JP2010107359A - Capacitance sensor - Google Patents

Capacitance sensor Download PDF

Info

Publication number
JP2010107359A
JP2010107359A JP2008279751A JP2008279751A JP2010107359A JP 2010107359 A JP2010107359 A JP 2010107359A JP 2008279751 A JP2008279751 A JP 2008279751A JP 2008279751 A JP2008279751 A JP 2008279751A JP 2010107359 A JP2010107359 A JP 2010107359A
Authority
JP
Japan
Prior art keywords
medium
film
electrodes
electrode
capacitance sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008279751A
Other languages
Japanese (ja)
Inventor
Koji Teramura
浩二 寺村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2008279751A priority Critical patent/JP2010107359A/en
Publication of JP2010107359A publication Critical patent/JP2010107359A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacitance sensor with a simpler structure than conventional ones and capable of quick measurement of a thickness of a film-like medium. <P>SOLUTION: The capacitance sensor 10 detects the thickness of the film-like medium by means of a change in capacitance caused by inserting the film-like medium B into an interval between opposite electrodes comprising two oppositely placed electrodes. The sensor includes a first opposite electrode 14 connected with an AC source 12, a second opposite electrode 16 which is grounded, an inter-electrode wire 18 for electrically connecting between the first and second opposite electrodes in series, and a detector 22 provided at a middle point P of the inter-electrode wire and having an output end 20 for outputting the change in the capacitance. The film-like medium is inserted into the first opposite electrode. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、紙等の膜状媒体の厚みを検出する静電容量センサに関する。   The present invention relates to a capacitance sensor that detects the thickness of a film-like medium such as paper.

膜状媒体の搬送路中に、所定の間隔を空けて互いに向き合った2枚の電極を備えてなる対向電極を設け、この電極間の静電容量の変化を出力することにより、紙等の膜状媒体の厚みを検出する静電容量センサが知られている。   By providing a counter electrode comprising two electrodes facing each other at a predetermined interval in the conveyance path of the film-like medium, and outputting a change in capacitance between the electrodes, a film such as paper A capacitance sensor for detecting the thickness of a medium is known.

ところで、紙等の膜状媒体の誘電率は、一般に対向電極の電極間に存在する媒質(通常は大気)の誘電率とほぼ同等の大きさである。そのため、この種の静電容量センサでは、出力が変化した場合に、それが、膜状媒質の厚みの変化によるものなのか、それとも媒質の誘電率が温度や湿度等の影響で変化したものによるのかを分離することが難しかった。   By the way, the dielectric constant of a film-like medium such as paper is generally about the same as the dielectric constant of a medium (usually air) existing between the electrodes of the counter electrode. For this reason, in this type of capacitance sensor, when the output changes, it is due to the change in the thickness of the film-like medium, or the change in the dielectric constant of the medium due to the influence of temperature, humidity, etc. It was difficult to separate.

この問題点を解決するために、膜状媒体の誘電率を測定する第1対向電極の他に、媒質の誘電率の変化を測定する第2対向電極を設ける技術が提案されている(例えば、特許文献1参照。
特開昭59−131104号公報
In order to solve this problem, a technique has been proposed in which a second counter electrode that measures a change in the dielectric constant of the medium is provided in addition to the first counter electrode that measures the dielectric constant of the film-like medium (for example, See Patent Document 1.
JP 59-131104 A

しかし、特許文献1に開示された技術では、第1及び第2対向電極の出力から、媒質の誘電率の影響を除いて膜状媒体にのみ由来する誘電率の変化を求めるために、別に演算回路を設ける必要があった。   However, in the technique disclosed in Patent Document 1, in order to obtain the change in the dielectric constant derived only from the film-like medium from the outputs of the first and second counter electrodes, excluding the influence of the dielectric constant of the medium, another calculation is performed. It was necessary to provide a circuit.

そのため、特許文献1に開示された技術では、静電容量センサの回路構成が複雑化する虞があるとともに、演算回路での演算時間が必要であるため、膜状媒体の厚みを迅速に測定できない虞があった。   For this reason, the technique disclosed in Patent Document 1 may complicate the circuit configuration of the capacitance sensor, and requires a calculation time in the calculation circuit, so that the thickness of the film-like medium cannot be measured quickly. There was a fear.

この発明は、上述したような問題点に鑑みなされたものである。従って、この発明の目的は、従来よりも簡単な構造で、かつ、膜状媒体の厚みを迅速に測定できる静電容量センサを提供することにある。   The present invention has been made in view of the above-described problems. Accordingly, an object of the present invention is to provide a capacitance sensor that has a simpler structure than the conventional one and can rapidly measure the thickness of a film-like medium.

この発明の発明者は、膜状媒体が挿入される第1対向電極と、媒質の誘電率の変化を評価する第2対向電極とを、電極間配線で電気的に直列に接続し、この電極間配線の中点から検出信号を取り出すことにより上述した課題を解決できることに想到した。   The inventor of the present invention electrically connects a first counter electrode into which a film-like medium is inserted and a second counter electrode for evaluating a change in the dielectric constant of the medium in series by inter-electrode wiring. The inventors have conceived that the above-described problem can be solved by taking out a detection signal from the midpoint of the intermediate wiring.

従って、この発明の静電容量センサは、対向して配置された2枚の電極からなる対向電極の当該電極間の間隔に膜状媒体を挿入することにより生じる静電容量の変化を利用して、膜状媒体の厚みを検出する。   Therefore, the capacitance sensor of the present invention utilizes the change in capacitance caused by inserting a film-like medium into the gap between the electrodes of the counter electrode composed of two electrodes arranged opposite to each other. The thickness of the film-like medium is detected.

そして、静電容量センサは、対向電極として、交流電源に接続された第1対向電極及び接地された第2対向電極とを有するとともに、第1及び第2対向電極間を電気的に直列に接続する電極間配線と、電極間配線の接続中点に設けられていて、静電容量の変化を表わす検出信号を出力する出力端とを有する検出器を備えていて、第1対向電極の2枚の電極間に膜状媒体が挿入される。   The capacitance sensor has a first counter electrode connected to an AC power source and a grounded second counter electrode as counter electrodes, and electrically connects the first and second counter electrodes in series. Provided with a detector having an inter-electrode wiring and an output terminal for outputting a detection signal indicating a change in capacitance, provided at a connection midpoint of the inter-electrode wiring, and two of the first counter electrodes A membranous medium is inserted between the electrodes.

