JP2010111949A - Thin-film forming apparatus - Google Patents

Thin-film forming apparatus Download PDF

Info

Publication number
JP2010111949A
JP2010111949A JP2010008730A JP2010008730A JP2010111949A JP 2010111949 A JP2010111949 A JP 2010111949A JP 2010008730 A JP2010008730 A JP 2010008730A JP 2010008730 A JP2010008730 A JP 2010008730A JP 2010111949 A JP2010111949 A JP 2010111949A
Authority
JP
Japan
Prior art keywords
gas
thin film
reaction vessel
substrate
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010008730A
Other languages
Japanese (ja)
Inventor
Tomoaki Koide
知昭 小出
Atsushi Sekiguchi
敦 関口
Yukinobu Murao
幸信 村尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority to JP2010008730A priority Critical patent/JP2010111949A/en
Publication of JP2010111949A publication Critical patent/JP2010111949A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin-film forming apparatus which is used in a thin-film forming method for forming a titanium nitride thin film on the surface of a substance heated by supplying a raw material gas obtained by vaporizing an organic titanium compound and an added gas reactive therewith and by a chemical vapor deposition technique and which is used in the thin-film forming method by the chemical vapor deposition technique capable of obtaining a practical film-forming speed and good coatability in a case when the temperature of a substrate (for example, a semiconductor base plate such as a CMOS substrate) is set at a low-temperature region of 150-230°C being an upper temperature limit of various functional materials. <P>SOLUTION: In the thin-film forming apparatus, the substrate is heated to a temperature range of 150 to 230°C, and a partial pressure P<SB>addedgas</SB>of an added gas and a partial pressure P<SB>organometallicgas</SB>of a raw material gas prepared by evaporating the organic titanium compound are set in a range of 10≤P<SB>addedgas</SB>/P<SB>organometallicgas</SB>. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、化学蒸着法(以下、本明細書において「CVD法」と表すことがある。)により、150℃乃至230℃の低温領域に加熱した基体上に、窒化チタン薄膜を作製する、又は窒化チタン薄膜上に窒化チタンと異なる薄膜を積層し若しくは窒化チタンと異なる薄膜の上に窒化チタン薄膜を積層する薄膜形成方法に用いる薄膜形成装置に関する。   In the present invention, a titanium nitride thin film is formed on a substrate heated to a low temperature region of 150 ° C. to 230 ° C. by a chemical vapor deposition method (hereinafter sometimes referred to as “CVD method” in this specification), or The present invention relates to a thin film forming apparatus used in a thin film forming method in which a thin film different from titanium nitride is laminated on a titanium nitride thin film or a titanium nitride thin film is laminated on a thin film different from titanium nitride.

近年、機能性有機物材料は、著しい発展を遂げており、その柔軟な加工性や優れた経済性を利用して、光エレクトロニクスの分野へも盛んに導入されている。そのような技術の1つにミクロンオーダ又はさらに小さいサブミクロンオーダの微細構造(マイクロストラクチャ)を備えたマイクロマシンによる光スイッチングデバイスがある。   In recent years, functional organic materials have undergone remarkable development, and have been actively introduced into the field of optoelectronics by utilizing their flexible processability and excellent economic efficiency. One such technique is a micromachined optical switching device with a micron or even smaller sub-micron microstructure.

特開2003−136499では、光をオンオフ制御でき、高速動作が可能なスイッチングデバイスの製造方法が開示されているが、これらの光スイッチングデバイスの製造工程では、μm単位の微細加工が要求されるため、半導体プロセス技術が通常用いられている。しかも、金属の代わりに、あるいは金属に加えて樹脂からなる構造物をCMOS基板などの半導体基板上に形成していく工程も採用されてきている。   Japanese Patent Laid-Open No. 2003-136499 discloses a method for manufacturing a switching device that can control light on and off and that can operate at high speed. However, in the manufacturing process of these optical switching devices, microfabrication in units of μm is required. Semiconductor process technology is usually used. In addition, a process of forming a structure made of resin instead of metal or in addition to metal on a semiconductor substrate such as a CMOS substrate has been adopted.

具体的には、フォトリソグラフィ技術と化学蒸着法、スパッタ又はスピンコートなどの成膜技術を用いて、デバイスを構成する複数の構造層に分けて積層し、光スイッチングデバイスの製造方法の場合には、複数の構造層で犠牲層を挟んで成形する(犠牲層は最終的にはエッチングにより除去する)ことにより、例えば、アクチュエータが駆動する空間等が半導体基板上に作成されることになる。この場合、デバイスを構成する構造層にはポリイミド等の樹脂系の材料が使用されることがある。   Specifically, in the case of a method for manufacturing an optical switching device, a photolithography technique, a chemical vapor deposition method, and a film forming technique such as sputtering or spin coating are used to divide the structure into a plurality of structural layers constituting the device. By forming the sacrificial layer with a plurality of structural layers (the sacrificial layer is finally removed by etching), for example, a space or the like for driving the actuator is created on the semiconductor substrate. In this case, a resin-based material such as polyimide may be used for the structural layer constituting the device.

これらのデバイスでは、ナノメートルからマイクロメートルのオーダーの微細凹凸面へカバレッジ良く成膜する工程が求められる場合が多い。   In these devices, a process of forming a film with good coverage on a fine uneven surface on the order of nanometers to micrometers is often required.

良好なカバレッジを実現する手法としては、熱CVD法が知られている。この熱CVD法は、成膜を行なう基板(基体)を加熱し、所定の原料ガスを熱分解することによって目的の表面に膜を付着させる方法である。   As a method for realizing good coverage, a thermal CVD method is known. This thermal CVD method is a method of attaching a film to a target surface by heating a substrate (base) on which a film is formed and thermally decomposing a predetermined source gas.

しかしながら、この熱CVD法は、基板温度を上昇させることが必須であり、基板(基体)内に耐熱性に問題がある材料が組み込まれていたり、耐熱性に問題がある構造(熱膨張係数が大きく異なる材料が積層されているなど)の場合、この基板(基体)を加熱することによって問題が発生する。   However, in this thermal CVD method, it is essential to raise the substrate temperature, and a material having a problem with heat resistance is incorporated in the substrate (base) or a structure with a problem with heat resistance (thermal expansion coefficient is low). In the case of a material in which different materials are laminated, a problem occurs by heating the substrate (base).

従って、半導体デバイス、各種電子部品、各種センサー、MEMS(Micro Electro Mechanical System)などで、基板(基体)の材料、又はそこに形成される材料として使用されている機能性有機物材料や磁性材料は、著しく多様な発展を遂げてはいるものの、通常、シリコン等を基体とする半導体の製造工程で使用されている300℃〜500℃の温度領域では、その耐熱温度を越えてしまうため、使用不可能となる。   Therefore, functional organic materials and magnetic materials used as materials for substrates (substrates) or materials formed in semiconductor devices, various electronic components, various sensors, MEMS (Micro Electro Mechanical System), etc. Although it has undergone remarkably diverse development, it cannot be used in the temperature range of 300 ° C to 500 ° C, which is usually used in the manufacturing process of semiconductors based on silicon, etc., because it exceeds the heat resistance temperature. It becomes.

また、機能性有機物材料だけでなく、例えば、プラスチック磁石等の磁性を利用する機能材料に関しても耐熱性の問題は深刻である。具体的には、フェライト磁石の場合には、耐熱性を持たせたものでも、220℃の加熱が限界である。サマリウム・コバルト磁石の場合には、通常150℃までの昇温が限界であるが、耐熱性を持たせることによって、200℃程度まで加熱することができる。   The problem of heat resistance is serious not only for functional organic materials but also for functional materials using magnetism such as plastic magnets. Specifically, in the case of a ferrite magnet, heating at 220 ° C. is the limit even if it has heat resistance. In the case of a samarium / cobalt magnet, the temperature rise up to 150 ° C. is usually the limit, but it can be heated to about 200 ° C. by imparting heat resistance.

このように、各種磁性材料を組み込んだ磁気デバイス、磁気MEMSの製造においても、その耐熱温度を越えてしまうため、化学蒸着法による成膜を使用することができなかった。   As described above, even in the manufacture of magnetic devices and magnetic MEMS incorporating various magnetic materials, the heat-resistant temperature is exceeded, so that film formation by chemical vapor deposition cannot be used.

本出願人は、テトラキスジアルキルアミノチタン(TDAAT)などの有機チタン化合物を用いた化学蒸着法による窒化チタンの成膜技術を、主に半導体デバイスの量産技術に対して鋭意研究し続け、特開2000−328246では、テトラキスジアルキルアミノチタン(TDAAT)と添加ガスのアンモニアガスとの分圧比を適切に決めて、アスペクト比6以上のコンタクトホールに対して極めて良好なカバレッジが得られる成膜条件を提案した。   The present applicant has continued to intensively study a titanium nitride film forming technique by a chemical vapor deposition method using an organic titanium compound such as tetrakisdialkylaminotitanium (TDAAT) mainly for a mass production technique of a semiconductor device. -328246 proposed a film-forming condition that provides an extremely good coverage for a contact hole with an aspect ratio of 6 or more by appropriately determining the partial pressure ratio of tetrakisdialkylaminotitanium (TDAAT) and the additive gas ammonia gas. .

窒化チタン薄膜は、例えば、半導体の配線製造工程においては、配線材たる銅の拡散を防止する層(バリア膜)として使用されている。また、上記のマイクロマシンに関する特開2003−136499においては、剥離を防止し密着性を高める薄膜として使用されている。このように多目的に使用される窒化チタン薄膜の形成においては、例えば、半導体やマイクロマシン等のナノメートルからマイクロメートルのオーダーの微細な凹凸面への薄膜形成が求められる場合、被覆性(カバレッジ)が良好なことから化学蒸着法がよく採用されている。   The titanium nitride thin film is used as a layer (barrier film) for preventing diffusion of copper as a wiring material, for example, in a semiconductor wiring manufacturing process. In JP-A No. 2003-136499 relating to the above micromachine, it is used as a thin film that prevents peeling and improves adhesion. Thus, in the formation of a titanium nitride thin film used for various purposes, for example, when it is required to form a thin film on a fine uneven surface of the order of nanometers to micrometers such as semiconductors and micromachines, the coverage (coverage) is Chemical vapor deposition is often adopted because of its good quality.

