JP2010112924A - Temperature detection device - Google Patents

Temperature detection device Download PDF

Info

Publication number
JP2010112924A
JP2010112924A JP2008287730A JP2008287730A JP2010112924A JP 2010112924 A JP2010112924 A JP 2010112924A JP 2008287730 A JP2008287730 A JP 2008287730A JP 2008287730 A JP2008287730 A JP 2008287730A JP 2010112924 A JP2010112924 A JP 2010112924A
Authority
JP
Japan
Prior art keywords
thermistor
potential
thermistors
failure
semiconductor switches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008287730A
Other languages
Japanese (ja)
Inventor
Takashi Ito
貴士 伊藤
Tatsuhiko Mizuno
達彦 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2008287730A priority Critical patent/JP2010112924A/en
Publication of JP2010112924A publication Critical patent/JP2010112924A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Combustion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature detection device capable of detecting a failure easily when an ON-failure occurs in some semiconductor switch. <P>SOLUTION: The device is provided with: a switching control means provided with a plurality of thermistors 5a, 6a, and a plurality of semiconductor switches Tr1, Tr2 for sending a current into each thermistor by ON-operation by being connected respectively to each of the thermistors 5a, 6a, and having a function for sending the current to each thermistor 5a, 6a, while being switched by each semiconductor switch Tr1, Tr2; and a potential detection means having a function for detecting a potential on the high potential side of the thermistors 5a, 6a. The device is also provided with a failure detection means having a function for detecting a failure wherein the semiconductor switches Tr1, Tr2 are always put into the ON-operation state based on a detected potential, by putting all the semiconductor switches Tr1, Tr2 into the OFF-operation during the switching operation of the thermistors 5a, 6a. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば、ガスコンロのバーナにより加熱された調理器等の温度をサーミスタを用いて検出する温度検出装置に関する。   The present invention relates to a temperature detection device that detects the temperature of a cooker or the like heated by a burner of a gas stove using a thermistor, for example.

例えば、ガスコンロにおいては、五徳に載置された鍋等の調理器の温度を検出してバーナの加熱量を自動調節するための温度検出装置が設けられている。この種の温度検出装置は、一般には、作動用電源の両極間に抵抗とサーミスタとを直列に接続し、抵抗とサーミスタとの間の電位を、バーナの作動を制御するマイクロコンピュータのアナログ/デジタル変換ポート(以下、A/D変換ポートという)に入力して、この電位に基づいてサーミスタの抵抗値を算出することにより温度を検出するようになっている。   For example, in a gas stove, a temperature detection device is provided for automatically adjusting the amount of heating of the burner by detecting the temperature of a cooking device such as a pan placed on the virtues. In this type of temperature detection device, generally, a resistor and a thermistor are connected in series between both poles of an operating power source, and the potential between the resistor and the thermistor is controlled by analog / digital of a microcomputer that controls the operation of the burner. The temperature is detected by inputting to a conversion port (hereinafter referred to as A / D conversion port) and calculating the resistance value of the thermistor based on this potential.

ところで、この種の温度検出装置において、複数のバーナを備えるガスコンロにおいては、各バーナ毎にサーミスタを設ける必要がある。このとき、1個のサーミスタに対しマイクロコンピュータの1個のA/D変換ポートを割り当てるようにすると、複数のサーミスタの夫々に対応するA/D変換ポートが必要となって、場合によっては、A/D変換ポートの増設によりコスト高や大型化を招く不都合がある。   By the way, in this type of temperature detection device, in a gas stove including a plurality of burners, it is necessary to provide a thermistor for each burner. At this time, if one A / D conversion port of the microcomputer is assigned to one thermistor, an A / D conversion port corresponding to each of the plurality of thermistors is required. There is an inconvenience incurring high cost and large size by adding / D conversion port.

