JP2010107402A - Spectrophotometer - Google Patents

Spectrophotometer Download PDF

Info

Publication number
JP2010107402A
JP2010107402A JP2008280642A JP2008280642A JP2010107402A JP 2010107402 A JP2010107402 A JP 2010107402A JP 2008280642 A JP2008280642 A JP 2008280642A JP 2008280642 A JP2008280642 A JP 2008280642A JP 2010107402 A JP2010107402 A JP 2010107402A
Authority
JP
Japan
Prior art keywords
sample
light
light beam
wavelength
spectrophotometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008280642A
Other languages
Japanese (ja)
Other versions
JP5206322B2 (en
Inventor
Kasumi Yokota
佳澄 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008280642A priority Critical patent/JP5206322B2/en
Publication of JP2010107402A publication Critical patent/JP2010107402A/en
Application granted granted Critical
Publication of JP5206322B2 publication Critical patent/JP5206322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To increase the number of effective sample-side signal data and reference-side signal data which are collected with respect to one wavelength, in order to improve a measured value in S/N. <P>SOLUTION: In a measurement carried out along with a wavelength scan, light entering a detector 17 is shielded by closing a shutter 6 for a period during which a diffraction grating 3 is mechanically driven in order to vary the wavelength, and background signal data are collected for the period. When the vibration of the driven diffraction grating 3 is settled, and the shutter 6 is opened in a stable state of the wavelength, since a sample-side light beam Ls passing through a sample to be measured 13 and a reference-side light beam Lr passing through a reference sample 12 reach the detector 17 alternately along with rotations of a rotating sector mirror 8, the sample-side signal data and the reference-side signal data are collected alternately. Only the sample-side signal data and the reference-side signal data are collected in such the state that the samples 12, 13 are irradiated with appropriate light, thereby increasing the number of effective data and improving the measured value in S/N. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は分光光度計に関し、特に、ダブルビーム方式に好適な分光光度計に関する。   The present invention relates to a spectrophotometer, and more particularly to a spectrophotometer suitable for a double beam system.

分光光度計には、その光路の構成によってダブルビーム方式とシングルビーム方式とがある。ダブルビーム方式は、吸光度を算出する過程で原理的に光源の光量変動による影響を相殺することが可能であるため、分析精度の点でシングルビーム方式よりも有利である。   The spectrophotometer has a double beam method and a single beam method depending on the configuration of the optical path. The double beam method is more advantageous than the single beam method in terms of analysis accuracy because it is possible in principle to cancel the influence of the light amount fluctuation of the light source in the process of calculating the absorbance.

ダブルビーム方式の分光光度計では、分光器(モノクロメータ)により取り出された単色光を試料側光束と参照側光束とに分けるために、主として、ビームスプリッタを用いた光束の分割と、回転セクタ鏡による光束の振り分け、のいずれかが利用されている。ビームスプリッタ方式は、単色光をビームスプリッタにより一定比率の試料側光束と参照側光束とに分割して被測定試料及び参照試料に照射し、それぞれの透過光を各光束を受け持つ2つの検出器に対し並行して導入するものである。   In a double beam type spectrophotometer, in order to divide monochromatic light extracted by a spectroscope (monochromator) into a sample-side light beam and a reference-side light beam, the light beam is split mainly using a beam splitter, and a rotating sector mirror is used. One of the distribution of the luminous flux is used. The beam splitter method splits monochromatic light into a sample-side light beam and a reference-side light beam at a certain ratio by the beam splitter and irradiates the sample to be measured and the reference sample, and transmits each transmitted light to the two detectors responsible for each light beam. In contrast, it is introduced in parallel.

一方、回転セクタ鏡方式は、単色光を一定速度で回転駆動されるセクタ鏡により試料側光束と参照側光束とに交互に振り分け(切り替え)て被測定試料及び参照試料に照射し、それぞれの透過光を1つの検出器に対し交互に導入するものである(特許文献1など参照)。この構成では一般的に、光が検出器に入射しない状態での暗信号を測定するために、光を遮蔽する遮光部が回転セクタ鏡に一体に設けられている。   On the other hand, the rotating sector mirror method irradiates the sample to be measured and the reference sample by alternately allocating (switching) the monochromatic light to the sample-side light beam and the reference-side light beam by the sector mirror that is driven to rotate at a constant speed. Light is alternately introduced into one detector (see Patent Document 1, etc.). In this configuration, in general, in order to measure a dark signal in a state where light is not incident on the detector, a light-shielding portion that shields light is provided integrally with the rotating sector mirror.

図7は一般的な回転セクタ鏡の平面図である。この回転セクタ鏡80には、軸81の周りに反射鏡82と、開口部83と、遮光部84とが、交互に設けられている。いま、分光器から取り出された単色光の光束が図7中に点線で示す位置Lに来るように回転セクタ鏡が配設されているとすると、回転セクタ鏡80が1回転する間に、光束の位置Lには、開口部83→遮光部84→反射鏡82→遮光部84→開口部83→遮光部84→反射鏡82→遮光部84が順に来る。即ち、回転セクタ鏡のモードとしては、図8(a)に示すように、通過(S)→遮光(D1)→反射(R)→遮光(D2)→通過(S)→遮光(D1)→反射(R)→遮光(D2)の順に切り替わる。通過(S)の期間には被測定試料に試料側光束が照射され、反射(R)の期間には参照試料に参照側光束が照射される。また、遮光(D1、D2)の期間には検出器へ光が入射しない。その結果、検出器において、通過(S)の期間には試料側信号が、反射(R)の期間には参照側信号が、遮光(D1、D2)の期間には暗信号が、時分割で得られる。   FIG. 7 is a plan view of a general rotating sector mirror. In the rotating sector mirror 80, reflecting mirrors 82, openings 83, and light shielding portions 84 are alternately provided around an axis 81. Now, assuming that the rotating sector mirror is arranged so that the monochromatic light beam extracted from the spectroscope is located at a position L indicated by a dotted line in FIG. At the position L, the opening 83 → the light shielding portion 84 → the reflecting mirror 82 → the light shielding portion 84 → the opening 83 → the light shielding portion 84 → the reflecting mirror 82 → the light shielding portion 84 comes in this order. That is, as a mode of the rotating sector mirror, as shown in FIG. 8A, passing (S) → shielding (D1) → reflection (R) → shielding (D2) → passing (S) → shielding (D1) → Switching is made in the order of reflection (R) → light shielding (D2). The sample-side light beam is irradiated to the sample to be measured during the passage (S), and the reference-side light beam is irradiated to the reference sample during the reflection (R) period. Further, no light enters the detector during the light shielding period (D1, D2). As a result, in the detector, the sample-side signal is time-divided in the passage (S) period, the reference-side signal is in the reflection (R) period, and the dark signal is in the light-shielding (D1, D2) period. can get.

この検出信号の変化の一例を図8(b)に示す。回転セクタ鏡80の各セクタの境界において信号は大きく変化するが、その際、信号の変化は図に示すように立ち上がり、立ち下がりに鈍りが生じたものとなる。その理由の1つは、検出器やその後段の増幅回路などを含む周波数応答の制約であり、また他の1つの理由は、上記のように光束は或る程度の径を有するために回転セクタ鏡上の各セクタの境界を光束が通過するのに或る程度の時間が掛かるためである。   An example of the change in the detection signal is shown in FIG. At the boundary of each sector of the rotating sector mirror 80, the signal changes greatly. At this time, the change of the signal is such that rising and falling are caused as shown in the figure. One of the reasons is the restriction of the frequency response including the detector and the amplifier circuit in the subsequent stage, and another reason is that the light beam has a certain diameter as described above, so that the rotating sector This is because it takes a certain amount of time for the light beam to pass through the boundary between the sectors on the mirror.