特開2003−136499JP 2003-136499 A 特開2000−328246JP 2000-328246 A

しかしながら、特開2000−328246で開示したCVD法による窒化チタンの成膜方法は、半導体産業、特に量産性が求められるDRAMを想定したものであり、基板の温度を280℃以下にした場合には、成膜速度が十分でないという課題があった。また、さらに、基板の温度を150℃乃至230℃の低温領域にした場合には、窒化チタンの膜内における炭素等の不純物の混入量が多くなるため、膜質が良好でなく、被覆性も不十分であり、ひどいときは、固体とならず、粘性液体が付着したような膜となってしまうという課題もあった。   However, the titanium nitride film formation method by CVD disclosed in JP-A-2000-328246 is intended for the semiconductor industry, particularly DRAMs that require mass productivity, and when the substrate temperature is 280 ° C. or lower. There is a problem that the film forming speed is not sufficient. Furthermore, when the substrate temperature is set to a low temperature range of 150 ° C. to 230 ° C., the amount of impurities such as carbon in the titanium nitride film increases, so that the film quality is not good and the coverage is not good. When it is sufficient and terrible, there is also a problem that the film does not become a solid but has a viscous liquid attached thereto.

一方、上述の特開2003−136499のように、半導体基板上にMEMS等の一構成要素として高分子材料が入り込んできている現在、半導体製造技術の延長として高分子材料の耐熱温度領域に製造技術を合わせ込む技術開発が新たに求められ始めている。   On the other hand, as described in Japanese Patent Application Laid-Open No. 2003-136499, a polymer material has entered a semiconductor substrate as a constituent element such as MEMS. There is a new demand for technology development that incorporates

この発明は、基体(例えば、CMOS基板などの半導体基板)の温度を各種機能性材料の耐熱温度である150℃乃至230℃の低温領域にした場合において、実用的な成膜速度が得られ、被覆性も十分で、膜質も良好である化学蒸着法による窒化チタン薄膜の形成方法に用いる薄膜形成装置を提案することを目的としている。また、窒化チタン薄膜が成膜された基体上に、窒化チタン以外の薄膜が化学蒸着法によって作製されて積層される場合又は窒化チタン以外の薄膜が化学蒸着法によって成膜された基体上に、窒化チタン薄膜が作製されて積層される場合における、産業上の生産効率化を可能とする化学蒸着法による薄膜形成方法に用いる薄膜形成装置を提案することを目的としている。   In the present invention, when the temperature of the substrate (for example, a semiconductor substrate such as a CMOS substrate) is set to a low temperature region of 150 ° C. to 230 ° C. which is the heat resistant temperature of various functional materials, a practical film formation rate can be obtained. An object of the present invention is to propose a thin film forming apparatus for use in a method of forming a titanium nitride thin film by chemical vapor deposition with sufficient coverage and good film quality. In addition, when a thin film other than titanium nitride is formed and laminated by a chemical vapor deposition method on a substrate on which a titanium nitride thin film is formed, or on a substrate on which a thin film other than titanium nitride is formed by a chemical vapor deposition method, An object of the present invention is to propose a thin film forming apparatus used for a thin film forming method by a chemical vapor deposition method that enables industrial production efficiency when a titanium nitride thin film is formed and laminated.

この発明の発明者らは、有機チタン化合物を気化させた原料ガスと、これに反応する添加ガスとを反応容器内に供給し、化学蒸着法により、加熱した基体の表面上に窒化チタン薄膜を作製する方法において、加熱した基体の温度を各種機能性材料の耐熱温度という150℃乃至230℃という低温領域にした場合に、反応容器内における添加ガスの分圧Padded gasと、有機チタン化合物を気化させた原料ガスの分圧Porganometallic gasとの関係を適切な範囲に定めることなどにより、前記課題を解決することができることを見い出し、さらに、化学蒸着法の特徴である被覆性(カバレッジ)の良さを確認した。 The inventors of the present invention supply a raw material gas obtained by vaporizing an organotitanium compound and an additive gas that reacts with the gas into a reaction vessel, and form a titanium nitride thin film on the surface of a heated substrate by chemical vapor deposition. In the manufacturing method, when the temperature of the heated substrate is set to a low temperature range of 150 ° C. to 230 ° C., which is the heat resistant temperature of various functional materials, the partial pressure P added gas of the additive gas in the reaction vessel and the organic titanium compound are It has been found that the above problem can be solved by determining the relationship between the vaporized source gas partial pressure P and organometallic gas within an appropriate range, and further, the coverage (coverage) characteristic of the chemical vapor deposition method has been found. The goodness was confirmed.

即ち、この発明の発明者らが提案する薄膜形成方法は、有機チタン化合物を気化させた原料ガスと、これに反応する添加ガスとを反応容器内に供給し、化学蒸着法により、加熱した基体の表面上に窒化チタン薄膜を作製する薄膜形成方法において、基体を150℃乃至230℃の温度範囲に加熱し、添加ガスの分圧Padded gasを、有機チタン化合物を気化させた原料ガスの分圧Porganometallic gasに対し、10≦Padded gas/Porganometallic gasの範囲に設定し、反応容器内の圧力を0.1〜15Paとするものである。 That is, the thin film forming method proposed by the inventors of the present invention is a method in which a source gas obtained by vaporizing an organotitanium compound and an additive gas that reacts with the gas are supplied into a reaction vessel and heated by chemical vapor deposition. In the thin film forming method for producing a titanium nitride thin film on the surface of the substrate, the substrate is heated to a temperature range of 150 ° C. to 230 ° C., and the partial pressure of the added gas P added gas is set to the fraction of the source gas vaporized from the organic titanium compound. For the pressure P organometallic gas , the pressure is set in the range of 10 ≦ P added gas / P organometallic gas , and the pressure in the reaction vessel is set to 0.1 to 15 Pa.

これによって、有機チタン化合物を気化させた原料ガスと、これに反応する添加ガスとを反応容器内に供給し、化学蒸着法により、加熱した基体の表面上に窒化チタン薄膜を作製する薄膜形成方法において、基体(例えば、CMOS基板などの半導体基板)の温度を高分子材料等の耐熱温度である低温領域にした場合であっても、毎分約9nm以上の成膜速度を達成し、良好な被覆性を得ることができる。   Thereby, a raw material gas obtained by vaporizing an organic titanium compound and an additive gas that reacts with the gas are supplied into a reaction vessel, and a thin film forming method for producing a titanium nitride thin film on the surface of a heated substrate by chemical vapor deposition In this case, even when the temperature of the substrate (for example, a semiconductor substrate such as a CMOS substrate) is set to a low temperature region that is a heat resistant temperature of a polymer material or the like, a film formation rate of about 9 nm or more per minute is achieved, Coverability can be obtained.

前記において、前記有機チタン化合物はテトラキスジエチルアミノチタンとし、前記添加ガスはアンモニアガスとすることができる。   In the above, the organic titanium compound may be tetrakis diethylamino titanium, and the additive gas may be ammonia gas.

また、前記有機チタン化合物を気化させた原料ガスの流量を毎分0.005〜0.2gとすることができる。   Further, the flow rate of the raw material gas obtained by vaporizing the organic titanium compound can be 0.005 to 0.2 g per minute.

この発明の発明者らが提案する他の薄膜形成方法は、前述した本発明のいずれかの薄膜形成方法により窒化チタン薄膜を作製した後、銅錯体を気化させた原料ガスを反応容器内に供給し、化学蒸着法により、当該窒化チタン薄膜上に銅薄膜を積層することを特徴とするものである。また、銅錯体を気化させた原料ガスを反応容器内に供給し、化学蒸着法により、銅薄膜を基体の表面上に作製した後、前述した本発明のいずれかの薄膜形成方法により、当該銅薄膜の上に窒化チタン薄膜を積層するものである。   Another thin film formation method proposed by the inventors of the present invention is that a titanium nitride thin film is produced by any of the thin film formation methods of the present invention described above, and then a source gas vaporized from a copper complex is supplied into the reaction vessel. Then, a copper thin film is laminated on the titanium nitride thin film by chemical vapor deposition. In addition, after supplying a raw material gas in which the copper complex is vaporized into the reaction vessel, and forming a copper thin film on the surface of the substrate by chemical vapor deposition, the copper thin film is formed by any of the thin film forming methods of the present invention described above. A titanium nitride thin film is laminated on the thin film.

前記において、前記基体は有機物材料で構成することができる。   In the above, the substrate may be made of an organic material.

これらの窒化チタン薄膜と窒化チタンと異なる薄膜とを積層させる本発明の方法によれば、同一真空内で、同一の温度条件により、窒化チタン薄膜が成膜された基体上に窒化チタンと異なる薄膜を積層する、あるいは窒化チタンと異なる薄膜が成膜された基体上に窒化チタン薄膜を積層することが可能となる。ここで、同一真空内での積層とは、所定の圧力に維持できる排気装置を備えた一つの反応容器内の一つの基体ホルダー上の同一基体への連続積層を指す。   According to the method of the present invention in which the titanium nitride thin film and the thin film different from titanium nitride are laminated, the thin film different from titanium nitride is formed on the substrate on which the titanium nitride thin film is formed in the same vacuum and under the same temperature condition. Or a titanium nitride thin film can be laminated on a substrate on which a thin film different from titanium nitride is formed. Here, the lamination in the same vacuum refers to the continuous lamination on the same substrate on one substrate holder in one reaction vessel provided with an exhaust device capable of maintaining a predetermined pressure.

