JP2010110296A - METHOD FOR PRODUCING BARLEY POWDER ABUNDANTLY CONTAINING EDIBLE FIBER MAINLY COMPOSED OF beta-GLUCAN - Google Patents
METHOD FOR PRODUCING BARLEY POWDER ABUNDANTLY CONTAINING EDIBLE FIBER MAINLY COMPOSED OF beta-GLUCAN Download PDFInfo
- Publication number
- JP2010110296A JP2010110296A JP2008287625A JP2008287625A JP2010110296A JP 2010110296 A JP2010110296 A JP 2010110296A JP 2008287625 A JP2008287625 A JP 2008287625A JP 2008287625 A JP2008287625 A JP 2008287625A JP 2010110296 A JP2010110296 A JP 2010110296A
- Authority
- JP
- Japan
- Prior art keywords
- barley
- glucan
- dietary fiber
- refined
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Cereal-Derived Products (AREA)
Abstract
Description
本発明は、大麦より、β−グルカンを多く含む粉体を製造する方法に関わる。 The present invention relates to a method for producing a powder containing a large amount of β-glucan from barley.
近年、食の欧米化に伴う生活習慣病患者やメタボリックシンドローム該当者の増大や、それに付随する医療費高騰が社会問題化してきており、これらの予防や病態改善を目的とした、「食事」の重要性が社会的に再認識されつつある。
この流れを受け、食品メーカーに於いても、植物を起源とする生理活性物質(フィトケミカル)の探索や機能性研究、その加工技術開発が盛んに行われている。
In recent years, the increase in the number of patients with lifestyle-related diseases and metabolic syndrome associated with the westernization of food and the accompanying increase in medical costs has become a social problem. The importance is being reaffirmed socially.
In response to this trend, food manufacturers are actively searching for physiologically active substances (phytochemicals) originating from plants, studying their functionality, and developing processing technologies.
植物起源の機能性成分として古くから注目を集めているのが食物繊維である。食物繊維には大別して、水溶性と水不溶性の二種があり、それぞれ三次機能も異なっている。その機能としてよく知られているのが、排便促進効果、血圧上昇抑制効果、循環器系疾患のリスク低減、血糖値改善効果などであり、その学術的裏付けの確かさから、特定保健用食品の素材にも使用されるなど、市場での認知も進んでいる。 Dietary fiber has long attracted attention as a functional ingredient of plant origin. Dietary fiber is broadly divided into two types, water-soluble and water-insoluble, and each has a different tertiary function. Well-known functions include defecation promotion effects, blood pressure rise suppression effects, cardiovascular disease risk reduction, blood glucose level improvement effects, and so on. It is also gaining recognition in the market, such as being used in materials.
大麦には他の穀類より食物繊維が豊富に含まれており、近年、健康食品として見直され、これまでのように、搗精し粒食としてそのまま喫食するだけではなく、粉体化して加工食品の素材として使用するなど、原料用途が広がりつつある。
大麦には水溶性と水不溶性の食物繊維がほぼ1:1の割合で含まれているため、食物繊維素材としては非常にバランスのとれた原料だと言える。大麦中の水溶性食物繊維の主体はヘミセルロースであるアラビノキシランおよびβ−グルカンである。穀物のβ−グルカンは、主に禾本科植物に分布するもので、特に大麦およびオーツ麦において多く存在が認められる。同β−グルカンは、D−グルコースがβ−(1→3)およびβ−(1→4)結合で重合した多糖であり、菌類(キノコや酵母)のβ−グルカンのように、β−(1→6)結合を有していないため、セルロース同様、直鎖状の構造をとる。
Barley is richer in dietary fiber than other cereals. In recent years, it has been reviewed as a health food. The use of raw materials is expanding.