そこで、下記特許文献1に見られるように、複数のサーミスタの高電位側をマイクロコンピュータの1個のA/D変換ポートに接続し、各サーミスタ同士は互いに並列に接続し、更に各サーミスタを各別に通電状態とする複数の半導体スイッチを設けたものが知られている。   Therefore, as seen in the following Patent Document 1, the high potential side of a plurality of thermistors is connected to one A / D conversion port of the microcomputer, the thermistors are connected in parallel to each other, and each thermistor is connected to each other. What provided the some semiconductor switch made into an energized state separately is known.

これによれば、各半導体スイッチのON/OFF動作によって所定時間毎にサーミスタを1個ずつ切り替えて、1個のA/D変換ポートにより全てのサーミスタの電位を順次取り込むことができるので、装置のコスト高や大型化を防止することができる。
特開2003−121270号公報
According to this, the thermistors can be switched one by one at a predetermined time by the ON / OFF operation of each semiconductor switch, and the potentials of all thermistors can be sequentially taken in by one A / D conversion port. High cost and large size can be prevented.
JP 2003-121270 A

上記特許文献1のものでは、前述の通り、サーミスタが半導体スイッチを介して1個ずつ順番に選択接続され、その際に、選択されたサーミスタによる温度の検出が行われる。この構成において、選択されたサーミスタの半導体スイッチに、常時OFF動作状態となる所謂OFF故障が生じている場合には当該サーミスタに通電されず、A/D変換ポートからの入力電位が極めて高くなるため、その故障を容易に検出することができる。   In the above-mentioned Patent Document 1, as described above, the thermistors are selectively connected one by one via the semiconductor switch, and at that time, the temperature detection by the selected thermistor is performed. In this configuration, when a so-called OFF failure that is always in the OFF operation state occurs in the semiconductor switch of the selected thermistor, the thermistor is not energized, and the input potential from the A / D conversion port becomes extremely high. The failure can be easily detected.

しかし、選択されたサーミスタの半導体スイッチに、常時ON動作状態となる所謂ON故障が生じていても、当該サーミスタには正常時と同様に通電されるため、A/D変換ポートからの入力電位によって半導体スイッチのON故障を検出することは極めて困難である。しかも、他のサーミスタが選択されているときには、ON故障が生じている半導体スイッチにより通電となっているサーミスタの抵抗値が、他の選択されているサーミスタの抵抗値に影響を与え、A/D変換ポートからの入力電位が不正確なものとなって、温度検出精度が低下する。   However, even if a so-called ON failure that is always ON is generated in the semiconductor switch of the selected thermistor, the thermistor is energized in the same way as in normal operation, so the input potential from the A / D conversion port It is extremely difficult to detect an ON failure of a semiconductor switch. Moreover, when another thermistor is selected, the resistance value of the thermistor that is energized by the semiconductor switch in which the ON failure has occurred affects the resistance value of the other selected thermistor, and A / D The input potential from the conversion port becomes inaccurate, and the temperature detection accuracy decreases.

以上の点に鑑み、本発明は、互いに並列に接続された複数のサーミスタの夫々に通電させる複数の半導体スイッチを備え、この半導体スイッチによりサーミスタを切り替えるようにしたものにおいて、何れかの半導体スイッチにON故障が生じていたとき、その故障を容易に検出することができる温度検出装置を提供することを課題とする。   In view of the above points, the present invention includes a plurality of semiconductor switches for energizing each of a plurality of thermistors connected in parallel to each other, and the thermistors are switched by the semiconductor switches. It is an object of the present invention to provide a temperature detection device that can easily detect a failure when an ON failure has occurred.