なお、前述したいずれの薄膜形成方法とも、各種機能材料の耐熱温度領域である150℃乃至230℃の低温領域で窒化チタン薄膜を作製するものであり、従来の化学蒸着法で配線用銅膜を作製していたのと同一の成膜温度領域で窒化チタン薄膜を作製することができるものである。即ち、窒化チタン薄膜を作製する工程と、その上に化学蒸着法により銅薄膜を積層する工程とを、同一の温度条件で実現することができるため、窒化チタン薄膜が半導体の配線製造工程における配線材たる銅の拡散防止膜(バリア膜)あるいは密着層膜として使用されている関係上、産業上の生産の効率化をはかることが可能となる。   In any of the thin film forming methods described above, a titanium nitride thin film is formed in a low temperature region of 150 ° C. to 230 ° C. which is a heat resistant temperature region of various functional materials, and a copper film for wiring is formed by a conventional chemical vapor deposition method. A titanium nitride thin film can be produced in the same film forming temperature region as that produced. That is, the titanium nitride thin film can be realized under the same temperature condition as the step of producing the titanium thin film and the step of laminating the copper thin film by chemical vapor deposition. Since it is used as a copper diffusion prevention film (barrier film) or an adhesion layer film as a material, it is possible to increase the efficiency of industrial production.

この発明が提案する、上記の薄膜形成方法に用いる薄膜形成装置は、真空排気可能な反応容器と、該反応容器内を排気して、この反応容器内を全圧100Pa以下に維持できる排気装置と、前記反応容器内に原料ガスを導入する原料ガス供給装置と、前記原料ガスに反応する添加ガスを前記反応容器内に導入する添加ガス供給装置と、前記反応容器内に備えられていて薄膜をその上に堆積させる基体を150℃乃至230℃の温度範囲に加熱し保持する基体ホルダーと、前記基体を加熱する加熱装置とを備える薄膜形成装置であって、前記原料ガス供給装置から前記反応容器内に導入される原料ガスの種類を変更する原料ガス切替手段を備え、かつ前記原料ガス供給装置と前記添加ガス供給装置とは、前記反応容器内に導入された添加ガスの分圧Padded gasと原料ガスの分圧Porganometallic gasとが、10≦Padded gas/Porganometallic gasの関係を満たすと共に、反応容器内の圧力を0.1〜15Paとするように、前記反応容器内への添加ガス及び原料ガスの導入量を制御する流量制御手段を備えていることを特徴とするものである。 A thin film forming apparatus used in the above thin film forming method proposed by the present invention includes a reaction vessel capable of being evacuated, an exhaust device capable of evacuating the reaction vessel and maintaining the reaction vessel at a total pressure of 100 Pa or less. A source gas supply device for introducing a source gas into the reaction vessel, an additive gas supply device for introducing an additive gas that reacts with the source gas into the reaction vessel, and a thin film provided in the reaction vessel. A thin film forming apparatus comprising: a substrate holder that heats and holds a substrate to be deposited in a temperature range of 150 ° C. to 230 ° C .; and a heating device that heats the substrate. Provided with a raw material gas switching means for changing the kind of raw material gas introduced into the raw material gas, and the raw material gas supply device and the additive gas supply device are configured to supply the additive gas introduced into the reaction vessel. So that the partial pressure P Organometallic gas of pressure P an added gas and the raw material gas, fulfills the relation 10 ≦ P added gas / P organometallic gas, the pressure in the reaction vessel and 0.1~15Pa, the reaction vessel It has a flow rate control means for controlling the introduction amount of the additive gas and the raw material gas into the inside.

本発明の薄膜形成装置においては、同一真空内で、同一の温度条件により、窒化チタン薄膜が成膜された基体上に窒化チタンと異なる薄膜を積層する、あるいは窒化チタンと異なる薄膜が成膜された基体上に窒化チタン薄膜を積層することができるため、産業上の生産の効率化などを図ることが可能となる。   In the thin film forming apparatus of the present invention, a thin film different from titanium nitride is laminated on a substrate on which a titanium nitride thin film is formed, or a thin film different from titanium nitride is formed in the same vacuum under the same temperature condition. Since the titanium nitride thin film can be laminated on the substrate, industrial production efficiency can be improved.

この発明によれば、有機チタン化合物を気化させた原料ガスと、これに反応する添加ガスとを反応容器内に供給し、化学蒸着法により、加熱した基体の表面上に窒化チタン薄膜を作製する薄膜形成方法において、基体(例えば、CMOS基板などの半導体基板)の温度を各種機能性材料の耐熱温度である150℃乃至230℃の低温領域にした場合において、実用的な成膜速度を達成し、良好な膜質と十分な被覆性を得ることができる。   According to this invention, a raw material gas obtained by vaporizing an organic titanium compound and an additive gas that reacts with the gas are supplied into a reaction vessel, and a titanium nitride thin film is formed on the surface of a heated substrate by chemical vapor deposition. In the thin film formation method, when the temperature of the substrate (for example, a semiconductor substrate such as a CMOS substrate) is set to a low temperature range of 150 ° C. to 230 ° C. which is the heat resistant temperature of various functional materials, a practical film formation rate is achieved. Good film quality and sufficient coverage can be obtained.

また、この発明によれば、同一真空内において、同一の温度条件で、窒化チタン薄膜が成膜された基体上に、窒化チタンと異なる薄膜を積層することができ、窒化チタンと異なる薄膜が成膜された基体上に、窒化チタン薄膜を積層することができるため、例えば、配線材たる銅の拡散防止膜(バリア膜)として予め窒化チタン薄膜が成膜され、その上に銅薄膜が化学蒸着法によって作製されて積層される場合等における産業上の生産の効率化をはかることができる。   Further, according to the present invention, a thin film different from titanium nitride can be laminated on a substrate on which a titanium nitride thin film is formed in the same vacuum under the same temperature condition, and a thin film different from titanium nitride is formed. Since a titanium nitride thin film can be laminated on the filmed substrate, for example, a titanium nitride thin film is formed in advance as a copper diffusion prevention film (barrier film) as a wiring material, and the copper thin film is chemically deposited thereon. It is possible to increase the efficiency of industrial production in the case of being manufactured and laminated by the method.

この発明に係る薄膜形成装置の一例の構成図。The block diagram of an example of the thin film forming apparatus which concerns on this invention. 図1図示の薄膜形成装置におけるシャワーヘッドの断面図。Sectional drawing of the shower head in the thin film forming apparatus shown in FIG.

この発明の発明者らが提案する薄膜形成方法は、有機チタン化合物を気化させた原料ガスと、これに反応する添加ガスとを反応容器内に供給し、化学蒸着法により、加熱した基体の表面上に窒化チタン薄膜を作製する薄膜形成方法において、基体を150℃乃至230℃の温度範囲に加熱し、添加ガスの分圧Padded gasを、有機チタン化合物を気化させた原料ガスの分圧Porganometallic gasに対し、10≦Padded gas/Porganometallic gasの範囲に設定する。 The thin film forming method proposed by the inventors of the present invention is that a source gas obtained by vaporizing an organotitanium compound and an additive gas that reacts with the gas are supplied into a reaction vessel, and the surface of a heated substrate is formed by chemical vapor deposition. In the thin film forming method for producing a titanium nitride thin film on the substrate, the substrate is heated to a temperature range of 150 ° C. to 230 ° C., and the partial pressure P added gas of the additive gas is changed to the partial pressure P of the source gas obtained by vaporizing the organic titanium compound. For the organometallic gas , the range is set to 10 ≦ P added gas / P organometallic gas .

原料たる有機チタン化合物としては、テトラキスジアルキルアミノチタン(以下、「TDAAT」と表すことがある。)を用いることができ、例えば、TDAATにある8つのアルキル基をメチル基にした、テトラキスジメチルアミノチタン(以下、本明細書において「TDMAT」と表すことがある。)、TDAATにある8つのアルキル基をエチル基にした、テトラキスジエチルアミノチタン(以下、本明細書において「TDEAT」と表すことがある。)、TDAATにある同一の窒素原子と結合した2つのアルキル基を1つのメチル基と1つのエチル基にした、テトラキスエチルメチルアミノチタン(以下、本明細書において「TEMAT」と表すことがある。)のいずれとも採用可能であるが、テトラキスジエチルアミノチタン(TDEAT)を用いるのが好ましい。   Tetrakisdialkylaminotitanium (hereinafter sometimes referred to as “TDAAT”) can be used as the organic titanium compound as a raw material. For example, tetrakisdimethylaminotitanium in which eight alkyl groups in TDAAT are methyl groups. (Hereinafter, it may be expressed as “TDMAT” in the present specification.), Tetrakisdiethylaminotitanium (hereinafter, referred to as “TDEAT” in which eight alkyl groups in TDAAT are ethyl groups). ), Tetrakisethylmethylaminotitanium (hereinafter referred to as “TEMAT” in this specification) in which two alkyl groups bonded to the same nitrogen atom in TDAAT are converted into one methyl group and one ethyl group. ), But tetrakisdiethylaminotitanium ( DEAT) is preferable to use.

表面上に窒化チタン薄膜を作製する基体の温度範囲を150℃乃至230℃とするのは、基体の温度が150℃より低いと、膜質が悪化するからであり、逆に、基体の温度が230℃より高くなると、ポリイミド等の有機物材料などの耐熱温度(ポリイミドで約220℃)を越えるため、有機物材料が分解してしまうからである。   The reason why the temperature range of the substrate for forming the titanium nitride thin film on the surface is 150 ° C. to 230 ° C. is that the film quality deteriorates when the substrate temperature is lower than 150 ° C., conversely, the substrate temperature is 230 ° C. This is because if the temperature is higher than 0 ° C., the temperature exceeds the heat resistance temperature of polyimide or other organic material (about 220 ° C. for polyimide), and the organic material is decomposed.

なお、各種磁性材料のような機能性材料に対応できるという観点からも、基体を加熱する温度範囲は、150℃乃至230℃にするのがよい。   It should be noted that the temperature range for heating the substrate is preferably 150 ° C. to 230 ° C. from the viewpoint of being compatible with functional materials such as various magnetic materials.