この静電容量センサの好適な実施態様によれば、検出器が、膜状媒体の進行方向に沿って、複数個並列して配置されていたり、進行方向に直角に複数個配置されたりしていてもよい。   According to a preferred embodiment of this capacitance sensor, a plurality of detectors are arranged in parallel along the traveling direction of the film-like medium, or a plurality of detectors are disposed at right angles to the traveling direction. May be.

この静電容量センサの好適な他の実施態様によれば、第1対向電極が、共通の交流電源に接続された複数の第1サブ対向電極を備えており、複数の第1サブ対向電極が、膜状媒体の進行方向に沿って並列に配置されており、電極間配線が、第1サブ対向電極のそれぞれと共通の第2対向電極とを電気的に直列に接続する複数のサブ電極間配線を備えており、及びサブ電極間配線のそれぞれには、サブ電極間配線を切り替えるためのスイッチが設けられていてもよい。   According to another preferred embodiment of the capacitance sensor, the first counter electrode comprises a plurality of first sub counter electrodes connected to a common AC power source, and the plurality of first sub counter electrodes are Between the plurality of sub-electrodes that are arranged in parallel along the traveling direction of the film-like medium, and the inter-electrode wiring electrically connects each of the first sub-counter electrodes and the common second counter electrode in series. Each of the inter-sub-electrode wirings may be provided with a switch for switching the inter-sub-electrode wiring.

この発明の静電容量センサは上述のように構成されている。その結果、従来よりも簡単な構造で、かつ、膜状媒体の厚みを迅速に測定できる静電容量センサが得られる。   The capacitance sensor of the present invention is configured as described above. As a result, it is possible to obtain a capacitance sensor that has a simpler structure than the conventional one and can quickly measure the thickness of the film-like medium.

以下、図面を参照して、この発明の実施の形態について説明する。なお、各図は、各構成要素の形状、大きさ及び配置関係について、この発明が理解できる程度に概略的に示してある。また、以下、この発明の好適な構成例について説明するが、各構成要素の材質及び数値的条件などは、単なる好適例にすぎない。従って、この発明は、以下の実施の形態に何ら限定されない。また、各図において、共通する構成要素には同符号を付し、その説明を省略することもある。   Embodiments of the present invention will be described below with reference to the drawings. Each drawing schematically shows the shape, size, and arrangement relationship of each component to the extent that the present invention can be understood. Moreover, although the preferable structural example of this invention is demonstrated hereafter, the material of each component, a numerical condition, etc. are only a suitable example. Therefore, the present invention is not limited to the following embodiments. Moreover, in each figure, the same code | symbol is attached | subjected to a common component and the description may be abbreviate | omitted.

(実施の形態1)
図1〜図3を参照して、実施の形態1の静電容量センサについて説明する。
(Embodiment 1)
The capacitance sensor according to the first embodiment will be described with reference to FIGS.

(構造)
図1は、この実施の形態の静電容量センサの構成を概略的に示す模式図である。
(Construction)
FIG. 1 is a schematic diagram schematically showing the configuration of the capacitance sensor of this embodiment.

この実施の形態の静電容量センサ10は、静電容量の変化を表わす検出信号を出力する出力端20を有する検出器22を備えている。   The capacitance sensor 10 of this embodiment includes a detector 22 having an output terminal 20 that outputs a detection signal representing a change in capacitance.

この検出器22は、交流電源12に接続された第1対向電極14と、接地された第2対向電極16と、第1及び第2対向電極14及び16間を電気的に直列に接続する電極間配線18とを有していて、出力端20を電極間配線18の接続中点Pに設けている。また、静電容量センサ10は、好ましくは例えば処理装置29を備えていてもよい。   The detector 22 includes a first counter electrode 14 connected to the AC power source 12, a grounded second counter electrode 16, and electrodes that electrically connect the first and second counter electrodes 14 and 16 in series. The output end 20 is provided at the connection midpoint P of the interelectrode wiring 18. In addition, the capacitance sensor 10 may preferably include a processing device 29, for example.

第1対向電極14は、従来公知の平行平板コンデンサであり、所定の間隔を空けて対向した電極14a及び14bを備えている。電極14aは、交流電源12に接続されている。そして、電極14bには、電極間配線18が接続されている。電極間配線18としては、従来公知のリード線や、プリント基板配線等を用いることができる。   The first counter electrode 14 is a conventionally known parallel plate capacitor, and includes electrodes 14a and 14b facing each other with a predetermined interval. The electrode 14 a is connected to the AC power source 12. The interelectrode wiring 18 is connected to the electrode 14b. As the interelectrode wiring 18, a conventionally known lead wire, printed circuit board wiring, or the like can be used.

第2対向電極16は、従来公知の平行平板コンデンサであり、所定の間隔を空けて対向した電極16a及び16bを備えている。電極16aは、電極間配線18に接続されている。一方、電極16bは、接地されている。   The second counter electrode 16 is a conventionally known parallel plate capacitor, and includes electrodes 16a and 16b facing each other at a predetermined interval. The electrode 16 a is connected to the interelectrode wiring 18. On the other hand, the electrode 16b is grounded.

第1及び第2対向電極14及び16のそれぞれの電極間距離、すなわち、電極14aと14bとの間の距離d、及び電極16aと16bとの間の距離dは、互いに等しく設定することが好ましい。より詳細には、第1及び第2対向電極14及び16のそれぞれの電極間距離は、好ましくは、例えば約5〜6mmとする。   The distance between the electrodes of the first and second counter electrodes 14 and 16, that is, the distance d between the electrodes 14a and 14b and the distance d between the electrodes 16a and 16b are preferably set to be equal to each other. . More specifically, the distance between the first and second counter electrodes 14 and 16 is preferably about 5 to 6 mm, for example.

また、第1及び第2対向電極14及び16のそれぞれの電極面積、すなわち、電極14a,14b,16a及び16bの各面積は、互いに等しくSとする。   The electrode areas of the first and second counter electrodes 14 and 16, that is, the areas of the electrodes 14a, 14b, 16a, and 16b are set to be equal to each other.