Since barley contains water-soluble and water-insoluble dietary fiber in a ratio of approximately 1: 1, it can be said that dietary fiber is a very balanced raw material. The main components of water-soluble dietary fiber in barley are hemicelluloses arabinoxylan and β-glucan. Cereal β-glucan is mainly distributed in plants of the family, and a large amount is observed particularly in barley and oats. The β-glucan is a polysaccharide obtained by polymerizing D-glucose with β- (1 → 3) and β- (1 → 4) linkages, and like β-glucan of fungi (mushrooms and yeasts), β- ( 1 → 6) Since it does not have a bond, it has a linear structure like cellulose.
大麦のβ−グルカンは、主に穀粒の糊粉層(アリューロン層)や胚乳細胞の細胞壁に含まれ、粒内に満遍なく分布しているため、他の穀物の食物繊維成分と異なり、精白・搗精を進めてもその含有率は減ることはない。オーツ麦の玄麦には4%程度、大麦では精白したものでも4%程度のβ−グルカンが含まれる。小麦の玄麦には0.5%程度のβ−グルカンが含まれるが、精製して小麦粉とすると殆どゼロとなる。 Barley β-glucan is mainly contained in the grain paste layer (Aleurone layer) and cell walls of endosperm cells, and is distributed evenly throughout the grain. Even if scouring progresses, its content will not decrease. Oat brown barley contains about 4% β-glucan even if it is refined in barley. Wheat brown barley contains about 0.5% β-glucan, but it becomes almost zero when it is refined into wheat flour.
一般的に粳種よりも糯種の麦の方が、また二条種よりも六条種の麦の方が、β−グルカン含量は高くなる傾向にある。ある種のはだか大麦では7%程度、品種によっては更に多くのβ−グルカンを含むものもある。 In general, glutinous wheat tends to have a higher β-glucan content than cultivated varieties, and six varieties of wheat than two varieties. Some kinds of bare barley are about 7%, and some varieties contain more β-glucan.
近年の研究により、β−グルカンは、コレステロールの低減効果、食後血糖値の上昇抑制効果、血圧の低減効果、消化器官系の機能促進効果、酸化防止効果、免疫系の改善効果等様々な機能を有することが明らかとなりつつあり、特に、米国食品医薬品局(FDA)は、人の食事に大麦を加えることで、総コレステロールおよび低密度リポタンパク質(LDL)コレステロールが低下することを科学的証拠が示しているとして、大麦を原料とした食品について、一日四食を摂取することを前提として、「一食あたり最低0.75gの水溶性食物繊維を摂取することにより、冠状動脈心疾患(CHD)にかかるリスクを軽減する」というヘルスクレームを認めている(U.S Food and Drug Administration、Federal Register(2006)71:29248−29250)。 Based on recent research, β-glucan has various functions such as cholesterol reduction effect, postprandial blood glucose level increase suppression effect, blood pressure reduction effect, digestive system function promotion effect, antioxidant effect, immune system improvement effect, etc. In particular, the US Food and Drug Administration (FDA) has shown that scientific evidence shows that adding barley to a person's diet reduces total cholesterol and low density lipoprotein (LDL) cholesterol. Assuming that foods made from barley are ingested four meals a day, “By ingesting at least 0.75 g of water-soluble dietary fiber per meal, coronary heart disease (CHD) Recognizes a health claim that "reduces this risk" (US Food and Drug Administration, Federal Register (2006) 71: 29248-29 50).
このように、栄養学的に見て有益な機能性を有するのが大麦β−グルカンであり、社会的にも同成分を高濃度に含有する安価な素材が求められている。現在、その抽出方法に関しても幾つかの方法が提示されているが、現状公知の方法では大麦からの抽出・濃縮に多大な労力を要するため、いきおい抽出物も高価にならざるを得ず、巷間、β−グルカン素材が普及しているとは言い難い。 Thus, barley β-glucan has a nutritionally beneficial functionality, and there is a demand for an inexpensive material that contains the same component at a high concentration socially. Currently, several methods have been proposed for the extraction method. However, the currently known methods require a great deal of labor for extraction / concentration from barley. It is hard to say that β-glucan material is popular.