この発明の発明者らの実験によれば、有機チタン化合物を気化させたガスと、これに反応する添加ガスとを反応容器内に供給し、化学蒸着法により、加熱した基体の表面上に窒化チタン薄膜を作製する薄膜形成方法において、加熱した基体の温度範囲を前述した低温領域とした場合、反応容器内における添加ガスの分圧Padded gasと、有機チタン化合物を気化させた原料ガスの分圧Porganometallic gasとの関係を適切な範囲に定めることが、実用的な成膜速度を達成し、良好な被覆性を得る上で重要であった。 According to experiments by the inventors of the present invention, a gas obtained by vaporizing an organotitanium compound and an additive gas that reacts with the gas are supplied into a reaction vessel, and nitriding is performed on the surface of a heated substrate by chemical vapor deposition. In the thin film formation method for producing a titanium thin film, when the temperature range of the heated substrate is the low temperature region described above, the partial pressure P added gas of the additive gas in the reaction vessel and the source gas vaporized from the organic titanium compound It was important to determine the relationship with the pressure P organometallic gas within an appropriate range in order to achieve a practical film forming speed and to obtain good coverage.

すなわち、基体を150℃乃至230℃の温度範囲に加熱している場合、毎分約9nmの成膜速度を達成し、良好な被覆性を得る上で、添加ガスの分圧Padded gasを、有機チタン化合物を気化させた原料ガスの分圧Porganometallic gasに対し、10≦Padded gas/Porganometallic gasの範囲になるように設定する。 That is, when the substrate is heated to a temperature range of 150 ° C. to 230 ° C., a film forming speed of about 9 nm per minute is achieved, and in order to obtain good coverage, the partial pressure P added gas of the additive gas is It sets so that it may become the range of 10 <= P added gas / P organometallic gas with respect to the partial pressure P organometallic gas of the raw material gas which vaporized the organic titanium compound.

窒化チタン薄膜を作製する際における反応容器内の圧力(成膜圧力)は、0.1Pa〜15Paが好ましい。窒化チタン薄膜を作製する際における反応容器内の圧力が0.1Pa未満では、成膜速度が毎分1nm以下となるため、実用性がなくなるからであり、逆に15Paを超えると、反応容器内で空間反応が始まり、パーティクルが多くなるからである。   The pressure (film formation pressure) in the reaction vessel when producing the titanium nitride thin film is preferably 0.1 Pa to 15 Pa. This is because when the pressure in the reaction vessel at the time of producing the titanium nitride thin film is less than 0.1 Pa, the film formation rate is 1 nm or less per minute, so the practicality is lost. This is because the spatial reaction starts and the number of particles increases.

有機チタン化合物を気化させた原料ガスの流量は、毎分0.005g〜0.2gとするのがよい。有機チタン化合物を気化させた原料ガスの流量が毎分0.005g未満であると、成膜速度が毎分1nm以下となるため、実用性がなくなるからであり、毎分0.2gは、有機チタン化合物の気化が可能な最大流量だからである。   The flow rate of the raw material gas obtained by vaporizing the organic titanium compound is preferably 0.005 g to 0.2 g per minute. This is because if the flow rate of the raw material gas vaporizing the organic titanium compound is less than 0.005 g / min, the film forming speed is 1 nm / min or less, so the practicality is lost. This is because the maximum flow rate at which the titanium compound can be vaporized.

なお、本発明の発明者らが提案する薄膜形成方法において、有機チタン化合物を気化させた原料ガスに反応する添加ガスとしては、有機チタン化合物を気化させた原料ガスと高い反応性を示すガスであって、かつ拡散係数の大きいガスであれば、特に限定されないが、アンモニアガスが好ましい。   In addition, in the thin film formation method proposed by the inventors of the present invention, the additive gas that reacts with the raw material gas obtained by vaporizing the organic titanium compound is a gas that exhibits high reactivity with the raw material gas obtained by vaporizing the organic titanium compound. The gas is not particularly limited as long as it is a gas having a large diffusion coefficient, but ammonia gas is preferable.

また、有機チタン化合物を気化させた原料ガスと添加ガスのキャリアガスは、有機チタン化合物を気化させた原料ガスと添加ガスとの間の化学的反応には寄与しないものであれば、用いることができ、特に限定されないが、いずれの場合も、窒素ガスを用いるのが最適である。   The source gas vaporized from the organic titanium compound and the carrier gas of the additive gas may be used as long as they do not contribute to the chemical reaction between the source gas vaporized from the organic titanium compound and the additive gas. Although not particularly limited, it is optimal to use nitrogen gas in any case.

この発明の発明者らが提案する他の薄膜形成方法は、前述したいずれかの薄膜形成方法により窒化チタン薄膜を作製した後、化学蒸着法により、当該窒化チタン薄膜上に窒化チタンと異なる薄膜を積層するものである。また、化学蒸着法により、窒化チタンと異なる薄膜を基体の表面上に作製した後、前述したいずれかの薄膜形成方法により、当該窒化チタンと異なる薄膜の上に窒化チタン薄膜を積層するものである。   Another thin film forming method proposed by the inventors of the present invention is that after a titanium nitride thin film is produced by any of the thin film forming methods described above, a thin film different from titanium nitride is formed on the titanium nitride thin film by chemical vapor deposition. It is to be laminated. In addition, after a thin film different from titanium nitride is formed on the surface of the substrate by chemical vapor deposition, the titanium nitride thin film is laminated on the thin film different from the titanium nitride by any of the thin film forming methods described above. .

窒化チタンと異なる薄膜としては、例えば、銅錯体を気化させた原料ガスを反応容器内に供給し、化学蒸着法により作製した銅薄膜、タンタル、ハフニウム、ジルコニウム等の有機金属化合物を気化させた原料ガスを反応容器内に供給し、化学蒸着法により作製した窒化タンタル、窒化ハフニウム、窒化ジルコニウム等の薄膜、無水ピロメリット酸とジアミン誘導体を縮重合させたポリイミド薄膜などを挙げることができるが、銅錯体を気化させた原料ガスを反応容器内に供給し、化学蒸着法により作製した銅薄膜であるのが好ましい。   As a thin film different from titanium nitride, for example, a raw material gas obtained by vaporizing a copper thin film prepared by chemical vapor deposition, tantalum, hafnium, zirconium, or the like is supplied into a reaction vessel by vaporizing a copper complex. Examples include thin films of tantalum nitride, hafnium nitride, zirconium nitride, etc. produced by chemical vapor deposition by supplying gas into the reaction vessel, and polyimide thin films obtained by condensation polymerization of pyromellitic anhydride and diamine derivatives. A copper thin film produced by a chemical vapor deposition method by supplying a raw material gas obtained by vaporizing the complex into the reaction vessel is preferable.

ここにいう銅錯体としては、例えば、ベータジケトン銅(I)錯体を使用することができるが、トリメチルビニルシリルヘキサフルオロアセチルアセトナト酸塩銅(I)(以下、「Cu(hfac)(tmvs)」とする。)、アリルトリメチルヘキサフルオロアセチルアセトナト酸塩銅(I)(Cu(hfac)(atms))、3−ヘキサンヘキサフルオロアセチルアセトナト酸塩銅(I)(Cu(hfac)(3−hexyne))のいずれかを用いるのがより好ましく、Cu(hfac)(tmvs)を用いるのがさらに好ましい。   As the copper complex here, for example, a beta diketone copper (I) complex can be used, but trimethylvinylsilyl hexafluoroacetylacetonate copper (I) (hereinafter referred to as “Cu (hfac) (tmvs)). ), Allyltrimethylhexafluoroacetylacetonate copper (I) (Cu (hfac) (atms)), 3-hexanehexafluoroacetylacetonate copper (I) (Cu (hfac) (3 -Hexyne)) is more preferred, and Cu (hfac) (tmvs) is more preferred.

例えば、原料ガスに銅錯体を気化させたガスを用いる場合には、キャリアガスとして、窒素ガス、水素ガス、アルゴンガス、ヘリウムガスを用いることができるが、アルゴンガスを用いるのが好ましい。   For example, when a gas obtained by vaporizing a copper complex is used as the source gas, nitrogen gas, hydrogen gas, argon gas, or helium gas can be used as the carrier gas, but argon gas is preferably used.

この発明の発明者らが提案する薄膜形成方法において、化学蒸着法により、例えば、窒化チタン薄膜上に銅薄膜を積層する工程又は銅薄膜上に窒化チタン薄膜を積層する工程は、150℃乃至230℃の温度範囲で行うことができるので、例えば、有機チタン化合物を気化させた原料ガスを供給して窒化チタン薄膜の形成を行う工程と、銅錯体を気化させた原料ガスを供給して銅薄膜の形成を行う工程とで、反応容器内の温度条件を変更する必要がない。したがって、例えば、化学蒸着法により、基体の表面上に窒化チタン薄膜を作製した場合には、原料ガスをTDEATガスからCu(hfac)(tmvs)ガスに切り替えて、パージガスを送り、圧力調整を行うだけで、作製した窒化チタン薄膜上に銅薄膜を積層することができる。また、化学蒸着法により、基体の表面上に銅薄膜を作製した場合には、原料ガスをCu(hfac)(tmvs)ガスからTDEATガスに切り替えて、パージガスを送り、圧力調整を行うだけで、作製した銅薄膜の上に窒化チタン薄膜を積層することができる。   In the thin film formation method proposed by the inventors of the present invention, for example, a step of laminating a copper thin film on a titanium nitride thin film or a step of laminating a titanium nitride thin film on a copper thin film by chemical vapor deposition is performed at 150 ° C. to 230 ° C. Since it can be performed in the temperature range of ° C., for example, a process of forming a titanium nitride thin film by supplying a source gas vaporized with an organic titanium compound, and a copper thin film by supplying a source gas vaporized with a copper complex It is not necessary to change the temperature conditions in the reaction vessel in the process of forming the above. Therefore, for example, when a titanium nitride thin film is formed on the surface of the substrate by chemical vapor deposition, the source gas is switched from TDEAT gas to Cu (hfac) (tmvs) gas, purge gas is sent, and pressure adjustment is performed. The copper thin film can be laminated on the produced titanium nitride thin film. Also, when a copper thin film is produced on the surface of the substrate by chemical vapor deposition, the raw material gas is switched from Cu (hfac) (tmvs) gas to TDEAT gas, the purge gas is sent, and the pressure is adjusted. A titanium nitride thin film can be laminated on the produced copper thin film.