さらに、第1対向電極14の電極14a及び14b間と、第2対向電極16の電極16a及び16b間には、いずれも同じ誘電率を有する媒質が介在している。この実施の形態の場合、電極間に介在する媒質は、誘電率ε≒1の大気とする。以降、大気の誘電率を「ε0」で表わす。   Further, a medium having the same dielectric constant is interposed between the electrodes 14 a and 14 b of the first counter electrode 14 and between the electrodes 16 a and 16 b of the second counter electrode 16. In the case of this embodiment, the medium interposed between the electrodes is an atmosphere having a dielectric constant ε≈1. Hereinafter, the dielectric constant of the atmosphere is represented by “ε0”.

この実施の形態の静電容量センサ10においては、第1対向電極14の電極14a及び14b間に、例えば紙幣等の膜状媒体Bを挿入することで生じる静電容量の変化を、電圧の変化として検出し、第1及び第2対向電極14及び16のそれぞれから出力される信号を合成した電圧を後述する出力端20から出力する。以降、出力端20から出力される電圧の変化を「検出信号」と称する。   In the capacitance sensor 10 of this embodiment, a change in capacitance caused by inserting a film-like medium B such as a banknote between the electrodes 14a and 14b of the first counter electrode 14 is a change in voltage. And a voltage obtained by synthesizing signals output from the first and second counter electrodes 14 and 16 is output from the output terminal 20 described later. Hereinafter, a change in voltage output from the output terminal 20 is referred to as a “detection signal”.

処理装置29は、アンプ24、A/Dコンバータ26、及び処理部28を備えていて、従来と同様に検出信号から膜状媒体Bの厚みを求める処理を行う。   The processing device 29 includes an amplifier 24, an A / D converter 26, and a processing unit 28, and performs a process for obtaining the thickness of the film-like medium B from the detection signal as in the conventional case.

アンプ24は、出力端20から出力される検出信号を電気的に増幅する機能を有する。アンプ24で増幅された検出信号は、A/Dコンバータ26に出力される。   The amplifier 24 has a function of electrically amplifying the detection signal output from the output terminal 20. The detection signal amplified by the amplifier 24 is output to the A / D converter 26.

A/Dコンバータ26は、アンプ24に電気的に接続されており、アンプ24から入力された検出信号をA/D変換して、デジタル信号とした上で、処理部28に出力する。   The A / D converter 26 is electrically connected to the amplifier 24. The A / D converter 26 converts the detection signal input from the amplifier 24 into a digital signal and outputs the digital signal to the processing unit 28.

処理部28は、不図示の中央処理部と、内部記憶部と、入出力部とを備えたCPUとして構成されている。処理部28は、A/Dコンバータ26から入力されたデジタル化された検出信号から、膜状媒体Bの厚みを求める処理を行う。より詳細には、A/Dコンバータ26から入力されたデジタル化された検出信号は、不図示の内部記憶部に一時的に記憶される。記憶された検出信号は、中央処理部に読み出されているプログラムに従い、所定の計算が行われ、膜状媒体Bの厚みDが求められる。   The processing unit 28 is configured as a CPU including a central processing unit (not shown), an internal storage unit, and an input / output unit. The processing unit 28 performs processing for obtaining the thickness of the film-like medium B from the digitized detection signal input from the A / D converter 26. More specifically, the digitized detection signal input from the A / D converter 26 is temporarily stored in an internal storage unit (not shown). The stored detection signal is subjected to a predetermined calculation according to a program read to the central processing unit, and the thickness D of the film-like medium B is obtained.

なお、処理部28を構成するCPUは、従来公知であるとともに、この発明の要旨とは直接関係しないのでこれ以上の説明を省略する。   The CPU that constitutes the processing unit 28 is well known in the art and is not directly related to the gist of the present invention.

(動作)
次に、図1及び図2を参照して、この実施の形態の静電容量センサ10の動作について説明する。
(Operation)
Next, with reference to FIG.1 and FIG.2, operation | movement of the electrostatic capacitance sensor 10 of this embodiment is demonstrated.

静電容量センサ10の動作の理解を容易にするために、図2に示す従来型の静電容量センサ100(以下、「従来型センサ100」と称する。)との比較で説明を行う。   In order to facilitate the understanding of the operation of the capacitance sensor 10, a description will be given in comparison with the conventional capacitance sensor 100 (hereinafter referred to as “conventional sensor 100”) shown in FIG.

まず図2を参照して、従来型センサ100の構造について簡単に説明する。従来型センサ100は、1個の対向電極102を備えている。この対向電極102は、平行平板コンデンサとして構成されている。より詳細には、従来型センサ100では、電極102a及び102bが平行に対向して配置されている。なお、電極102a及び102bの間の距離はdとする。また、電極102a及び102bの面積はそれぞれSとする。   First, the structure of the conventional sensor 100 will be briefly described with reference to FIG. The conventional sensor 100 includes one counter electrode 102. The counter electrode 102 is configured as a parallel plate capacitor. More specifically, in the conventional sensor 100, the electrodes 102a and 102b are arranged to face each other in parallel. Note that the distance between the electrodes 102a and 102b is d. The areas of the electrodes 102a and 102b are S.

この従来型センサ100の対向電極102に誘電率がεの膜状媒体Bが挿入された場合を考える。なお、膜状媒体Bの誘電率εは、大気の誘電率ε0よりも若干大きい値、例えば、ε≒10とする。   Consider a case where a film-like medium B having a dielectric constant ε is inserted into the counter electrode 102 of the conventional sensor 100. Note that the dielectric constant ε of the film-like medium B is slightly larger than the dielectric constant ε0 of the atmosphere, for example, ε≈10.

また、膜状媒体Bの厚みDは、電極間距離dに比べて十分に薄いものとする。ここで、「十分に薄い」とは、膜状媒体Bの厚みが、電極間距離dの1/100以下であることを示す(D≦d/100)。   In addition, the thickness D of the film-like medium B is sufficiently thinner than the inter-electrode distance d. Here, “sufficiently thin” indicates that the thickness of the film-like medium B is 1/100 or less of the inter-electrode distance d (D ≦ d / 100).