例えば、大麦糠類にα−アミラーゼ、アミログルコシダーゼを反応させて低分子化を進めた後、脱塩、エタノール沈殿にて精製し、β−グルカンを主成分とする水溶性食物繊維を回収する方法(特許第3243559号公報 特許文献1参照)、穀粉とアルコールを混合して繊維残渣/アルコールスラリーを形成させ、これを音波処理、プロテアーゼ又はアミラーゼ処理にかけた後、繊維残渣を分離してβ−グルカン濃縮物を得る方法(WO2004/085484公報 特許文献2参照)、オーツ麦または大麦をアルカリ性水溶液で抽出後、タンパク除去、アルコール沈殿または脱塩後乾燥させることにより平均分子量が10万〜100万のβ−グルカンを主成分とするガム質を得る方法(特公平06−083652号公報(特許第1947855号)特許文献3参照)等が知られているが、これらの技術では、何れも、抽出溶媒中へ水溶性β−グルカンを溶出させた後、適当な方法にて濃縮・精製・乾燥させる工程が必要とされており、目的とするβ−グルカン抽出物を得るためには多大な手間やエネルギーを要する。 For example, a method of recovering water-soluble dietary fiber containing β-glucan as a main component after reducing the molecular weight by reacting barley koji with α-amylase or amyloglucosidase and then purifying it by desalting and ethanol precipitation (See Japanese Patent No. 3243559 Patent Document 1), flour and alcohol are mixed to form a fiber residue / alcohol slurry, which is subjected to sonication, protease or amylase treatment, and then the fiber residue is separated to form β-glucan A method of obtaining a concentrate (see WO 2004/085484, Patent Document 2), extracting oats or barley with an alkaline aqueous solution, removing proteins, precipitating with alcohol, or desalting and then drying β having an average molecular weight of 100,000 to 1,000,000 -Method for obtaining a gum based on glucan (Japanese Patent Publication No. 06-083652 (Patent No. 19478) 5) Patent Document 3) and the like are known. However, in any of these techniques, water-soluble β-glucan is eluted in an extraction solvent, and then concentrated, purified and dried by an appropriate method. A process is required, and much labor and energy are required to obtain the target β-glucan extract.
また、生産時や使用時の粘性を抑えるため、抽出時に加水分解酵素を作用させ、低分子化若しくは低粘性化されたβ−グルカンを得る方法(特公平04−011197号公報(特許1725500号)特許文献4参照、特開2005−307150号公報 特許文献5参照)が示されているが、上述したようなβ−グルカンの生理機能の多くはその粘性に由来するものと考えられており、低分子化され、粘性が低下したβ−グルカンが、低分子化されていないβ−グルカンと同等の生理機能を発揮できるとは、必ずしも言えない。 Moreover, in order to suppress the viscosity at the time of production and use, a method for obtaining β-glucan having a low molecular weight or low viscosity by allowing a hydrolase to act during extraction (Japanese Patent Publication No. 04-011197 (Japanese Patent No. 1725500)) Patent Document 4, see JP-A-2005-307150, see Patent Document 5), but many of the physiological functions of β-glucan as described above are considered to be derived from its viscosity, It cannot be said that β-glucan that has been molecularized and has reduced viscosity can exhibit physiological functions equivalent to β-glucan that has not been reduced in molecular weight.
