JP2010107382A - 単層カーボンナノチューブの分散度判定方法及び単層カーボンナノチューブの分散度判定装置 - Google Patents

単層カーボンナノチューブの分散度判定方法及び単層カーボンナノチューブの分散度判定装置 Download PDF

Info

Publication number
JP2010107382A
JP2010107382A JP2008280259A JP2008280259A JP2010107382A JP 2010107382 A JP2010107382 A JP 2010107382A JP 2008280259 A JP2008280259 A JP 2008280259A JP 2008280259 A JP2008280259 A JP 2008280259A JP 2010107382 A JP2010107382 A JP 2010107382A
Authority
JP
Japan
Prior art keywords
carbon nanotubes
walled carbon
dispersion
degree
raman
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008280259A
Other languages
English (en)
Inventor
Yasushi Nakada
靖 中田
Hiroshi Uchihara
博 内原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2008280259A priority Critical patent/JP2010107382A/ja
Priority to US12/398,934 priority patent/US8102524B2/en
Publication of JP2010107382A publication Critical patent/JP2010107382A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】カーボンナノチューブ含有物中での単層カーボンナノチューブの分散度を明確に判定する方法、及び単層カーボンナノチューブの分散度判定装置を提供する。
【解決手段】本発明では、エネルギー1.9±0.1eVのレーザ光をカーボンナノチューブ含有物に照射することによってラマンスペクトルを取得し、単層カーボンナノチューブの集合体に起因するラマンシフト221±5cm-1のピーク(ピークA)の強度に基づき、カーボンナノチューブ含有物中での単層カーボンナノチューブの分散度を判定する。ピークAの強度が小さいほど、カーボンナノチューブ含有物の分散度は大きい。ラマンスペクトルに含まれる特定のピークの強度を測定することにより、カーボンナノチューブ含有物中の単層カーボンナノチューブの分散度を容易にしかも明確に評価することが可能となる。
【選択図】図5