かかる課題を解決するために、本発明は、互いに並列に接続された複数のサーミスタと、各サーミスタの夫々に接続されてON動作により当該サーミスタに通電させる複数の半導体スイッチと、各半導体スイッチのON/OFF動作を制御することにより所定時間毎にサーミスタを切り替えて通電させる切替制御手段と、各サーミスタの高電位側の電位を検出する電位検出手段とを備え、該電位検出手段によって検出された電位に基づいて温度を検出する温度検出装置において、前記切替制御手段によるサーミスタの切り替え動作間に、全ての半導体スイッチをOFF動作させ、前記電位検出手段により検出された電位に基づいて半導体スイッチが常時ON動作状態となる故障を検出する故障検出手段を設けたことを特徴とする。   In order to solve this problem, the present invention provides a plurality of thermistors connected in parallel to each other, a plurality of semiconductor switches connected to each of the thermistors and energized by the thermistor by an ON operation, and the ON of each semiconductor switch. A switching control means for switching the thermistor to energize every predetermined time by controlling the / OFF operation, and a potential detection means for detecting the potential on the high potential side of each thermistor, and the potential detected by the potential detection means In the temperature detecting device for detecting the temperature based on the above, during the switching operation of the thermistor by the switching control means, all the semiconductor switches are turned off, and the semiconductor switches are always turned on based on the potential detected by the potential detecting means. A failure detection means for detecting a failure in an operating state is provided.

本発明によれば、前記切替制御手段により所定時間毎に順次サーミスタを切り替える間に、全ての半導体スイッチをOFF動作させる期間が設けられる。そしてこの間に、前記故障検出手段により半導体スイッチが常時ON動作状態となる故障を検出する。   According to the present invention, there is provided a period in which all the semiconductor switches are turned off while the thermistor is sequentially switched every predetermined time by the switching control means. During this time, the failure detecting means detects a failure in which the semiconductor switch is always in an ON operation state.

即ち、全ての半導体スイッチをOFF動作させたときに、全ての半導体スイッチでOFF動作が正常に行われれば、前記電位検出手段により検出される電位は最も高くなり、これが正常時の電位となる。一方、全ての半導体スイッチをOFF動作させたときに、何れかの半導体スイッチに常時ON動作状態となる故障が生じていると、前記電位検出手段により検出される電位は、正常時の電位よりも低くなる。従って、前記故障検出手段においては、全ての半導体スイッチをOFF動作させたときに電位検出手段により検出された電位と、正常時の電位とを比較することにより、極めて容易に半導体スイッチのON故障を検出することができる。   That is, when all the semiconductor switches are turned off, if the off operation is normally performed in all the semiconductor switches, the potential detected by the potential detecting means becomes the highest, and this is the normal potential. On the other hand, when all semiconductor switches are turned off, if any of the semiconductor switches has a failure that is always in the ON operation state, the potential detected by the potential detecting means is higher than the normal potential. Lower. Accordingly, in the failure detection means, the semiconductor switch ON failure can be detected very easily by comparing the potential detected by the potential detection means with the normal potential when all the semiconductor switches are turned OFF. Can be detected.

本発明の一実施形態を図面に基づいて説明する。図1は本実施形態の温度検出装置を採用するガスコンロの概略構成を示す説明図、図2は本実施形態の温度検出装置の構成を示す説明図、図3は本実施形態の温度検出装置の作動を示す図である。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram illustrating a schematic configuration of a gas stove that employs the temperature detection device of the present embodiment, FIG. 2 is an explanatory diagram illustrating a configuration of the temperature detection device of the present embodiment, and FIG. 3 is an illustration of the temperature detection device of the present embodiment. It is a figure which shows an action | operation.

図1に示すように、ガスコンロ1には、加熱量が相違する2個のバーナ2,3が設けられている。各バーナ2,3には、ガス供給管4を介して燃料ガスが供給され、図示しないが、ガス供給管4への燃料ガスの供給やガス量の調節を行う複数の弁装置が設けられている。各バーナ2,3の点火や火力調整等は、使用者が手動で行えるようになっているが、更に、各バーナ2,3には、加熱量を自動調節して自動調理を可能とするため、サーミスタを内装した温度検出部材5,6が付設されている。   As shown in FIG. 1, the gas stove 1 is provided with two burners 2 and 3 having different heating amounts. Each of the burners 2 and 3 is supplied with a fuel gas via a gas supply pipe 4 and is provided with a plurality of valve devices for supplying the fuel gas to the gas supply pipe 4 and adjusting the gas amount (not shown). Yes. The user can manually ignite the burners 2 and 3 and adjust the heating power. In addition, the burners 2 and 3 can be automatically cooked by automatically adjusting the heating amount. In addition, temperature detection members 5 and 6 having a thermistor are attached.