なお、銅錯体を気化させた原料ガスを用いて、化学蒸着法により、基体の表面上に銅薄膜を作製する工程又は基体の表面上に作製された窒化チタン薄膜の上に銅薄膜を積層する工程における、反応容器内の圧力は10Pa〜10kPaであるのが好ましい。   In addition, a copper thin film is laminated | stacked on the process of producing a copper thin film on the surface of a base | substrate, or the titanium nitride thin film produced on the surface of a base | substrate by chemical vapor deposition using the source gas which vaporized the copper complex In the step, the pressure in the reaction vessel is preferably 10 Pa to 10 kPa.

この発明が提案する薄膜形成装置は、真空排気可能な反応容器と、反応容器内を排気して、この反応容器内を全圧100Pa以下に維持できる排気装置と、反応容器内に原料ガスを導入する原料ガス供給装置と、原料ガスに反応する添加ガスを前記反応容器内に導入する添加ガス供給装置と、反応容器内に備えられていて薄膜をその上に堆積させる基体を保持する基体ホルダーと、基体を加熱する加熱装置と、原料ガス切替手段を備え、かつ原料ガス供給装置と添加ガス供給装置とは、反応容器内に導入された添加ガスの分圧Padded gasと原料ガスの分圧Porganometallic gasとが、10≦Padded gas/Porganometallic gasの関係を満たすように、反応容器内への添加ガス及び原料ガスの導入量を制御する流量制御手段を備えていることを特徴とするものである。 The thin film forming apparatus proposed by the present invention includes a reaction vessel capable of being evacuated, an exhaust device capable of evacuating the inside of the reaction vessel and maintaining the total pressure within 100 Pa or less, and introducing a raw material gas into the reaction vessel. A raw material gas supply device, an additive gas supply device that introduces an additive gas that reacts with the raw material gas into the reaction vessel, and a substrate holder that is provided in the reaction vessel and holds a substrate on which a thin film is deposited. And a heating device for heating the substrate and a raw material gas switching means, and the raw material gas supply device and the additional gas supply device include a partial pressure P added gas and a partial pressure of the raw material gas introduced into the reaction vessel. P organometallic gas is provided with a flow rate control means for controlling the amount of additive gas and raw material gas introduced into the reaction vessel so as to satisfy the relationship of 10 ≦ P added gas / P organometallic gas. Also It is.

原料ガス切替手段は、原料ガス供給装置から反応容器内に導入される原料ガスを異種のものに変更するためのものであり、例えば、三方弁、あるいは2個のゲートバルブを組み合わせた切り替えバルブなどを例示することができる。   The source gas switching means is for changing the source gas introduced into the reaction vessel from the source gas supply device into a different type, for example, a three-way valve or a switching valve in which two gate valves are combined, etc. Can be illustrated.

原料ガス供給装置と添加ガス供給装置は、反応容器内への添加ガス及び原料ガスの導入量を制御する流量制御手段を備えていると共に、排気装置が圧力制御手段を備え、流量制御手段若しくは圧力制御手段、又はこれらの双方の働きによって、反応容器内に導入された添加ガスの分圧Padded gasと原料ガスの分圧Porganometallic gasとが、10≦Padded gas/Porganometallic gasの関係を満たすように制御される。 The source gas supply device and the additive gas supply device are provided with a flow rate control means for controlling the introduction amount of the additive gas and the source gas into the reaction vessel, and the exhaust device is provided with a pressure control means. The partial pressure P added gas of the additive gas introduced into the reaction vessel and the partial pressure P organometallic gas of the source gas introduced into the reaction vessel by the action of the control means or both of them satisfy the relationship of 10 ≦ P added gas / P organometallic gas . Controlled to meet.

実施例1
図1は、化学蒸着法によって窒化チタン薄膜又は窒化チタンと異なる薄膜を同一真空内で積層する、この発明の薄膜形成方法が実施されるこの発明の薄膜形成装置の一例の構成を示す図である。
Example 1
FIG. 1 is a diagram showing a configuration of an example of a thin film forming apparatus of the present invention in which a thin film of titanium nitride or a thin film different from titanium nitride is stacked in the same vacuum by a chemical vapor deposition method, and the thin film forming method of the present invention is implemented. .

この装置に備えられる反応容器10の内部には、基体ホルダー18がある。基体ホルダー18には基体20が取り付けられる。基体20の表面には窒化チタン薄膜が作製される。基体ホルダー18に対向するように、ガス導入用のシャワーヘッド54があり、シャワーヘッド54を介して、原料ガス導入系22から原料ガスが導入されると共に、添加ガス導入系24から添加ガスが導入される。   Inside the reaction vessel 10 provided in this apparatus is a substrate holder 18. A substrate 20 is attached to the substrate holder 18. A titanium nitride thin film is formed on the surface of the substrate 20. There is a shower head 54 for gas introduction so as to face the substrate holder 18, and the source gas is introduced from the source gas introduction system 22 through the shower head 54 and the additive gas is introduced from the additive gas introduction system 24. Is done.

反応容器10はアルミニウム合金製で、排気系12によって真空排気することができ、内部を気密に保つことができる。排気系12は、ターボ分子ポンプ26と、ドライポンプ28及び圧力制御手段としての圧力制御バルブ27とからなっている。この排気系12で、反応容器10の内部を10-4Paの圧力まで排気することができ、所望の圧力に維持する。すなわち、この排気系12によって反応容器10の内部を低圧に保ち、化学蒸着法による窒化チタン薄膜の作製を行う。 The reaction vessel 10 is made of an aluminum alloy and can be evacuated by the exhaust system 12 to keep the inside airtight. The exhaust system 12 includes a turbo molecular pump 26, a dry pump 28, and a pressure control valve 27 as pressure control means. With this exhaust system 12, the inside of the reaction vessel 10 can be exhausted to a pressure of 10 −4 Pa and maintained at a desired pressure. That is, the inside of the reaction vessel 10 is kept at a low pressure by the exhaust system 12, and a titanium nitride thin film is produced by chemical vapor deposition.

反応容器10内の圧力を測定する真空計としては、低真空用の第1真空計14と高真空用の第2真空計16がある。前記第1真空計14は、圧力の測定範囲が0.1Pa〜1333Paの高精度ダイヤフラム真空計である。前記第2真空計16は、圧力の測定範囲が10-2Pa〜10-6Paの電離真空計である。 As vacuum gauges for measuring the pressure in the reaction vessel 10, there are a first vacuum gauge 14 for low vacuum and a second vacuum gauge 16 for high vacuum. The first vacuum gauge 14 is a high-accuracy diaphragm vacuum gauge having a pressure measurement range of 0.1 Pa to 1333 Pa. The second vacuum gauge 16 is an ionization vacuum gauge having a pressure measurement range of 10 −2 Pa to 10 −6 Pa.

基体ホルダー18は基体20を加熱するための基体加熱装置30を備える。この基体加熱装置30は、基体20の温度を測定する熱電対32とヒータ34と加熱電源35とを備える。また加熱電源35では、温度測定値に基づいて基体温度のPID制御(あるいはPI制御、ON−OFF制御、ファジー制御などのその他の制御方式)が実施される。   The substrate holder 18 includes a substrate heating device 30 for heating the substrate 20. The substrate heating apparatus 30 includes a thermocouple 32 that measures the temperature of the substrate 20, a heater 34, and a heating power source 35. The heating power source 35 performs PID control of the substrate temperature (or other control methods such as PI control, ON-OFF control, and fuzzy control) based on the measured temperature value.

原料ガス導入系22は、液体原料である有機チタン化合物(例えば、TDEAT)を収容した有機チタン原料容器36と、当該液体原料である有機チタン化合物(例えば、TDEAT)の流量を制御する第1の流量制御器40と、液体原料である有機チタン化合物(例えば、TDEAT)を気化させる気化器38と、気化された有機チタン化合物のガス(例えば、TDEATガス)のためのキャリアガス(例えば、N2)を収容したガスボンベ42と、キャリアガス(例えば、N2)の流量を制御する第2の流量制御器41を備える有機チタンガス導入系と、液体原料である銅錯体(例えば、Cu(hfac)(tmvs))を収容した銅錯体原料容器39と、当該液体原料である銅錯体(例えば、Cu(hfac)(tmvs))の流量を制御する第5の流量制御器43と、液体原料である銅錯体(例えば、Cu(hfac)(tmvs))を気化させる気化器37と、気化された銅錯体ガス(例えば、Cu(hfac)(tmvs)ガス)のためのキャリアガス(例えば、Ar)を収容したガスボンベ45と、キャリアガス(例えば、Ar)の流量を制御する第6の流量制御器44を備える銅錯体ガス導入系とで構成され、両者の間には三方弁23が設けられる。 The source gas introduction system 22 includes a first organic titanium source container 36 containing an organic titanium compound (for example, TDEAT) that is a liquid source and a flow rate of the organic titanium compound (for example, TDEAT) that is the liquid source. A flow controller 40, a vaporizer 38 for vaporizing an organic titanium compound (for example, TDEAT) as a liquid raw material, and a carrier gas (for example, N 2 ) for a gas (for example, TDEAT gas) of the vaporized organic titanium compound ) Containing a gas cylinder 42, a second flow rate controller 41 that controls the flow rate of the carrier gas (for example, N 2 ), and a copper complex (for example, Cu (hfac)) that is a liquid source (Tmvs)) and the flow rate of the copper complex (for example, Cu (hfac) (tmvs)) that is the liquid raw material. A fifth flow controller 43 to be controlled, a vaporizer 37 for vaporizing a copper complex (eg, Cu (hfac) (tmvs)) as a liquid source, and a vaporized copper complex gas (eg, Cu (hfac) ( (tmvs) gas) containing a gas cylinder 45 containing a carrier gas (for example, Ar) and a copper complex gas introduction system including a sixth flow rate controller 44 for controlling the flow rate of the carrier gas (for example, Ar). A three-way valve 23 is provided between the two.

原料ガス導入系22から導入される原料ガスは、三方弁23により、適宜、有機チタンガスと銅錯体ガスとが切り替えられる。   The raw material gas introduced from the raw material gas introduction system 22 is appropriately switched between the organic titanium gas and the copper complex gas by the three-way valve 23.