このとき、対向電極102に介在している大気の温度や湿度が変化したために、大気の誘電率ε0がε0’へと僅かに変化したとする。ここで、ε0の変化量Δε0、すなわちΔε0=|ε0−ε0’|/ε0は、約50%とする。   At this time, it is assumed that the atmospheric permittivity ε0 slightly changes to ε0 ′ because the temperature and humidity of the atmosphere present in the counter electrode 102 have changed. Here, the change amount Δε0 of ε0, that is, Δε0 = | ε0−ε0 ′ | / ε0 is about 50%.

この場合、膜状媒体Bの誘電率εが大気の誘電率に比べて非常に大きい値(例えば、ε=1000等)である場合には、この大気の誘電率の変化は無視しても、十分な精度で、膜状媒体Bに由来する静電容量の変化を検出することができる。その結果、正確に膜状媒体Bの厚みDを評価することができる。   In this case, when the dielectric constant ε of the film-like medium B is a very large value (for example, ε = 1000) compared to the atmospheric dielectric constant, the change in the dielectric constant in the atmosphere can be ignored. It is possible to detect a change in capacitance derived from the film-like medium B with sufficient accuracy. As a result, the thickness D of the film-like medium B can be accurately evaluated.

しかし、この例のように、膜状媒体Bの誘電率εが、大気の誘電率ε0とほぼ同等である場合には、僅かな大気の誘電率の変化Δε0も、静電容量の測定に影響を与えてしまう。つまり、大気の誘電率の変化に由来する電圧変化が検出信号に対して無視できなくなる大きな値となる。結果として、得られた膜状媒体Bの厚みDの測定結果に大きな誤差が含まれてしまう。   However, when the dielectric constant ε of the film-like medium B is almost equal to the dielectric constant ε0 of the atmosphere as in this example, a slight change Δε0 of the atmospheric dielectric constant also affects the capacitance measurement. Will be given. That is, the voltage change resulting from the change in the dielectric constant of the atmosphere is a large value that cannot be ignored with respect to the detection signal. As a result, a large error is included in the measurement result of the thickness D of the obtained film-like medium B.

それに対して、この実施の形態の静電容量センサ10は、電気的に直列に接続された第1対向電極14及び第2対向電極16を備えている。そして、図1に示すように、第1対向電極14では、変化した大気の誘電率ε0’を含めた膜状媒体Bの静電容量を検出し、第2対向電極では、変化した大気の誘電率ε0’の静電容量のみを検出する。そして、第1及び第2対向電極14及び16の出力、すなわち、それぞれの静電容量を反映した電圧を合成して、電極間配線18の中点Pに設けられた出力端20からの検出信号として取り出す。   On the other hand, the capacitance sensor 10 of this embodiment includes a first counter electrode 14 and a second counter electrode 16 that are electrically connected in series. As shown in FIG. 1, the first counter electrode 14 detects the capacitance of the film-like medium B including the changed atmospheric permittivity ε0 ′, and the second counter electrode detects the changed atmospheric dielectric. Only the capacitance with the rate ε0 ′ is detected. Then, the outputs of the first and second counter electrodes 14 and 16, that is, the voltages reflecting the respective capacitances are combined, and a detection signal from the output terminal 20 provided at the midpoint P of the interelectrode wiring 18. Take out as.

静電容量センサ10をこのように構成した結果、出力端20から出力される検出信号では、第1及び第2対向電極14及び16の両者で測定された変化した大気の誘電率ε0’に対する静電容量分に依存する電圧成分を相殺しているので、膜状媒体Bの静電容量に由来する検出信号のみを検出することが可能となる。   As a result of configuring the capacitance sensor 10 in this manner, the detection signal output from the output terminal 20 is static for the changed atmospheric permittivity ε0 ′ measured by both the first and second counter electrodes 14 and 16. Since the voltage component depending on the electric capacity is canceled, only the detection signal derived from the electrostatic capacity of the film-like medium B can be detected.

(大気の誘電率変化の相殺機構)
以下、図3(A)〜(C)を参照して、静電容量センサ10が、大気の誘電率変化Δε0を相殺できることについて、さらに詳細に説明する。
(Cancellation mechanism for changes in dielectric constant in the atmosphere)
Hereinafter, with reference to FIGS. 3A to 3C, it will be described in further detail that the capacitance sensor 10 can cancel the change in atmospheric permittivity Δε0.

まず、始めに、図3(A)及び(B)を参照して、膜状媒体Bが第1対向電極14に挿入されていない状態において、大気の誘電率が変化しても静電容量センサ10からの検出信号が不変であることについて説明する。図3(A)は、大気の誘電率がε0の場合に、静電容量センサ10を電気回路として表わした模式図である。図3(B)は、大気の誘電率がε0’の場合に、静電容量センサ10を電気回路として表わした模式図である。   First, referring to FIGS. 3A and 3B, even when the film medium B is not inserted into the first counter electrode 14, even if the atmospheric permittivity changes, the capacitance sensor The fact that the detection signal from 10 is unchanged will be described. FIG. 3A is a schematic diagram showing the capacitance sensor 10 as an electric circuit when the permittivity of the atmosphere is ε0. FIG. 3B is a schematic diagram showing the capacitance sensor 10 as an electric circuit when the dielectric constant of the atmosphere is ε0 ′.

図3(A)に示した大気の誘電率がε0の場合には、第1及び第2対向電極14及び16の静電容量C1及びC2は、従来周知の関係から下記式(1)及び式(2)で与えられる。   When the dielectric constant of the atmosphere shown in FIG. 3A is ε0, the capacitances C1 and C2 of the first and second counter electrodes 14 and 16 are expressed by the following equations (1) and It is given by (2).

C1=ε0×S/d・・・(1)
C2=ε0×S/d・・・(2)
よって、出力端20からの検出信号V1は、下記式(3)で与えられる。
C1 = ε0 × S / d (1)
C2 = ε0 × S / d (2)
Therefore, the detection signal V1 from the output terminal 20 is given by the following equation (3).

V1=(C2/C1)×V=V・・・(3)
なお、式(3)において、Vは、第1対向電極14に印加される電圧を示す。
V1 = (C2 / C1) × V = V (3)
In Expression (3), V represents a voltage applied to the first counter electrode 14.

一方、図3(B)に示したように、大気の誘電率がε0’に変化した場合、第1及び第2対向電極14及び16の静電容量C3及びC4は、従来周知の関係から下記式(4)及び式(5)で与えられる。   On the other hand, as shown in FIG. 3B, when the dielectric constant of the atmosphere changes to ε0 ′, the capacitances C3 and C4 of the first and second counter electrodes 14 and 16 are as follows according to a conventionally known relationship. It is given by equations (4) and (5).

