JP2010110770A - Parting agent for casting lattice body for electrode plate of lead battery - Google Patents

Parting agent for casting lattice body for electrode plate of lead battery Download PDF

Info

Publication number
JP2010110770A
JP2010110770A JP2008283569A JP2008283569A JP2010110770A JP 2010110770 A JP2010110770 A JP 2010110770A JP 2008283569 A JP2008283569 A JP 2008283569A JP 2008283569 A JP2008283569 A JP 2008283569A JP 2010110770 A JP2010110770 A JP 2010110770A
Authority
JP
Japan
Prior art keywords
particle size
mass
cork powder
cork
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008283569A
Other languages
Japanese (ja)
Other versions
JP5190327B2 (en
Inventor
Takeshi Honda
武 本田
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2008283569A priority Critical patent/JP5190327B2/en
Publication of JP2010110770A publication Critical patent/JP2010110770A/en
Application granted granted Critical
Publication of JP5190327B2 publication Critical patent/JP5190327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cork powder-containing parting agent which hardly falls from a die face and imparts suitable thermal insulation properties upon casting a lattice body for an electrode plate used for a lead battery, and which has a remarkably long life as a result, also which enables the molten metal of lead alloy to be uniformly spread to all the corners of the whole of the die, and enables the molten metal of the lead alloy to be solidified in a short period of time, and therefore achievs production of an extremely homogeneous lattice body for the electrode plate with remarkably high productivity by the synergistic action of the above effects. <P>SOLUTION: In the cork powder-containing parting agent used for casting a lattice body for a lead battery electrode plate, the cumulative value of grains with a grain size of ≥100 μm in the cork powder is 1 to 10 mass%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鉛蓄電池の極板に使用する格子体を鋳造する際に、その鋳型に塗布する離型剤に関し、更に詳細には、コルク粉末を含有する該離型剤に関する。 The present invention relates to a mold release agent applied to a mold of a grid used for an electrode plate of a lead storage battery, and more particularly to the mold release agent containing cork powder.

鉛蓄電池の極板として使用する格子体の製造方法としては、重力鋳造法及び連続鋳造法が広く使用されている。例えば、重力鋳造法においては、まず、鋳型面に離型剤を塗布し、次いで、鋳型に溶融した鉛合金湯を流し込み、該湯が冷却されて凝固した後、鋳型から取り出し、次いで、所望の寸法に切断して格子体とする。 Gravity casting method and continuous casting method are widely used as a method of manufacturing a lattice used as an electrode plate of a lead storage battery. For example, in the gravity casting method, first, a mold release agent is applied to the mold surface, then molten lead alloy hot water is poured into the mold, and after the hot water is cooled and solidified, it is removed from the mold, Cut into dimensions to make a grid.

上記の離型剤としては、通常、ケイ酸ソーダを含むコルク粉末を水に分散した分散液が使用され、該分散液がスプレーガン等で鋳型表面に塗布される。このようにして鋳型表面に塗布されたコルク粉末の層が断熱層として作用して、流し込んだ鉛合金湯の保温性を高め、それにより、該湯を鋳型の隅々まで均等に分散させることができると共に、離型剤として作用して、凝固した鉛合金を鋳型から容易に取り出すことができる。しかし、該コルク粉末の層は、耐熱性に劣りかつ機械的衝撃に弱いため、繰り返し鋳造が行われると鋳型面から徐々に脱落する。よって、鋳造作業中に再度、コルク粉末の層を塗布する必要が生ずる。従って、生産性の低下を招くことはもちろんのこと、コルク粉末の層の脱落により、製造される格子体の重量及び厚みにバラツキが生じ易い。 As the mold release agent, a dispersion in which cork powder containing sodium silicate is dispersed in water is usually used, and the dispersion is applied to the mold surface with a spray gun or the like. In this way, the layer of cork powder applied to the mold surface acts as a heat insulating layer to improve the heat retention of the poured lead alloy hot water, and thereby uniformly distribute the hot water to every corner of the mold. In addition to being able to act as a mold release agent, the solidified lead alloy can be easily taken out of the mold. However, since the cork powder layer is inferior in heat resistance and weak against mechanical shock, it gradually falls off the mold surface when repeated casting is performed. Therefore, it becomes necessary to apply a layer of cork powder again during the casting operation. Accordingly, not only will the productivity be reduced, but also the weight and thickness of the lattice produced will be subject to variations due to the dropping of the cork powder layer.

そこで、該コルク粉末の層の脱落を防止して、その寿命を高めるために種々の取り組みがなされている。例えば、粒径1〜100ミクロン程度のコルク粉末を所定濃度で分散した溶液中に、耐熱性を有する熱硬化性樹脂水溶性ワニスを所定量で加えた溶液を、格子鋳造用金型の内面に吹き付けた後、該金型を用いて鋳造を行う鉛蓄電池用格子鋳造方法が知られている(特許文献1)。また、コルク粉末と結合剤とから成る断熱層の上面に、無機物質粉末と無機物質結合剤とから成る保護層を形成した鉛格子体鋳造金型が知られている(特許文献2)。しかし、これらの発明では、所定の水溶性ワニス及び保護層が必要であり、作業が煩雑になると共に、コスト高を招くと言う問題があった。 Therefore, various efforts have been made to prevent the cork powder layer from falling off and to increase its lifetime. For example, a solution obtained by adding a predetermined amount of a thermosetting resin water-soluble varnish having heat resistance to a solution in which cork powder having a particle size of about 1 to 100 microns is dispersed at a predetermined concentration is applied to the inner surface of a lattice casting mold. A grid casting method for a lead storage battery in which casting is performed using the mold after spraying is known (Patent Document 1). Further, a lead grid casting mold is known in which a protective layer made of an inorganic substance powder and an inorganic substance binder is formed on the upper surface of a heat insulating layer made of cork powder and a binder (Patent Document 2). However, these inventions have a problem that a predetermined water-soluble varnish and a protective layer are necessary, and the work becomes complicated and the cost is increased.

更に、鉛蓄電池用格子体の彫刻面を有する鉛蓄電池用鋳造金型において、前記彫刻面に表面の最大粗さが70μm以下である塗型層を有する鉛蓄電池用格子体鋳造金型が知られている(特許文献3)。しかし、該発明では、所定の表面粗さにするためにサンドペーパー等を使用して塗型層の表面を擦る等の作業が必要であり、著しく煩雑であり、生産性を悪くしていた。 Furthermore, in a lead storage battery casting mold having an engraved surface of a lead storage battery grid, a lead storage battery grid casting mold having a coating layer with a maximum surface roughness of 70 μm or less on the engraving surface is known. (Patent Document 3). However, in the present invention, in order to obtain a predetermined surface roughness, an operation such as rubbing the surface of the coating layer using sandpaper or the like is necessary, which is extremely complicated and deteriorates productivity.