気化された原料ガスは、キャリアガスと混合されて、三方弁23を通過し、原料ガス導入系22から供給路76を経て、シャワーヘッド54に供給される。   The vaporized source gas is mixed with the carrier gas, passes through the three-way valve 23, and is supplied from the source gas introduction system 22 through the supply path 76 to the shower head 54.

添加ガス導入系24は、添加ガス(例えば、アンモニアガス)を収容した添加ガスボンベ46と、当該添加ガス(例えば、アンモニアガス)の流量を制御する第3の流量制御器48と、添加ガス(例えば、アンモニアガス)のためのキャリアガス(例えば、N2)を収容したガスボンベ50と、キャリアガス(例えば、N2)の流量を制御する第4の流量制御器52とで構成される。 The additive gas introduction system 24 includes an additive gas cylinder 46 containing an additive gas (for example, ammonia gas), a third flow rate controller 48 for controlling the flow rate of the additive gas (for example, ammonia gas), and an additive gas (for example, ammonia gas). , and a carrier gas (e.g., gas cylinders 50 accommodating the N 2) for the ammonia gas), a carrier gas (e.g., the fourth flow rate controller 52 for controlling the flow rate of N 2).

添加ガス(例えば、アンモニアガス)はキャリアガス(例えば、N2)と混合されて供給路78を経て、シャワーヘッド54に供給される。 The additive gas (for example, ammonia gas) is mixed with a carrier gas (for example, N 2 ) and supplied to the shower head 54 via the supply path 78.

図2において、原料ガスとキャリアガスの混合ガス60は、供給路76を通って、まずシャワーヘッド54の第1拡散室62に入る。次に分散板64に形成された分散孔66を通って、第2拡散室68に入る。そして、これらの拡散室62、68で均等に混合されてから、第1噴出孔56を通って反応容器10の内部に入る。   In FIG. 2, the mixed gas 60 of the source gas and the carrier gas first enters the first diffusion chamber 62 of the shower head 54 through the supply path 76. Next, it enters the second diffusion chamber 68 through the dispersion hole 66 formed in the dispersion plate 64. Then, after being mixed evenly in these diffusion chambers 62 and 68, it enters the inside of the reaction vessel 10 through the first ejection holes 56.

一方、添加ガスとキャリアガスの混合ガス70は、供給路78を通って、まずシャワーヘッド54の第3拡散室72に入り、第2噴出孔58を通って反応容器10の内部に入る。   On the other hand, the mixed gas 70 of the additive gas and the carrier gas first enters the third diffusion chamber 72 of the shower head 54 through the supply path 78 and then enters the inside of the reaction vessel 10 through the second ejection hole 58.

図1図示の薄膜形成装置において、反応容器10内に原料ガスを導入する原料ガス供給装置に備えられ、反応容器10内への原料ガスの導入量を制御する流量制御手段は、三方弁23を介して、第1の流量制御器40と第2の流量制御器41(有機チタンガス導入系)及び第5の流量制御器43と第6の流量制御器44(銅錯体ガス導入系)とで構成され、反応容器10内に添加ガス(アンモニアガス)を導入する添加ガス供給装置に備えられ、反応容器10内への添加ガス(アンモニアガス)の導入量を制御する流量制御手段は、第3の流量制御器48と第4の流量制御器52とで構成される。   In the thin film forming apparatus shown in FIG. 1, the flow rate control means that is provided in the raw material gas supply device that introduces the raw material gas into the reaction vessel 10 and controls the introduction amount of the raw material gas into the reaction vessel 10 includes a three-way valve 23. The first flow rate controller 40 and the second flow rate controller 41 (organic titanium gas introduction system), and the fifth flow rate controller 43 and the sixth flow rate controller 44 (copper complex gas introduction system). The flow rate control means that is configured and is provided in the additive gas supply device that introduces the additive gas (ammonia gas) into the reaction vessel 10 and controls the introduction amount of the additive gas (ammonia gas) into the reaction vessel 10 is a third method. The flow rate controller 48 and the fourth flow rate controller 52 are configured.

図1図示の薄膜形成装置では、原料ガス供給装置に備えられている前記の流量制御手段と、添加ガス供給装置に備えられる前記の流量制御手段とによって、又はこれらの流量制御手段と圧力制御手段としての前記圧力制御バルブ27とによって、反応容器10内に導入される原料ガスと、添加ガスとの反応容器10内における分圧の比が所定の範囲となるように制御される。   In the thin film forming apparatus shown in FIG. 1, the flow rate control means provided in the source gas supply device and the flow rate control means provided in the additive gas supply device, or these flow rate control means and pressure control means. The pressure control valve 27 is controlled so that the ratio of the partial pressure in the reaction vessel 10 between the source gas introduced into the reaction vessel 10 and the additive gas is within a predetermined range.

例えば、反応容器10内に原料ガス(TDEATガス)を導入する原料ガス供給装置に備えられ、反応容器10内への原料ガス(TDEATガス)の導入量を制御する流量制御手段を、第1の流量制御器40と第2の流量制御器41とで構成し、反応容器10内に添加ガス(アンモニアガス)を導入する添加ガス供給装置に備えられ、反応容器10内への添加ガス(アンモニアガス)の導入量を制御する流量制御手段を、第3の流量制御器48と第4の流量制御器52とで構成する場合には、以下の方法で、添加ガス(アンモニアガス)の分圧=PNH3(=Padded gas)の原料ガス(TDEATガス)の分圧=PTDEAT(=Porganometallic gas)に対する比を調整することができる。 For example, a flow rate control means that is provided in a raw material gas supply device that introduces a raw material gas (TDEAT gas) into the reaction vessel 10 and controls the amount of the raw material gas (TDEAT gas) introduced into the reaction vessel 10 includes a first flow control means. The flow rate controller 40 and the second flow rate controller 41 are provided in an additive gas supply device that introduces an additive gas (ammonia gas) into the reaction vessel 10, and the additive gas (ammonia gas) into the reaction vessel 10 is provided. ) Is configured by the third flow rate controller 48 and the fourth flow rate controller 52, the partial pressure of the additive gas (ammonia gas) = The ratio of P NH3 (= P added gas ) to the partial pressure of the source gas (TDEAT gas) = P TDEAT (= P organometallic gas ) can be adjusted.

まず、反応容器10内の圧力(全圧)を、条件の範囲内で一定値に固定しておく。PNH3=(アンモニアガスの流量/反応容器10内に導入される全ガスの流量)×反応容器10内の圧力(全圧)であり、PTDEAT=(TDEATガスの流量/反応容器10内に導入される全ガスの流量)×反応容器10内の圧力(全圧)である。 First, the pressure (total pressure) in the reaction vessel 10 is fixed to a constant value within a range of conditions. P NH3 = (flow rate of ammonia gas / flow rate of total gas introduced into the reaction vessel 10) × pressure (total pressure) in the reaction vessel 10 and P TDEAT = (flow rate of TDEAT gas / reaction vessel 10) The flow rate of the total gas introduced) × the pressure in the reaction vessel 10 (total pressure).

そこで、前記のように、第1の流量制御器40、第3の流量制御器48を制御してTDEATガスの流量、アンモニアガスの流量を制御すると共に、第2の流量制御器41、第4の流量制御器52を制御して、キャリアガスの流量を制御し、反応容器10内に導入される全ガスの流量を制御してPNH3のPTDEATに対する比を調整する。あるいは、第1の流量制御器40、第3の流量制御器48によってTDEATガスの流量、アンモニアガスの流量を一定にしておくと共に、第2の流量制御器41、第4の流量制御器52を制御して、キャリアガスの流量を制御し、反応容器10内に導入される全ガスの流量を制御してPNH3のPTDEATに対する比を調整する。 Therefore, as described above, the first flow rate controller 40 and the third flow rate controller 48 are controlled to control the flow rate of the TDEAT gas and the flow rate of the ammonia gas, and the second flow rate controller 41, the fourth flow rate controller 41, and the fourth flow rate controller 41. The flow rate controller 52 is controlled, the flow rate of the carrier gas is controlled, the flow rate of all the gases introduced into the reaction vessel 10 is controlled, and the ratio of P NH3 to P TDEAT is adjusted. Alternatively, the TDEAT gas flow rate and the ammonia flow rate are kept constant by the first flow rate controller 40 and the third flow rate controller 48, and the second flow rate controller 41 and the fourth flow rate controller 52 are changed. The flow rate of the carrier gas is controlled, and the flow rate of all the gases introduced into the reaction vessel 10 is controlled to adjust the ratio of P NH3 to P TDEAT .

反応容器10内の圧力(全圧)を一定値に固定しておくには、圧力制御バルブ27を制御し、反応容器10内の圧力(全圧)の調整を行う。   In order to fix the pressure (total pressure) in the reaction vessel 10 at a constant value, the pressure control valve 27 is controlled to adjust the pressure (total pressure) in the reaction vessel 10.

なお、反応容器10内が所定の低圧に維持されている状態においては、前記のように、反応容器10内に原料ガスを導入する原料ガス供給装置に備えられ、反応容器10内への原料ガスの導入量を制御する流量制御手段と、反応容器10内に添加ガスを導入する添加ガス供給装置に備えられ、反応容器10内への添加ガスの導入量を制御する流量制御手段とを制御すると同時的に、圧力制御バルブ27を制御して反応容器10内の圧力(全圧)の調整を行う方法の他に、前記の流量制御手段を制御するのみで反応容器10内におけるPNH3のPTDEATに対する比を調整することもできる。 In the state where the inside of the reaction vessel 10 is maintained at a predetermined low pressure, as described above, the raw material gas supply device for introducing the raw material gas into the reaction vessel 10 is provided, and the raw material gas into the reaction vessel 10 is provided. And a flow rate control means for controlling the introduction amount of the additive gas, and a flow rate control means for controlling the introduction amount of the additive gas into the reaction vessel 10 provided in the additive gas supply device for introducing the additive gas into the reaction vessel 10. At the same time, in addition to the method of controlling the pressure (total pressure) in the reaction vessel 10 by controlling the pressure control valve 27, the P of NH 3 in the reaction vessel 10 can be controlled only by controlling the flow rate control means. The ratio to TDEAT can also be adjusted.