更に、特公昭59−038020号公報(特許第1261449号)特許文献6参照)では抽出溶媒を使用せずに大麦の食物繊維を高濃度に残存させた大麦粉を得る技術として、大麦搗精品を圧扁処理後、衝撃式粉砕機にて粉砕し、75〜270μmの区分を集めることにより、ダイエタリーファイバー(リグニン、ヘミセルロース、セルロース等)の豊富な大麦粉を回収するとしているが、本技術ではダイエタリーファイバー6.1%程度の含有量の画分しか得られず、食物繊維高含有画分を得るという目的に対して、十分な効果が得られているとは言い難い。また、USP6,083,547明細書(特許文献7参照)では、エクストルージョンなどの方法により事前調理した大麦粉を乾燥し再粉砕後、空気分級することにより、口当たりの良い、β−グルカン高含有画分が得られるとしているが、本法においては、β−グルカン濃度は初発の大麦粉より25%程度しか高められていない。 Furthermore, in Japanese Examined Patent Publication No. 59-038020 (see Japanese Patent No. 1261449), Patent Document 6), as a technique for obtaining barley flour in which barley dietary fiber remains at a high concentration without using an extraction solvent, After pressing and crushing, the barley flour rich in dietary fibers (lignin, hemicellulose, cellulose, etc.) is recovered by crushing with an impact pulverizer and collecting 75-270 μm sections. Only a fraction having a dietary fiber content of about 6.1% can be obtained, and it is difficult to say that a sufficient effect is obtained for the purpose of obtaining a high dietary fiber content fraction. Further, in USP 6,083,547 (see Patent Document 7), barley flour that has been pre-cooked by a method such as extrusion is dried, reground, and then air-classified to provide a high β-glucan content. In this method, the β-glucan concentration is only increased by about 25% compared to the original barley flour.
かかる理由から、穀物由来のβ−グルカンを高濃度で含有する素材を、より簡便且つ安価で調製できる技術が求められてきた。
本発明の目的は、上記の社会的、産業的状況に鑑み、穀物由来のβ−グルカンを主体とする食物繊維を、高含量で残存させた粉体素材を容易に製造する技術を提供することである。 An object of the present invention is to provide a technique for easily producing a powder material in which dietary fibers mainly containing cereal-derived β-glucan are left in high content in view of the above-described social and industrial situations. It is.
大麦に於いては、胚乳細胞壁成分の70%がβ−グルカンであるとされており、残りの部分は主に、アラビノキシラン(約25%)、マンノース含有ポリマー、セルロース、タンパクおよびフェノール性の成分と見られる。つまり、大麦を胚乳部まで搗精して粉末化した後、該粉末から効率的に細胞壁以外の成分を除去させる技術が確立できれば、相当量のβ−グルカンを含む画分が得られる筈である。 In barley, 70% of the endosperm cell wall component is considered to be β-glucan, and the rest mainly consists of arabinoxylan (about 25%), mannose-containing polymer, cellulose, protein and phenolic components. It can be seen. That is, if barley is refined to the endosperm portion and pulverized, and a technique for efficiently removing components other than cell walls from the powder can be established, a fraction containing a considerable amount of β-glucan should be obtained.
発明者らは、より安価且つ効率的にβ−グルカン高含有品を得るための技術について鋭意研究を進めてきたところ、大麦の搗精品に対して加水・加温を施してテンパリングを行い、その後に衝撃式や気流式の粉砕法により微粉化して、粒径を元にした任意の分級方法で分級すると、その粗粉部に高濃度でβ−グルカンが濃縮されることを見出した。以下本発明について詳細に説明する。 The inventors have conducted intensive research on a technique for obtaining a β-glucan-rich product more inexpensively and efficiently, and then tempering the barley refined product by adding water and heating, It has been found that β-glucan is concentrated at a high concentration in the coarse powder portion by pulverization by impact type or airflow type pulverization method and classification by an arbitrary classification method based on the particle size. The present invention will be described in detail below.
本発明には、任意の搗精歩留まりまで精白された大麦を原料として使用することが可能であるが、好ましくは糊粉層以降まで搗精された、より好ましくは更に搗精を進め、胚乳部まで剥き出しになった精白大麦を使用すると良い。これは糊粉層の細胞壁よりも胚乳細胞壁の方がより高い比率でβ−グルカンを含有しているからである。
搗精歩留まりは概ね80%以下の精白大麦を使用することが望まれる。原料に使用する大麦品種としては、二条大麦よりも、比較的麦粒が小さく、胚乳細胞壁が厚い六条大麦を選択する方が好適である。
In the present invention, it is possible to use barley that has been whitened to an arbitrary yield of sperm as a raw material, but it is preferably crushed until the paste layer or more, more preferably further scouring and stripping to the endosperm part. It is better to use the refined barley. This is because the endosperm cell wall contains β-glucan at a higher ratio than the cell wall of the paste layer.