また、特許文献1の実施例では粒径1〜5ミクロン程度のコルク粉末を使用している。しかし、このように粒径が細か過ぎると、強固な断熱層を形成し得るが、コルク層中に適度な空気層が形成されず断熱効果が低下する。 Moreover, in the Example of patent document 1, the cork powder with a particle size of about 1-5 microns is used. However, if the particle size is too fine as described above, a strong heat insulating layer can be formed, but an appropriate air layer is not formed in the cork layer, and the heat insulating effect is lowered.

特開昭58−20364号公報Japanese Patent Laid-Open No. 58-20364 特開平8−229665号公報JP-A-8-229665 特開平8−197230号公報JP-A-8-197230

本発明は、鉛蓄電池の極板に使用する格子体を鋳造するに際して、鋳型面からの脱落が極めて少ないばかりか、適切な断熱性を付与するコルク粉末含有離型剤を提供するものである。 The present invention provides a cork powder-containing mold release agent that imparts appropriate heat insulation as well as very little drop-off from the mold surface when casting a grid used for an electrode plate of a lead storage battery.

上記従来技術のようにコルク粉末中に水溶性ワニス等のバインダーを混入せしめる方法、若しくはコルク粉末層を保護層でコーティングする方法、又はコルク層の表面粗さを機械的に調節する方法では、作業性が著しく低下し、またコスト高を招く。そこで、本発明者らは、従来、コルク粉末層が短期間のうちに脱落してしまうのは、その粒度分布に問題があるのではないかと考え、コルク粉末の粒度分布を調節すると言う基本に戻り、種々の検討を重ねた。その結果、離型剤に使用するコルク粉末の粒度を下記のように調整すれば、上記課題を解決し得ることを見出し、本発明を完成するに至った。 In the method of mixing a binder such as a water-soluble varnish in the cork powder as in the above prior art, the method of coating the cork powder layer with a protective layer, or the method of mechanically adjusting the surface roughness of the cork layer, The performance is significantly reduced and the cost is increased. Therefore, the present inventors have conventionally considered that the cork powder layer may fall out in a short period of time because there is a problem in the particle size distribution, and the basis is that the particle size distribution of the cork powder is adjusted. We returned and made various studies. As a result, the inventors have found that the above problems can be solved by adjusting the particle size of the cork powder used for the release agent as follows, and have completed the present invention.

即ち、本発明は、
(1)鉛蓄電池極板用格子体の鋳造に使用するコルク粉末含有離型剤において、コルク粉末中の粒径100μm以上の粒子の累積値が1〜10質量%であることを特徴とする離型剤である。
That is, the present invention
(1) In a cork powder-containing mold release agent used for casting of a lead-acid battery electrode plate, the cumulative value of particles having a particle size of 100 μm or more in the cork powder is 1 to 10% by mass. It is a mold.

好ましい態様として、
(2)コルク粉末中の粒径100μm以上の粒子の累積値が2〜7質量%であるところの上記(1)記載の離型剤、
(3)コルク粉末中の粒径100μm以上の粒子の累積値が2〜5質量%であるところの上記(1)記載の離型剤、
(4)コルク粉末の平均粒径が30〜70μmであるところの上記(1)〜(3)のいずれか一つに記載の離型剤、
(5)コルク粉末の平均粒径が30〜60μmであるところの上記(1)〜(3)のいずれか一つに記載の離型剤、
(6)コルク粉末の平均粒径が30〜50μmであるところの上記(1)〜(3)のいずれか一つに記載の離型剤、
(7)コルク粉末中の粒径10μm以下の粒子の累積値が1〜12質量%であるところの上記(1)〜(6)のいずれか一つに記載の離型剤、
(8)コルク粉末中の粒径10μm以下の粒子の累積値が1〜10質量%であるところの上記(1)〜(6)のいずれか一つに記載の離型剤、
(9)コルク粉末中の粒径10μm以下の粒子の累積値が5〜10質量%であるところの上記(1)〜(6)のいずれか一つに記載の離型剤、
(10)コルク粉末の粒度分布において、0.1〜200μmの粒径の粒子が90質量%以上であるところの上記(1)〜(9)のいずれか一つに記載の離型剤、
(11)コルク粉末の粒度分布において、0.1〜200μmの粒径の粒子が95質量%以上であるところの上記(1)〜(9)のいずれか一つに記載の離型剤、
(12)コルク粉末の粒度分布において、0.1〜200μmの粒径の粒子が98質量%以上であるところの上記(1)〜(9)のいずれか一つに記載の離型剤
を挙げることができる。
As a preferred embodiment,
(2) The mold release agent according to the above (1), wherein the cumulative value of particles having a particle size of 100 μm or more in the cork powder is 2 to 7% by mass,
(3) The release agent according to (1) above, wherein the cumulative value of particles having a particle size of 100 μm or more in the cork powder is 2 to 5% by mass,
(4) The mold release agent according to any one of (1) to (3) above, wherein the cork powder has an average particle size of 30 to 70 μm.
(5) The mold release agent according to any one of (1) to (3) above, wherein the cork powder has an average particle size of 30 to 60 μm,
(6) The mold release agent according to any one of (1) to (3) above, wherein the cork powder has an average particle size of 30 to 50 μm,
(7) The mold release agent according to any one of (1) to (6) above, wherein the cumulative value of particles having a particle size of 10 μm or less in the cork powder is 1 to 12% by mass,
(8) The mold release agent according to any one of (1) to (6) above, wherein the cumulative value of particles having a particle size of 10 μm or less in the cork powder is 1 to 10% by mass,
(9) The mold release agent according to any one of (1) to (6) above, wherein the cumulative value of particles having a particle size of 10 μm or less in the cork powder is 5 to 10% by mass,
(10) In the particle size distribution of the cork powder, the release agent according to any one of (1) to (9) above, wherein particles having a particle size of 0.1 to 200 μm are 90% by mass or more,
(11) In the particle size distribution of the cork powder, the release agent according to any one of the above (1) to (9), wherein particles having a particle size of 0.1 to 200 μm are 95% by mass or more,
(12) In the particle size distribution of the cork powder, the release agent according to any one of the above (1) to (9), wherein the particle having a particle size of 0.1 to 200 μm is 98% by mass or more. be able to.