実施例2
図1図示の薄膜形成装置を用いて、次のプロセス条件により、化学蒸着法で窒化チタン薄膜の成膜を行った。
Example 2
Using the thin film forming apparatus shown in FIG. 1, a titanium nitride thin film was formed by chemical vapor deposition under the following process conditions.

(1) 有機チタン化合物(液体原料):TDEAT、毎分0.055g
(2) 添加ガス:アンモニア(NH3
a.毎分11ミリリットル(Padded gas/Porganometallic gas=3)
b.毎分18.3ミリリットル(Padded gas/Porganometallic gas=5)
c.毎分36.7ミリリットル(Padded gas/Porganometallic gas=10)
d.毎分50ミリリットル(Padded gas/Porganometallic gas=13.5)
e.毎分183ミリリットル(Padded gas/Porganometallic gas=50)
(3) キャリアガス:TDEAT、アンモニア、共に窒素ガス(N2
(4) パージガス:アルゴン(Ar)、毎分50ミリリットル(基体裏面への膜付着防止用、図示せず)
(5) 基体の温度(成膜温度):150℃〜230℃
(6) 反応容器内の圧力(成膜圧力):10Pa
(7) 膜厚(成膜時間):180nm(20分)
(1) Organic titanium compound (liquid raw material): TDEAT, 0.055 g per minute
(2) Additive gas: Ammonia (NH 3 )
a. 11 ml per minute (P added gas / P organometallic gas = 3)
b. 18.3 ml / min (P added gas / P organometallic gas = 5)
c. 36.7 ml / min (P added gas / P organometallic gas = 10)
d. 50 ml per minute (P added gas / P organometallic gas = 13.5)
e. 183 ml per minute (P added gas / P organometallic gas = 50)
(3) Carrier gas: TDEAT, ammonia, and nitrogen gas (N 2 )
(4) Purge gas: Argon (Ar), 50 milliliters per minute (for preventing film adhesion to the back of the substrate, not shown)
(5) Substrate temperature (film formation temperature): 150 ° C. to 230 ° C.
(6) Pressure in the reaction vessel (film formation pressure): 10 Pa
(7) Film thickness (film formation time): 180 nm (20 minutes)

なお、被覆性(カバレッジ)は、開口巾0.16μm、アスペクト比4のトレンチで確認した。   The coverage (coverage) was confirmed with a trench having an opening width of 0.16 μm and an aspect ratio of 4.

実験結果を以下に示す。   The experimental results are shown below.

a.Padded gas/Porganometallic gas=3
基体の温度を300℃以上にした別の実験では、良好な被覆性(カバレッジ)100%が得られ、かつ成膜速度も毎分約9nm以上であった。ここで、成膜速度が、例えば、毎分約4nm以下の場合には、不純物の混入量が多く、膜質が不良になってしまうが、毎分約9nm以上の成膜速度が得られており、プロセス上のマージンを持たせることができる。しかし、本実験における基体の温度が230℃以下では、いずれも、膜質が悪く、成膜速度も毎分約4nm程度であり、付着物は固体でなく、粘性の高い液体の膜であった。
a. P added gas / P organometallic gas = 3
In another experiment in which the temperature of the substrate was 300 ° C. or higher, good coverage (coverage) 100% was obtained, and the film formation rate was about 9 nm or more per minute. Here, when the film formation rate is, for example, about 4 nm or less per minute, the amount of impurities mixed is large and the film quality becomes poor, but a film formation rate of about 9 nm or more per minute is obtained. , You can have a margin on the process. However, when the substrate temperature in this experiment was 230 ° C. or lower, the film quality was poor, the film formation rate was about 4 nm per minute, and the deposit was not a solid but a highly viscous liquid film.

b.Padded gas/Porganometallic gas=5
基体の温度を230℃にして成膜した場合には、被覆性(カバレッジ)は100%で良好であったが、成膜速度が毎分約6nm程度で不十分であった。基体の温度を下げるにつれて成膜速度は毎分約6nm程度から低下する傾向にあった。基体の温度が150℃の場合には、膜質、成膜速度のいずれも不良であった。
b. P added gas / P organometallic gas = 5
When the film was formed at a substrate temperature of 230 ° C., the coverage (coverage) was good at 100%, but the film formation rate was about 6 nm per minute and was insufficient. As the temperature of the substrate was lowered, the film formation rate tended to decrease from about 6 nm per minute. When the substrate temperature was 150 ° C., both the film quality and the film formation rate were poor.

c.Padded gas/Porganometallic gas=10
基体の温度を230℃にして成膜した場合には、毎分約9nmの成膜速度が得られ、被覆性(カバレッジ)は100%で良好であったが、基体の温度を下げるにつれて、成膜速度は低下する傾向にあった。基体の温度が150℃の場合には、膜質、成膜速度のいずれも不良であった。
c. P added gas / P organometallic gas = 10
When the film was formed at a substrate temperature of 230 ° C., a film formation rate of about 9 nm per minute was obtained and the coverage (coverage) was good at 100%. However, as the substrate temperature was lowered, the film formation rate was improved. The film speed tended to decrease. When the substrate temperature was 150 ° C., both the film quality and the film formation rate were poor.

d.Padded gas/Porganometallic gas=13.5
基体の温度を230℃にして成膜した場合には、毎分約9nmの成膜速度が得られた。このときの被覆性(カバレッジ)も100%で良好であった。基体の温度を下げて150℃にした場合には、膜質、成膜速度のいずれも不良であった。
d. P added gas / P organometallic gas = 13.5
When the film was formed at a substrate temperature of 230 ° C., a film formation rate of about 9 nm per minute was obtained. The coverage (coverage) at this time was also good at 100%. When the temperature of the substrate was lowered to 150 ° C., both the film quality and the film formation rate were poor.

e.Padded gas/Porganometallic gas=50
基体の温度を150℃にして成膜した場合には、被覆性(カバレッジ)は100%で良好であり、成膜速度も毎分約9nmが得られ良好であった。さらに、基体の温度を下げて成膜する場合には、成膜速度を高めるため、アンモニアの流量を増加させる必要があることが確認された。
e. P added gas / P organometallic gas = 50
When the film was formed at a substrate temperature of 150 ° C., the coverage (coverage) was good at 100% and the film formation rate was good at about 9 nm per minute. Furthermore, it was confirmed that when the film was formed at a lower substrate temperature, it was necessary to increase the ammonia flow rate in order to increase the film formation rate.

以上の結果から、化学蒸着法で窒化チタン薄膜を、150℃〜230℃という低温領域において、十分な成膜速度と良好な被覆性(カバレッジ)を得ながら成膜を行うには、添加ガスの分圧Padded gasを、原料ガスの分圧Porganometallic gasに対し、10≦Padded gas/Porganometallic gasの範囲に設定する必要であることが見い出された。 From the above results, in order to form a titanium nitride thin film by chemical vapor deposition in a low temperature region of 150 ° C. to 230 ° C. while obtaining a sufficient film formation rate and good coverage (coverage), It has been found that the partial pressure P added gas needs to be set in the range of 10 ≦ P added gas / P organometallic gas with respect to the partial pressure P organometallic gas of the raw material gas.

実施例3
前記実施例1で説明した図1図示の薄膜形成装置を用いて、以下のプロセス条件により、化学蒸着法で、基体上に窒化チタン薄膜を作製し、その後、同一真空内で、同一の温度条件により、窒化チタン薄膜上に銅薄膜の積層を試みた。
Example 3
Using the thin film forming apparatus shown in FIG. 1 described in the first embodiment, a titanium nitride thin film is formed on the substrate by the chemical vapor deposition method under the following process conditions, and then the same temperature conditions are used in the same vacuum. Thus, an attempt was made to laminate a copper thin film on a titanium nitride thin film.

イ)窒化チタン薄膜の作製
(1) 有機チタン化合物(液体原料):TDEAT、毎分0.055g
(2) 添加ガス:アンモニア(NH3)、毎分50ミリリットル(Padded gas/Porganometallic gas=13.5)
(3) キャリアガス:TDEAT、アンモニア、共に窒素ガス(N2
(4) パージガス:アルゴン(Ar)、毎分50ミリリットル(基体裏面への膜付着防止用、図示せず)
(5) 基体の温度(成膜温度):200℃
(6) 反応容器内の圧力(成膜圧力):10Pa
(7) 膜厚(成膜時間):180nm(20分)
B) Preparation of titanium nitride thin film (1) Organic titanium compound (liquid raw material): TDEAT, 0.055 g / min
(2) Added gas: ammonia (NH 3 ), 50 milliliters per minute (P added gas / P organometallic gas = 13.5)
(3) Carrier gas: TDEAT, ammonia, and nitrogen gas (N 2 )
(4) Purge gas: Argon (Ar), 50 milliliters per minute (for preventing film adhesion to the back of the substrate, not shown)
(5) Substrate temperature (film formation temperature): 200 ° C.
(6) Pressure in the reaction vessel (film formation pressure): 10 Pa
(7) Film thickness (film formation time): 180 nm (20 minutes)

その結果、毎分約9nmの成膜速度が得られた。また、開口巾0.16μm、アスペクト比4のトレンチで被覆性(カバレッジ)を確認したところ、100%の被覆率であった。プラズマ改質後の比抵抗値は、650μΩ・cmであった。   As a result, a film formation rate of about 9 nm per minute was obtained. Further, when the coverage (coverage) was confirmed with a trench having an opening width of 0.16 μm and an aspect ratio of 4, the coverage was 100%. The specific resistance value after plasma modification was 650 μΩ · cm.

この結果により、有機チタン化合物(TDEAT)を気化させた原料ガスと、これに反応する添加ガス(アンモニア(NH3))とを反応容器内に供給し、化学蒸着法により、加熱した基体の表面上に窒化チタン薄膜を作製する薄膜形成方法において、基体の温度を各種機能性材料の耐熱温度である低温領域(この実施例では200℃)にした場合であっても、実用的な成膜速度が得られ、被覆性が良好であることが確認できた。 As a result, a source gas obtained by vaporizing the organic titanium compound (TDEAT) and an additive gas (ammonia (NH 3 )) that reacts with the gas are supplied into the reaction vessel and heated by the chemical vapor deposition method. In a thin film forming method for producing a titanium nitride thin film on the substrate, a practical film forming speed is obtained even when the temperature of the substrate is in a low temperature region (200 ° C. in this embodiment) which is a heat resistant temperature of various functional materials. It was confirmed that the coverage was good.