上記検出信号はA/D変換器において所定のサンプリング周期でサンプリングされてデジタル値に変換されるが、上述のように信号が静定していない範囲では正確なデータを得ることができないため、実際にデータを収集できるのは図8(c)に示した期間である。即ち、図8(c)において、Dsは試料側信号データの収集期間、Drは参照側信号データの収集期間、Dd1及びDd2は暗信号データの収集期間である。このように、回転セクタ鏡80が1回転する期間において、実際には有効なデータを収集できない時間が占める割合は大きい。   The detection signal is sampled at a predetermined sampling period and converted into a digital value in the A / D converter. However, since accurate data cannot be obtained in a range where the signal is not settled as described above, The data can be collected during the period shown in FIG. That is, in FIG. 8C, Ds is a sample-side signal data collection period, Dr is a reference-side signal data collection period, and Dd1 and Dd2 are dark signal data collection periods. As described above, during the period in which the rotating sector mirror 80 rotates once, the ratio of the time during which effective data cannot be collected is large.

一般に分光光度計で測定値のS/Nを改善するには、一連の測定動作に要する時間に対して、実際に有効なデータを採取している時間の割合を増やすことが必要である。しかしながら、回転セクタ鏡を用いたダブルビーム方式の分光光度計では、上述したように回転セクタ鏡の1回転期間において有効なデータを採取できる期間は細切れであって、その時間的な割合は小さい。そのため、測定値のS/Nを改善することは難しい。また、吸光度の高い試料(例えばAbs8程度以上)を測定する場合や特に高いS/Nを必要とする場合には、測定時間をそれだけ確保する必要があり、測定効率が低下する。   In general, in order to improve the S / N of a measurement value with a spectrophotometer, it is necessary to increase the ratio of the time for actually collecting effective data to the time required for a series of measurement operations. However, in the double beam type spectrophotometer using a rotating sector mirror, as described above, the period during which effective data can be collected in one rotation period of the rotating sector mirror is fragmented, and the time ratio is small. Therefore, it is difficult to improve the S / N of the measured value. Further, when measuring a sample having a high absorbance (for example, about Abs 8 or more) or particularly requiring a high S / N, it is necessary to secure the measurement time accordingly, and the measurement efficiency is lowered.

また、暗信号データの収集期間Dd1、Dd2の長さは回転セクタ鏡の回転速度によって決まってしまうが、検出器の種類によっては入射光が遮断された時点から暗電流が徐々に減少していく現象がみられるため、暗信号データの収集期間Dd1、Dd2が短いと正確な暗信号データを収集できないという問題もある。   The length of the dark signal data collection periods Dd1 and Dd2 is determined by the rotational speed of the rotating sector mirror. However, depending on the type of detector, the dark current gradually decreases from the time when the incident light is blocked. Since the phenomenon is observed, there is a problem that accurate dark signal data cannot be collected if the dark signal data collection periods Dd1 and Dd2 are short.

特開2001−356049号公報JP 2001-356049 A

本発明は上記課題を解決するために成されたものであり、その主な目的は、一連の測定動作に要する時間に対し有効なデータを採取している時間の割合を増やすことにより、測定値のS/Nを改善することができる分光光度計を提供することである。   The present invention has been made to solve the above-mentioned problems, and its main purpose is to increase the ratio of the time during which effective data is collected with respect to the time required for a series of measurement operations, thereby increasing the measured value. It is providing the spectrophotometer which can improve S / N of this.

また本発明の他の目的は、一連の測定動作の中で従来、有効なデータを収集していなかった時間を活用して有効な暗信号データを採取できるようにすることにより、測定値のS/Nを改善するとともに暗信号データの精度を向上させることができる分光光度計を提供することである。   Another object of the present invention is to make it possible to collect effective dark signal data by utilizing the time during which a valid data has not been collected in a series of measurement operations. It is to provide a spectrophotometer capable of improving / N and improving the accuracy of dark signal data.

上記課題を解決するために成された本発明は、光源と、該光源より発した光から単色光を取り出す分光器であって該単色光の波長を走査可能な分光器と、前記単色光に対する試料からの光を検出する検出器と、を具備する分光光度計において、
a)前記光源から前記検出器までの光路上で光束を遮蔽する遮光手段と、
b)波長走査を伴う測定に際し、波長の移行期間中に光束を遮蔽するように前記遮光手段を駆動する遮光制御手段と、
c)前記遮光手段により光束が遮蔽されているときに、前記検出器により暗信号を取得する信号取得手段と、
を備えることを特徴としている。
In order to solve the above-mentioned problems, the present invention is directed to a light source, a spectroscope that extracts monochromatic light from the light emitted from the light source and capable of scanning the wavelength of the monochromatic light, and the monochromatic light. A spectrophotometer comprising a detector for detecting light from a sample;
a) light shielding means for shielding a light beam on an optical path from the light source to the detector;
b) a light-shielding control means for driving the light-shielding means so as to shield the light beam during the wavelength transition period in the measurement with wavelength scanning;
c) signal acquisition means for acquiring a dark signal by the detector when a light beam is shielded by the light shielding means;
It is characterized by having.

本発明に係る分光光度計において、分光器は、例えば回折格子やプリズムなどの波長分散素子を機械的に駆動することにより、取り出される単色光の波長を走査するものとすることができる。   In the spectrophotometer according to the present invention, the spectroscope can scan the wavelength of the monochromatic light to be extracted by mechanically driving a wavelength dispersion element such as a diffraction grating or a prism.

上記遮光手段は検出器に到達する光束を遮蔽可能でありさえすれば、光源から検出器までの光路上の任意の位置に設けることができる。   The light shielding means can be provided at an arbitrary position on the optical path from the light source to the detector as long as the light beam reaching the detector can be shielded.

本発明に係る分光光度計では、所定の波長範囲に亘る波長走査を伴う測定に際して、所定の波長ステップ毎に波長が変化するように分光器が駆動される。例えばステッピングモータにより回折格子の角度を変化させることで波長を変化させる構成の分光器である場合には、ステッピングモータに所定数のパルス信号が入力されることで、そのパルス数に応じた角度だけ回折格子が回動し、それに応じて単色光の波長が変化する。この場合、回折格子が回動している期間、及び回動自体が終了してもそれに伴う振動が十分に収まるまでの期間が、波長の移行期間である。   In the spectrophotometer according to the present invention, the spectrophotometer is driven so that the wavelength changes at every predetermined wavelength step in the measurement accompanied by the wavelength scanning over the predetermined wavelength range. For example, in the case of a spectroscope configured to change the wavelength by changing the angle of the diffraction grating by a stepping motor, a predetermined number of pulse signals are input to the stepping motor, so that only an angle corresponding to the number of pulses is input. The diffraction grating rotates, and the wavelength of the monochromatic light changes accordingly. In this case, a period during which the diffraction grating is rotated and a period until the vibration associated therewith is sufficiently settled even after the rotation is completed are the wavelength transition period.