本発明のコルク粉末含有離型剤は、鉛蓄電池の極板に使用する格子体を鋳造するに際して、鋳型面からの脱落が極めて少ない。故に、その寿命が著しく長い。加えて、離型剤層に適切な断熱性を付与し得る故に、鋳型全体の隅々まで鉛合金湯を均一に行き渡らしめることができる一方、短時間のうちに鉛合金湯を凝固せしめることができる。従って、これらの効果の相乗作用により、極めて均質な極板用格子体を著しく高い生産性を伴って製造することができる。 The cork powder-containing release agent of the present invention has very little drop-off from the mold surface when casting a grid used for the electrode plate of a lead storage battery. Therefore, its lifetime is remarkably long. In addition, since it is possible to impart appropriate heat insulation to the release agent layer, the lead alloy hot water can be uniformly distributed to every corner of the entire mold, while the lead alloy hot water can be solidified within a short time. it can. Therefore, by synergistic action of these effects, it is possible to manufacture a very homogeneous electrode plate lattice body with extremely high productivity.

本発明のコルク粉末含有離型剤において、コルク粉末中の粒径100μm以上の粒子の累積値の上限は、10質量%、好ましくは7質量%、より好ましくは5質量%であり、下限は、1質量%、好ましくは2質量%である。上記上限を超えては、鋳型表面に塗布した際に、離型剤層の凹凸が激しくなる。故に、極板用格子体の製造時における鉛合金湯の流動により離型剤層が脱落し易くなる。上記下限未満では、強固な離型剤層が形成され、その脱落が低減される一方、適度な量の空気を含有する離型剤層が得られず、必要以上に断熱性が向上して、鉛合金湯の凝固時間が増加する。故に、鋳造1サイクルに要する時間が長くなり、生産性が低下する。 In the cork powder-containing release agent of the present invention, the upper limit of the cumulative value of particles having a particle size of 100 μm or more in the cork powder is 10% by mass, preferably 7% by mass, more preferably 5% by mass, and the lower limit is 1% by mass, preferably 2% by mass. If the above upper limit is exceeded, the unevenness of the release agent layer becomes severe when applied to the mold surface. Therefore, the mold release agent layer easily falls off due to the flow of the lead alloy hot water during the production of the electrode plate lattice. If it is less than the above lower limit, a strong release agent layer is formed and its drop-off is reduced, while a release agent layer containing an appropriate amount of air cannot be obtained, and the heat insulation is improved more than necessary, The solidification time of lead alloy hot water increases. Therefore, the time required for one casting cycle becomes long, and the productivity is lowered.

コルク粉末中の粒径10μm以下の粒子の累積値の上限は、好ましくは12質量%、より好ましくは10質量%である。一方、下限は、好ましくは1質量%、より好ましくは5質量%である。上記上限を超えては、形成された離型剤層に必要な空気層を10μm以下のコルク粒子が埋める故に、必要以上に高い断熱性を有する離型剤層が形成される。従って、鉛合金湯の凝固速度が著しく低下し、鋳造サイクルが増大することがある。上記下限未満では、離型剤層と鋳型表面との結合及び離型剤層を形成するコルク粒子間の結合が弱くなり、機械的衝撃による離型剤層の脱落が生じ易い。コルク粉末中の粒径10μm以下の粒子の累積値を上記の範囲に調整することにより、離型剤層中に、適度な空気層が形成され、かつ粒径10μm以下のコルク粒子がより大きなコルク粒子の粒子間に適量侵入して、離型剤層と鋳型表面との結合及び離型剤層を形成するコルク粒子相互間の結合をより強固にすることにより、より脱落の少ない、より適切な断熱性を有する離型剤層を形成することができる。 The upper limit of the cumulative value of particles having a particle size of 10 μm or less in the cork powder is preferably 12% by mass, more preferably 10% by mass. On the other hand, the lower limit is preferably 1% by mass, more preferably 5% by mass. Exceeding the above upper limit, the air layer necessary for the formed release agent layer is filled with cork particles of 10 μm or less, so that a release agent layer having heat insulation higher than necessary is formed. Accordingly, the solidification rate of the lead alloy hot water may be significantly reduced, and the casting cycle may be increased. If it is less than the lower limit, the bond between the mold release agent layer and the mold surface and the bond between the cork particles forming the mold release agent layer become weak, and the mold release agent layer is likely to fall off due to mechanical impact. By adjusting the cumulative value of particles having a particle size of 10 μm or less in the cork powder to the above range, an appropriate air layer is formed in the release agent layer, and cork particles having a particle size of 10 μm or less are larger cork. By entering a proper amount between the particles of the particles, the bond between the mold release agent layer and the mold surface and the bond between the cork particles forming the mold release agent layer are strengthened, so that there is less loss and more appropriate A release agent layer having heat insulation properties can be formed.

コルク粉末の平均粒径の上限は、好ましくは70μm、より好ましくは60μm、更に好ましくは50μmである。一方、下限は、好ましくは30μmである。上記上限を超えては、鋳型表面に塗布した際に、離型剤層の凹凸が激しくなる。故に、極板用格子体の製造時における鉛合金湯の流動により離型剤層が脱落し易くなる。また、コルク粉末中の粒径10μm以下の粒子の累積値を上記の所定値にコントロールすることが容易ではなくなる。一方、上記下限未満では、離型剤層中に適度な空気層が形成されず断熱効果が低下する。また、コルク粉末中の粒径100μm以上の粒子の累積値を上記の所定値にコントロールすることが容易ではなくなる。 The upper limit of the average particle diameter of the cork powder is preferably 70 μm, more preferably 60 μm, and still more preferably 50 μm. On the other hand, the lower limit is preferably 30 μm. If the above upper limit is exceeded, the unevenness of the release agent layer becomes severe when applied to the mold surface. Therefore, the mold release agent layer easily falls off due to the flow of the lead alloy hot water during the production of the electrode plate lattice. Further, it is not easy to control the cumulative value of particles having a particle size of 10 μm or less in the cork powder to the predetermined value. On the other hand, if it is less than the above lower limit, an appropriate air layer is not formed in the release agent layer, and the heat insulating effect is lowered. Further, it is not easy to control the cumulative value of particles having a particle size of 100 μm or more in the cork powder to the predetermined value.

本発明のコルク粉末の粒度分布において、0.1〜200μmの粒径の粒子が、好ましくは90質量%以上、より好ましくは95質量%以上、更に好ましくは98質量%以上で存在する。好ましくは10〜100μmの粒径の粒子が、好ましくは80質量%以上、より好ましくは85質量%以上で存在する。該粒度分布は、所定の粒径を中心に連続的な単一ピークをしめす。該粒径範囲のコルク粉末であり、粒径100μm以上の粒子の累積値が上記本発明の範囲内であり、かつ好ましくは、粒径10μm以下の粒子の累積値及び平均粒径が上記本発明の範囲内であれば、コルク粉末全体の粒度分布の変化は、本発明の効果に大きな影響を及ぼさない。 In the particle size distribution of the cork powder of the present invention, particles having a particle size of 0.1 to 200 μm are preferably present at 90% by mass or more, more preferably 95% by mass or more, and further preferably 98% by mass or more. Preferably, particles having a particle size of 10 to 100 μm are present at 80% by mass or more, more preferably 85% by mass or more. The particle size distribution shows a continuous single peak around a predetermined particle size. A cork powder having a particle size within the above range, the cumulative value of particles having a particle size of 100 μm or more is within the range of the present invention, and preferably the cumulative value and average particle size of particles having a particle size of 10 μm or less are the present invention. Within this range, the change in the particle size distribution of the entire cork powder does not significantly affect the effect of the present invention.