Description

本発明は、カーボンナノチューブ含有物に含まれる単層カーボンナノチューブの内で集合体を形成せずに孤立している単層カーボンナノチューブの割合に対応する分散度を判定する方法、及び単層カーボンナノチューブの分散度判定装置に関する。
カーボンナノチューブ(CNT:carbon nanotube )は、炭素原子からなる6員環(six membered ring )が多数結合して筒状に形成された物質である。通常のカーボンナノチューブは、いくつかの5員環(five membered ring)を含んで閉じた構造となっている。またカーボンナノチューブには、炭素原子の結合した層が複数積層した多数層カーボンナノチューブ(MWCNT:multi-walled carbon nanotube)と、単層の筒状に形成された単層カーボンナノチューブ(SWCNT:single-walled carbon nanotube )とがある。
図12は、単層カーボンナノチューブを示す模式図である。市販されているカーボンナノチューブは、複数の単層カーボンナノチューブが凝集した集合体からなっている。図12(a)は、単層カーボンナノチューブの集合体を示す。複数の単層カーボンナノチューブが束状に凝集し、集合体を形成している。図12(b)は、個々の単層カーボンナノチューブが集合体から分離し、孤立した単層カーボンナノチューブが分散している状態を示す。孤立した単層カーボンナノチューブは、近赤外(near infrared )領域で光ルミネセンス(photoluminescence )を生じることが知られており、発光材料としての応用の可能性が注目されている。一方で、図12(a)に示すような複数の単層カーボンナノチューブが凝集した集合体は光ルミネセンスを生じないことが知られている。そこで、カーボンナノチューブを利用した発光材料を開発するためには、個々の単層カーボンナノチューブが分散したカーボンナノチューブ含有物を作成し、作成したカーボンナノチューブ含有物の特性を調べることが必要となる。
従来、界面活性剤(surfactant)を用いて可溶化したカーボンナノチューブの溶液を作成し、作成した溶液を板上に滴下して乾燥させることにより、カーボンナノチューブ含有物の薄膜試料を作成する方法が知られている。特許文献1には、界面活性剤としてカルボキシルメチルセルロース(CMC:carboxymethylcellulose)を用いることにより、単層カーボンナノチューブが分散したカーボンナノチューブ含有物の薄膜試料を作成する技術が開示されている。このようにして作成した薄膜試料を対象として、カーボンナノチューブ含有物の特性を調べることができる。
特開2007−320828号公報
カーボンナノチューブ含有物を作成する際には、単層カーボンナノチューブを完全に分散させることは難しく、また一旦分散させた単層カーボンナノチューブが再度凝集して集合体を形成することもある。このため、作成したカーボンナノチューブ含有物に含まれる単層カーボンナノチューブの内で集合体を形成せずに孤立している単層カーボンナノチューブの割合に対応する分散度は、カーボンナノチューブ含有物によってばらつきがある。前述のように、単層カーボンナノチューブの集合体は光ルミネセンスを生じないので、カーボンナノチューブ含有物を発光材料として利用する場合には、単層カーボンナノチューブの分散度は発光材料の品質に影響する。そこで、カーボンナノチューブ含有物における単層カーボンナノチューブの分散度を評価することが必要となる。カーボンナノチューブ含有物の光ルミネセンス分光(photoluminescence spectrometry)又は光吸収分光(absorption spectrophotometry)で観測できるピークの幅等が分散度に対応するものの、分散度以外の要因でピーク波形が変化する等の原因により、明確に分散度を評価することは困難であった。
本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、カーボンナノチューブ含有物のラマン分光分析(Raman spectroscopic analysis)を行い、単層カーボンナノチューブの集合体に起因するラマン散乱光(Raman scattering light)を検出することにより、カーボンナノチューブ含有物中での単層カーボンナノチューブの分散度を明確に判定する方法、及び単層カーボンナノチューブの分散度判定装置を提供することにある。
また本発明の他の目的とするところは、単層カーボンナノチューブの集合体に起因するラマン散乱光を確実に検出できるようにすることにより、どのようなカーボンナノチューブ含有物であっても、単層カーボンナノチューブの分散度を明確に判定する方法を提供することにある。
更に本発明の他の目的とするところは、カーボンナノチューブ含有物の各箇所からのラマン散乱光を検出することにより、単層カーボンナノチューブの分散度の分布を得ることができる単層カーボンナノチューブの分散度判定方法、及び単層カーボンナノチューブの分散度判定装置を提供することにある。
本発明に係る単層カーボンナノチューブの分散度判定方法は、カーボンナノチューブ含有物に含まれる単層カーボンナノチューブの内で集合体を形成せずに孤立している単層カーボンナノチューブの割合に対応する分散度を判定する方法において、単色光をカーボンナノチューブ含有物へ入射することによって発生するラマン散乱光を検出し、前記単色光に応じた所定のラマンシフトに対応するラマン散乱光の強度を測定し、測定したラマン散乱光の強度に基づいて、前記カーボンナノチューブ含有物中の単層カーボンナノチューブの分散度を判定することを特徴とする。
本発明に係る単層カーボンナノチューブの分散度判定方法は、前記カーボンナノチューブ含有物へ入射する単色光のエネルギーは1.9±0.1eVであり、前記所定のラマンシフトは、波数で210〜230cm-1であることを特徴とする。
本発明に係る単層カーボンナノチューブの分散度判定方法は、複数のラマンシフトに対応するラマン散乱光を検出することによってラマンスペクトルを取得し、前記所定のラマンシフトに対応するラマン散乱光の強度として、取得したラマンスペクトルに含まれる前記所定のラマンシフトに対応するピークの強度を他の特定のラマンシフトに対応するピークの強度で正規化した強度を測定することを特徴とする。
本発明に係る単層カーボンナノチューブの分散度判定方法は、前記カーボンナノチューブ含有物を作成するに際し、前記カーボンナノチューブ含有物に含まれるカーボンナノチューブに、前記所定のラマンシフトに対応するラマン散乱光の原因となる大きさの単層カーボンナノチューブを混合することを特徴とする。
本発明に係る単層カーボンナノチューブの分散度判定方法は、前記カーボンナノチューブ含有物は、平面状部分を含む形状に形成された固体であり、前記単色光はビーム状をなし、前記カーボンナノチューブ含有物の平面状部分内で前記単色光を入射する箇所を移動させ、前記単色光を入射する箇所を移動させながら検出したラマン散乱光に基づいて単層カーボンナノチューブの分散度を判定することにより、前記カーボンナノチューブ含有物中の単層カーボンナノチューブの分散度分布を取得することを特徴とする。
本発明に係る単層カーボンナノチューブの分散度判定装置は、カーボンナノチューブ含有物に含まれる単層カーボンナノチューブの内で集合体を形成せずに孤立している単層カーボンナノチューブの割合に対応する分散度を判定する装置において、単色光をカーボンナノチューブ含有物へ入射することによって発生するラマン散乱光を検出する手段と、前記単色光に応じた所定のラマンシフトに対応するラマン散乱光の強度を測定する手段と、測定したラマン散乱光の強度に基づいて、前記カーボンナノチューブ含有物中の単層カーボンナノチューブの分散度を判定する手段とを備えることを特徴とする。
本発明に係る単層カーボンナノチューブの分散度判定装置は、カーボンナノチューブ含有物に含まれる単層カーボンナノチューブの内で集合体を形成せずに孤立している単層カーボンナノチューブの割合に対応する分散度を判定する装置において、平面状部分を含む形状に形成されたカーボンナノチューブ含有物に対して、ビーム状の単色光を入射する手段と、前記カーボンナノチューブ含有物の平面状部分内で前記単色光を入射する箇所を移動させる手段と、前記単色光を入射する箇所を移動させながらラマン散乱光を検出する手段と、前記単色光に応じた所定のラマンシフトに対応するラマン散乱光の強度を測定する手段と、測定したラマン散乱光の強度に基づいて、前記カーボンナノチューブ含有物中の単層カーボンナノチューブの分散度を判定する手段と、前記単色光を入射した各箇所と各箇所からのラマン散乱光に基づいて求めた単層カーボンナノチューブの分散度とを関連付けることにより、前記カーボンナノチューブ含有物中の単層カーボンナノチューブの分散度分布を取得する手段とを備えることを特徴とする。