遮光制御手段は、上記波長の移行期間中に遮光手段を駆動し、検出器に光が入射しないようにする。したがって、このとき検出器により得られる信号は、暗電流やその後段の増幅器のノイズなどを含む暗信号である。そこで、信号取得手段は、波長の移行期間中で遮光手段により光束が遮蔽されているときに、有効な暗信号データを収集する。従来、この期間には有効なデータが収集されていなかったが、波長移行に伴う分光器の動作や振動は暗信号に何ら影響を与えないから、有効な暗信号データを取得することができる。   The light shielding control means drives the light shielding means during the wavelength transition period so that light does not enter the detector. Therefore, the signal obtained by the detector at this time is a dark signal including a dark current and noise of an amplifier at the subsequent stage. Therefore, the signal acquisition unit collects effective dark signal data when the light beam is blocked by the light blocking unit during the wavelength transition period. Conventionally, effective data has not been collected during this period, but effective dark signal data can be acquired because the operation and vibration of the spectrometer accompanying the wavelength shift have no effect on the dark signal.

本発明に係る分光光度計はシングルビーム方式にも適用可能であるが、特にダブルビーム方式に有用である。
即ち、本発明に係る分光光度計の好ましい一態様として、前記分光器から取り出された単色光を試料側光束と参照側光束とに分け、試料側光束の光路上に被測定試料を、参照側光束の光路上に参照試料を配設したダブルビーム方式の分光光度計において、 前記信号取得手段は、波長移行期間中で前記遮光手段により光束が遮蔽されているときに暗信号を取得し、波長移行が終了した後に試料側信号と参照側信号とを取得することを特徴とする構成とすることができる。
The spectrophotometer according to the present invention can be applied to a single beam system, but is particularly useful for a double beam system.
That is, as a preferable aspect of the spectrophotometer according to the present invention, the monochromatic light extracted from the spectroscope is divided into a sample-side light beam and a reference-side light beam, and the sample to be measured is placed on the optical path of the sample-side light beam. In the double beam spectrophotometer in which a reference sample is disposed on the optical path of the light beam, the signal acquisition unit acquires a dark signal when the light beam is blocked by the light blocking unit during a wavelength transition period, and a wavelength A sample-side signal and a reference-side signal are acquired after the transfer is completed.

この構成によれば、従来、有効なデータ収集が行われていなかった期間に暗信号データを取得し、分光器により取り出される単色光の波長が安定した状態では、暗信号データを取得せずに、試料側信号データと参照側信号データとのみを取得すればよい。したがって、所定の波長範囲に亘る一連の測定動作に要する時間の中で、試料側信号データの取得と参照側信号データの取得のための時間の割合を増やし、結果的に測定値のS/Nの改善を図ることができる。   According to this configuration, conventionally, dark signal data is acquired during a period in which effective data collection has not been performed, and dark signal data is not acquired in a state where the wavelength of monochromatic light extracted by the spectrometer is stable. Only the sample side signal data and the reference side signal data need be acquired. Accordingly, in the time required for a series of measurement operations over a predetermined wavelength range, the ratio of the time for acquiring the sample side signal data and the reference side signal data is increased, and as a result, the S / N of the measured value is obtained. Can be improved.

また、一般に機械的に波長分散素子を駆動して波長走査を行う場合、或る波長から次の波長へと移行するには機械的動作の制約上、或る程度の時間が掛かる。換言すれば、暗信号データの取得のための時間も十分に確保することができるので、遮光時点から暗信号のレベルが落ち着くまでに時間が掛かる場合であっても、該レベルが十分に落ち着いた後に暗信号データを採取することが可能となる。それによって、吸光度などの測定値の精度を向上させることができる。   In general, when wavelength scanning is performed by mechanically driving a wavelength dispersion element, it takes a certain amount of time to shift from a certain wavelength to the next wavelength due to mechanical operation restrictions. In other words, the time for acquiring dark signal data can be sufficiently secured, so even if it takes time for the dark signal level to settle down from the point of light shielding, the level is sufficiently settled. It becomes possible to collect dark signal data later. Thereby, the accuracy of measured values such as absorbance can be improved.

本発明に係る分光光度計がダブルビーム方式である場合の一態様として、
単色光を回転セクタ鏡により試料側光束と参照側光束とに振り分け、被測定試料と参照試料とを経た試料側光束と参照側光束を1つの検出器に導入するダブルビーム方式の分光光度計において、
前記信号取得手段は、波長移行が終了した後に試料側信号及び参照側信号を交互に取得する構成とすることができる。
As one aspect when the spectrophotometer according to the present invention is a double beam system,
In a double beam spectrophotometer in which monochromatic light is divided into a sample-side light beam and a reference-side light beam by a rotating sector mirror, and the sample-side light beam and the reference-side light beam that have passed through the sample to be measured and the reference sample are introduced into one detector. ,
The signal acquisition means may be configured to alternately acquire the sample side signal and the reference side signal after the wavelength shift is completed.

この場合、回転セクタ鏡には遮光部を設けず、暗信号測定のための遮光は上記遮光手段により実施する。これにより、途中に交互に暗信号測定の期間を設けることなく、試料側信号測定と参照側信号測定とを交互に実行することができる。そのため、検出器に入射する光束の切替えの頻度が減り、その切替えの際の信号の鈍りに起因する、有効データの取得が不能な無駄時間の発生を少なくすることができる。その結果、上述したように単色光の波長安定状態で暗信号データの取得が不要になるのみならず、有効な試料側信号データの取得の時間と有効な参照側信号データの取得の時間とがそれぞれ長くなるので、回転セクタ鏡の1回転期間中に有効なデータを取得できる時間の割合が一層大きくなり、測定値のS/Nを改善することができる。   In this case, the rotating sector mirror is not provided with a light shielding portion, and light shielding for dark signal measurement is performed by the light shielding means. Thereby, the sample-side signal measurement and the reference-side signal measurement can be performed alternately without providing dark signal measurement periods alternately in the middle. Therefore, the frequency of switching of the light beam incident on the detector is reduced, and the occurrence of dead time in which effective data cannot be acquired due to the dullness of the signal at the time of switching can be reduced. As a result, as described above, it is not only necessary to acquire dark signal data in the wavelength stable state of monochromatic light, but there is a time for acquiring effective sample side signal data and a time for acquiring effective reference side signal data. Since each becomes longer, the ratio of time during which valid data can be acquired during one rotation of the rotating sector mirror is further increased, and the S / N of the measured value can be improved.

なお、遮光手段による遮光と回転セクタ鏡の回転とは無関係になるので、回転セクタ鏡の回転速度を下げると、一波長に対する測定時間の中で、有効な試料側信号データの取得の時間と有効な参照側信号データの取得の時間とをそれぞれ長くすることができる。それによって、さらに一層、測定値のS/Nの改善を図ることができる。   In addition, since the light shielding by the light shielding means and the rotation of the rotating sector mirror are irrelevant, if the rotational speed of the rotating sector mirror is reduced, the effective sample side signal data acquisition time and effective within the measurement time for one wavelength. It is possible to lengthen the acquisition time of each reference side signal data. Thereby, the S / N of the measured value can be further improved.

また本発明に係る分光光度計がダブルビーム方式である場合の別の態様として、
単色光をスプリッタにより試料側光束と参照側光束とに分割し、被測定試料と参照試料とを経た試料側光束と参照側光束をそれぞれ別の検出器に導入するダブルビーム方式の分光光度計において、
前記信号取得手段は、2つの検出器により、波長移行期間中で前記遮光手段により光束が遮蔽されているときに試料側暗信号及び参照側暗信号を取得し、波長移行が終了した後に試料側信号及び参照側信号を取得する構成とすることができる。
Moreover, as another aspect in case the spectrophotometer which concerns on this invention is a double beam system,
In a double-beam spectrophotometer that splits monochromatic light into a sample-side light beam and a reference-side light beam by a splitter, and introduces the sample-side light beam and the reference-side light beam that have passed through the sample to be measured and the reference sample to separate detectors. ,
The signal acquisition means acquires the sample-side dark signal and the reference-side dark signal when the light beam is shielded by the light-shielding means during the wavelength transition period by two detectors, and after the wavelength transition is completed, the sample side It can be set as the structure which acquires a signal and a reference side signal.