ロ)銅薄膜の積層
(1) 銅錯体(液体原料):Cu(hfac)(tmvs) トリメチルビニルシリルヘキサフルオロアセチルアセトナト酸塩銅(I)、毎分2.4g
(2) 添加ガス:なし
(3) キャリアガス:アルゴン(Ar)500sccm
(4) パージガス:アルゴン(Ar)、毎分50ミリリットル(基体裏面への膜付着防止用、図示せず)
(5) 基体の温度(成膜温度):200℃
(6) 反応容器内の圧力(成膜圧力):0.5KPa
(7) 膜厚(成膜時間):50nm(10秒)
B) Lamination of copper thin film (1) Copper complex (liquid raw material): Cu (hfac) (tmvs) Trimethylvinylsilyl hexafluoroacetylacetonate copper (I), 2.4 g per minute
(2) Additive gas: None (3) Carrier gas: Argon (Ar) 500 sccm
(4) Purge gas: Argon (Ar), 50 milliliters per minute (for preventing film adhesion to the back of the substrate, not shown)
(5) Substrate temperature (film formation temperature): 200 ° C.
(6) Pressure in the reaction vessel (film formation pressure): 0.5 KPa
(7) Film thickness (film formation time): 50 nm (10 seconds)

なお、銅錯体原料容器39から供給された液体状態のCu(hfac)(tmvs)は、第5の流量制御器43により流量が調整された後、気化器37で気化されて原料ガスとしてのCu(hfac)(tmvs)ガスとなり、第6の流量制御器44により流量調整されたキャリアガスとしてのArと混合されて、三方弁23を通過し、原料ガス導入系22に送られ、供給路76を経てシャワーヘッド54に供給されることになる。   The liquid Cu (hfac) (tmvs) supplied from the copper complex raw material container 39 is adjusted in flow rate by the fifth flow rate controller 43 and then vaporized in the vaporizer 37 to form Cu as a raw material gas. (Hfac) (tmvs) gas is mixed with Ar as a carrier gas whose flow rate is adjusted by the sixth flow rate controller 44, passes through the three-way valve 23, is sent to the source gas introduction system 22, and is supplied to the supply path 76. After that, it is supplied to the shower head 54.

銅薄膜の積層は、前記したイ)窒化チタン薄膜の作製の工程が終了してから、同一真空内で、基体の温度条件は同一にして、原料ガスを切り換え、パージと圧力調整を行うだけで、前記したイ)窒化チタン薄膜の作製で得られた窒化チタン薄膜上に50nm銅薄膜を積層することができた。   Lamination of the copper thin film is as follows: b) After the process of producing the titanium nitride thin film is completed, the temperature condition of the substrate is the same in the same vacuum, the source gas is switched, and the purge and pressure adjustment are performed. As described above, a 50 nm copper thin film could be laminated on the titanium nitride thin film obtained by the production of the titanium nitride thin film.

以上、添付図面を参照して本発明の最良の実施形態、実施例を説明したが、本発明はかかる実施形態、実施例に限定されるものではなく、特許請求の範囲の記載から把握される技術的範囲において種々の形態に変更可能である。   The best mode and examples of the present invention have been described above with reference to the accompanying drawings. However, the present invention is not limited to such modes and examples, and can be understood from the description of the scope of claims. Various modifications can be made within the technical scope.

10 応容器
12 排気系
14 第1真空計(低真空用)
16 第2真空計(高真空用)
18 基体ホルダー
20 基体
22 原料ガス導入系
23 三方弁
24 添加ガス導入系
26 ターボ分子ポンプ
27 圧力制御バルブ
28 ドライポンプ
30 基体加熱装置
32 熱電対
34 ヒータ
35 加熱電源
36 有機チタン原料容器
37,38 気化器
39 銅錯体原料容器
40 第1の流量制御器
41 第2の流量制御器
42 キャリアガスを収容しているガスボンベ
43 第5の流量制御器
44 第6の流量制御器
45 キャリアガスを収容しているガスボンベ
46 添加ガスボンベ
48 第3の流量制御器
50 キャリアガスを収容しているガスボンベ
52 第4の流量制御器
10 Vessel 12 Exhaust system 14 First vacuum gauge (for low vacuum)
16 Second vacuum gauge (for high vacuum)
18 Substrate holder 20 Substrate 22 Raw material gas introduction system 23 Three-way valve 24 Addition gas introduction system 26 Turbo molecular pump 27 Pressure control valve 28 Dry pump 30 Substrate heating device 32 Thermocouple 34 Heater 35 Heating power source 36 Organic titanium raw material container 37, 38 Vaporization Container 39 Copper complex raw material container 40 First flow controller 41 Second flow controller 42 Gas cylinder containing carrier gas 43 Fifth flow controller 44 Sixth flow controller 45 Carrier gas Gas cylinder 46 additive gas cylinder 48 third flow controller 50 gas cylinder containing carrier gas 52 fourth flow controller

Claims (1)

真空排気可能な反応容器と、該反応容器内を排気して、この反応容器内を全圧100Pa以下に維持できる排気装置と、前記反応容器内に原料ガスを導入する原料ガス供給装置と、前記原料ガスに反応する添加ガスを前記反応容器内に導入する添加ガス供給装置と、前記反応容器内に備えられていて薄膜をその上に堆積させる基体を150℃乃至230℃の温度範囲に加熱し保持する基体ホルダーと、前記基体を加熱する加熱装置とを備える薄膜形成装置であって、前記原料ガス供給装置から前記反応容器内に導入される原料ガスの種類を変更する原料ガス切替手段を備え、かつ前記原料ガス供給装置と前記添加ガス供給装置とは、前記反応容器内に導入された添加ガスの分圧Padded gasと原料ガスの分圧Porganometallic gasとが、10≦Padded gas/Porganometallic gasの関係を満たすと共に、反応容器内の圧力を0.1〜15Paとするように、前記反応容器内への添加ガス及び原料ガスの導入量を制御する流量制御手段を備えていることを特徴とする薄膜形成装置。 A reaction vessel capable of being evacuated, an exhaust device capable of exhausting the inside of the reaction vessel and maintaining the inside of the reaction vessel at a total pressure of 100 Pa or less, a raw material gas supply device for introducing a raw material gas into the reaction vessel, An additive gas supply device that introduces an additive gas that reacts with a source gas into the reaction vessel, and a substrate that is provided in the reaction vessel and on which a thin film is deposited is heated to a temperature range of 150 ° C. to 230 ° C. A thin film forming apparatus comprising a substrate holder for holding and a heating device for heating the substrate, comprising a raw material gas switching means for changing the type of raw material gas introduced from the raw material gas supply device into the reaction vessel The source gas supply device and the additive gas supply device are configured such that the partial pressure P added gas of the additive gas introduced into the reaction vessel and the partial pressure P organometallic gas of the source gas are 10 ≦ P added g provided with flow rate control means for controlling the introduction amount of the additive gas and the raw material gas into the reaction vessel so that the relationship of as / P organometallic gas is satisfied and the pressure in the reaction vessel is set to 0.1 to 15 Pa. A thin film forming apparatus.
JP2010008730A 2010-01-19 2010-01-19 Thin-film forming apparatus Withdrawn JP2010111949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010008730A JP2010111949A (en) 2010-01-19 2010-01-19 Thin-film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010008730A JP2010111949A (en) 2010-01-19 2010-01-19 Thin-film forming apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003331391A Division JP4520717B2 (en) 2003-09-24 2003-09-24 Thin film formation method

Publications (1)

Publication Number Publication Date
JP2010111949A true JP2010111949A (en) 2010-05-20

Family

ID=42300725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010008730A Withdrawn JP2010111949A (en) 2010-01-19 2010-01-19 Thin-film forming apparatus

Country Status (1)

Country Link
JP (1) JP2010111949A (en)

Similar Documents

Publication Publication Date Title
KR100708496B1 (en) Methods for preparing ruthenium metal films
Kim et al. Plasma-enhanced atomic layer deposition of cobalt using cyclopentadienyl isopropyl acetamidinato-cobalt as a precursor
JP3140111U (en) Gas supply equipment for semiconductor manufacturing equipment
US6468604B1 (en) Method for manufacturing a titanium nitride thin film
WO2011070945A1 (en) Thin film manufacturing apparatus, thin film manufacturing method, and method for manufacturing semiconductor device
KR20190022944A (en) Multi-layer coating with diffusion barrier layer and erosion resistant layer
TWI655310B (en) Metal-aluminum alloy films from metal amidinate precursors and aluminum precursors
JP2008538129A5 (en)
JP2011522130A (en) Deposition method and apparatus for depositing thin layers of polymerized paraxylylene or substituted paraxylylene
TW201219405A (en) Molybdenum (IV) amide precursors and use thereof in atomic layer deposition
TW200534363A (en) Method for the deposition in particular of metal oxides by non-continuous precursor injection
WO2013030576A1 (en) Improved deposition technique for depositing a coating on a device
TWI810141B (en) Apparatus for depositing self-assembled monolayer on substrate and method of self-assembled monolayer formation and selective deposition
JP2004115916A (en) Organic vapor deposition system, and organic vapor deposition method
WO2012173931A1 (en) Process gas diffuser assembly for vapor deposition system
JP2011054789A (en) Substrate treatment device
JP2004047887A (en) Sheet-fed cvd device
US20170084448A1 (en) Low temperature conformal deposition of silicon nitride on high aspect ratio structures
TWI745311B (en) Low vapor pressure aerosol-assisted cvd
JP4520717B2 (en) Thin film formation method
JP2010111949A (en) Thin-film forming apparatus
JP4601975B2 (en) Deposition method
JP2005026244A (en) Method of forming film, film, and element
KR100479639B1 (en) Chemical Vapor Deposition System for Depositing Multilayer Film And Method for Depositing Multilayer Film Using The Same
JP2005256107A (en) Organometallic chemical vapor deposition system and raw material carburetor

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110401