C3=ε0’×S/d・・・(4)
C4=ε0’×S/d・・・(5)
よって、出力端20からの検出信号V2は、下記式(6)で与えられる。
C3 = ε0 ′ × S / d (4)
C4 = ε0 ′ × S / d (5)
Therefore, the detection signal V2 from the output terminal 20 is given by the following equation (6).

V2=(C4/C3)×V=V・・・(6)
ここで、式(3)と式(6)とを比較すると、V1=V2であることが分かる。これは、膜状媒体Bが第1対向電極14に挿入されていない場合に、第1及び第2対向電極14及び16に介在する大気の誘電率ε0が変化したとしても、静電容量センサ10からの出力電圧は等しくなることを示している。
V2 = (C4 / C3) × V = V (6)
Here, comparing Equation (3) with Equation (6), it can be seen that V1 = V2. This is because, when the film-like medium B is not inserted into the first counter electrode 14, even if the dielectric constant ε0 of the air interposed between the first and second counter electrodes 14 and 16 changes, the capacitance sensor 10. It shows that the output voltages from are equal.

以上のことを前提にして、図1に示すように、第1対向電極14に膜状媒体Bが挿入された場合について考える。この場合、電気的にみると、図3(C)のように、電極14aと14bとの間に、3個の直列に接続された静電容量C1a,C1b及びC1cが形成されることになる。なお、図3(C)は、第1対向電極14に膜状媒体Bが挿入された場合に、静電容量センサ10を電気回路として表わした模式図である。   Based on the above, consider the case where the film-like medium B is inserted into the first counter electrode 14 as shown in FIG. In this case, when viewed electrically, as shown in FIG. 3C, three capacitances C1a, C1b, and C1c connected in series are formed between the electrodes 14a and 14b. . FIG. 3C is a schematic diagram showing the capacitance sensor 10 as an electric circuit when the film-like medium B is inserted into the first counter electrode 14.

図3(C)において、C1aは、電極14aと膜状媒体Bとの間に形成される静電容量であり、C1bは、膜状媒体Bの静電容量であり、及びC1cは、膜状媒体Bと電極14bとの間に形成される静電容量である。   In FIG. 3C, C1a is a capacitance formed between the electrode 14a and the film medium B, C1b is a capacitance of the film medium B, and C1c is a film shape. It is a capacitance formed between the medium B and the electrode 14b.

ところで、上述したように、膜状媒体Bの厚みDは、第1対向電極14の電極間距離dよりも十分に小さいので、静電容量C1a及びC1cの直列分は、C1に等しいと置くことができる。   Incidentally, as described above, since the thickness D of the film-like medium B is sufficiently smaller than the inter-electrode distance d of the first counter electrode 14, it is assumed that the series portions of the capacitances C1a and C1c are equal to C1. Can do.

このことから、第1対向電極14に形成された3個の静電容量C1a,C1b及びClcは、静電容量C1と静電容量C1bとが直列に接続されたものと同等であると考えることができる。   From this, it is considered that the three capacitances C1a, C1b, and Clc formed on the first counter electrode 14 are equivalent to those in which the capacitance C1 and the capacitance C1b are connected in series. Can do.

よって、静電容量センサ10全体で考えた場合、第1対向電極14に膜状媒体Bが挿入されることにより、静電容量C1,C2及びC1bが電気的に直列に接続された回路が形成されると考えることができる。   Therefore, when considering the entire capacitance sensor 10, a circuit in which the capacitances C 1, C 2, and C 1 b are electrically connected in series is formed by inserting the film-like medium B into the first counter electrode 14. Can be considered.

ところで、上述したように、静電容量C1とC2とを直列に接続した部分については、大気の誘電率が変化しても検出信号が変化しない。よって、膜状媒体Bが挿入された静電容量センサ10からの検出信号の変化は、静電容量C1b、すなわち、膜状媒体Bの静電容量に由来するものとなる。   By the way, as described above, the detection signal does not change even when the atmospheric permittivity changes in the portion where the capacitances C1 and C2 are connected in series. Therefore, the change in the detection signal from the capacitance sensor 10 in which the film-shaped medium B is inserted is derived from the capacitance C1b, that is, the capacitance of the film-shaped medium B.

つまり、静電容量センサ10では、大気の誘電率が変化したとしても、その誘電率の変化は相殺され、膜状媒体Bの静電容量C1bに由来する検出信号が出力される。   That is, even if the dielectric constant in the atmosphere changes, the capacitance sensor 10 cancels the change in the dielectric constant and outputs a detection signal derived from the capacitance C1b of the film-like medium B.

(効果)
(1)この実施の形態の静電容量センサ10では、第1対向電極14及び第2対向電極16を電気的に直列に接続し、電極間配線18の中点Pに設けた出力端20から検出信号を取り出すという簡単な構成により、検出信号から、電極14aと14b、及び電極16aと16bの間に介在する媒質(大気)の誘電率の変化分を除くことができる。その結果、従来以上により正確に膜状媒質Bの厚みDや枚数を評価することができる。
(effect)
(1) In the capacitance sensor 10 of this embodiment, the first counter electrode 14 and the second counter electrode 16 are electrically connected in series, and from the output end 20 provided at the midpoint P of the interelectrode wiring 18. With a simple configuration of taking out the detection signal, the change in the dielectric constant of the medium (atmosphere) interposed between the electrodes 14a and 14b and the electrodes 16a and 16b can be removed from the detection signal. As a result, the thickness D and the number of the film-like medium B can be more accurately evaluated than before.

より詳細には、従来型センサ100では、厚みDが約100μm程度の膜状媒体Bの枚数を評価することしかできなかったが、この実施の形態の静電容量センサ10では、厚みDが50μmの膜状媒体Bの枚数を評価することができる。   More specifically, in the conventional sensor 100, it was only possible to evaluate the number of film-like media B having a thickness D of about 100 μm, but in the capacitive sensor 10 of this embodiment, the thickness D was 50 μm. The number of film-like media B can be evaluated.