スプリッタを用いたダブルビーム方式分光光度計では、独立した2つの検出器で試料側信号と参照側信号とを並行して得ることができるため、回転セクタ鏡を用いた場合とは異なり、光束の切替えに伴う無効なデータの発生はないものの、従来、波長走査の際の波長移行時の時間が無駄となっている点は回転セクタ鏡を用いた構成と同様である。これに対し、上記の別の態様による分光光度計では、波長走査の際の波長移行時に暗信号測定を済ませることができ、波長が安定した状態では試料側信号測定と参照側信号測定のみを実行すればよい。これにより、測定値のS/Nを改善することができる。   In a double beam spectrophotometer using a splitter, the sample side signal and the reference side signal can be obtained in parallel by two independent detectors. Therefore, unlike the case of using a rotating sector mirror, Although there is no generation of invalid data due to the switching, conventionally, the time for wavelength transition during wavelength scanning is wasted as in the configuration using the rotating sector mirror. On the other hand, the spectrophotometer according to another aspect described above can perform dark signal measurement at the time of wavelength transition during wavelength scanning, and performs only sample-side signal measurement and reference-side signal measurement when the wavelength is stable. do it. Thereby, S / N of a measured value can be improved.

また、上述したように暗信号データの取得のための時間を十分に確保することができるので、例えば検出器として半導体検出器などを用いることにより、遮光時点から暗信号のレベルが落ち着くまでに時間が掛かるような場合であっても、該レベルが十分に落ち着いた後に暗信号データを採取することが可能となる。それによって、吸光度などの測定値の精度を向上させることができる。   In addition, as described above, a sufficient time for acquiring the dark signal data can be secured. For example, by using a semiconductor detector or the like as the detector, it takes time from the time of light shielding until the level of the dark signal settles. Even in such a case, dark signal data can be collected after the level has sufficiently settled. Thereby, the accuracy of measured values such as absorbance can be improved.

本発明に係る分光光度計によれば、所定の波長範囲に亘る一連の測定動作に要する時間の中で、試料側信号データの取得と参照側信号データの取得のための時間の割合を増やすことにより、測定値のS/Nを改善することができる。一方、暗信号データの取得のための時間も十分に確保することができるので、正確な暗信号の測定が可能であり、吸光度などの測定値の精度向上を図ることができる。   According to the spectrophotometer according to the present invention, in the time required for a series of measurement operations over a predetermined wavelength range, the ratio of time for acquiring sample-side signal data and acquiring reference-side signal data is increased. Thus, the S / N of the measured value can be improved. On the other hand, since sufficient time for acquiring dark signal data can be secured, accurate dark signal measurement is possible, and the accuracy of measurement values such as absorbance can be improved.

[第1実施例]
以下、本発明に係る分光光度計の一実施例(第1実施例)を図1〜図4を参照して説明する。図1は本実施例による回転セクタ鏡を用いたダブルビーム方式分光光度計の要部の構成図、図2は図1の分光光度計に使用されている回転セクタ鏡8の平面図である。
[First embodiment]
Hereinafter, one embodiment (first embodiment) of a spectrophotometer according to the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram of a main part of a double beam type spectrophotometer using a rotating sector mirror according to this embodiment, and FIG. 2 is a plan view of a rotating sector mirror 8 used in the spectrophotometer of FIG.

図1において、光源1から発した光は、入口スリット2、回折格子3、出口スリット4、ステッピングモータ5を含む分光器に導入され、所定の波長の単色光が取り出される。ステッピングモータ5は、入口スリット2を通過した入射光に対し波長分散素子である回折格子3の角度を変えることにより、出口スリット4を通過して取り出される単色光の波長を変化させる。この単色光は、モータ9により一定速度で回転駆動される回転セクタ鏡8によって、2つの反射鏡10、11の2方向に交互に送られる。   In FIG. 1, light emitted from a light source 1 is introduced into a spectroscope including an entrance slit 2, a diffraction grating 3, an exit slit 4, and a stepping motor 5, and monochromatic light having a predetermined wavelength is extracted. The stepping motor 5 changes the wavelength of the monochromatic light extracted through the exit slit 4 by changing the angle of the diffraction grating 3 that is a wavelength dispersion element with respect to the incident light that has passed through the entrance slit 2. This monochromatic light is alternately sent in the two directions of the two reflecting mirrors 10 and 11 by the rotating sector mirror 8 that is rotationally driven by the motor 9 at a constant speed.

即ち、回転セクタ鏡8の回転に伴い、図2に示す単色光の位置Lに開口部83が来たときには(図2中の通過Sの範囲では)、単色光は反射鏡11に当たり、試料側光束Lsとなって被測定試料13に照射される。一方、単色光の位置Lに反射鏡82が来たときには(図2中の反射Rの範囲では)、単色光は反射鏡82で反射された後に反射鏡10に当たり、参照側光束Lrとなって参照試料12に照射される。例えば、被測定試料13は試料セルに被測定試料溶液が充填されたもの、参照試料12は同じ試料セルに溶媒のみが充填されたものである。図2に示すように、回転セクタ鏡8は、開口部83と反射鏡82とを軸81の周りに90°の回転角度ずつ交互に有する。したがって、被測定試料13と参照試料12とには交互に同期間ずつ光が照射され、それぞれの試料13、12中を光が通過する際に吸収を受ける。   That is, when the opening 83 comes to the position L of the monochromatic light shown in FIG. 2 with the rotation of the rotating sector mirror 8 (in the range of the passage S in FIG. 2), the monochromatic light hits the reflecting mirror 11 and the sample side The sample 13 is irradiated with the light beam Ls. On the other hand, when the reflecting mirror 82 comes to the position L of the monochromatic light (in the range of reflection R in FIG. 2), the monochromatic light is reflected by the reflecting mirror 82 and then hits the reflecting mirror 10 to become the reference side light beam Lr. The reference sample 12 is irradiated. For example, the sample 13 to be measured is a sample cell filled with a sample solution to be measured, and the reference sample 12 is a sample cell filled with only a solvent. As shown in FIG. 2, the rotating sector mirror 8 has openings 83 and reflecting mirrors 82 alternately about a rotation angle of 90 ° around an axis 81. Therefore, the sample 13 to be measured and the reference sample 12 are alternately irradiated with light for the same period of time, and are absorbed when the light passes through the respective samples 13 and 12.

参照試料12を通過した参照側光束Lrは反射鏡14で反射され、被測定試料13を通過した試料側光束Lsは反射鏡15、16で反射され、いずれも検出器17に導入される。検出器17はその種類を問わず、波長帯域に応じて、光電子増倍管、InGaAs、InAs、PbS等の半導体検出器など、適宜の検出器を用いることができる。もちろん、波長に応じて複数の検出器を切り替えてもよい。   The reference-side light beam Lr that has passed through the reference sample 12 is reflected by the reflecting mirror 14, and the sample-side light beam Ls that has passed through the sample 13 to be measured is reflected by the reflecting mirrors 15 and 16, and both are introduced into the detector 17. Regardless of the type of detector 17, an appropriate detector such as a photomultiplier tube, a semiconductor detector such as InGaAs, InAs, or PbS can be used depending on the wavelength band. Of course, a plurality of detectors may be switched according to the wavelength.