It is desirable to use milled barley with a milling yield of approximately 80% or less. As a barley variety used as a raw material, it is preferable to select six-row barley having relatively small wheat grains and a thick endosperm cell wall as compared with two-row barley.
精白大麦に対し、元来原料が保持している水分に加えて、加水後水分が16%〜22重量%、好ましくは19〜20%となるように水を添加し、良く攪拌後、組織の軟化を目的として50〜80℃でテンパリングを行う。
加水量は、低すぎるとこれ以降のβ−グルカン濃縮効果が顕著に低下してしまい、多すぎるとカビの発生要因となったり、粉砕時のハンドリング性低下につながったりする。
テンパリング時間は、組織の軟化が完了する任意の時間を設定すればよいが、50℃の温度環境下に於いても1時間程度継続して実施すれば、その目的は達せられる。
In addition to the water originally retained in the raw barley, water is added so that the water content after addition is 16% to 22% by weight, preferably 19 to 20%. Tempering is performed at 50 to 80 ° C. for the purpose of softening.
If the amount of water added is too low, the subsequent β-glucan concentration effect will be remarkably reduced, and if it is too high, it will be a cause of mold generation and will lead to a decrease in handling properties during pulverization.
The tempering time may be set to an arbitrary time for completing the softening of the tissue, but the purpose can be achieved if the tempering time is continued for about 1 hour even in a temperature environment of 50 ° C.
テンパリング後の原料は、乾燥、冷却させることなく、できるだけ速やかに衝撃式の粉砕機や気流式の粉砕機にて粉砕する。ここで衝撃式や気流式の粉砕機を使用するのは、粉砕時の衝撃により胚乳細胞壁を破壊し、細胞内部に含有される大麦澱粉粒をより容易に排出させやすくするためである。
小麦製粉に用いられるロール式の粉砕機や、石臼式(磨砕式)の粉砕機によって粉砕された大麦粉については、分級によるβ−グルカン濃縮効果はあまり確認されない。
当該大麦粉は篩い分け法や、空気分級法等、通常用いられる任意の分級法により、粗粉部と微粉部に分離する。得られた微粉部は澱粉粒が主体であるため、分級前の大麦粉と比し、相対的にβ−グルカン含有量が低くなるのに対し、粗粉部は細胞壁由来の大きめの粒子を多く含むため、β−グルカンを高濃度で含有することとなる。
The raw material after tempering is pulverized as quickly as possible by an impact pulverizer or an airflow pulverizer without drying and cooling. The reason why the impact-type or air-flow-type pulverizer is used here is to break the endosperm cell wall by impact during pulverization and to easily discharge barley starch granules contained in the cells.
For barley flour pulverized by a roll-type pulverizer used for wheat flour milling or a stone mill type (grinding-type) pulverizer, the β-glucan concentration effect by classification is not so much confirmed.
The barley flour is separated into a coarse powder portion and a fine powder portion by any commonly used classification method such as a sieving method or an air classification method. The resulting fine powder portion is mainly composed of starch granules, so the content of β-glucan is relatively low compared to barley flour before classification, whereas the coarse powder portion contains many larger particles derived from the cell wall. Therefore, β-glucan is contained at a high concentration.
尚、加水・テンパリング処理を施さない精白大麦を、そのまま粉砕、分級処理することによっても、β−グルカン濃縮効果は確認されるものの、加水・テンパリング処理を施した場合と比し、濃縮効果が低くなる。
また、加水・テンパリング処理を施し、分級処理にかけ、β−グルカンを濃縮させた粗粉部について、衝撃式若しくは気流式粉砕機により再粉砕し、再度分級処理を施し粗粉部を回収することにより、β−グルカン濃縮効果は更に高まる。
In addition, although refined barley that has not been subjected to hydration and tempering treatment is pulverized and classified as it is, the effect of concentration of β-glucan is confirmed, but the concentration effect is low compared to the case of hydration and tempering treatment. Become.