本発明においては、単色光をカーボンナノチューブ含有物に照射することによってラマン散乱光を検出し、単層カーボンナノチューブの集合体に起因する所定のラマンシフトに対応するラマン散乱光の強度に基づき、単層カーボンナノチューブの分散度を判定する。所定のラマンシフトに対応するラマン散乱光の強度が小さいほど分散度は大きくなる。
また本発明においては、エネルギー1.9±0.1eVの単色光をカーボンナノチューブ含有物に照射することによってラマン散乱光を検出し、単層カーボンナノチューブの集合体に起因するラマンシフト210〜230cm-1のラマン散乱光の強度に基づき、単層カーボンナノチューブの分散度を判定する。エネルギー1.9±0.1eVのレーザ光を用いた場合は、単層カーボンナノチューブの集合体に起因するラマンシフト210〜230cm-1のラマン散乱光が明瞭に観測され、単層カーボンナノチューブ分散度の判定が可能になる。
また本発明においては、ラマンスペクトルを取得し、単層カーボンナノチューブの集合体に起因する所定のラマンシフトに対応するピークの強度を、他の特定のピークで正規化し、正規化したピークの強度に基づいて単層カーボンナノチューブの分散度を判定する。正規化により、試料間でのラマン散乱光の強度及び分散度の比較が可能となる。
また本発明においては、所定のラマンシフトのラマン散乱光の原因となる大きさの単層カーボンナノチューブを混合してカーボンナノチューブ含有物を作成し、作成したカーボンナノチューブ含有物からのラマン散乱光を測定する。本発明で用いる単層カーボンナノチューブの集合体に起因するラマン散乱光は、直径が略0.9nmの単層カーボンナノチューブが原因となって観測されるものである。直径が略0.9nmの単層カーボンナノチューブをカーボンナノチューブ含有物に混合することにより、単層カーボンナノチューブの集合体に起因するラマン散乱光が観測され、単層カーボンナノチューブの分散度を判定することが可能になる。
更に本発明にあっては、カーボンナノチューブ含有物の平面状部分にビーム状の単色光を入射する箇所を移動させ、単色光を入射した各箇所について単層カーボンナノチューブの分散度を判定し、カーボンナノチューブ含有物中での単層カーボンナノチューブの分散度分布を取得する。
本発明にあっては、カーボンナノチューブ含有物からのラマン散乱光を検出し、所定のラマンシフトに対応するラマン散乱光の強度を測定することにより分散度を判定できるので、カーボンナノチューブ含有物中の単層カーボンナノチューブの分散度を容易にしかも明確に評価することが可能となる。
また本発明にあっては、分散度を判定するための指標となるラマン散乱光を生じないカーボンナノチューブを主に含むカーボンナノチューブ含有物であっても、直径が略0.9nmの単層カーボンナノチューブを混合することにより、単層カーボンナノチューブの分散度を判定することが可能となる。従って、どのようなカーボンナノチューブを含むカーボンナノチューブ含有物であっても、単層カーボンナノチューブの分散度を明確に評価することが可能となる。
更に本発明にあっては、単層カーボンナノチューブの分散度の分布は、光ルミネセンスの発光分布に対応するので、カーボンナノチューブ含有物中の単層カーボンナノチューブの分散度分布を取得することにより、カーボンナノチューブ含有物の発光材料としての品質を評価することが可能となる等、本発明は優れた効果を奏する。
以下本発明をその実施の形態を示す図面に基づき具体的に説明する。本発明では、単層カーボンナノチューブを含むカーボンナノチューブ含有物からのラマン散乱光をラマン分光測定装置(Raman spectrometer)で測定し、測定結果に基づいてカーボンナノチューブ含有物中での単層カーボンナノチューブの分散度を判定する。
(実施の形態1)
図1は、単層カーボンナノチューブを含むカーボンナノチューブ溶液を作成する方法の例を示す概念図である。まず、図1(a)に示す如く、溶媒である水(H2 O)に対して、重量百分率で約2%のカルボキシメチルセルロース(CMC)と、単層カーボンナノチューブを含むカーボンナノチューブとを投入する。混合及び攪拌を行い、カーボンナノチューブを含む溶液を作成する。CMCは、親水基(hydrophilic group )及び疎水基(hydrophobic group )を多数含んだ鎖状高分子(chain polymer )であり、複数の疎水基がカーボンナノチューブを取り囲むことによってカーボンナノチューブを水に可溶化(solubilization)する。
次に、図1(b)に示す如く、超音波発振子11を用いて溶液内に超音波を照射し、溶液内に単層カーボンナノチューブを分散させる。当初のカーボンナノチューブは、複数の単層カーボンナノチューブが凝集した集合体を多く含んでいる。超音波の振動によって、集合体から個々の単層カーボンナノチューブが分離し、分離した単層カーボンナノチューブはCMCによって可溶化され、孤立した単層カーボンナノチューブが溶液内に分散する。
次に、図1(c)に示す如く、作成した溶液を注射器12に詰め、注射器12から押し出した溶液をフィルタ13に通過させることによって、溶液をフィルタ13で濾過したカーボンナノチューブ溶液14を作成する。フィルタ13の孔径は、可溶化した単層カーボンナノチューブが通過することが可能であり、単層カーボンナノチューブの集合体及び多層カーボンナノチューブが通過し難い大きさに設定してある。例えば、フィルタ13の孔径は0.2μm程度である。フィルタ13の孔径は、カーボンナノチューブ溶液中に分散させるべき単層カーボンナノチューブの大きさ及び長さに応じて設定すればよい。
図2は、単層カーボンナノチューブを含む薄膜試料を作成する方法を示す概念図である。薄膜試料は、スピンコーティング(spin coating)により作成される。即ち、図2(a)に示す如く、単層カーボンナノチューブを含むカーボンナノチューブ溶液14を、回転する基板22に滴下する。基板22には石英基板等を用いる。滴下されたカーボンナノチューブ溶液14は基板22上で広がると同時に水が蒸発し、図2(b)に示す如く、基板22上に薄膜試料21が形成される。このようにして作成した薄膜試料21は、カーボンナノチューブ溶液14中から溶媒である水が揮発しており、ほぼ単層カーボンナノチューブ及びCMCからなる。薄膜試料21は、本発明におけるカーボンナノチューブ含有物となる。
図3は、実施の形態1に係るラマン分光測定装置の構造を示す概略図である。ラマン分光測定装置は、本発明に係る単層カーボンナノチューブの分散度判定装置である。ラマン分光測定装置は、レーザ光源31及び試料台32を備え、レーザ光源31が発したレーザ光は、ハーフミラー35で進行方向が変更され、対物レンズ36を介して試料台32上の試料に照射される構成となっている。本実施の形態では、薄膜試料21を形成した基板22を試料台32に載置してある。即ち、レーザ光源31からのレーザ光は、試料台32上に載置された基板22の面上に形成された薄膜試料21に照射される。また本実施の形態では、レーザ光源31が発するレーザ光の波長は633nmとなっている。レーザ光が薄膜試料21に照射されることにより、ラマン散乱光及びレイリー散乱光(Rayleigh scattering light )を含む散乱光が薄膜試料21で発生する。ラマン分光測定装置は、更に、分光器33及び光学ノッチフィルタ37を備え、薄膜試料21で発生した散乱光は、対物レンズ36、ハーフミラー35及び光学ノッチフィルタ37を通過した後で分光器33へ入射される構成となっている。光学ノッチフィルタ37は、ノッチ周波数がレイリー散乱光の周波数、即ちレーザ光源31が発するレーザ光の周波数となるように構成されている。薄膜試料21で発生した散乱光の内、レイリー散乱光は光学ノッチフィルタ37によって除去され、ラマン散乱光が分光器33へ入射される。
またラマン分光測定装置は、CCD(Charge Coupled Device )光センサ又は光電子増倍管(PMT:photomultiplier tube)を用いてなる光検出器34を備える。分光器33は、入射したラマン散乱光を分光し、光検出器34は、分光器33が分光したラマン散乱光を検出する。ラマン分光測定装置は、更に、分光器33及び光検出器34に接続されたコンピュータ4を備える。光検出器34は、検出したラマン散乱光の光量に対応する電気信号をコンピュータ4へ入力する。なお、光検出器34は、その他の光センサを用いてなる構成であってもよい。