単色光が2つの光路に振り分けられる前、つまり、分光器の出口スリット4と回転セクタ鏡8との間には、モータ7の駆動により、光路に対し進退自在に移動するシャッタ6が遮光手段として配設されている。シャッタ6が光路から退避されたときには前述のように検出器17には吸収を受けた参照側光束Lr又は試料側光束Lsが入射し、シャッタ6が光路中に挿入されたときには検出器17には光が入射しない状態となる。シャッタ6の駆動源はモータに限らず圧電素子など任意の駆動源を用いることができる。また、機械的に光を遮るものでなく、電気的な制御によって光の透過・遮蔽を行う電子シャッタなどでもよい。また、このシャッタの設置位置も、光源1から検出器17までの光路上であれば任意に決めることができる。   Before the monochromatic light is distributed to the two optical paths, that is, between the exit slit 4 of the spectroscope and the rotating sector mirror 8, a shutter 6 that moves forward and backward with respect to the optical path by driving a motor 7 serves as a light shielding means. It is arranged. When the shutter 6 is retracted from the optical path, the reference-side light beam Lr or the sample-side light beam Ls that has been absorbed enters the detector 17 as described above, and when the shutter 6 is inserted into the optical path, the detector 17 The light is not incident. The drive source of the shutter 6 is not limited to a motor, and any drive source such as a piezoelectric element can be used. In addition, an electronic shutter that transmits and blocks light by electrical control may be used instead of mechanically blocking light. Further, the installation position of the shutter can be arbitrarily determined as long as it is on the optical path from the light source 1 to the detector 17.

検出器17による検出信号は図示しない増幅器などで増幅された後に、A/D変換器(ADC)18に入力され、所定のサンプリング周期でサンプリングされてデジタル値に変換される。これにより、検出器17に入射した光の強度に対応したデータが得られ、これがデータ処理部19に入力される。データ処理部19は、モータ5、7、9などを制御する制御部20からの制御信号に基づいて、必要なデータを取捨選択するとともに、分類して保存し、さらにはそのデータを用いた所定の演算処理を実行することで、被測定試料による吸光度を波長毎に計算する。   A detection signal from the detector 17 is amplified by an amplifier (not shown) and the like and then input to an A / D converter (ADC) 18 where it is sampled at a predetermined sampling period and converted into a digital value. As a result, data corresponding to the intensity of the light incident on the detector 17 is obtained and input to the data processing unit 19. The data processing unit 19 sorts and stores necessary data based on a control signal from the control unit 20 that controls the motors 5, 7, 9 and the like, and further stores and classifies the predetermined data using the data. By executing the calculation process, the absorbance of the sample to be measured is calculated for each wavelength.

次に、本実施例の分光光度計における特徴的な測定動作を図3、図4により説明する。図3は本実施例の分光光度計に使用されている回転セクタ鏡の1回転期間中における検出信号の変化とデータ収集期間とを示す模式図であり、図4は本実施例の分光光度計における波長走査時の測定動作の説明図である。   Next, a characteristic measurement operation in the spectrophotometer of the present embodiment will be described with reference to FIGS. FIG. 3 is a schematic diagram showing a change in detection signal and a data collection period during one rotation period of the rotating sector mirror used in the spectrophotometer of this embodiment. FIG. 4 is a spectrophotometer of this embodiment. It is explanatory drawing of the measurement operation | movement at the time of wavelength scanning in.

回転セクタ鏡8は、図7に示した従来の回転セクタ鏡80と異なり遮光部を有さない。したがって、回転セクタ鏡8が1回転する際のモードとしては、図3(a)に示すように、通過(S)→反射(R)→通過(S)→反射(R)の順に切り替わるだけである。その結果、検出器17で得られる検出信号には、図3(b)に示すように、試料側信号と反射参照側信号とが交互に現れる。図3と図8とを比較すれば明らかなように、本実施例の分光光度計では、回転セクタ鏡8が1回転する期間中の光束の切り替わり(セクタの境界)の回数が従来の半分以下になり、それに伴う信号の大きな変化の頻度も少ない。そのため、信号が大きく変化する(切り替わる)際の信号の鈍りを回避するように設定される、試料側信号データの収集期間Ds、参照側信号データの収集期間Drはそれぞれ長くなり、遮光部を除いた分以上、時間を延ばすことができる。   Unlike the conventional rotating sector mirror 80 shown in FIG. 7, the rotating sector mirror 8 does not have a light shielding portion. Therefore, as a mode when the rotating sector mirror 8 makes one rotation, as shown in FIG. 3A, the mode is simply switched in the order of passing (S) → reflecting (R) → passing (S) → reflecting (R). is there. As a result, in the detection signal obtained by the detector 17, as shown in FIG. 3B, the sample side signal and the reflection reference side signal appear alternately. As is apparent from a comparison between FIG. 3 and FIG. 8, in the spectrophotometer of the present embodiment, the number of switching of the light beam (sector boundary) during the period in which the rotating sector mirror 8 makes one rotation is less than half that of the prior art. Thus, the frequency of large changes in the signal is also low. For this reason, the sample-side signal data collection period Ds and the reference-side signal data collection period Dr, which are set so as to avoid signal dullness when the signal changes (switches) largely, are longer and exclude the light shielding portion. You can extend the time by more than a minute.

いま、本実施例の分光光度計で波長λ1〜λ2の範囲の波長走査を実行して、その波長範囲に亘る吸光度を測定する場合を考える。この場合、図4(a)に示すように、例えば最長波長λ1から所定の波長ステップ幅Δλずつ波長をステップ的に減少させ、最終的に最短波長λ2とする。もちろん、短波長側から長波長側へ波長走査を行ってもよい。このような波長走査に際し、或る波長から波長ステップ幅Δλだけ異なる次の波長に変化させるとき、制御部20はステッピングモータ5に所定個数のパルス信号を送る。これに応じてステッピングモータ5は所定角度回転し、回折格子3も所定の微小角度だけ回動し、次の波長の単色光が取り出されるような位置で停止する(図4(b)のT1)。但し、回折格子3が停止しても振動等によって波長はすぐには安定しない。そこで、振動が静定するのに要する所定時間T2だけ待つ。   Consider a case where the spectrophotometer of the present embodiment performs wavelength scanning in the range of wavelengths λ1 to λ2 and measures the absorbance over the wavelength range. In this case, as shown in FIG. 4A, for example, the wavelength is decreased stepwise from the longest wavelength λ1 by a predetermined wavelength step width Δλ, and finally set to the shortest wavelength λ2. Of course, wavelength scanning may be performed from the short wavelength side to the long wavelength side. In such wavelength scanning, when changing from a certain wavelength to a next wavelength that differs by a wavelength step width Δλ, the control unit 20 sends a predetermined number of pulse signals to the stepping motor 5. In response to this, the stepping motor 5 rotates by a predetermined angle, the diffraction grating 3 also rotates by a predetermined minute angle, and stops at a position where monochromatic light of the next wavelength is extracted (T1 in FIG. 4B). . However, even if the diffraction grating 3 is stopped, the wavelength is not immediately stabilized due to vibration or the like. Therefore, it waits for a predetermined time T2 required for the vibration to settle.

