06-30 现代自动车株式会社 Electrolyte membrane of membrane-electrode assembly having improved chemical durability and method for manufacturing same
CN111785996A (en) * 2019-04-03 2020-10-16 现代自动车株式会社 Method of manufacturing fuel cell electrolyte membrane and electrolyte membrane manufactured thereby
CN111785996B (en) * 2019-04-03 2024-03-01 现代自动车株式会社 Method of manufacturing electrolyte membrane for fuel cell and electrolyte membrane manufactured thereby

Similar Documents

Publication Publication Date Title
KR101719293B1 (en) Porous Nafion membrane and method for preparing the same
JP5010823B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
CN109390592B (en) Membrane electrode and preparation method thereof
JP6381528B2 (en) Microporous layer with hydrophilic additive
CN108579818B (en) Preparation method of solid polymer electrolyte water electrolysis membrane electrode catalyst slurry
JP2002042825A (en) Fuel cell electrode catalyst, its manufacturing method, and fuel cell
JP2007005308A (en) Polymer electrolyte membrane for fuel cell, its manufacturing method and fuel cell system including it
KR101146191B1 (en) Method of manufacturing nanocomposite electrolyte, nanocomposite electrolyte manufactured thereby and membrane-electrode assembly
JP2010114020A (en) Manufacturing method of polyelectrolyte membrane, the polyelectrolyte membrane, and solid polymer fuel cell
EP3342799B1 (en) Liquid composition, coating liquid for forming catalyst layer, and method for producing membrane electrode assembly
KR102529496B1 (en) Method for manufacturing electrode slurry for fuel cell
JP6007389B2 (en) Catalyst production method and catalyst
KR101763027B1 (en) Method of manufacturing electrode catalyst layer for fuel cell, and electrode catalyst layer for fuel cell
JP6956851B2 (en) Electrode catalyst for fuel cells and fuel cells using them
JP6819688B2 (en) Method for manufacturing membrane-electrode assembly, membrane-electrode assembly manufactured from now on, and fuel cell containing this
JP2015153573A (en) Polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell
JP2013114901A (en) Manufacturing method for catalyst layer for fuel cell and catalyst layer for fuel cell
JPH0268861A (en) Liquid fuel battery
JP5308894B2 (en) PROTON CONDUCTIVE COMPOSITE ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL USING THE SAME, AND METHOD FOR PRODUCING THE PROTON CONDUCTIVE COMPOSITE ELECTROLYTE MEMBRANE
JP2010138325A (en) Proton conductive composite electrolyte membrane, and membrane electrode assembly and fuel cell using the same
JP2014234445A (en) Polymer electrolyte composition, as well as polymer electrolyte membrane, electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell using the same
JP2011222268A (en) Membrane for solid polymer fuel cell-electrode structure and method of manufacturing the same
KR102671677B1 (en) Electrochemically Active Composite Material for Polymer Electrolyte Membrane Fuel Cell
JP5281319B2 (en) Method for producing membrane electrode assembly for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2006066309A (en) Method of manufacturing catalyst for solid polymer type fuel cell