In addition, the coarse powder part subjected to hydration and tempering treatment, subjected to classification treatment, and concentrated β-glucan is pulverized again with an impact type or airflow type pulverizer, and subjected to classification treatment again to collect the coarse powder part. , Β-glucan concentration effect is further enhanced.
以下、本発明について実施例を挙げて説明するが、これによって本発明は限定されるものではない。以下の実施例において、粗タンパク質、灰分、脂質、炭水化物は定法に従い測定した。また、β−グルカンはMcCLEARY(AACC32−23)法に従い、総食物繊維はProsky法に従い測定した。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited by this. In the following examples, crude protein, ash, lipid, and carbohydrate were measured according to a conventional method. In addition, β-glucan was measured according to the McCLEARY (AACC32-23) method, and total dietary fiber was measured according to the Prosky method.
六条大麦を原料とし、対玄麦で65%まで搗精した精麦製品に、加水後水分が16、19および22%となるように水を添加し、良く攪拌後、水分の蒸発を防ぐためにポリ容器に密封し、60℃の環境下で1時間保持してテンパリングを行った。
得られたテンパリング品は、即座に衝撃式粉砕機(ホソカワミクロン社製試験粉砕機PULVELIZER)にて、φ0.5mmのスクリーンメッシュを通過させて粉砕し、β−グルカンの濃縮を目的として100mesh(目開き150μm)の振動篩にて分級し粗粉部を回収した。
[比較例1]
Add water to the pearled barley product that has been refined up to 65% with brown barley as raw material and added water so that the water content will be 16, 19 and 22%, and after stirring well, in a plastic container to prevent water evaporation Sealed and kept in an environment of 60 ° C. for 1 hour for tempering.
The obtained tempered product was immediately pulverized by passing it through a screen mesh of φ0.5 mm with an impact pulverizer (Test pulverizer PULVELIZER manufactured by Hosokawa Micron Co., Ltd.), and 100 mesh (aperture) was used for the purpose of concentrating β-glucan. (150 μm) and classified with a vibrating sieve to recover the coarse powder portion.
[Comparative Example 1]
加水・テンパリング処理を施さない以外は[実施例1]と同様にして分級品を得た。
[実施例1]および[比較例1]で調製された粉砕品の分級前β−グルカン含量および、分級にて回収された粗粉部のβ−グルカンおよび水分の分析結果を表1に示した。[比較例1]においても、粉砕、分級によるβ−グルカン濃縮効果は確認されているが、[実施例1]で得られた全ての粗粉部のβ−グルカン含量は[比較例1]で調製した粗粉部のそれ(8.8%)を上回り、加水、テンパリング、粉砕、分級によるβ−グルカン濃縮効果は明らかとなった。
Table 1 shows the β-glucan content before classification of the pulverized products prepared in [Example 1] and [Comparative Example 1], and the analysis results of β-glucan and moisture in the coarse powder portion recovered by classification. . Also in [Comparative Example 1], the β-glucan concentration effect by pulverization and classification was confirmed, but the β-glucan content of all coarse powder parts obtained in [Example 1] was as in [Comparative Example 1]. It exceeded that of the prepared coarse powder part (8.8%), and the β-glucan concentration effect by hydration, tempering, pulverization and classification became clear.
六条大麦を原料とし、対玄麦で65%まで搗精した精麦製品に、加水後水分が19%となるように水を添加し、良く攪拌後、ポリ容器に密封し、60℃の環境下で1時間保持してテンパリングを行った。得られたテンパリング品は、即座に[実施例1]で用いたものと同一の衝撃式粉砕機にて、φ1.0mmのスクリーンメッシュを通過させて粉砕した。粉砕品は空気分級機(日清エンジニアリング社製試験分級機TC−15MS)にて、Air流量3.0m3/min、分級ローター回転数3,200min-1で粗粉部と微粉部に分級した。 Add water to brewed barley products made from 6-jo barley and refined to 65% against brown wheat so that the water content is 19% after addition, stir well, seal in a plastic container, and 1 in an environment of 60 ° C. Tempering was performed while maintaining the time. The obtained tempering product was immediately pulverized by passing it through a screen mesh of φ1.0 mm using the same impact pulverizer as used in [Example 1]. The pulverized product was classified into a coarse powder portion and a fine powder portion with an air classifier (Test Classifier TC-15MS manufactured by Nissin Engineering Co., Ltd.) with an Air flow rate of 3.0 m 3 / min and a classification rotor rotation speed of 3,200 min −1 . .