温度検出部材5,6は、各バーナ2,3上に五徳等を介して載置された鍋等の調理器7,8の底面に常時当接するように、上方に向かって付勢された状態で設けられている。更に、ガスコンロ1には、その作動を制御する制御手段9が設けられており、該制御手段9は、後述するマイクロコンピュータ10(図2参照)を備えるいる。そして、両温度検出部材5,6の各サーミスタ(後述の第1サーミスタ5a、及び第2サーミスタ6a)は、前記制御手段9に備えるマイクロコンピュータ10と共に本実施形態の温度検出装置11の一部を構成している。   The temperature detection members 5 and 6 are urged upward so as to always come into contact with the bottom surfaces of the cookers 7 and 8 such as pans placed on the burners 2 and 3 via the five virtues. Is provided. Further, the gas stove 1 is provided with a control means 9 for controlling the operation thereof, and the control means 9 includes a microcomputer 10 (see FIG. 2) described later. And each thermistor (the 1st thermistor 5a and the 2nd thermistor 6a mentioned later) of both the temperature detection members 5 and 6 is a part of the temperature detection apparatus 11 of this embodiment with the microcomputer 10 with which the said control means 9 is equipped. It is composed.

次に、本実施形態の温度検出装置11の構成を説明する。図2を参照して、温度検出装置11は分圧手段12と第1及び第2のサーミスタ5a,6aとを直列に接続して構成される。分圧手段12は相互に直列に接続された3個の抵抗R1、R2、R3から構成されている。また、該温度検出装置11には、第1及び第2のサーミスタ5a,6aを分圧手段12に択一的に接続する第1半導体スイッチTr1,Tr2が設けらている。分圧手段12には、第2半導体スイッチTr3,Tr4が設けられており、各第2半導体スイッチTr3,Tr4によって、抵抗R1、R2、R3の一部を短絡させて抵抗値を切り替えることができようになっている。   Next, the structure of the temperature detection apparatus 11 of this embodiment is demonstrated. Referring to FIG. 2, the temperature detection device 11 is configured by connecting a voltage dividing means 12 and first and second thermistors 5a and 6a in series. The voltage dividing means 12 is composed of three resistors R1, R2, and R3 connected in series with each other. The temperature detection device 11 is provided with first semiconductor switches Tr1 and Tr2 that selectively connect the first and second thermistors 5a and 6a to the voltage dividing means 12. The voltage dividing means 12 is provided with second semiconductor switches Tr3 and Tr4, and the resistance values can be switched by short-circuiting some of the resistors R1, R2 and R3 by the second semiconductor switches Tr3 and Tr4. It is like that.

マイクロコンピュータ10は、第3及び第4ポートP3,P4からの信号によって第1半導体スイッチTr1,Tr2をON/OFF動作させ、第1サーミスタ5aと第2サーミスタ6aとへの通電を切り替える機能(切替制御手段)を有している。また、マイクロコンピュータ10は、第1及び第2ポートP1,P2からの信号によって第2半導体スイッチTr3,Tr4をON/OFF動作させ、分圧手段12の抵抗値を変更する。そして、マイクロコンピュータ10は、分圧手段12と第1サーミスタ5a又は第2サーミスタ6aとの間の電位を、電位検出手段たる単一のA/D変換ポート(図中A/D)に取り込んで抵抗値を算出し、その抵抗値から温度を検出する。   The microcomputer 10 functions to switch the energization to the first thermistor 5a and the second thermistor 6a by turning on / off the first semiconductor switches Tr1 and Tr2 in response to signals from the third and fourth ports P3 and P4. Control means). Further, the microcomputer 10 changes the resistance value of the voltage dividing means 12 by turning on / off the second semiconductor switches Tr3, Tr4 by signals from the first and second ports P1, P2. Then, the microcomputer 10 takes the potential between the voltage dividing means 12 and the first thermistor 5a or the second thermistor 6a into a single A / D conversion port (A / D in the figure) which is a potential detecting means. The resistance value is calculated, and the temperature is detected from the resistance value.