コルク粉末の粒度に関する上記の全ての値は、レーザー回折・散乱式粒度分布測定を使用して得られた値に基づく。但し、粒径100μm以上の粒子の累積値及び粒径10μm以下の粒子の累積値に関しては、夫々、目開き100μm角の篩及び目開き10μm角の篩を使用して、コルク粉末を篩うことにより、上記の所定値に調整することもできる。 All the above values for the particle size of the cork powder are based on values obtained using laser diffraction and scattering particle size distribution measurements. However, regarding the cumulative value of particles having a particle size of 100 μm or more and the cumulative value of particles having a particle size of 10 μm or less, sieve the cork powder using a sieve having an opening of 100 μm square and a sieve having an opening of 10 μm square, respectively. Thus, the predetermined value can be adjusted.

本発明で使用されるコルク粉末は、天然コルク、即ち、コルクガシの樹皮を粉砕、精製して得られた粒状コルクを粉砕したものである。該粒状コルクとしては、市販品を使用することができ、例えば、永柳工業株式会社製200A(商標)等を挙げることができる。 The cork powder used in the present invention is obtained by pulverizing natural cork, that is, granular cork obtained by pulverizing and purifying bark of cork oak. A commercial item can be used as this granular cork, for example, 200A (trademark) by Nagayanagi Kogyo Co., Ltd. etc. can be mentioned.

粒状コルクを粉砕して、上記本発明の粒度分布を有するコルク粉末を製造する方法に特に制限はない。粉砕装置としては公知のものを使用することができ、例えば、ジェット粉砕機、ボールミル、振動ミル、ディスクミル、ハンマーミル等を使用することができる。 There is no particular limitation on the method of pulverizing the granular cork to produce the cork powder having the particle size distribution of the present invention. A well-known thing can be used as a grinder, for example, a jet grinder, a ball mill, a vibration mill, a disk mill, a hammer mill etc. can be used.

本発明のコルク粉末は、上記の各粉砕装置の粉砕条件を適宜変更することにより容易に製造することができる。例えば、乾式ジェット粉砕機を使用する際には、粉砕機への粒状コルクの仕込み量、供給圧及び粉砕圧力を適宜調節することにより、所望の粒度分布及び平均粒径を有するコルク粉末を製造することができる。また、このようにして得られたコルク粉末を目開き100μm角及び10μm角の篩を使用して、粒径100μm以上の粒子及び粒径10μm以下の粒子の累積値を適宜調節することもできる。 The cork powder of the present invention can be easily produced by appropriately changing the pulverization conditions of the above pulverizers. For example, when using a dry jet pulverizer, cork powder having a desired particle size distribution and average particle size is produced by appropriately adjusting the amount of granular cork fed to the pulverizer, the supply pressure, and the pulverization pressure. be able to. In addition, the cork powder obtained in this manner can be appropriately adjusted using a sieve having 100 μm squares and 10 μm square sieves, and appropriately adjusting the cumulative values of particles having a particle size of 100 μm or more and particles having a particle size of 10 μm or less.

上記のようにして製造されたコルク粉末は、常法に従って、鉛蓄電池の極板として使用する格子体の鋳造において離型剤として使用される。また、該離型剤には、本発明のコルク粉末のほか、本発明の効果を損なわない範囲で、ケイ酸ソーダ(水ガラス)、ワニス等のバインダー、及びシリカ、珪藻土微粉末等の無機物質等を含めることができる。 The cork powder produced as described above is used as a mold release agent in the casting of a lattice used as an electrode plate of a lead storage battery according to a conventional method. In addition to the cork powder of the present invention, the mold release agent includes binders such as sodium silicate (water glass) and varnish, and inorganic substances such as silica and diatomaceous earth fine powder, as long as the effects of the present invention are not impaired. Etc. can be included.

以下、実施例において本発明を更に詳細に説明するが、本発明はこれら実施例により限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by these Examples.

[コルク粉末の製造]
使用した機器及び原料は下記の通りである。
<粉砕機>
乾式ジェット粉砕機:株式会社セイシン企業製、STJ−200(商標)
<粒度測定装置>
レーザー回折・散乱式粒度分布測定器:株式会社セイシン企業製、LMS−30(商標)
<原料>
天然コルク粉末:永柳工業株式会社製、200A(商標)、平均粒径:60μm、粒度範囲:約10〜200μm
[Manufacture of cork powder]
The equipment and raw materials used are as follows.
<Crusher>
Dry jet crusher: manufactured by Seishin Corporation, STJ-200 (trademark)
<Particle size measuring device>
Laser diffraction / scattering type particle size distribution analyzer: LMS-30 (trademark) manufactured by Seishin Enterprise Co., Ltd.
<Raw material>
Natural cork powder: manufactured by Nagayanagi Industry Co., Ltd., 200A (trademark), average particle size: 60 μm, particle size range: about 10 to 200 μm

(平均粒径50μm、40μm及び30μmの各コルク粉末の製造)
原料の天然コルク粉末を上記乾式ジェット粉砕機において粉砕することにより各平均粒径を有するコルク粉末を製造した。粉砕機への原料仕込み量をいずれも10kgとし、かつ原料供給圧をいずれも0.7MPaとした。また、粉砕圧力を夫々、1.0MPa、0.7MPa及び0.35MPaとして、平均粒径が50μm、40μm及び30μmの各コルク粉末を製造した。平均粒径50μm、40μm及び30μmの各コルク粉末並びに原料の天然コルク粉末の粒度範囲、粒径100μm以上の粒子の累積値及び粒径10μm以下の粒子の累積値を表1に示す。平均粒径及び粒度範囲は、上記のレーザー回折・散乱式粒度分布測定器により測定したものである。また、各累積値は、目開き100μm角及び0μm角の篩を使用して測定したものである。
(Production of cork powder having an average particle size of 50 μm, 40 μm and 30 μm)
The raw natural cork powder was pulverized in the dry jet pulverizer to produce cork powder having each average particle size. The raw material charges to the pulverizer were all 10 kg, and the raw material supply pressure was 0.7 MPa. In addition, cork powders having an average particle size of 50 μm, 40 μm, and 30 μm were manufactured at pulverization pressures of 1.0 MPa, 0.7 MPa, and 0.35 MPa, respectively. Table 1 shows the particle size range of each cork powder having an average particle size of 50 μm, 40 μm, and 30 μm and the raw natural cork powder, the cumulative value of particles having a particle size of 100 μm or more, and the cumulative value of particles having a particle size of 10 μm or less. The average particle size and the particle size range are measured by the laser diffraction / scattering particle size distribution analyzer. Each cumulative value is measured using a sieve having openings of 100 μm square and 0 μm square.