回収された粗粉部を、再度同一の衝撃式粉砕機にて、φ0.3mmのスクリーンメッシュを通過させて粉砕し、これを空気分級機にて、Air流量3.0m3/min、分級ローター回転数3,400min-1で分級し、得られた粗粉部をβ−グルカン高含有画分とした。
[比較例2]
The collected coarse powder portion was again pulverized with the same impact pulverizer through a screen mesh of φ0.3 mm, and this was pulverized with an air classifier, with an air flow rate of 3.0 m 3 / min, a classification rotor. Classification was performed at a rotational speed of 3,400 min −1 , and the resulting coarse powder portion was defined as a fraction containing a high β-glucan content.
[Comparative Example 2]
加水・テンパリング処理を施さない以外は[実施例2]と同様にして分級粗粉部を得た。
[実施例2]および[比較例2]で得られた分級粗粉部の対原料回収率、分析結果、並びに[比較例2]と同様にして精麦製品を粉砕したのみの大麦粉(対照)の分析結果を表2に示した。[実施例2]、[比較例2]共に対照の大麦粉と比し、β−グルカン含量が高まっていた。[実施例2]で得られた分級粗粉部のβ−グルカン含量(16.8%)は、[比較例2]で得られた粗粉部のそれ(14.0%)を上回った。加水、テンパリング、粉砕、分級によるβ−グルカン濃縮効果が明らかとなった。
A classified coarse powder portion was obtained in the same manner as in [Example 2] except that the hydration / tempering treatment was not performed.
[Example 2] and [comparative example 2] of the classified coarse powder portion obtained with respect to raw materials, analysis results, and barley flour obtained by pulverizing the barley product in the same manner as in [Comparative Example 2] (control) The analysis results are shown in Table 2. [Example 2] and [Comparative Example 2] both had higher β-glucan content than the control barley flour. The β-glucan content (16.8%) of the classified coarse powder part obtained in [Example 2] exceeded that (14.0%) of the coarse powder part obtained in [Comparative Example 2]. The β-glucan concentration effect by hydration, tempering, grinding, and classification was revealed.
また、実施例2で得られた粗粉部ついては食物繊維含量も36.6%と高く、該粉体が高食物繊維素材としても利用可能であることも明らかとなった。
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008287625A JP2010110296A (en) | 2008-11-10 | 2008-11-10 | METHOD FOR PRODUCING BARLEY POWDER ABUNDANTLY CONTAINING EDIBLE FIBER MAINLY COMPOSED OF beta-GLUCAN |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008287625A JP2010110296A (en) | 2008-11-10 | 2008-11-10 | METHOD FOR PRODUCING BARLEY POWDER ABUNDANTLY CONTAINING EDIBLE FIBER MAINLY COMPOSED OF beta-GLUCAN |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010110296A true JP2010110296A (en) | 2010-05-20 |
Family
ID=42299371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008287625A Pending JP2010110296A (en) | 2008-11-10 | 2008-11-10 | METHOD FOR PRODUCING BARLEY POWDER ABUNDANTLY CONTAINING EDIBLE FIBER MAINLY COMPOSED OF beta-GLUCAN |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010110296A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012057129A1 (en) * | 2010-10-27 | 2012-05-03 | 国立大学法人埼玉大学 | Cereal powder and application food |
JP2015037395A (en) * | 2013-08-19 | 2015-02-26 | みたけ食品工業株式会社 | METHOD OF MANUFACTURING POWDER HAVING HIGH β-GLUCAN |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008118943A (en) * | 2006-11-14 | 2008-05-29 | Kumamoto Seifun Kk | WHEAT GRANULE CONTAINING beta-GLUCAN IN HIGH CONCENTRATION |
-
2008
- 2008-11-10 JP JP2008287625A patent/JP2010110296A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008118943A (en) * | 2006-11-14 | 2008-05-29 | Kumamoto Seifun Kk | WHEAT GRANULE CONTAINING beta-GLUCAN IN HIGH CONCENTRATION |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012057129A1 (en) * | 2010-10-27 | 2012-05-03 | 国立大学法人埼玉大学 | Cereal powder and application food |
CN103167806A (en) * | 2010-10-27 | 2013-06-19 | 国立大学法人埼玉大学 | Cereal powder and application food |