制御部20はステッピングモータ5の駆動と並行して、シャッタ6により遮光を行うようにモータ7を駆動する。そして、波長変更のための回折格子3の回動とそれに引き続く回折格子3の静定の期間(T1+T2)だけシャッタ6を閉じ、検出器17に光束が入射しないようにする。このとき検出器17による検出信号は暗信号となるから、データ処理部19は暗信号データを収集する。即ち、図4(e)に示すように、波長を変更するための波長移行期間T1+T2中でシャッタ6により遮光がなされている期間中に、暗信号データ収集期間Ddが設定される。   In parallel with the driving of the stepping motor 5, the control unit 20 drives the motor 7 so as to shield light from the shutter 6. Then, the shutter 6 is closed only during a period (T1 + T2) during which the diffraction grating 3 is rotated for changing the wavelength and the diffraction grating 3 is subsequently stabilized, so that the light beam does not enter the detector 17. At this time, since the detection signal by the detector 17 becomes a dark signal, the data processing unit 19 collects dark signal data. That is, as shown in FIG. 4 (e), the dark signal data collection period Dd is set during a period during which light is blocked by the shutter 6 in the wavelength transition period T1 + T2 for changing the wavelength.

その後シャッタ6を開けると、上述したように回転セクタ鏡8の回転に伴って、被測定試料13を透過した試料側光束Lsと参照試料12を透過した参照側光束Lrとが交互に検出器17に入射する。このときには回折格子3の振動は十分に収まっているので、分光器により取り出される単色光の波長は所望の値になっている。検出器17による検出出力には試料側信号と参照側信号とが交互に現れるが、その境界では信号の鈍りが生じる。したがって、データ処理部19はその境界付近のデータを廃棄し、交互に設定された試料側信号データ収集期間Dsと参照側信号データ収集期間Drにそれぞれのデータを収集する。   Thereafter, when the shutter 6 is opened, as described above, the sample-side light beam Ls transmitted through the sample 13 to be measured and the reference-side light beam Lr transmitted through the reference sample 12 are alternately detected by the detector 17 as the rotating sector mirror 8 rotates. Is incident on. At this time, since the vibration of the diffraction grating 3 is sufficiently contained, the wavelength of the monochromatic light extracted by the spectroscope has a desired value. Although the sample side signal and the reference side signal appear alternately in the detection output by the detector 17, the signal becomes dull at the boundary. Therefore, the data processing unit 19 discards the data near the boundary, and collects data in the sample-side signal data collection period Ds and the reference-side signal data collection period Dr that are alternately set.

そして、所定の測定期間T3、試料側信号データと参照側信号データとを収集したならば、次の波長への変更のために、制御部20はステッピングモータ5に再び所定個数のパルス信号を送り、シャッタ6を閉じ、暗信号データの収集を実行する。こうして、最短波長λ2に至るまで測定に用いる単色光の波長を所定の波長ステップ幅Δλずつ変化させながら、その波長移行期間中に暗信号データを収集し、波長が安定したときには試料側信号データと参照側信号データとを交互に収集する。データ処理部19はこうして収集したデータに基づいて、被測定試料13の吸光度を波長毎に求め、例えば吸光スペクトルを作成する。   If the sample-side signal data and the reference-side signal data are collected for a predetermined measurement period T3, the control unit 20 sends a predetermined number of pulse signals to the stepping motor 5 again for changing to the next wavelength. The shutter 6 is closed, and dark signal data collection is executed. Thus, while changing the wavelength of the monochromatic light used for measurement up to the shortest wavelength λ2 by a predetermined wavelength step width Δλ, dark signal data is collected during the wavelength transition period, and when the wavelength is stable, the sample side signal data and Collect reference side signal data alternately. Based on the data collected in this way, the data processing unit 19 obtains the absorbance of the sample 13 to be measured for each wavelength, and creates, for example, an absorption spectrum.

以上のように本実施例の分光光度計では、波長走査の際の波長変更時、つまり適切な試料側信号データや参照側信号データを得られない期間に、検出器17への入射光が不要な暗信号データを収集している。また、回転セクタ鏡8には遮光部を設けず、変更された波長が安定しているときには、試料側信号データと参照側信号データのみを交互に収集している。したがって、回転セクタ鏡8が1回転する期間に採取できる有効な試料側信号データ及び参照側信号データの数が従来よりも2倍以上増加するので、測定値のS/Nを改善することができる。また、1回の暗信号データ収集期間Ddは従来よりもかなり長くなるので、遮光時点から暗信号レベルが十分に落ち着くまでに時間が掛かる場合でも、暗信号レベルが落ち着いてから暗信号データを採取することもできる。これにより、暗信号データの精度が上がるため、測定値の精度の向上にも寄与する。   As described above, in the spectrophotometer of this embodiment, incident light to the detector 17 is not required when changing the wavelength during wavelength scanning, that is, during a period when appropriate sample-side signal data and reference-side signal data cannot be obtained. Dark signal data is collected. Further, the rotating sector mirror 8 is not provided with a light shielding portion, and when the changed wavelength is stable, only the sample side signal data and the reference side signal data are collected alternately. Accordingly, the number of effective sample-side signal data and reference-side signal data that can be collected during the period in which the rotating sector mirror 8 makes one rotation increases more than twice as compared with the prior art, so that the S / N of the measured value can be improved. . Also, since one dark signal data collection period Dd is considerably longer than before, even if it takes time until the dark signal level sufficiently settles from the time of light shielding, dark signal data is collected after the dark signal level has settled. You can also As a result, the accuracy of the dark signal data is increased, which contributes to the improvement of the accuracy of the measurement value.

なお、従来のダブルビーム方式分光光度計と比べて、暗信号データ収集期間は試料側信号データや参照側信号データの収集期間と時間的に離れるが、暗信号レベルの変動は主として温度などの周囲環境により生じるため、その変動は緩慢であり、上述した程度の時間的な離間は全く問題ない。   Compared to conventional double beam spectrophotometers, the dark signal data collection period is separated in time from the sample-side signal data and reference-side signal data collection periods. Since it is caused by the environment, the fluctuation thereof is slow, and the temporal separation as described above has no problem at all.

また、この第1実施例の分光光度計では、遮光のためのシャッタ6と回転セクタ鏡8とが独立して設けられているため、暗信号データの収集に全く影響を及ぼすことなく回転セクタ鏡8の回転速度を落とすことができる。図4(f)、(g)は回転速度を1/2に低下させた場合の検出信号の一例及びデータ収集期間である。このように回転速度を落とすことにより、一波長に対する測定期間T3中での光束の切替え頻度がさらに下がるため、信号の切り替わりに伴う無効データが一層減り、その分、有効な試料側信号データ及び参照側信号データの数を増やすことができる。それによって一層のS/N改善が可能となる。   Further, in the spectrophotometer of the first embodiment, the shutter 6 for shielding light and the rotating sector mirror 8 are provided independently, so that the rotating sector mirror is not affected at all without affecting the collection of dark signal data. The rotational speed of 8 can be reduced. FIGS. 4F and 4G show an example of a detection signal and a data collection period when the rotation speed is reduced to ½. By reducing the rotation speed in this way, the switching frequency of the light beam during the measurement period T3 for one wavelength is further reduced, so that invalid data associated with signal switching is further reduced. The number of side signal data can be increased. Thereby, further S / N improvement becomes possible.

[第2実施例]
上記第1実施例による分光光度計は、回転セクタ鏡により光を2方向に交互に振り分けるダブルビーム方式を採用したものあるが、ビームスプリッタにより光を2分割するダブルビーム方式のものにも本発明を適用することができる。図5はこの方式を採用した第2実施例による分光光度計の要部の構成図、図6はこの第2実施例の分光光度計における波長走査時の測定動作の説明図である。図5において図1と同じ構成要素には同じ符号を付して説明を略す。
[Second Embodiment]
The spectrophotometer according to the first embodiment employs a double beam method in which light is alternately distributed in two directions by a rotating sector mirror. However, the present invention is also applicable to a double beam method in which light is divided into two by a beam splitter. Can be applied. FIG. 5 is a block diagram of the main part of the spectrophotometer according to the second embodiment employing this method, and FIG. 6 is an explanatory diagram of the measurement operation during wavelength scanning in the spectrophotometer of the second embodiment. In FIG. 5, the same components as those of FIG.