なお、第1及び第2の各半導体スイッチTr1,Tr2,Tr3,Tr4は、マイクロコンピュータ10から所定のパルス信号が入力されると切換るトランジスタ(FETを採用してもよい)であり、これらの半導体スイッチTr1,Tr2,Tr3,Tr4を所定の時間毎(例えば、6〜24ms毎)に切換えて、各サーミスタ5a,6aで交互に温度を検出する。   Each of the first and second semiconductor switches Tr1, Tr2, Tr3, and Tr4 is a transistor (an FET may be adopted) that switches when a predetermined pulse signal is input from the microcomputer 10. The semiconductor switches Tr1, Tr2, Tr3, Tr4 are switched at predetermined time intervals (for example, every 6 to 24 ms), and the thermistors 5a, 6a detect the temperature alternately.

また、マイクロコンピュータ10は、サーミスタ5a,6aの切り替え動作間に、両第1半導体スイッチTr1,Tr2を同時にOFF動作させ、このときA/D変換ポートから取り込んだ電位と、予め記憶されている電位とを比較して第1半導体スイッチTr1,Tr2の故障を検出する機能(故障検出手段)を有している。   Further, the microcomputer 10 simultaneously turns off both the first semiconductor switches Tr1 and Tr2 during the switching operation of the thermistors 5a and 6a, and the potential taken in from the A / D conversion port at this time and the potential stored in advance. And a function (failure detection means) for detecting a failure of the first semiconductor switches Tr1 and Tr2.

なお、本実施形態では、分圧手段12を3個の抵抗R1、R2、R3を備えて構成することにより複数の抵抗値に変更し、精度よく温度検出ができるようになっているが、抵抗の数量等は適宜選択可能である。   In this embodiment, the voltage dividing means 12 is provided with three resistors R1, R2, and R3, so that the resistance is changed to a plurality of resistance values so that the temperature can be accurately detected. The quantity and the like can be selected as appropriate.

次に、温度検出装置11の作用を説明する。図3を参照して、初期電圧Vccを温度検出装置11に投入し、先ず、マイクロコンピュータ10からの信号により第1サーミスタ5a通電用の第1半導体スイッチTr1をON動作させると共に、第2サーミスタ6a通電用の第1半導体スイッチTr2をOFFとする。この状態で、マイクロコンピュータ10からの信号により両第2半導体スイッチTr3,Tr4を制御して分圧手段12の抵抗値を順次切り替え、その都度、分圧手段12と第1サーミスタ5aとの間の電位をA/D変換ポートに取り込む。そして、第1サーミスタ5aの抵抗値を算出し、その抵抗値から、予め記憶された第1サーミスタ5aの温度−抵抗値特性を参照して温度に変換する。この場合の分圧手段12の抵抗値は、両第2半導体スイッチTr3,Tr4を共にOFFとした抵抗R1、R2、R3の抵抗値の和、一方の第2半導体スイッチTr4のみをONとした抵抗R3の抵抗値、他方の第2半導体スイッチTr3のみをONとした抵抗R2、R3の抵抗値の和、と順次変更される。これにより、第1サーミスタ5aによる温度検出動作が行われる。   Next, the operation of the temperature detection device 11 will be described. Referring to FIG. 3, the initial voltage Vcc is input to the temperature detecting device 11, and first, the first semiconductor switch Tr1 for energizing the first thermistor 5a is turned on by the signal from the microcomputer 10, and the second thermistor 6a is turned on. The first semiconductor switch Tr2 for energization is turned off. In this state, the resistance values of the voltage dividing means 12 are sequentially switched by controlling both the second semiconductor switches Tr3 and Tr4 by a signal from the microcomputer 10, and each time between the voltage dividing means 12 and the first thermistor 5a. The potential is taken into the A / D conversion port. Then, the resistance value of the first thermistor 5a is calculated, and the resistance value is converted into a temperature with reference to the temperature-resistance value characteristic of the first thermistor 5a stored in advance. The resistance value of the voltage dividing means 12 in this case is the sum of the resistance values of the resistors R1, R2, and R3 that turn off both the second semiconductor switches Tr3 and Tr4, and the resistance that turns on only one second semiconductor switch Tr4 The resistance value of R3 and the sum of the resistance values of resistances R2 and R3 in which only the other second semiconductor switch Tr3 is turned on are sequentially changed. Thereby, the temperature detection operation by the first thermistor 5a is performed.