Figure 2010110770
Figure 2010110770

(粒径100μm以上の累積値の調整)
上記のようにして製造した各平均粒径を有するコルク粉末を目開き100μm角の篩を使用して、粒径100μm以下と粒径100μm以上とに分別した。ここで、篩上を粒径100μm以上とし、篩下を粒径100μm以下とした。次いで、粒径100μm以上の累積値が所定の質量%となるように両者を採取して混合し、各試料を調製した。ここで、平均粒径40μmのコルク粉末に関しては粒径100μm以上のコルク粒子の不足分のために、また、平均粒径30μmのコルク粉末に関しては粒径100μm以上のコルク粒子の全量のために、原料の天然コルク粉末を篩分けして得られた粒径100μm以上のコルク粒子を使用して試料を調製した。各粒子を採取する際には、いずれも平均的な粒子を採取し得るように、分別した各粒子を夫々良く混合した後、JIS Z8816に準拠して円錐四分法を使用した。
(Adjustment of cumulative value of particle size 100μm or more)
The cork powder having each average particle diameter produced as described above was fractionated into a particle diameter of 100 μm or less and a particle diameter of 100 μm or more using a sieve having an opening of 100 μm square. Here, the particle size on the sieve was 100 μm or more, and the particle size on the sieve was 100 μm or less. Subsequently, both samples were collected and mixed so that the accumulated value of particle diameters of 100 μm or more was a predetermined mass%, and each sample was prepared. Here, for the cork powder having an average particle size of 40 μm, due to the shortage of cork particles having a particle size of 100 μm or more, and for the cork powder having an average particle size of 30 μm, due to the total amount of cork particles having a particle size of 100 μm or more, A sample was prepared using cork particles having a particle diameter of 100 μm or more obtained by sieving the raw natural cork powder. When collecting each particle, each of the separated particles was mixed well so that an average particle could be collected, and then a conic quadrant method was used according to JIS Z8816.

(粒径10μm以下の累積値の調整)
上記と同様にして目開き10μm角の篩を使用して、粒径10μm以下と粒径10μm以上とに分別した。ここで、篩下を粒径10μm以下とし、篩上を粒径10μm以上とした。次いで、粒径10μm以下の累積値が所定の質量%となるように両者を採取して混合し、各試料を調製した。各粒子を採取する際には、上記と同様にしていずれも平均的な粒子を採取した。
(Adjustment of cumulative value of particle size of 10 μm or less)
In the same manner as described above, a sieve having an aperture of 10 μm was used to separate into a particle size of 10 μm or less and a particle size of 10 μm or more. Here, the sieve size was set to 10 μm or less, and the sieve size was set to 10 μm or more. Next, both samples were collected and mixed so that the cumulative value of particle size of 10 μm or less was a predetermined mass%, and each sample was prepared. When collecting each particle, average particles were collected in the same manner as described above.

[離型剤の製造]
上記のようにして得たコルク粉末45グラムと水500ミリリットルとを混合し、次いで、室温で約10時間攪拌してコルクを水中によく分散させて液Aを製造した。別途、親水性フュームドシリカ(日本アエロジル株式会社製、AEROSIL200(商標))15グラムと水500ミリリットルとを混合してフュームドシリカの塊が残らないように良く分散させ、次いで、そのまま室温で約10時間放置して液Bを製造した。次いで、得た液Aの全量と液Bの全量とを混合し、室温で約10時間攪拌した。次いで、該混合液にケイ酸ソーダ40グラムを混合し、更に、室温で約10時間攪拌して離型剤を製造した。
[Manufacture of release agent]
45 g of the cork powder obtained as described above and 500 ml of water were mixed, and then stirred at room temperature for about 10 hours to thoroughly disperse the cork in water to prepare liquid A. Separately, 15 grams of hydrophilic fumed silica (manufactured by Nippon Aerosil Co., Ltd., AEROSIL200 (trademark)) and 500 ml of water are mixed and dispersed well so that no fumed silica lump remains. Liquid B was produced by leaving it for 10 hours. Next, the total amount of the liquid A and the total amount of the liquid B were mixed and stirred at room temperature for about 10 hours. Next, 40 grams of sodium silicate was mixed with the mixed solution and further stirred at room temperature for about 10 hours to produce a release agent.

[鋳型への離型剤塗布]
上記のようにして得た離型剤を、スプレーガンを使用して、予め200℃に保持した鋳型全面に約0.1mmのコルク層が形成されるように均一にスプレー塗布した。次いで、鉛合金湯が鋳型の格子体形成箇所に流れ易いようにするために、格子体形成箇所の外枠部分のみに、更に離型剤を均一にスプレー塗布して、外枠部分のコルク層の厚さが合計で約0.3mmとなるようにした。
[Applying mold release agent to mold]
The mold release agent obtained as described above was spray-applied uniformly using a spray gun so that a cork layer of about 0.1 mm was formed on the entire mold surface previously maintained at 200 ° C. Next, in order to make the lead alloy hot water easily flow to the lattice forming part of the mold, the release agent is further sprayed uniformly only on the outer frame part of the lattice forming part, and the cork layer of the outer frame part The total thickness was about 0.3 mm.

[格子体の鋳造]
上記のようにして製造された、離型剤が塗布された鋳型を使用して、幅285mm、高さ130mm及び厚さ1.45mmのカルシウム鉛合金格子体を鋳造した。鋳造時の鋳型温度は200℃であり、かつ溶湯温度は600℃であった。製造された格子体の質量は約90グラムであった。次いで、同一の鋳型を使用し、かつ同一条件でカルシウム鉛合金格子体を鋳造し、製造された格子体の質量を測定した。この操作を、製造された格子体の質量が100グラム以上になるまで繰り返した。格子体を繰り返し製造する操作は、溶湯を鋳型に流し込み、湯口に溜まった溶湯が凝固したのを目視で確認して、出来上がった格子体を鋳型から取り出し、その後、再び溶湯を鋳型に流し込む作業を繰り返すことにより実施した。従って、溶湯の凝固に要する時間が変動すれば、格子体製造の1サイクルに要する時間も変動する。下記の表2〜5において、鋳造面数とは、上記のようにして製造された格子体の合計数(面)を言い、鋳造時間とは、全格子体を製造するのに要した時間[時間(hour)]を言う。また、総合評価は、鋳造面数と鋳造時間とから判断したものであり、表中の各記号は、○:非常に良好、Δ:良好、×:不良を意味する。
[Casting lattice]
A calcium lead alloy lattice body having a width of 285 mm, a height of 130 mm and a thickness of 1.45 mm was cast using the mold produced as described above and coated with a release agent. The mold temperature during casting was 200 ° C, and the molten metal temperature was 600 ° C. The mass of the manufactured grid was about 90 grams. Next, a calcium lead alloy lattice was cast using the same mold and under the same conditions, and the mass of the produced lattice was measured. This operation was repeated until the mass of the manufactured grid was 100 grams or more. The operation of repeatedly manufacturing the grid body involves pouring the molten metal into the mold, visually confirming that the molten metal accumulated in the gate has solidified, taking out the completed grid body from the mold, and then pouring the molten metal into the mold again. This was done by repeating. Therefore, if the time required for solidification of the molten metal fluctuates, the time required for one cycle of manufacturing the lattice also varies. In the following Tables 2 to 5, the number of cast surfaces refers to the total number (surfaces) of the lattice bodies produced as described above, and the casting time refers to the time required to produce the entire lattice body [ Time]. Moreover, comprehensive evaluation was judged from the number of casting surfaces and casting time, and each symbol in a table | surface means (circle): very favorable, (DELTA): favorable, and x: defect.