この第2実施例の分光光度計では、分光器から取り出された単色光はビームスプリッタ31により試料側光束Lsと参照側光束Lrとの二つに分割され、試料側光束Lsは被測定試料13に照射され、その透過光が第2検出器33に入射し、参照側光束Lrは参照試料12に照射され、その透過光が第1検出器32に入射する。ビームスプリッタ31で分割された両光束はほぼ同時に2つの検出器33、34に入射する。2つのA/D変換器34、35は検出器32、33の検出信号を並行してA/D変換し、得られたデータは並行してデータ処理部36に入力される。   In the spectrophotometer of the second embodiment, the monochromatic light extracted from the spectroscope is divided into two of the sample side light beam Ls and the reference side light beam Lr by the beam splitter 31, and the sample side light beam Ls is divided into the sample 13 to be measured. The transmitted light is incident on the second detector 33, the reference side light beam Lr is irradiated on the reference sample 12, and the transmitted light is incident on the first detector 32. Both light beams split by the beam splitter 31 are incident on the two detectors 33 and 34 almost simultaneously. The two A / D converters 34 and 35 A / D convert the detection signals of the detectors 32 and 33 in parallel, and the obtained data is input to the data processing unit 36 in parallel.

第2実施例の分光光度計において、制御部37は上記第1実施例と同様に、波長走査のためのステッピングモータ5の駆動とシャッタ6開閉のためのモータ7の駆動を実行する。また、波長移行時でシャッタ6による遮光がなされているときに暗信号データが収集される点も第1実施例と同様である。相違するのは、波長変更に伴う回折格子3の振動が静定するのを待ったあと、シャッタ6が開放されると、両検出器32、33に並行して光束が入射する点である。したがって、一波長に対する測定期間T3のほぼ全てを試料側信号データ収集期間Ds、参照側信号データ収集期間Drに充てることができ、測定値のS/Nの点では第1実施例よりも有利である。   In the spectrophotometer of the second embodiment, the controller 37 executes the driving of the stepping motor 5 for wavelength scanning and the driving of the motor 7 for opening and closing the shutter 6 as in the first embodiment. Further, the dark signal data is collected when the light is blocked by the shutter 6 at the time of wavelength shift, as in the first embodiment. The difference is that after waiting for the vibration of the diffraction grating 3 due to the wavelength change to settle, the light beam enters the detectors 32 and 33 in parallel when the shutter 6 is opened. Therefore, almost all of the measurement period T3 for one wavelength can be used for the sample-side signal data collection period Ds and the reference-side signal data collection period Dr, which is more advantageous than the first embodiment in terms of the S / N of the measurement values. is there.

なお、第1及び第2実施例ともにダブルビーム方式の分光光度計であるが、本発明はシングルビーム方式の分光光度計にも適用することができる。   Although both the first and second embodiments are double beam type spectrophotometers, the present invention can also be applied to a single beam type spectrophotometer.

また、上記実施例は本発明の一例であり、本発明の趣旨の範囲で適宜変形、修正、追加を行っても本願特許請求の範囲に包含されることは当然である。   Moreover, the said Example is an example of this invention, Even if it changes suitably, amends, and is added in the range of the meaning of this invention, it is naturally included in the claim of this application.

本発明の一実施例による回転セクタ鏡を用いたダブルビーム方式分光光度計の要部の構成図。The block diagram of the principal part of the double beam system spectrophotometer using the rotation sector mirror by one Example of this invention. 図1の分光光度計に使用されている回転セクタ鏡の平面図。The top view of the rotation sector mirror currently used for the spectrophotometer of FIG. 図1の分光光度計に使用されている回転セクタ鏡の1回転期間中における検出信号の変化とデータ収集期間とを示す模式図。The schematic diagram which shows the change of the detection signal in one rotation period of the rotation sector mirror currently used for the spectrophotometer of FIG. 1, and a data collection period. 本実施例の分光光度計における波長走査時の測定動作の説明図。Explanatory drawing of the measurement operation | movement at the time of the wavelength scan in the spectrophotometer of a present Example. 本発明の他の実施例によるビームスプリッタを用いたダブルビーム方式分光光度計の要部の構成図。The block diagram of the principal part of the double beam system spectrophotometer using the beam splitter by the other Example of this invention. 他の実施例による分光光度計における波長走査時の測定動作の説明図。Explanatory drawing of the measurement operation | movement at the time of the wavelength scan in the spectrophotometer by another Example. 従来の一般的な回転セクタ鏡の平面図。The top view of the conventional common rotation sector mirror. 従来のダブルビーム方式分光光度計における回転セクタ鏡の1回転期間中における検出信号の変化とデータ収集期間とを示す模式図。The schematic diagram which shows the change of the detection signal in one rotation period of a rotation sector mirror, and a data collection period in the conventional double beam system spectrophotometer.

符号の説明Explanation of symbols

1…光源
2…入口スリット
3…回折格子
4…出口スリット
5、7、9…モータ
6…シャッタ
8…回転セクタ鏡
81…軸
82…反射鏡
83…開口部
10、11、14、15、16…反射鏡
12…参照試料
13…被測定試料
17、32、33…検出器
18、34、35…A/D変換器(ADC)
19、36…データ処理部
20、37…制御部
31…ビームスプリッタ
Lr…参照側光束
Ls…試料側光束
DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Entrance slit 3 ... Diffraction grating 4 ... Exit slit 5, 7, 9 ... Motor 6 ... Shutter 8 ... Rotating sector mirror 81 ... Axis 82 ... Reflection mirror 83 ... Openings 10, 11, 14, 15, 16 ... Reflector 12 ... Reference sample 13 ... Samples to be measured 17, 32, 33 ... Detectors 18, 34, 35 ... A / D converter (ADC)
19, 36: Data processing unit 20, 37: Control unit 31: Beam splitter Lr ... Reference-side light beam Ls ... Sample-side light beam

Claims (4)