(2)また、静電容量センサ10は、特許文献1に開示された技術とは異なり、複雑な演算回路を必要としない。よって、演算に要する時間等を考慮する必要がなく、より迅速に膜状媒体Bの厚みDや枚数を評価することができる。また、演算回路を設けるスペースを節約できるので、静電容量センサ10をより小型に形成することができる。   (2) Unlike the technique disclosed in Patent Document 1, the capacitance sensor 10 does not require a complicated arithmetic circuit. Therefore, it is not necessary to consider the time required for the calculation, and the thickness D and the number of the film-like media B can be evaluated more quickly. In addition, since the space for providing the arithmetic circuit can be saved, the capacitance sensor 10 can be made smaller.

(変形例)
(1)この実施の形態においては、出力端20を電極間配線18の中点に設けた場合について説明した。しかし、出力端20は、電極間配線18に設けられていれば、中点Pの位置である必要はない。出力端20は、静電容量センサ10の設計に応じて、任意好適な位置に設けることができる。
(Modification)
(1) In this embodiment, the case where the output end 20 is provided at the midpoint of the interelectrode wiring 18 has been described. However, the output end 20 does not have to be at the position of the midpoint P as long as it is provided in the interelectrode wiring 18. The output end 20 can be provided at any suitable position depending on the design of the capacitance sensor 10.

この場合、出力端20から出力される電圧を、中点Pから出力される電圧と比較して、補正しておけばよい。   In this case, the voltage output from the output terminal 20 may be corrected by comparing with the voltage output from the midpoint P.

(2)また、この実施の形態では、電極14aと14bとの間、及び電極16a及び16bとの間に介在する媒質を大気とした場合について説明した。しかし、媒質は大気には限定されず、例えば窒素ガスや、ハロゲンガス等の種々の気体状の媒質を用いることができる。   (2) In this embodiment, the case where the medium interposed between the electrodes 14a and 14b and between the electrodes 16a and 16b is the atmosphere has been described. However, the medium is not limited to the atmosphere, and various gaseous media such as nitrogen gas and halogen gas can be used.

(3)また、この実施の形態では、膜状媒体Bとして紙、特に紙幣を用いた場合について説明した。しかし、膜状媒質Bは、大気の誘電率ε0よりも若干大きな誘電率ε、詳細には、ε0<ε<10であり、厚みDが、電極間距離dの1/100以下であれば、特に限定されない。例えば、樹脂フィルム、布等であっても構わない。   (3) Moreover, in this embodiment, the case where paper, especially a banknote was used as the film-form medium B was demonstrated. However, when the film-like medium B has a dielectric constant ε slightly larger than the dielectric constant ε0 of the atmosphere, specifically, ε0 <ε <10, and the thickness D is 1/100 or less of the inter-electrode distance d, There is no particular limitation. For example, a resin film or cloth may be used.

(4)この実施の形態では、膜状媒体Bを第1対向電極14に挿入する場合について説明した。しかし、膜状媒体Bは、第2対向電極16に挿入してもよい。つまり、第1及び第2対向電極14及び16のいずれか一方にのみ膜状媒体Bが挿入されればよい。このように構成することによっても、静電容量センサ10は、上述したような効果を奏する。   (4) In this embodiment, the case where the film-like medium B is inserted into the first counter electrode 14 has been described. However, the film-like medium B may be inserted into the second counter electrode 16. That is, the film-like medium B only needs to be inserted into one of the first and second counter electrodes 14 and 16. Also by configuring in this way, the capacitance sensor 10 has the effects as described above.

(実施の形態2)
図4を参照して、実施の形態2の静電容量センサについて説明する。図4は、この実施の形態の静電容量センサ30の構成を概略的に示す模式図である。なお、図4において、図1と同様の構成要素には同符号を付し、その説明を省略する。
(Embodiment 2)
With reference to FIG. 4, the electrostatic capacitance sensor of Embodiment 2 is demonstrated. FIG. 4 is a schematic diagram schematically showing the configuration of the capacitance sensor 30 of this embodiment. In FIG. 4, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.

(構造)
この実施の形態の静電容量センサ30は、上述した検出器22が、膜状媒体Bの進行方向に沿って、複数個並列して配置されていたり、進行方向に直角に複数個配置されたりしている。
(Construction)
In the capacitance sensor 30 of this embodiment, a plurality of the detectors 22 described above are arranged in parallel along the traveling direction of the film-like medium B, or a plurality of detectors 22 are arranged perpendicular to the traveling direction. is doing.

すなわち、静電容量センサ30は、実施の形態1で説明した検出器22と同様に構成されている第1〜第n検出器221〜22nを備えている。そして、これらの第1〜第n検出器221〜22nは、膜状媒体Bの搬送方向に沿って並列して配置されている。より詳細には、第1対向電極141〜14nにおいて、電極14a1〜14anと電極14b1〜14bnとがなすそれぞれの間隔の間を膜状媒体Bが搬送されるように、第1〜第n検出器221〜22nが配置されている。   That is, the capacitance sensor 30 includes first to nth detectors 221 to 22n configured in the same manner as the detector 22 described in the first embodiment. The first to n-th detectors 221 to 22n are arranged in parallel along the conveyance direction of the film-like medium B. More specifically, in the first counter electrodes 141 to 14n, the first to nth detectors are used so that the film-like medium B is conveyed between the spaces formed by the electrodes 14a1 to 14an and the electrodes 14b1 to 14bn. 221 to 22n are arranged.

また、静電容量センサ30には、第1〜第n検出器221〜22nの動作を制御するための制御部27が設けられている。制御部27は、不図示の中央処理部と、内部記憶部と、入出力部とを備えたCPUとして構成されている。なお、制御部27を構成するCPUは、従来公知であるとともに、この発明の要旨とは直接関係しないのでこれ以上の説明を省略する。   Further, the electrostatic capacity sensor 30 is provided with a control unit 27 for controlling the operations of the first to nth detectors 221 to 22n. The control unit 27 is configured as a CPU including a central processing unit (not shown), an internal storage unit, and an input / output unit. The CPU constituting the control unit 27 is conventionally well-known and is not directly related to the gist of the present invention, so that further explanation is omitted.

(動作)
静電容量センサ30を構成する個々の検出器221〜22nの動作は、実施の形態1の静電容量センサ10と同様である。
(Operation)
The operations of the individual detectors 221 to 22n constituting the capacitance sensor 30 are the same as those of the capacitance sensor 10 of the first embodiment.