GB2498887A (en) * | 2010-10-27 | 2013-07-31 | Univ Saitama Nat Univ Corp | Cereal powder and application food |
CN103167806B (en) * | 2010-10-27 | 2015-08-19 | 国立大学法人埼玉大学 | Cereal powder and application food |
GB2498887B (en) * | 2010-10-27 | 2016-10-26 | Nat Univ Corp Saitama Univ | Grain flour and applied foods |
US9565871B2 (en) | 2010-10-27 | 2017-02-14 | National University Corporation Saitama University | Method of manufacturing grain flour |
JP2015037395A (en) * | 2013-08-19 | 2015-02-26 | みたけ食品工業株式会社 | METHOD OF MANUFACTURING POWDER HAVING HIGH β-GLUCAN |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2120604B1 (en) | Method for fractionating oat, products thus obtained, and use thereof | |
US7943766B2 (en) | Low-carbohydrate digestible hydrocolloidal fiber compositions | |
CN101193707B (en) | Nutraceutical fractions from cereal grains | |
Hu et al. | Structure and characteristic of β‐glucan in cereal: A review | |
JP4841360B2 (en) | Production method of whole wheat flour | |
CN1974602B (en) | Production technology of extracting oat starch and oat protein powder from oat | |
JP3243559B2 (en) | Process for producing water-soluble dietary fiber mainly composed of barley bran-derived β-glucan | |
EP4009805B1 (en) | Process for recovering protein and fibre compositions from brewers' spent grain | |
Wu et al. | Enrichment of β-glucan in oat bran by fine grinding and air classification | |
KR101677022B1 (en) | Bran processing methods of the water-soluble dietary fiber content increases Arabinoxylan | |
JP2010110296A (en) | METHOD FOR PRODUCING BARLEY POWDER ABUNDANTLY CONTAINING EDIBLE FIBER MAINLY COMPOSED OF beta-GLUCAN | |
JP4963180B2 (en) | Method for producing composition, noodle quality improver, and method for producing noodle quality improver | |
CN106901381B (en) | Modification method of black fungus dietary fiber | |
Stevenson et al. | Oat dietary fiber: commercial processes and functional attributes | |
CN104797605A (en) | Method for making pentoses and pentose-based soluble oligo/polysaccharides from cereal grain involving debranning technology | |
CN108095054A (en) | Vegetalitas capsule of sugar digestion and absorption and preparation method thereof in a kind of reduction meals | |
EP2108267A1 (en) | Solubility-reduced, beta-glucan containing products and methods of producing and using such products | |
CN106819778A (en) | A kind of preparation method of water-soluble dietary fiber of corn peels | |
CN104171842A (en) | Wheat aleurone layer flour | |
CN106889631A (en) | A kind of preparation method of oat kind severe edema due to hypofunction of the spleen soluble dietary fiber | |
CN106889624A (en) | A kind of preparation method of soya bean kind severe edema due to hypofunction of the spleen soluble dietary fiber | |
CN110973648A (en) | Oat dietary fiber and pure physical preparation method and application thereof | |
CN203108584U (en) | Processing equipment used for extracting unhulled rice germ flour | |
CN107319482A (en) | A kind of glucose syrup sweetener for having diet nutritional healthcare function | |
KR102505755B1 (en) | Method for manufacturing green fiber comprising rice bran of green whole grain rice |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100724 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100820 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110811 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110905 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120104 |