光源と、該光源より発した光から単色光を取り出す分光器であって該単色光の波長を走査可能な分光器と、前記単色光に対する試料からの光を検出する検出器と、を具備する分光光度計において、
a)前記光源から前記検出器までの光路上で光束を遮蔽する遮光手段と、
b)波長走査を伴う測定に際し、波長の移行期間中に光束を遮蔽するように前記遮光手段を駆動する遮光制御手段と、
c)前記遮光手段により光束が遮蔽されているときに、前記検出器により暗信号を取得する信号取得手段と、
を備えることを特徴とする分光光度計。
A light source; a spectroscope that extracts monochromatic light from light emitted from the light source, the spectroscope capable of scanning the wavelength of the monochromatic light; and a detector that detects light from the sample with respect to the monochromatic light. In the spectrophotometer,
a) light shielding means for shielding a light beam on an optical path from the light source to the detector;
b) a light-shielding control means for driving the light-shielding means so as to shield the light beam during the wavelength transition period in the measurement with wavelength scanning;
c) signal acquisition means for acquiring a dark signal by the detector when a light beam is shielded by the light shielding means;
A spectrophotometer comprising:
請求項1に記載の分光光度計であって、
前記分光器から取り出された単色光を試料側光束と参照側光束とに分け、試料側光束の光路上に被測定試料を、参照側光束の光路上に参照試料を配設したダブルビーム方式の分光光度計において、
前記信号取得手段は、波長移行期間中で前記遮光手段により光束が遮蔽されているときに暗信号を取得し、波長移行が終了した後に試料側信号と参照側信号とを取得することを特徴とする分光光度計。
The spectrophotometer according to claim 1, wherein
The monochromatic light extracted from the spectroscope is divided into a sample-side light beam and a reference-side light beam, a sample to be measured is disposed on the optical path of the sample-side light beam, and a reference sample is disposed on the optical path of the reference-side light beam. In the spectrophotometer,
The signal acquisition means acquires a dark signal when a light beam is shielded by the light shielding means during a wavelength transition period, and acquires a sample side signal and a reference side signal after the wavelength transition ends. Spectrophotometer.
請求項2に記載の分光光度計であって、
単色光を回転セクタ鏡により試料側光束と参照側光束とに振り分け、被測定試料と参照試料とを経た試料側光束と参照側光束を1つの検出器に導入するダブルビーム方式の分光光度計において、
前記信号取得手段は、波長移行が終了した後に試料側信号及び参照側信号を交互に取得することを特徴とする分光光度計。
The spectrophotometer according to claim 2, wherein
In a double beam spectrophotometer in which monochromatic light is divided into a sample-side light beam and a reference-side light beam by a rotating sector mirror, and the sample-side light beam and the reference-side light beam that have passed through the sample to be measured and the reference sample are introduced into one detector. ,
The spectrophotometer characterized in that the signal acquisition means alternately acquires the sample side signal and the reference side signal after the wavelength shift is completed.
請求項2に記載の分光光度計であって、
単色光をスプリッタにより試料側光束と参照側光束とに分割し、被測定試料と参照試料とを経た試料側光束と参照側光束をそれぞれ別の検出器に導入するダブルビーム方式の分光光度計において、
前記信号取得手段は、2つの検出器により、波長移行期間中で前記遮光手段により光束が遮蔽されているときに試料側暗信号及び参照側暗信号を取得し、波長移行が終了した後に試料側信号及び参照側信号を取得することを特徴とする分光光度計。
The spectrophotometer according to claim 2, wherein
In a double-beam spectrophotometer that splits monochromatic light into a sample-side light beam and a reference-side light beam by a splitter, and introduces the sample-side light beam and the reference-side light beam that have passed through the sample to be measured and the reference sample to separate detectors. ,
The signal acquisition means acquires the sample-side dark signal and the reference-side dark signal when the light beam is shielded by the light-shielding means during the wavelength transition period by two detectors, and after the wavelength transition is completed, the sample side A spectrophotometer characterized by acquiring a signal and a reference side signal.
JP2008280642A 2008-10-31 2008-10-31 Spectrophotometer Active JP5206322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008280642A JP5206322B2 (en) 2008-10-31 2008-10-31 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008280642A JP5206322B2 (en) 2008-10-31 2008-10-31 Spectrophotometer

Publications (2)

Publication Number Publication Date
JP2010107402A true JP2010107402A (en) 2010-05-13
JP5206322B2 JP5206322B2 (en) 2013-06-12

Family

ID=42296978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008280642A Active JP5206322B2 (en) 2008-10-31 2008-10-31 Spectrophotometer

Country Status (1)

Country Link
JP (1) JP5206322B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013545451A (en) * 2010-11-01 2013-12-26 スリーエム イノベイティブ プロパティズ カンパニー Detection method of biological activity
WO2015104885A1 (en) * 2014-01-09 2015-07-16 シャープ株式会社 Light-intensity detection device and detection method
KR20170101822A (en) * 2016-02-26 2017-09-06 프리시젼바이오 주식회사 Diagnostic apparatus for immunoassay

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295934A (en) * 1987-01-29 1988-12-02 バースペック リミテッド Fast scan spectrophotometer
US5652654A (en) * 1996-08-12 1997-07-29 Asimopoulos; George Dual beam spectrophotometer
JP2001264165A (en) * 2000-03-17 2001-09-26 Hitachi Ltd Spectrophotometer and measurement method
JP2002156282A (en) * 2000-11-16 2002-05-31 Shimadzu Corp Spectrophotometer
JP2005224530A (en) * 2004-02-16 2005-08-25 Olympus Corp Glucose concentration measuring apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295934A (en) * 1987-01-29 1988-12-02 バースペック リミテッド Fast scan spectrophotometer
US5652654A (en) * 1996-08-12 1997-07-29 Asimopoulos; George Dual beam spectrophotometer
JP2001264165A (en) * 2000-03-17 2001-09-26 Hitachi Ltd Spectrophotometer and measurement method
JP2002156282A (en) * 2000-11-16 2002-05-31 Shimadzu Corp Spectrophotometer
JP2005224530A (en) * 2004-02-16 2005-08-25 Olympus Corp Glucose concentration measuring apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013545451A (en) * 2010-11-01 2013-12-26 スリーエム イノベイティブ プロパティズ カンパニー Detection method of biological activity
US10047334B2 (en) 2010-11-01 2018-08-14 3M Innovative Properties Company Biological sterilization indicator
WO2015104885A1 (en) * 2014-01-09 2015-07-16 シャープ株式会社 Light-intensity detection device and detection method
US9909988B2 (en) 2014-01-09 2018-03-06 Sharp Kabushiki Kaisha Light intensity detector and detection method
KR20170101822A (en) * 2016-02-26 2017-09-06 프리시젼바이오 주식회사 Diagnostic apparatus for immunoassay
KR101909599B1 (en) * 2016-02-26 2018-10-19 프리시젼바이오 주식회사 Diagnostic apparatus for immunoassay

Also Published As

Publication number Publication date
JP5206322B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
CN109596538B (en) Analysis device and analysis method
ATE546724T1 (en) HIGH SPEED ANALYZER USING NEAR INFRARED RADIATION SENT THROUGH THICK SAMPLES OF OPTICALLY DENSITY MATERIAL
JP2006023284A (en) Detector for ultraviolet-visible-near infrared spectrophotometer
JP5206322B2 (en) Spectrophotometer
EP3372966B1 (en) A portable analyzer using optical emission spectoscopy
WO2009103154A1 (en) Apparatus and method for laser induced breakdown spectroscopy using a multiband sensor
JPH10206356A (en) Fluorescent x-ray analysis device
JP3992390B2 (en) Spectroscopic analysis method
EP4027120B1 (en) Apparatus and method for measuring spectral components of raman scattered light
JP2009121990A (en) Spectroscopic measurement device
CN210036964U (en) High-speed spectrometer
JP3591427B2 (en) Spectrophotometer
JP2009175026A (en) Detector for ultraviolet-visible near infrared spectrophotometer
RU139181U1 (en) OPTICAL-ACOUSTIC GAS ANALYZER
US3700332A (en) Spectral analysis using a modulating mask transmitting selected spectral lines and reference bands
KR100406838B1 (en) Fast Scanning Double Beam Spectrophotometer for Multichannel Spectroscopy
JP2010156655A (en) Spectrophotometer
JP2012026957A (en) Spectrophotometer
JP2013011473A (en) Spectrophotometer
CN110887817B (en) Active and passive dual-mode spectrum detection method
CN110887816B (en) Active and passive dual-mode spectrometer
JP3593559B2 (en) High-speed spectrometer
JP5454492B2 (en) Spectrophotometer
JPH063271A (en) Spectroscopic analysis device
JPH0712718A (en) Spectral analysis device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5206322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3