ただし、静電容量センサ30は、n個の検出器221〜22nを備えているので、膜状媒体Bが搬送されていく過程で、これらを所定のタイミングで切り替える必要がある。この切り替えは、制御部27の内部記憶部から中央処理部へと読み出されたプログラムに従い実行される。ただし、この切り替えの具体的な処理内容は、本発明の要旨と直接関係しないので、これ以上の説明を省略する。   However, since the electrostatic capacity sensor 30 includes n detectors 221 to 22n, it is necessary to switch them at a predetermined timing in the process of transporting the film-like medium B. This switching is executed according to the program read from the internal storage unit of the control unit 27 to the central processing unit. However, since the specific processing content of this switching is not directly related to the gist of the present invention, further explanation is omitted.

(効果)
この実施の形態の静電容量センサ30は、実施の形態1の静電容量センサ10と同様の効果を奏する。さらに静電容量センサ30は、n個の検出器221〜22nを配置することにより、膜状媒体Bが大面積の場合や、膜状媒体Bの場所により誘電率が変化していたとしても、これらを独立して検出することができる。その結果、膜状媒体Bの厚みDの変化を2次元的に評価することができる。
(effect)
The capacitance sensor 30 of this embodiment has the same effect as the capacitance sensor 10 of the first embodiment. Furthermore, the electrostatic capacity sensor 30 is arranged with n detectors 221 to 22n, so that even if the film medium B has a large area or the dielectric constant changes depending on the location of the film medium B, These can be detected independently. As a result, the change in the thickness D of the film-like medium B can be evaluated two-dimensionally.

(変形例)
この実施の形態においては、第1〜第n検出器221〜22nを1列に配置する場合について説明したが、第1〜第n検出器221〜22nの配置は、1列には限定されず、複数列にわたって検出器を配置してもよい。このように構成することにより、さらに大面積の膜状媒体Bの測定を行うことができる。また、このように構成することにより、膜状媒体Bの厚みDの平面的な分布を評価することが可能となる。
(Modification)
In this embodiment, the case where the first to n-th detectors 221 to 22n are arranged in one row has been described, but the arrangement of the first to n-th detectors 221 to 22n is not limited to one row. The detectors may be arranged over a plurality of rows. By configuring in this way, it is possible to measure a film medium B having a larger area. Further, with this configuration, the planar distribution of the thickness D of the film-like medium B can be evaluated.

(実施の形態3)
図5を参照して、実施の形態3の静電容量センサについて説明する。図5は、この実施の形態の静電容量センサ40の構成を概略的に示す模式図である。なお、図5において、図1と同様の構成要素には同符号を付し、その説明を省略する。
(Embodiment 3)
With reference to FIG. 5, the capacitance sensor of Embodiment 3 will be described. FIG. 5 is a schematic diagram schematically showing the configuration of the capacitance sensor 40 of this embodiment. In FIG. 5, the same components as those in FIG.

(構造)
この実施の形態の静電容量センサ40は、第1対向電極14が、共通した交流電源12に接続された複数の第1サブ対向電極14S1〜14Snを備えており、複数の第1サブ対向電極14S1〜14Snが、膜状媒体Bの進行方向に沿って並列して配置されている。
(Construction)
In the capacitance sensor 40 of this embodiment, the first counter electrode 14 includes a plurality of first sub counter electrodes 14S1 to 14Sn connected to a common AC power supply 12, and the plurality of first sub counter electrodes 14S1 to 14Sn are arranged in parallel along the traveling direction of the film-like medium B.

そして、電極間配線18が、第1サブ対向電極14S1〜14Snのそれぞれと、共通した第2対向電極16とを電気的に直列に接続する、複数のサブ電極間配線18S1〜18Snを備えており、サブ電極間配線18S1〜18Snのそれぞれには、サブ電極間配線18S1〜18Snを切り替えるためのスイッチ421〜42nとが設けられている。   The inter-electrode wiring 18 includes a plurality of inter-sub-electrode wirings 18S1 to 18Sn that electrically connect each of the first sub counter electrodes 14S1 to 14Sn and the common second counter electrode 16 in series. Each of the inter-sub-electrode wirings 18S1 to 18Sn is provided with switches 421 to 42n for switching the inter-sub-electrode wirings 18S1 to 18Sn.

この実施の形態の静電容量センサ40は、第1対向電極14が第1サブ対向電極14S1〜14Snを備えている点、及び電極間配線18がサブ電極間配線18S1〜18Snを備えている点、及びスイッチ421〜42nが設けられている点を除けば、実施の形態1の静電容量センサ10とほぼ同様に構成されている。従って、以下の説明では、主にこの相違点について説明する。   In the capacitance sensor 40 of this embodiment, the first counter electrode 14 includes first sub counter electrodes 14S1 to 14Sn, and the inter-electrode wiring 18 includes sub-interelectrode wirings 18S1 to 18Sn. Except for the point that the switches 421 to 42n are provided, the configuration is almost the same as the capacitance sensor 10 of the first embodiment. Therefore, in the following description, this difference will be mainly described.

静電容量センサ40は、第1サブ対向電極14S1〜14Snの電極14Sa1〜14Sanのそれぞれに共通の交流電源12が接続されている。また、電極14Sb1〜14Sbnのそれぞれには、共通の第2対向電極16との間を接続するサブ電極間配線18S1〜18Snが接続されている。さらに、サブ電極間配線18S1〜18Snには、第1サブ対向電極14S1〜14Snを切り替えるためのスイッチ421〜42nが設けられている。   In the capacitance sensor 40, a common AC power supply 12 is connected to each of the electrodes 14Sa1 to 14San of the first sub counter electrodes 14S1 to 14Sn. Further, inter-sub-electrode wirings 18S1 to 18Sn connecting the common second counter electrode 16 are connected to the electrodes 14Sb1 to 14Sbn, respectively. Furthermore, switches 421 to 42n for switching the first sub counter electrodes 14S1 to 14Sn are provided in the inter-subelectrode wirings 18S1 to 18Sn.

また、出力端20は、処理装置29に接続されている。   The output terminal 20 is connected to the processing device 29.

さらに、静電容量センサ40には、スイッチ421〜42nの切り替え等の全体の動作を制御するための制御部27が設けられている。   Furthermore, the electrostatic capacity sensor 40 is provided with a control unit 27 for controlling the entire operation such as switching of the switches 421 to 42n.