図4は、コンピュータ4の内部構成を示すブロック図である。コンピュータ4は、パーソナルコンピュータ(PC)等の汎用コンピュータを用いて構成されている。コンピュータ4は、演算を行うCPU41と、演算に伴って発生する一時的な情報を記憶するRAM42と、光ディスク等の記録媒体40から情報を読み取るCD−ROMドライブ等のドライブ部43と、ハードディスク等の記憶部44とを備えている。CPU41は、記録媒体40からコンピュータプログラム441をドライブ部43に読み取らせ、読み取ったコンピュータプログラム441を記憶部44に記憶させる。コンピュータプログラム441は必要に応じて記憶部44からRAM42へロードされ、ロードされたコンピュータプログラム441に基づいてCPU41はラマン分光測定装置に必要な処理を実行する。
またコンピュータ4は、使用者が操作することによる各種の処理指示等の情報が入力されるキーボード又はポインティングデバイス等の操作部45と、各種の情報を表示する液晶ディスプレイ等の表示部46とを備えている。更にコンピュータ4は、分光器33及び光検出器34に接続されるインタフェース部47を備える。
CPU41は、インタフェース部47を介して分光器33へ必要な制御信号を送信することにより、分光器33が入射されたラマン散乱光の中から取り出すラマン散乱光の波長を制御する。光検出器34は、分光器33が取り出したラマン散乱光を検出し、検出したラマン散乱光の光量を示す電気信号をコンピュータ4へ入力する。CPU41は、光検出器34からの電気信号をインタフェース部47で受け付け、分光器33が取り出したラマン散乱光の波長をラマンシフト(Raman shift )に変換し、ラマンシフトと光検出器34が検出したラマン散乱光の光量とを関連付けて記憶部44に記憶する。CPU41は、分光器33が取り出すラマン散乱光の波長を変化させながら光検出器34からの電気信号をインタフェース部47で順次受け付け、各ラマンシフトに対応するラマン散乱光の光量を記憶部44に記憶する。以上のようにして、コンピュータ4は、ラマンスペクトル(Raman spectrum)を取得する処理を行う。
図5は、ラマン分光測定装置が取得したラマンスペクトルを示す特性図である。図5に示すラマンスペクトルは、薄膜試料21へ入射するレーザ光の波長を633nmとしたラマンスペクトルである。図5の横軸は、ラマンシフトを波数(wave number )で示し、単位はcm-1である。図5の縦軸は、各波数のラマンシフトに対応する光量を任意単位で示す。コンピュータ4のCPU41は、取得したラマンスペクトルを図5に示すように表示部46に表示させる処理を行うことができる。図5(a)は、複数の単層カーボンナノチューブが凝集した集合体を含む薄膜試料21にレーザ光を照射することによって得られたラマンスペクトルを示す。また図5(b)は、孤立した単層カーボンナノチューブが分散した薄膜試料21にレーザ光を照射することによって得られたラマンスペクトルを示す。
図5(a)に示すラマンスペクトルには、A,B,C,Dで示すピークが存在する。図5(a)に示すラマンスペクトルでは、ピークAのラマンシフトは222cm-1、ピークBのラマンシフトは197cm-1、ピークCのラマンシフトは257cm-1、ピークDのラマンシフトは285cm-1となっている。図5(b)に示すラマンスペクトルには、ピークB,C,Dは存在するものの、ピークAは明確に観測することができない。図5(b)に示すラマンスペクトルでは、ピークBのラマンシフトは197cm-1、ピークCのラマンシフトは254cm-1、ピークDのラマンシフトは285cm-1となっている。
図5に示すラマンスペクトルに含まれるピークB,C,Dの夫々は、孤立した単層カーボンナノチューブから得られるラマンスペクトルに含まれるピークとして理論的に予想できるものである。しかしながら、図5(a)に示すピークAは、理論的に予想できないピークである。ピークAは、図5(a)に示すように、複数の単層カーボンナノチューブが凝集した集合体を含む試料から得られたラマンスペクトルに含まれており、図5(b)に示すように、孤立した単層カーボンナノチューブが分散した試料から得られたラマンスペクトルには含まれていない。またピークAの強度は、単層カーボンナノチューブの内で集合体の割合が多い場合は大きく、孤立した単層カーボンナノチューブの割合が多い場合は小さくなる。従って、ピークAに対応するラマン散乱光は、複数の単層カーボンナノチューブが凝集した集合体に起因するラマン散乱光であり、近接したカーボンナノチューブ間の相互作用に関係するラマン散乱光であると推測できる。またピークAの強度は、複数の単層カーボンナノチューブが凝集した集合体の量に依存すると推測される。
以上のように、ピークAの強度は、複数の単層カーボンナノチューブが凝集した集合体の量に依存するので、単層カーボンナノチューブが集合体を形成せずに孤立している割合に対応する分散度を判定するための指標となる。即ち、ピークAの強度が小さいほど分散度は大きく、ピークAの強度が大きいほど分散度は小さい。各ピークの強度は単層カーボンナノチューブの全体的な量にも依存するので、ピークAの強度を分散度の指標として利用するには、ピークAの強度を他の所定のピークの強度で正規化すればよい。本実施の形態では、ピークAの強度をピークBの強度で正規化する。例えば、ピークAの強度をピークBの強度で除算するか、又はピークAとピークBとの強度比を保ちながらピークBの強度を所定の大きさとしたときのピークAの強度を計算する等の方法により、ピークAの強度を正規化する。なお、本発明は、ピークC又はピークD等の他のピークを用いてピークAの強度を正規化する形態であってもよい。
図5に示すラマンスペクトルは、レーザ光の波長を633nmとした場合に得られるラマンスペクトルである。他の波長のレーザ光を用いた場合は、図5に示すラマンスペクトルとは異なったラマンスペクトルが得られる。他の波長のレーザ光を用いた場合でも、孤立した単層カーボンナノチューブに起因するピークB,C,D及び単層カーボンナノチューブの集合体に起因するピークAに相当するピークを含むラマンスペクトルが得られる。しかし、他の波長のレーザ光を用いた場合では、ピークAに相当するピークは、ラマンスペクトル中で他のピークに重畳しており、明瞭に観測することができない。レーザ光の波長を633nmとした場合は、他の波長のレーザ光を用いた場合に比べて、単層カーボンナノチューブの集合体に起因するピークAが明瞭に観測され、強度を測定する際の他のピークからの影響が最も小さい。従って、分散度を判定するための良好な指標となるピークAを取得するためには、レーザ光源31は波長が633nm付近のレーザ光を発する構成とする必要がある。
波長が633nmであるレーザ光のエネルギーはほぼ1.9eVとなる。励起光のエネルギーの幅が0.1eVの範囲内では同等の共鳴現象が発生するので、本発明では、レーザ光源31が発するレーザ光のエネルギーは、1.9±0.1eVの範囲であればよい。このレーザ光のエネルギーは、波長620nm〜690nmに対応する。分散度を判定するための良好な指標となるピークAのラマンシフトは221±5cm-1であり、この±5cm-1はラマン分光測定装置の測定誤差である。同様に、ピークBのラマンシフトは197±5cm-1である。
コンピュータ4の記憶部44は、正規化したピークAの強度と比較することによって単層カーボンナノチューブの分散度を判定するための標準データ442を記憶している。標準データ442は、単層カーボンナノチューブの分散度が特定の値に調整された標準試料について予め計測された正規化したピークAの強度を記録してある。単層カーボンナノチューブの分散度は、カーボンナノチューブ含有物中で孤立している単層カーボンナノチューブの割合、又は所定量の単層カーボンナノチューブを含むカーボンナノチューブ含有物が発する光ルミネセンスの発光量等で定義される。標準データ442では、特定の分散度の値と正規化したピークAの強度の値とが関連付けて記録されている。
図6は、実施の形態1に係るラマン分光測定装置が薄膜試料21中の単層カーボンナノチューブの分散度を判定する処理の手順を示すフローチャートである。レーザ光源31が波長633nmのレーザ光を薄膜試料21へ照射し、薄膜試料21からの散乱光から分光器34が各波長のラマン散乱光を取り出し、光検出器34が各波長のラマン散乱光を検出して電気信号をコンピュータ4へ入力することにより、ラマン分光測定装置はラマンスペクトルを取得する(S11)。コンピュータ4のCPU41は、次に、取得したラマンスペクトルから、ラマンシフト221±5cm-1のピークAの強度、及びラマンシフト197±5cm-1のピークBの強度を測定する(S12)。ステップS12では、CPU41は、221±5cm-1の範囲のラマンシフトに対応する光量の内で最大の光量の値をラマンスペクトルから取得することにより、ピークAの強度を測定する。またCPU41は、221cm-1等、221±5cm-1の範囲内で予め定めたラマンシフトに対応する光量の値をラマンスペクトルから取得することにより、ピークAの強度を測定してもよい。また、210〜230cm-1のラマンシフトの範囲であれば、ピークA以外のピークが含まれないので、210〜230cm-1のラマンシフトの範囲からピークAの強度を取得することも可能である。即ち、CPU41は、210〜230cm-1の範囲のラマンシフトに対応する光量の内で最大の光量の値をラマンスペクトルから取得することにより、ピークAの強度を測定してもよい。またCPU41は、210〜230cm-1の範囲内で予め定めたラマンシフトに対応する光量の値をラマンスペクトルから取得することにより、ピークAの強度を測定してもよい。CPU41は、ピークBの強度についても、同様にして測定すればよい。