[実施例1〜4及び比較例1〜3]
上記の平均粒径60μmの天然コルク粉末200A(商標)を使用し、上記のようにして粒径100μm以上の累積値が、夫々、20質量%、15質量%、10質量%、5質量%、2質量%、1質量%及び0質量%となるように調整して、7種類のコルク粉末を製造した。また、該コルク粉末において、粒径10μm以下の累積値は0質量%であった。該コルク粉末を使用して、上記のようにして離型剤を製造し、鋳型へ塗布した。その鋳型を使用して格子体を製造した。その結果を表2に示した。
[Examples 1-4 and Comparative Examples 1-3]
Using the above natural cork powder 200A (trademark) having an average particle diameter of 60 μm, the cumulative values of particle diameters of 100 μm or more as described above are 20% by mass, 15% by mass, 10% by mass, 5% by mass, Seven types of cork powders were produced by adjusting the content to 2% by mass, 1% by mass, and 0% by mass. In the cork powder, the cumulative value with a particle size of 10 μm or less was 0% by mass. Using the cork powder, a release agent was produced as described above and applied to a mold. A grid was manufactured using the mold. The results are shown in Table 2.

Figure 2010110770
Figure 2010110770

実施例1〜4は、平均粒径60μmのコルク粉末を使用して、粒径100μm以上の累積値を本発明の範囲内で変化させたものである。いずれも良好な鋳造時間及び鋳造面数を示した。実施例1〜3では、粒径100μm以上の累積値の増加に伴って、鋳造時間及び鋳造面数が増加する傾向にあった。実施例4では、実施例3に対して鋳造時間及び鋳造面数が若干減少したが、本発明の効果を十分に発揮し得るものであった。 In Examples 1 to 4, a cork powder having an average particle diameter of 60 μm was used, and the cumulative value of particle diameters of 100 μm or more was changed within the scope of the present invention. All showed good casting time and number of cast surfaces. In Examples 1 to 3, the casting time and the number of cast surfaces tended to increase as the cumulative value of particle sizes of 100 μm or more increased. In Example 4, although the casting time and the number of casting surfaces were slightly reduced as compared with Example 3, the effect of the present invention could be sufficiently exhibited.

一方、比較例1〜3は、平均粒径60μmのコルク粉末を使用して、粒径100μm以上の累積値を本発明の範囲外にしたものである。比較例1は、粒径100μm以上の粒子を含まないものである。実施例1に比べて、より強固なコルク層を形成し鋳造時間は増加したが、それによりコルク層の断熱性が必要以上に増加して、溶湯の凝固時間が長くなった。その結果、格子体製造の1サイクルに要する時間が長くなり、鋳造面数が低下した。比較例2及び3は、粒径100μm以上の累積値が本発明の範囲を超えたものである。格子体を繰り返し製造する操作において、コルク層の脱落が目立ち、結果として、鋳造時間及び鋳造面数が著しく低下した。 On the other hand, Comparative Examples 1-3 used the cork powder with an average particle diameter of 60 micrometers, and made the cumulative value with a particle diameter of 100 micrometers or more out of the range of this invention. Comparative Example 1 does not include particles having a particle size of 100 μm or more. Compared to Example 1, a stronger cork layer was formed and the casting time was increased. However, the heat insulating property of the cork layer was increased more than necessary, and the solidification time of the melt became longer. As a result, the time required for one cycle of manufacturing the lattice body was increased, and the number of cast surfaces was reduced. In Comparative Examples 2 and 3, the cumulative value of the particle size of 100 μm or more exceeded the range of the present invention. In the operation of repeatedly producing the lattice body, the cork layer dropped out, and as a result, the casting time and the number of cast surfaces were significantly reduced.

[実施例5〜8]
上記のようにして製造した平均粒径50μmのコルク粉末を使用した。まず、実施例3と同一にして、粒径100μm以上の累積値が5質量%となるように調整した。次いで、粒径10μm以下の累積値が、夫々、0質量%、5質量%、10質量%及び15質量%となるように調整した。該コルク粉末を使用して、上記のようにして離型剤を製造し、鋳型へ塗布した。その鋳型を使用して格子体を製造した。その結果を表3に示した。
[Examples 5 to 8]
Cork powder having an average particle size of 50 μm produced as described above was used. First, in the same manner as in Example 3, adjustment was made so that the cumulative value of particle diameters of 100 μm or more was 5% by mass. Next, the cumulative values of particle diameters of 10 μm or less were adjusted to 0 mass%, 5 mass%, 10 mass%, and 15 mass%, respectively. Using the cork powder, a release agent was produced as described above and applied to a mold. A grid was manufactured using the mold. The results are shown in Table 3.

[実施例9〜12]
上記のようにして製造した平均粒径40μmのコルク粉末を使用し、粒径10μm以下の累積値が、夫々、0質量%、5質量%、10質量%及び15質量%となるように調整した以外は、実施例5と同一に実施した。但し、粒径100μm以上の累積値が5質量%となるように調整した際、不足分の粒径100μm以上の粒子を、原料の天然コルク粉末を篩分けして得られた粒径100μm以上のコルク粒子から補充した。その結果を表4に示した。
[Examples 9 to 12]
The cork powder having an average particle size of 40 μm produced as described above was used, and the cumulative values of the particle size of 10 μm or less were adjusted to 0 mass%, 5 mass%, 10 mass%, and 15 mass%, respectively. Except for this, the same procedure as in Example 5 was performed. However, when adjusting so that the cumulative value of the particle size of 100 μm or more is 5% by mass, the particle size of 100 μm or more obtained by sieving the raw material natural cork powder with the particle size of 100 μm or more of the shortage Replenished from cork particles. The results are shown in Table 4.