次いで、マイクロコンピュータ10からの信号により第2サーミスタ6a通電用の第1半導体スイッチTr2をON動作させると共に、第1サーミスタ5a通電用の第1半導体スイッチTr1をOFFとする。この状態で、マイクロコンピュータ10からの信号により両第2半導体スイッチTr3,Tr4を制御して分圧手段12の抵抗値を順次切り替え、その都度、分圧手段12と第2サーミスタ6aとの間の電位をA/D変換ポートに取り込む。そして、第2サーミスタ6aの抵抗値を算出し、その抵抗値から、予め記憶された第2サーミスタ6aの温度−抵抗値特性を参照して温度に変換する。この場合の分圧手段12の抵抗値は、前述した通りに変更される。これにより、第2サーミスタ6aによる温度検出動作が行われる。   Next, the first semiconductor switch Tr2 for energizing the second thermistor 6a is turned on by a signal from the microcomputer 10, and the first semiconductor switch Tr1 for energizing the first thermistor 5a is turned off. In this state, the resistance values of the voltage dividing means 12 are sequentially switched by controlling both the second semiconductor switches Tr3 and Tr4 according to a signal from the microcomputer 10, and each time between the voltage dividing means 12 and the second thermistor 6a. The potential is taken into the A / D conversion port. Then, the resistance value of the second thermistor 6a is calculated, and the resistance value is converted into a temperature with reference to the temperature-resistance value characteristic of the second thermistor 6a stored in advance. In this case, the resistance value of the voltage dividing means 12 is changed as described above. Thereby, the temperature detection operation by the second thermistor 6a is performed.

次いで、マイクロコンピュータ10からの信号により両第1半導体スイッチTr1,Tr2を共にOFF動作させ、第1サーミスタ5aと第2サーミスタ6aとへの通電を行わないようにする。同時に、マイクロコンピュータ10からの信号により両第2半導体スイッチTr3,Tr4を共にOFF動作させ、分圧手段12の抵抗値を抵抗R1、R2、R3の抵抗値の和とする。なお、このときには、第2半導体スイッチTr3,Tr4の一方をON動作させて分圧手段12の抵抗値を設定してもよい。この状態でA/D変換ポートに取り込んだ電位を検出する。このとき検出した電位は最も高くなり、これが正常時の電位となるが、何れかの第1半導体スイッチTr1,Tr2に常時ON動作状態となる故障が生じていると、正常時の電位よりも低くなる。そこで、マイクロコンピュータ10は、前記故障検出手段としての機能により、予め記憶された正常電位(或いは正常電位範囲)と検出された電位とを比較し、検出された電位が正常電位と異なる(或いは正常電位範囲外にある)場合に、第1半導体スイッチTr1,Tr2の何れかにON故障が生じていることを検出する。この検出により、例えば、マイクロコンピュータ10はアラーム等を介して警告させることも可能である。   Next, both the first semiconductor switches Tr1 and Tr2 are turned off by a signal from the microcomputer 10 so that the first thermistor 5a and the second thermistor 6a are not energized. At the same time, both the second semiconductor switches Tr3 and Tr4 are turned off by a signal from the microcomputer 10 so that the resistance value of the voltage dividing means 12 is the sum of the resistance values of the resistors R1, R2 and R3. At this time, one of the second semiconductor switches Tr3 and Tr4 may be turned on to set the resistance value of the voltage dividing means 12. In this state, the potential taken into the A / D conversion port is detected. The potential detected at this time is the highest, and this is the normal potential. However, if any one of the first semiconductor switches Tr1 and Tr2 has a failure that is always in the ON operation state, the potential is lower than the normal potential. Become. Therefore, the microcomputer 10 compares the normal potential (or normal potential range) stored in advance with the detected potential by the function as the failure detection means, and the detected potential is different from the normal potential (or normal). If it is outside the potential range), it is detected that an ON failure has occurred in one of the first semiconductor switches Tr1 and Tr2. By this detection, for example, the microcomputer 10 can also warn through an alarm or the like.