CPU41は、次に、測定したピークAの強度をピークBの強度で除算することにより、ピークAの強度を正規化する(S13)。CPU41は、次に、正規化したピークAの強度の値と、記憶部44に記憶する標準データ442とを比較することにより、薄膜試料21に含まれる単層カーボンナノチューブの分散度を判定する(S14)。ステップS14では、CPU41は、標準データ442に記録されているピークAの強度の値の内、ステップS13で求めた正規化したピークAの強度に最も近い値を選択し、選択した値に関連付けられた分散度の値を、単層カーボンナノチューブの分散度の値であると判定する処理を行う。またCPU41は、標準データ442に記録された分散度と正規化したピークAの強度との関係を外挿した外挿曲線上でステップS13で求めた正規化したピークAの強度に対応する分散度の値を求め、求めた値を単層カーボンナノチューブの分散度の値であると判定する処理を行ってもよい。またCPU41は、ステップS13で求めた正規化したピークAの強度が分散度xに関連付けられたピークAの強度の値以下である場合に分散度がx以上であると判定する等、単層カーボンナノチューブの分散度を特定の値の範囲内にあると判定する処理を行ってもよい。CPU41は、次に、分散度の判定結果を記憶部44に記憶するか又は表示部46に表示する処理を行い、処理を終了する。
以上詳述した如く、本発明においては、1.9±0.1eVのレーザ光をカーボンナノチューブ含有物に照射することによってラマンスペクトルを取得し、単層カーボンナノチューブの集合体に起因するラマンシフト221±5cm-1のピークの強度に基づき、単層カーボンナノチューブの分散度を判定する。ラマンスペクトルに含まれる特定のピークの強度を測定することにより分散度を判定できるので、カーボンナノチューブ含有物中の単層カーボンナノチューブの分散度を容易にしかも明確に評価することが可能となる。
なお、本実施の形態においては、図1及び図2を用いて説明した方法で作成した薄膜試料21についてラマン散乱光を測定し、単層カーボンナノチューブの分散度を判定する例を示したが、カーボンナノチューブ含有物を作成する方法はこれに限るものではない。本発明では、本実施の形態で説明した方法とは異なる方法で作成したカーボンナノチューブ含有物についても、同様にラマン散乱光を測定し、単層カーボンナノチューブの分散度を判定することが可能である。またカーボンナノチューブ含有物は薄膜である必要はなく、他の形状であってもよい。例えば、カーボンナノチューブ含有物は溶液であってもよい。
また本実施の形態においては、ラマン分光測定装置が備えたコンピュータ4で分散度の判定の処理を行う形態を示したが、本発明は、これに限るものではなく、ラマンスペクトルの取得と分散度の判定とを別の装置で行う形態であってもよい。例えば、ラマン分光測定装置では、ラマンスペクトルの取得までを行い、取得されたラマンスペクトルのデータを他のコンピュータで読み込み、読み込んだラマンスペクトルに基づいて他のコンピュータで分散度を判定する処理を行う形態であってもよい。
(実施の形態2)
図7は、実施の形態2に係るラマン分光測定装置の構造を示す概略図である。本実施の形態に係るラマン分光測定装置は、分光器を備えておらず、光学バンドパスフィルタ38を備える。光学バンドパスフィルタ38は、1.9±0.1eVのレーザ光により発生するラマンシフト221±5cm-1のラマン散乱光を通過させ、他の波長の光を遮断する構成となっている。またラマン分光測定装置は、薄膜試料21で発生した散乱光が、対物レンズ36、ハーフミラー35、光学ノッチフィルタ37及び光学バンドパスフィルタ38を通過した後で光検出器34へ入射される構成となっている。ラマン分光測定装置のその他の構成は、図3に示した実施の形態1の場合と同様であり、対応する部分に同符号を付してその説明を省略する。レーザ光源31から1.9±0.1eVのレーザ光が薄膜試料21に照射されることにより発生する散乱光の内、レイリー散乱光は光学ノッチフィルタ37によって除去され、ラマンシフト221±5cm-1のラマン散乱光のみが光学バンドパスフィルタ38を通過して光検出器34に検出される。
コンピュータ4の内部構成は、図4に示した実施の形態1の場合と同様であり、その説明を省略する。コンピュータ4の記憶部44が記憶する標準データ442は、単層カーボンナノチューブの分散度が特定の値に調整された標準試料について予め計測されたラマン散乱光の強度を記録してある。標準データ442が記録するラマン散乱光の強度は、同一装置又は同一光学設計の装置において標準試料に1.9±0.1eVのレーザ光を照射して発生するラマンシフト221±5cm-1のラマン散乱光の強度である。標準データ442では、特定の分散度の値とラマン散乱光の強度の値とが関連付けて記録されている。
図8は、実施の形態2に係るラマン分光測定装置が薄膜試料21中の単層カーボンナノチューブの分散度を判定する処理の手順を示すフローチャートである。レーザ光源31が1.9±0.1eVのレーザ光(波長およそ633nm)を薄膜試料21へ照射し、発生するラマンシフト221±5cm-1のラマン散乱光を光検出器34が検出する(S21)。光検出器43は、検出したラマン散乱光の光量に対応する電気信号をコンピュータ4へ入力し、コンピュータ4のCPU41は、入力された電気信号に基づき、検出したラマン散乱光の強度を測定する(S22)。
CPU41は、次に、測定したラマン散乱光の強度と記憶部44に記憶する標準データ442とを比較することにより、薄膜試料21に含まれる単層カーボンナノチューブの分散度を判定する(S23)。ステップS23では、CPU41は、実施の形態1におけるステップS14と同様の処理を行えばよい。CPU41は、次に、分散度の判定結果を記憶部44に記憶するか又は表示部46に表示する処理を行い、処理を終了する。
以上詳述した如く、本実施の形態においても、カーボンナノチューブ含有物中の単層カーボンナノチューブの分散度を容易にしかも明確に評価することが可能となる。本実施の形態においては、ラマン分光測定装置が分光器を備える必要がないので、本発明に係る単層カーボンナノチューブの分散度判定装置を小型化することができる。またラマンスペクトルを取得する必要がないので、分散度を判定するために必要な時間を短縮することが可能となる。
(実施の形態3)
前述のように、孤立した単層カーボンナノチューブには光ルミネセンスを発生させる性質がある。この光ルミネセンスの発光波長は、単層カーボンナノチューブの直径に依存する。従って、特定波長の光ルミネセンスを発生させる発光材料を作成するには、特定の直径を有する単層カーボンナノチューブを含んだカーボンナノチューブ含有物を作成すればよい。ところで、1.9±0.1eVのレーザ光により発生するラマンシフト221±5cm-1のラマン散乱光は、直径が略0.9nmの単層カーボンナノチューブが原因となって観測されるものである。光ルミネセンスの波長を調整するために単層カーボンナノチューブの直径を調整した場合は、直径が略0.9nmの単層カーボンナノチューブがカーボンナノチューブ含有物に殆ど含まれなくなる場合がある。このときは、分散度を判定するための指標となる前述のラマン散乱光は観測できず、カーボンナノチューブ含有物中の単層カーボンナノチューブの分散度を判定することができない。
実施の形態3では、カーボンナノチューブ含有物を作成する際に、直径が略0.9nmの単層カーボンナノチューブを混合する。図9は、実施の形態3に係るカーボンナノチューブ含有物を作成する方法の一例を示す概念図である。溶媒である水(H2 O)に対して、カルボキシメチルセルロース(CMC)と、光ルミネセンスの波長を調整するために直径を調整した単層カーボンナノチューブとを投入し、更に、直径が略0.9nmの単層カーボンナノチューブを投入する。混合及び攪拌を行い、カーボンナノチューブを含む溶液を作成する。直径が略0.9nmの単層カーボンナノチューブを投入する量は、直径が略0.9nmの単層カーボンナノチューブに起因する光ルミネセンスの発光量をどの程度にするかに応じて調整する。例えば、直径が略0.9nmの単層カーボンナノチューブに起因する光ルミネセンスの発光量を抑制する必要がある場合は投入量を少なくし、直径が略0.9nmの単層カーボンナノチューブに起因する光ルミネセンスの発光が許容される場合は、投入量を多くする。