[実施例13〜16]
上記のようにして製造した平均粒径30μmのコルク粉末を使用し、粒径10μm以下の累積値が、夫々、0質量%、5質量%、10質量%及び15質量%となるように調整した以外は、実施例5と同一に実施した。但し、粒径100μm以上の累積値が5質量%となるように調整した際、粒径100μm以上の粒子として、原料の天然コルク粉末を篩分けして得られた粒径100μm以上のコルク粒子を使用した。その結果を表5に示した。
[Examples 13 to 16]
The cork powder having an average particle size of 30 μm produced as described above was used, and the cumulative values of the particle size of 10 μm or less were adjusted to 0 mass%, 5 mass%, 10 mass%, and 15 mass%, respectively. Except for this, the same procedure as in Example 5 was performed. However, when adjusting so that the cumulative value of particle size of 100 μm or more is 5% by mass, cork particles of particle size of 100 μm or more obtained by sieving the raw natural cork powder as particles of particle size of 100 μm or more used. The results are shown in Table 5.

Figure 2010110770
Figure 2010110770

Figure 2010110770
Figure 2010110770

Figure 2010110770
Figure 2010110770

実施例5〜8は、いずれも平均粒径50μmのコルク粉末を使用して、粒径100μm以上の累積値を5質量%に調節し、かつ粒径10μm以下の累積値を、夫々、0質量%、5質量%、10質量%及び15質量%にしたものである。実施例5は、平均粒径60μmのコルク粉末を使用し、粒径100μm以上の累積値を5質量%とした実施例3の結果と同一であり、鋳造時間及び鋳造面数は良好であった。実施例6においては、鋳造時間は実施例5とあまり変わらないものの、鋳造面数は著しく増加した。粒径10μm以下の累積値を0質量%から5質量%にすると、鋳造面数を著しく増加させ得ることが分かった。粒径10μm以下の累積値を実施例6より更に多くした実施例7においては、鋳造面数が更に著しく増加した。実施例8においては、鋳造時間は実施例5及び6とほぼ同じてあった。鋳造面数は多少の低下が見られたが、本発明の効果を損なうものではなかった。 In each of Examples 5 to 8, a cork powder having an average particle size of 50 μm was used, the cumulative value of particle size of 100 μm or more was adjusted to 5 mass%, and the cumulative value of particle size of 10 μm or less was 0 mass respectively. %, 5% by mass, 10% by mass and 15% by mass. Example 5 was the same as the result of Example 3 in which cork powder having an average particle diameter of 60 μm was used and the cumulative value of particle diameters of 100 μm or more was 5% by mass, and the casting time and the number of cast surfaces were good. . In Example 6, although the casting time was not much different from Example 5, the number of casting surfaces was remarkably increased. It has been found that when the cumulative value of the particle size of 10 μm or less is changed from 0 mass% to 5 mass%, the number of cast surfaces can be remarkably increased. In Example 7, in which the cumulative value of the particle size of 10 μm or less was larger than that in Example 6, the number of cast surfaces was further increased remarkably. In Example 8, the casting time was almost the same as in Examples 5 and 6. Although the number of cast surfaces was somewhat reduced, the effect of the present invention was not impaired.

実施例9〜12は、いずれも平均粒径40μmのコルク粉末を使用して、粒径100μm以上の累積値を5質量%に調節し、かつ粒径10μm以下の累積値を、夫々、0質量%、5質量%、10質量%及び15質量%にしたものである。実施例9は、平均粒径50μmのコルク粉末を使用した実施例5と比べて鋳造時間及び鋳造面数が多少増加した。実施例10及び11においては、鋳造時間及び鋳造面数は著しく増加した。一方、粒径10μm以下の累積値を実施例10及び11より更に多くした実施例12においては、却って、鋳造時間及び鋳造面数は減少した。しかし、本発明の効果を十分発揮し得るものであった。 Examples 9 to 12 all use cork powder with an average particle size of 40 μm, adjust the cumulative value of particle size of 100 μm or more to 5% by mass, and set the cumulative value of particle size of 10 μm or less to 0% by mass, respectively. %, 5% by mass, 10% by mass and 15% by mass. In Example 9, the casting time and the number of casting surfaces were slightly increased as compared with Example 5 in which cork powder having an average particle diameter of 50 μm was used. In Examples 10 and 11, the casting time and the number of cast surfaces increased significantly. On the other hand, in Example 12, in which the cumulative value of the particle size of 10 μm or less was further increased from that in Examples 10 and 11, the casting time and the number of cast surfaces were reduced. However, the effect of the present invention can be sufficiently exhibited.

実施例13〜16は、いずれも平均粒径30μmのコルク粉末を使用して、粒径100μm以上の累積値が5質量%に調節し、かつ粒径10μm以下の累積値を、夫々、0質量%、5質量%、10質量%及び15質量%にしたものである。実施例13は、平均粒径40μmのコルク粉末を使用した実施例9と同一の鋳造時間及び鋳造面数であった。実施例14及び15においては、平均粒径40μmのときと同様に、鋳造時間及び鋳造面数は著しく増加した。一方、粒径10μm以下の累積値を実施例14及び15より更に大きくした実施例16においては、却って、鋳造時間及び鋳造面数は減少した。しかし、本発明の効果を十分発揮し得るものであった。 In each of Examples 13 to 16, a cork powder having an average particle size of 30 μm was used, the cumulative value of particle size of 100 μm or more was adjusted to 5% by mass, and the cumulative value of particle size of 10 μm or less was 0 mass respectively. %, 5% by mass, 10% by mass and 15% by mass. Example 13 had the same casting time and number of casting surfaces as Example 9 using cork powder having an average particle size of 40 μm. In Examples 14 and 15, the casting time and the number of casting surfaces were remarkably increased as in the case of the average particle size of 40 μm. On the other hand, in Example 16, in which the cumulative value of the particle size of 10 μm or less was larger than those in Examples 14 and 15, the casting time and the number of cast surfaces were reduced. However, the effect of the present invention can be sufficiently exhibited.

以上の実施例及び比較例の結果から、離型剤として使用するコルク粉末の粒径100μm以上の累積値を1〜10質量%とすることにより、格子体の鋳造時間及び鋳造面数を著しく増加させ得ることが分かった。また、粒径10μm以下の累積値を5質量%及び10質量%とすることにより、格子体の鋳造時間及び鋳造面数を更に著しく増加させ得ることが分かった。加えて、コルク粉末の平均粒径が30μm〜50μmの範囲で格子体の鋳造時間及び鋳造面数が著しく良好であることが明らかとなった。 From the results of the above examples and comparative examples, the casting time and the number of casting surfaces of the lattice body are remarkably increased by setting the cumulative value of the particle size of 100 μm or more of the cork powder used as the release agent to 1 to 10% by mass. It turns out that it can be made. Moreover, it turned out that the casting time and the number of casting surfaces of a grid | lattice body can be further increased notably by making the cumulative value of a particle size 10 micrometers or less into 5 mass% and 10 mass%. In addition, it became clear that the casting time and the number of cast surfaces of the lattice body were remarkably good when the average particle size of the cork powder was in the range of 30 μm to 50 μm.