なお、本実施形態では、2個のサーミスタ5a,6aによる温度検出を行うものについて説明したが、これに限定されるのではなく、分圧手段12の抵抗と第2半導体スイッチとを増設すれば複数のサーミスタでの温度検出が可能になる。   In the present embodiment, the temperature detection by the two thermistors 5a and 6a has been described. However, the present invention is not limited to this. If the resistance of the voltage dividing means 12 and the second semiconductor switch are increased, the present embodiment is not limited thereto. Temperature detection is possible with multiple thermistors.

本実施形態の温度検出装置を採用するガスコンロの概略構成を示す説明図。Explanatory drawing which shows schematic structure of the gas stove which employ | adopts the temperature detection apparatus of this embodiment. 本実施形態の温度検出装置の構成を示す説明図。Explanatory drawing which shows the structure of the temperature detection apparatus of this embodiment. 本実施形態の温度検出装置の作動を示す図。The figure which shows the action | operation of the temperature detection apparatus of this embodiment.

符号の説明Explanation of symbols

5a…第1サーミスタ、6a…第2サーミスタ、10…マイクロコンピュータ(切替制御手段、電位検出手段、故障検出手段)、11…温度検出装置、Tr1,Tr2…第1半導体スイッチ(半導体スイッチ)。   5a ... first thermistor, 6a ... second thermistor, 10 ... microcomputer (switching control means, potential detection means, failure detection means), 11 ... temperature detection device, Tr1, Tr2 ... first semiconductor switch (semiconductor switch).

Claims (1)

互いに並列に接続された複数のサーミスタと、各サーミスタの夫々に接続されてON動作により当該サーミスタに通電させる複数の半導体スイッチと、各半導体スイッチのON/OFF動作を制御することにより所定時間毎にサーミスタを切り替えて通電させる切替制御手段と、各サーミスタの高電位側の電位を検出する電位検出手段とを備え、該電位検出手段によって検出された電位に基づいて温度を検出する温度検出装置において、
前記切替制御手段によるサーミスタの切り替え動作間に、全ての半導体スイッチをOFF動作させ、前記電位検出手段により検出された電位に基づいて半導体スイッチが常時ON動作状態となる故障を検出する故障検出手段を設けたことを特徴とする温度検出装置。
A plurality of thermistors connected in parallel to each other, a plurality of semiconductor switches connected to each of the thermistors to energize the thermistor by an ON operation, and an ON / OFF operation of each semiconductor switch by controlling each ON / OFF operation at predetermined time intervals In a temperature detection device that includes a switching control unit that switches the thermistor to energize and a potential detection unit that detects a potential on the high potential side of each thermistor, and detects a temperature based on the potential detected by the potential detection unit.
Failure detection means for detecting a failure in which all the semiconductor switches are turned OFF during the switching operation of the thermistor by the switching control means and the semiconductor switch is always in an ON operation state based on the potential detected by the potential detection means. A temperature detection device provided.
JP2008287730A 2008-11-10 2008-11-10 Temperature detection device Pending JP2010112924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008287730A JP2010112924A (en) 2008-11-10 2008-11-10 Temperature detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008287730A JP2010112924A (en) 2008-11-10 2008-11-10 Temperature detection device