図9に示すように作成した溶液を用いて、実施の形態1と同様にしてカーボンナノチューブ含有物を作成する。作成したカーボンナノチューブ含有物中では、直径が略0.9nmの単層カーボンナノチューブの一部は、他の単層カーボンナノチューブと凝集して集合体を形成する。このように作成した単層カーボンナノチューブに1.9±0.1eVのレーザ光を照射してラマンスペクトルを取得した場合は、図5に示す各ピークを含むラマンスペクトルが取得される。直径が略0.9nmの単層カーボンナノチューブは、集合体中で他の単層カーボンナノチューブから相互作用を受け、ラマンシフト221±5cm-1に相当するラマン散乱光を発生させる。作成したカーボンナノチューブ含有物を用いて実施の形態1又は2で説明した分散度の判定方法を実行することにより、カーボンナノチューブ含有物中の単層カーボンナノチューブの分散度を判定する。
以上詳述した如く、本実施の形態においては、カーボンナノチューブ含有物に直径が略0.9nmの単層カーボンナノチューブを混合することにより、カーボンナノチューブ含有物中の単層カーボンナノチューブの分散度を判定することを可能にする。分散度を判定するための指標となるラマン散乱光を生じないカーボンナノチューブを主に含むカーボンナノチューブ含有物であっても、本実施の形態により、単層カーボンナノチューブの分散度を判定することが可能となる。従って、本発明では、どのようなカーボンナノチューブを含むカーボンナノチューブ含有物であっても、単層カーボンナノチューブの分散度を明確に評価することが可能となる。
(実施の形態4)
実施の形態4では、カーボンナノチューブ含有物である薄膜試料21中での単層カーボンナノチューブの分散度の分布を取得する。図10は、実施の形態4に係るラマン分光測定装置の構造を示す概略図である。本実施の形態に係るラマン分光測定装置は、レーザ光源31からのレーザ光の光径を対物レンズ36で1μm程度に絞ることができる構成となっている。また試料台32は、図示しない駆動機構により、レーザ光の光軸に交差する2方向に試料を移動させることができる構成となっている。コンピュータ4の内部構成は、図4に示した実施の形態1の場合と同様である。試料台32は、コンピュータ4のインタフェース部47に接続されている。コンピュータ4は、試料台32に試料を移動させるための制御信号を試料台32へ送信する処理を行い、試料台32は、コンピュータ4からの制御信号に従って試料を移動させる。本実施の形態に係るラマン分光装置では、コンピュータ4からの制御信号に従って試料台32が基板22及び薄膜試料21を移動させることにより、レーザ光が薄膜試料21上に入射する箇所を移動させることができる。ラマン分光測定装置のその他の構成は、図3に示した実施の形態1の場合と同様であり、対応する部分に同符号を付してその説明を省略する。
図11は、実施の形態4に係るラマン分光測定装置が薄膜試料21中の単層カーボンナノチューブの分散度の分布をする処理の手順を示すフローチャートである。コンピュータ4のCPU41は、使用者が操作部45を操作することによって入力された指示に従って、薄膜試料21上で分散度の分布を取得する範囲を設定する(S31)。CPU41は、所定の制御信号をインタフェース部47から試料台32へ送信し、試料台32は、制御信号に従って、設定した範囲内で最初に分散度を判定する箇所へレーザ光が入射される最初の位置へ薄膜試料21を移動させる(S32)。ラマン分光測定装置は、レーザ光源31から薄膜試料21へレーザ光を照射し、図6のフローチャートに示すステップS11〜S14の処理と同様の処理を実行することにより、薄膜試料21上でレーザ光が入射した箇所におけるラマンスペクトルの取得、及び単層カーボンナノチューブの分散度の判定を行う(S33)。
CPU41は、次に、判定した単層カーボンナノチューブの分散度を、レーザ光の入射箇所を示す情報に関連づけて記憶部44に記憶させる(S34)。CPU41は、次に、設定した範囲内での分散度の判定が全て終了したか否かを判定する(S35)。設定した範囲内での分散度の判定がまだ終了していない場合は(S35:NO)、CPU41は、所定の制御信号をインタフェース部47から試料台32へ送信し、試料台32は、制御信号に従って、設定した範囲内で次に分散度を判定する箇所へレーザ光が入射される位置へ薄膜試料21を移動させる(S36)。ラマン分光測定装置は、次に、処理をステップS33へ戻し、次の箇所でのラマンスペクトルの取得及び分散度の判定を行う。ステップS35で、設定した範囲内での分散度の判定が終了している場合は(S35:YES)、ラマン分光測定装置は処理を終了する。
以上の処理で薄膜試料21上の各箇所での単層カーボンナノチューブの分散度を記憶部44に記憶することにより、ラマン分光測定装置は、薄膜試料21上での単層カーボンナノチューブの分散度の分布を取得する。CPU41は、例えば、薄膜試料21上の各箇所と分散度とを対応させた画像を生成して表示部46に表示させる等、分散度の分布を可視化する処理を行うことも可能である。
以上詳述した如く、本実施の形態においては、単層カーボンナノチューブを含む薄膜試料21上の各箇所と各個所における分散度とを関連付けることにより、薄膜試料21上での単層カーボンナノチューブの分散度の分布を取得する。単層カーボンナノチューブの分散度の分布は、光ルミネセンスの発光分布に対応するので、カーボンナノチューブ含有物中の単層カーボンナノチューブの分散度分布を取得することにより、カーボンナノチューブ含有物の発光材料としての品質を評価することが可能となる。
なお、本実施の形態においては、薄膜試料21を測定対象とした形態を示しているが、これに限るものではなく、平面状の部分を含んだ形状であれば、測定対象となるカーボンナノチューブ含有物の形状はその他の形状であってもよい。例えば、測定対象となるカーボンナノチューブ含有物の形状は、塊状のカーボンナノチューブ含有物を切断して面出しした形状であってもよい。また本実施の形態においては、カーボンナノチューブ含有物の一箇所についてラマンスペクトルの判定と分散度の判定を行い、各箇所について処理を繰り返す処理を示したが、本発明では、レーザ光の入射箇所を移動させながらラマンスペクトルの分布を一旦取得し、取得したラマンスペクトルの分布から分散度の分布を求める処理を行ってもよい。また本実施の形態においては、ラマン分光測定装置は、試料を試料台32で移動させる形態を示したが、これに限るものではなく、レーザ光の光軸を移動させることによってレーザ光を試料へ入射する箇所を移動させる形態であってもよい。
また本実施の形態においては、薄膜試料21中での単層カーボンナノチューブの分散度の分布を取得する形態を示したが、本発明は、薄膜試料21中での単層カーボンナノチューブの分散度の平均を求める形態であってもよい。この形態の場合は、ラマン分光測定装置は、レーザ光の入射箇所を移動させながら複数の測定点でラマンスペクトルを取得し、取得した複数のラマンスペクトルの平均を計算し、計算した平均のラマンスペクトルに基づいて単層カーボンナノチューブの分散度を判定する。このような処理により、薄膜試料21中での単層カーボンナノチューブの分散度の平均が得られることになり、判定した分散度の値の信頼性及び再現性を向上させることができる。
単層カーボンナノチューブを含むカーボンナノチューブ溶液を作成する方法の例を示す概念図である。 単層カーボンナノチューブを含む薄膜試料を作成する方法を示す概念図である。 実施の形態1に係るラマン分光測定装置の構造を示す概略図である。 コンピュータの内部構成を示すブロック図である。 本発明に係るラマン分光測定装置が取得したラマンスペクトルを示す特性図である。 実施の形態1に係るラマン分光測定装置が薄膜試料中の単層カーボンナノチューブの分散度を判定する処理の手順を示すフローチャートである。 実施の形態2に係るラマン分光測定装置の構造を示す概略図である。 実施の形態2に係るラマン分光測定装置が薄膜試料中の単層カーボンナノチューブの分散度を判定する処理の手順を示すフローチャートである。 実施の形態3に係るカーボンナノチューブ含有物を作成する方法の一例を示す概念図である。 実施の形態4に係るラマン分光測定装置の構造を示す概略図である。 実施の形態4に係るラマン分光測定装置が薄膜試料中の単層カーボンナノチューブの分散度の分布をする処理の手順を示すフローチャートである。 単層カーボンナノチューブを示す模式図である。
符号の説明
21 薄膜試料(カーボンナノチューブ含有物)
31 レーザ光源
32 試料台
33 分光器
34 光検出器
4 コンピュータ
41 CPU
42 RAM
44 記憶部
441 コンピュータプログラム
442 標準データ
47 インタフェース部