本発明のコルク粉末含有離型剤は、鉛蓄電池に使用する極板用格子体を鋳造するに際して、極めて均質な極板用格子体を著しく高い生産性を伴って製造することができる。従って、高品質、高性能の鉛蓄電池を安価かつ効率的に製造するために有用である。 The cork powder-containing release agent of the present invention can produce an extremely homogeneous electrode plate lattice with extremely high productivity when casting an electrode plate lattice used in a lead-acid battery. Therefore, it is useful for inexpensively and efficiently producing a high-quality, high-performance lead-acid battery.

Claims (3)

鉛蓄電池極板用格子体の鋳造に使用するコルク粉末含有離型剤において、コルク粉末中の粒径100μm以上の粒子の累積値が1〜10質量%であることを特徴とする離型剤。 In the cork powder-containing mold release agent used for casting the grid for lead-acid battery electrode plates, the mold release agent is characterized in that the cumulative value of particles having a particle size of 100 μm or more in the cork powder is 1 to 10% by mass. コルク粉末の平均粒径が30〜50μmであり、かつコルク粉末中の粒径10μm以下の粒子の累積値が1〜10質量%であるところの請求項1記載の離型剤。 The mold release agent according to claim 1, wherein the cork powder has an average particle size of 30 to 50 µm and a cumulative value of particles having a particle size of 10 µm or less in the cork powder is 1 to 10% by mass. コルク粉末中の粒径10μm以下の粒子の累積値が5〜10質量%であるところの請求項1又は2記載の離型剤。 The release agent according to claim 1 or 2, wherein a cumulative value of particles having a particle diameter of 10 µm or less in the cork powder is 5 to 10% by mass.
JP2008283569A 2008-11-04 2008-11-04 Mold release agent for casting grid of lead-acid battery plate Active JP5190327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008283569A JP5190327B2 (en) 2008-11-04 2008-11-04 Mold release agent for casting grid of lead-acid battery plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008283569A JP5190327B2 (en) 2008-11-04 2008-11-04 Mold release agent for casting grid of lead-acid battery plate

Publications (2)

Publication Number Publication Date
JP2010110770A true JP2010110770A (en) 2010-05-20
JP5190327B2 JP5190327B2 (en) 2013-04-24

Family

ID=42299762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008283569A Active JP5190327B2 (en) 2008-11-04 2008-11-04 Mold release agent for casting grid of lead-acid battery plate

Country Status (1)

Country Link
JP (1) JP5190327B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103341588A (en) * 2013-05-28 2013-10-09 浙江天能动力能源有限公司 Mold release agent used for lead acid battery grid casting and preparation method thereof
ITTS20120005A1 (en) * 2012-07-24 2014-01-25 Monte Roberta Di COMPOSITE MATERIALS BASED ON INORGANIC OXIDES / HYDROXIDES AND FLOURS OF VEGETABLE ORIGIN FOR INSULATING PANELS AND THEIR PRODUCTION PROCESS
CN111673042A (en) * 2020-05-29 2020-09-18 湖北金洋冶金股份有限公司 Release agent for regenerated lead bullion ingot casting and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825621A (en) * 1971-08-09 1973-04-03
JPS5820364A (en) * 1981-07-29 1983-02-05 Shin Kobe Electric Mach Co Ltd Casting method of grid for lead storage battery
JPH05159782A (en) * 1991-12-02 1993-06-25 Matsushita Electric Ind Co Ltd Lattice casting mold for lead-acid battery electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825621A (en) * 1971-08-09 1973-04-03
JPS5820364A (en) * 1981-07-29 1983-02-05 Shin Kobe Electric Mach Co Ltd Casting method of grid for lead storage battery
JPH05159782A (en) * 1991-12-02 1993-06-25 Matsushita Electric Ind Co Ltd Lattice casting mold for lead-acid battery electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTS20120005A1 (en) * 2012-07-24 2014-01-25 Monte Roberta Di COMPOSITE MATERIALS BASED ON INORGANIC OXIDES / HYDROXIDES AND FLOURS OF VEGETABLE ORIGIN FOR INSULATING PANELS AND THEIR PRODUCTION PROCESS
CN103341588A (en) * 2013-05-28 2013-10-09 浙江天能动力能源有限公司 Mold release agent used for lead acid battery grid casting and preparation method thereof
CN111673042A (en) * 2020-05-29 2020-09-18 湖北金洋冶金股份有限公司 Release agent for regenerated lead bullion ingot casting and preparation method thereof

Also Published As

Publication number Publication date
JP5190327B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
CN101460587B (en) Based on the abrasive particle of the spherical corundum through melting
JP5544945B2 (en) Granulated powder and method for producing granulated powder
TWI299010B (en)
JP7374892B2 (en) Metal powder for 3D printers and method for producing shaped objects
CN109564819B (en) Method for producing R-T-B sintered magnet
JP2019112699A (en) Metal powder material
JP5190327B2 (en) Mold release agent for casting grid of lead-acid battery plate
CN107636182A (en) Radiation shield composition and preparation method thereof
DE19603196A1 (en) Hollow inorganic microspheres
WO2019038909A1 (en) Evaluation method of powder for laminate molding, and powder for laminate molding
CN104263199A (en) Epoxy resin coating and preparation method and application thereof
EP3674683B1 (en) Evaluation method of powder for laminate molding
JP7404567B2 (en) Pulverized powder for additive manufacturing
EP2477766B1 (en) Foundry additive based on graphite
CN116275103A (en) Tungsten nickel iron component and preparation method thereof
CN107216716A (en) A kind of metallic ink and preparation method thereof
JP2004332016A (en) Granulated metal powder, manufacturing method therefor, and metal powder
Clares et al. Discrete-Element Simulation of Powder Spreading Process in Binder Jetting, and the Effects of Powder Size
JP2022122462A (en) Carbon-fixed carbon steel powder
JP6760169B2 (en) Manufacturing method of RTB-based sintered magnet
RU2507057C1 (en) Polygranular mass for production of structured abrasive tool
KR101201259B1 (en) Method for manufacturing cmp pad conditioner using bulk metallic glass
EP4317058A1 (en) Aluminum nitride granular powder and resin composition
JP2010261094A (en) GRANULAR MATERIAL FOR VAPOR-DEPOSITING Au-Sn ALLOY, AND METHOD FOR PRODUCING THE SAME
JP2007237286A (en) Method for manufacturing molding sand

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5190327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150