Publications (1)

Publication Number Publication Date
JP2010112924A true JP2010112924A (en) 2010-05-20

Family

ID=42301578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008287730A Pending JP2010112924A (en) 2008-11-10 2008-11-10 Temperature detection device

Country Status (1)

Country Link
JP (1) JP2010112924A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013050374A (en) * 2011-08-31 2013-03-14 Noritz Corp Temperature detection circuit and combustion device
US9389128B2 (en) 2013-02-06 2016-07-12 Denso Corporation Temperature detection device
WO2017081759A1 (en) * 2015-11-11 2017-05-18 三菱電機株式会社 A/d conversion device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023471A (en) * 1999-07-09 2001-01-26 Calsonic Kansei Corp Switch circuit
JP3328572B2 (en) * 1998-02-23 2002-09-24 リンナイ株式会社 Switch status detector
JP2003121270A (en) * 2001-10-12 2003-04-23 Rinnai Corp Temperature-detecting circuit communication device
JP2007085798A (en) * 2005-09-20 2007-04-05 Sanyo Electric Co Ltd Temperature measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3328572B2 (en) * 1998-02-23 2002-09-24 リンナイ株式会社 Switch status detector
JP2001023471A (en) * 1999-07-09 2001-01-26 Calsonic Kansei Corp Switch circuit
JP2003121270A (en) * 2001-10-12 2003-04-23 Rinnai Corp Temperature-detecting circuit communication device
JP2007085798A (en) * 2005-09-20 2007-04-05 Sanyo Electric Co Ltd Temperature measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013050374A (en) * 2011-08-31 2013-03-14 Noritz Corp Temperature detection circuit and combustion device
US9389128B2 (en) 2013-02-06 2016-07-12 Denso Corporation Temperature detection device
WO2017081759A1 (en) * 2015-11-11 2017-05-18 三菱電機株式会社 A/d conversion device
JPWO2017081759A1 (en) * 2015-11-11 2018-03-15 三菱電機株式会社 A / D converter

Similar Documents

Publication Publication Date Title
US11703928B2 (en) Digital power supply with wireless monitoring and control
US8776776B2 (en) Baking system for a gas cooking appliance
JP5838662B2 (en) Temperature detection circuit and combustion apparatus
JP2010112924A (en) Temperature detection device
US7947930B2 (en) Method and circuit for controlling at least a heating element of a heating device
KR100939417B1 (en) Fryer
EP3147566B1 (en) Gas burner arrangement for a gas-cooking appliance with a thermocouple and method for determining if a cooking vessel is placed above the gas burner
JP6706114B2 (en) Cooker
JP4862710B2 (en) Cooker
JP2009125190A (en) Toilet seat device
JP4664753B2 (en) Cooker
US20090242547A1 (en) Cooker and method for controlling the same
JP3554430B2 (en) Combustion appliance temperature detection circuit
JP2003121270A (en) Temperature-detecting circuit communication device
JP3633575B2 (en) Electric water heater
KR101183930B1 (en) Cutoff control method for an electric range
JPH11142194A (en) Fluid detecting device ad hot-water supply apparatus
JP2007003420A (en) Gas alarm
JP4285574B2 (en) rice cooker
JP4063196B2 (en) rice cooker
JPH08182621A (en) Electrical hot plate
JP2018036025A (en) Gas cooking stove
JP5882251B2 (en) Combustion equipment
JP5679851B2 (en) Device with remote control
KR100628043B1 (en) Method for checking error of temperature sensing circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120417