Claims (7)

  1. カーボンナノチューブ含有物に含まれる単層カーボンナノチューブの内で集合体を形成せずに孤立している単層カーボンナノチューブの割合に対応する分散度を判定する方法において、
    単色光をカーボンナノチューブ含有物へ入射することによって発生するラマン散乱光を検出し、
    前記単色光に応じた所定のラマンシフトに対応するラマン散乱光の強度を測定し、
    測定したラマン散乱光の強度に基づいて、前記カーボンナノチューブ含有物中の単層カーボンナノチューブの分散度を判定すること
    を特徴とする単層カーボンナノチューブの分散度判定方法。
  2. 前記カーボンナノチューブ含有物へ入射する単色光のエネルギーは1.9±0.1eVであり、
    前記所定のラマンシフトは、波数で210〜230cm-1であることを特徴とする請求項1に記載の単層カーボンナノチューブの分散度判定方法。
  3. 複数のラマンシフトに対応するラマン散乱光を検出することによってラマンスペクトルを取得し、
    前記所定のラマンシフトに対応するラマン散乱光の強度として、取得したラマンスペクトルに含まれる前記所定のラマンシフトに対応するピークの強度を他の特定のラマンシフトに対応するピークの強度で正規化した強度を測定すること
    を特徴とする請求項1又は2に記載の単層カーボンナノチューブの分散度判定方法。
  4. 前記カーボンナノチューブ含有物を作成するに際し、前記カーボンナノチューブ含有物に含まれるカーボンナノチューブに、前記所定のラマンシフトに対応するラマン散乱光の原因となる大きさの単層カーボンナノチューブを混合すること
    を特徴とする請求項1乃至3のいずれか一つに記載の単層カーボンナノチューブの分散度判定方法。
  5. 前記カーボンナノチューブ含有物は、平面状部分を含む形状に形成された固体であり、
    前記単色光はビーム状をなし、
    前記カーボンナノチューブ含有物の平面状部分内で前記単色光を入射する箇所を移動させ、
    前記単色光を入射する箇所を移動させながら検出したラマン散乱光に基づいて単層カーボンナノチューブの分散度を判定することにより、前記カーボンナノチューブ含有物中の単層カーボンナノチューブの分散度分布を取得すること
    を特徴とする請求項1乃至4のいずれか一つに記載の単層カーボンナノチューブの分散度判定方法。
  6. カーボンナノチューブ含有物に含まれる単層カーボンナノチューブの内で集合体を形成せずに孤立している単層カーボンナノチューブの割合に対応する分散度を判定する装置において、
    単色光をカーボンナノチューブ含有物へ入射することによって発生するラマン散乱光を検出する手段と、
    前記単色光に応じた所定のラマンシフトに対応するラマン散乱光の強度を測定する手段と、
    測定したラマン散乱光の強度に基づいて、前記カーボンナノチューブ含有物中の単層カーボンナノチューブの分散度を判定する手段と
    を備えることを特徴とする単層カーボンナノチューブの分散度判定装置。
  7. カーボンナノチューブ含有物に含まれる単層カーボンナノチューブの内で集合体を形成せずに孤立している単層カーボンナノチューブの割合に対応する分散度を判定する装置において、
    平面状部分を含む形状に形成されたカーボンナノチューブ含有物に対して、ビーム状の単色光を入射する手段と、
    前記カーボンナノチューブ含有物の平面状部分内で前記単色光を入射する箇所を移動させる手段と、
    前記単色光を入射する箇所を移動させながらラマン散乱光を検出する手段と、
    前記単色光に応じた所定のラマンシフトに対応するラマン散乱光の強度を測定する手段と、
    測定したラマン散乱光の強度に基づいて、前記カーボンナノチューブ含有物中の単層カーボンナノチューブの分散度を判定する手段と、
    前記単色光を入射した各箇所と各箇所からのラマン散乱光に基づいて求めた単層カーボンナノチューブの分散度とを関連付けることにより、前記カーボンナノチューブ含有物中の単層カーボンナノチューブの分散度分布を取得する手段と
    を備えることを特徴とする単層カーボンナノチューブの分散度判定装置。
JP2008280259A 2008-10-30 2008-10-30 単層カーボンナノチューブの分散度判定方法及び単層カーボンナノチューブの分散度判定装置 Pending JP2010107382A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008280259A JP2010107382A (ja) 2008-10-30 2008-10-30 単層カーボンナノチューブの分散度判定方法及び単層カーボンナノチューブの分散度判定装置
US12/398,934 US8102524B2 (en) 2008-10-30 2009-03-05 Degree-of-dispersion determination method for single-walled carbon nanotubes and degree-of-dispersion determination apparatus for single-walled carbon nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008280259A JP2010107382A (ja) 2008-10-30 2008-10-30 単層カーボンナノチューブの分散度判定方法及び単層カーボンナノチューブの分散度判定装置

Publications (1)

Publication Number Publication Date
JP2010107382A true JP2010107382A (ja) 2010-05-13

Family

ID=42130984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008280259A Pending JP2010107382A (ja) 2008-10-30 2008-10-30 単層カーボンナノチューブの分散度判定方法及び単層カーボンナノチューブの分散度判定装置

Country Status (2)

Country Link
US (1) US8102524B2 (ja)
JP (1) JP2010107382A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230100176A (ko) 2021-12-28 2023-07-05 한국화학연구원 탄소나노튜브 및 분산제를 포함하는 분산액의 분산특성 평가방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010053749B4 (de) * 2010-12-08 2015-02-19 Airbus Defence and Space GmbH Vorrichtung zum Identifizieren biotischer Partikel
KR101644603B1 (ko) 2014-04-10 2016-08-02 한국과학기술연구원 탄소나노소재-고분자 복합소재 내의 탄소나노소재의 분산도 측정방법
CN108124462B (zh) * 2017-11-28 2020-11-17 深圳达闼科技控股有限公司 一种混合物检测方法及设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4459212B2 (ja) 2002-02-13 2010-04-28 株式会社東京大学Tlo 単層カーボンナノチューブ含有組成物
US7759413B2 (en) * 2003-10-30 2010-07-20 The Trustees Of The University Of Pennsylvania Dispersion method
JP2007197304A (ja) 2005-12-29 2007-08-09 Toray Ind Inc カーボンナノチューブの製造方法及びカーボンナノチューブ含有組成物
JP2007320828A (ja) 2006-06-02 2007-12-13 Horiba Ltd カーボンナノチューブ含有物質の作成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230100176A (ko) 2021-12-28 2023-07-05 한국화학연구원 탄소나노튜브 및 분산제를 포함하는 분산액의 분산특성 평가방법

Also Published As

Publication number Publication date
US20100110421A1 (en) 2010-05-06
US8102524B2 (en) 2012-01-24

Similar Documents

Publication Publication Date Title
Hartschuh et al. Near‐field Raman spectroscopy using a sharp metal tip
Costa et al. Characterization of carbon nanotubes by Raman spectroscopy
Botti et al. Surface‐enhanced Raman spectroscopy for trace‐level detection of explosives
JP5841475B2 (ja) 低コヒーレンス光源を用いた動的光散乱測定法及び動的光散乱測定装置
Shi et al. Trace analysis of polycyclic aromatic hydrocarbons using calixarene layered gold colloid film as substrates for surface‐enhanced Raman scattering
JP2010107382A (ja) 単層カーボンナノチューブの分散度判定方法及び単層カーボンナノチューブの分散度判定装置
Kim et al. Measurement of lateral and axial resolution of confocal Raman microscope using dispersed carbon nanotubes and suspended graphene
Freeman et al. Excitation of Cy5 in self-assembled lipid bilayers using optical microresonators
Le et al. Polarization effects in Raman spectroscopy of light‐absorbing carbon
Schofield et al. Narrow and Stable Single Photon Emission from Dibenzoterrylene in para‐Terphenyl Nanocrystals
Inaba et al. Effects of chirality and defect density on the intermediate frequency raman modes of individually suspended single-walled carbon nanotubes
JP2015025764A (ja) 欠陥検査装置
US9134246B2 (en) Light source adjustment unit, optical measurement device, subject information obtaining system, and wavelength adjustment program
Tschannen et al. Tip-enhanced Raman spectroscopy of confined carbon chains
JP4835531B2 (ja) カーボンナノチューブ分散評価装置
JP2017150814A (ja) 走査プローブ顕微鏡およびこれを用いた試料の観察方法
Saniel et al. An initial study on the feasibility of using rudimentary SERS in quick chemical assessment of ambient aerosols
Stürzl et al. Novel micro-Raman setup with tunable laser excitation for time-efficient resonance Raman microscopy and imaging
Schellenberg et al. Mass and shape determination of optically levitated nanoparticles
Naraghi et al. Near-field coherence reveals defect densities in atomic monolayers
Kato et al. Near-field absorption imaging by a Raman nano-light source
JP4702246B2 (ja) フォトルミネッセンス測定装置
Streit et al. Chromatic aberration short-wave infrared spectroscopy: nanoparticle spectra without a spectrometer
Van Horn et al. Optical characterization and confocal fluorescence imaging of mechanochromic acrylate polymers
Wróbel et al. Drop-coating deposition surface-enhanced Raman spectroscopy on silver substrates for biofluid analysis