(動作)
膜状媒体Bは、不図示の搬送機構により、電極14Sa1〜14Sanと電極14Sb1〜14Sbnとの間の間隔を搬送されていく。それに伴い、上述した制御部27は、スイッチ421〜42nのON/OFF状態を、読み込まれたプログラムに従って実行する。なお、制御部27によるスイッチ421〜42nのON/OFF制御においては、n個のスイッチ421〜42nのうち、同時に2個以上のスイッチがON状態とならないように制御が行われる。
(Operation)
The film-like medium B is transported at intervals between the electrodes 14Sa1 to 14San and the electrodes 14Sb1 to 14Sbn by a transport mechanism (not shown). Accordingly, the control unit 27 described above executes the ON / OFF state of the switches 421 to 42n according to the read program. In the ON / OFF control of the switches 421 to 42n by the control unit 27, control is performed so that two or more of the n switches 421 to 42n are not turned on at the same time.

ON状態となったスイッチ42i(iは、1≦i≦nの整数)を備えたサブ電極間配線18Siの出力端を20iからは、検出信号が出力され、処理装置29により処理される。   A detection signal is output from the output terminal 20i of the inter-sub-electrode wiring 18Si provided with the switch 42i (i is an integer satisfying 1 ≦ i ≦ n) in the ON state and processed by the processing device 29.

(効果)
この実施の形態の静電容量センサ40は、実施の形態1の静電容量センサ10及び実施の形態2の静電容量センサ30と同様の効果を奏するとともに、交流電源12及び第2対向電極16の個数を1個としているので、実施の形態2の静電容量センサ30よりも、より小型化が可能である。
(effect)
The electrostatic capacity sensor 40 of this embodiment has the same effects as the electrostatic capacity sensor 10 of the first embodiment and the electrostatic capacity sensor 30 of the second embodiment, and the AC power supply 12 and the second counter electrode 16. Therefore, the size can be further reduced as compared with the capacitance sensor 30 of the second embodiment.

(変形例)
静電容量センサ40は、実施の形態2の静電容量センサ30の場合と同様に、第1サブ対向電極14S1〜14Snを複数列にわたって配置してもよい。このように構成することにより、さらに大面積の膜状媒体Bの測定を行うことができる。また、このように構成することにより、膜状媒体Bの厚みDの平面的な分布を評価することが可能となる。
(Modification)
The capacitance sensor 40 may arrange the first sub counter electrodes 14S1 to 14Sn in a plurality of rows as in the case of the capacitance sensor 30 of the second embodiment. By configuring in this way, it is possible to measure a film medium B having a larger area. Further, with this configuration, the planar distribution of the thickness D of the film-like medium B can be evaluated.

実施の形態1の静電容量センサの構成を概略的に示す模式図である。2 is a schematic diagram schematically showing a configuration of a capacitance sensor according to Embodiment 1. FIG. 従来型センサの概略的な構成を示す模式図である。It is a schematic diagram which shows the schematic structure of a conventional sensor. (A)は、大気の誘電率がε0の場合に、静電容量センサを電気回路として表わした模式図である。(B)は、大気の誘電率がε0’の場合に、静電容量センサを電気回路として表わした模式図である。(C)は、第1対向電極に膜状媒体が挿入された場合に、静電容量センサを電気回路として表わした模式図である。(A) is the schematic diagram which represented the electrostatic capacitance sensor as an electric circuit, when the dielectric constant of air | atmosphere is (epsilon) 0. (B) is a schematic diagram showing the capacitance sensor as an electric circuit when the atmospheric permittivity is ε0 ′. (C) is a schematic diagram showing the capacitance sensor as an electric circuit when a film-like medium is inserted into the first counter electrode. 実施の形態2の静電容量センサの構成を概略的に示す模式図である。6 is a schematic diagram schematically showing a configuration of a capacitance sensor according to a second embodiment. FIG. 実施の形態3の静電容量センサの構成を概略的に示す模式図である。FIG. 6 is a schematic diagram schematically showing a configuration of a capacitance sensor according to a third embodiment.

符号の説明Explanation of symbols

10,30,40 静電容量センサ
12 交流電源
14 第1対向電極
14a,14b,16a,16b,14a1〜14an,14b1〜14bn,14Sa1〜14San,14Sb1〜14Sbn 電極
14S1〜14Sn 第1サブ対向電極
16 第2対向電極
18 電極間配線
18S1〜18Sn サブ電極間配線
20 出力端
22 検出器
221〜22n 第1〜第n検出器
24 アンプ
26 A/Dコンバータ
27 制御部
28 処理部
29 処理装置
421〜42n スイッチ
10, 30, 40 Capacitance sensor 12 AC power source 14 First counter electrode 14a, 14b, 16a, 16b, 14a1 to 14an, 14b1 to 14bn, 14Sa1 to 14San, 14Sb1 to 14Sbn Electrode 14S1 to 14Sn First sub counter electrode 16 Second counter electrode 18 Inter-electrode wiring 18S1-18Sn Sub-electrode wiring 20 Output terminal 22 Detector 221-22n First to n-th detector 24 Amplifier 26 A / D converter 27 Control unit 28 Processing unit 29 Processing devices 421-42n switch

Claims (3)

対向して配置された2枚の電極からなる対向電極の当該電極間の間隔に膜状媒体を挿入することにより生じる静電容量の変化を利用して、前記膜状媒体の厚みを検出する静電容量センサにおいて、
前記対向電極としてそれぞれ設けられた、交流電源に接続された第1対向電極及び接地された第2対向電極と、前記第1及び第2対向電極間を電気的に直列に接続する電極間配線と、該電極間配線の接続中点に設けられていて、静電容量の変化表わす検出信号を出力する出力端とを有する検出器を備えていて、
前記第1対向電極の2枚の電極間に膜状媒体が挿入されることを特徴とする静電容量センサ。
A static detection for detecting the thickness of the film-like medium by utilizing the change in capacitance caused by inserting the film-like medium into the gap between the electrodes of the counter electrode composed of two electrodes arranged opposite to each other. In the capacitance sensor,
A first counter electrode connected to an AC power source and a grounded second counter electrode, which are provided as the counter electrodes, respectively, and an inter-electrode wiring electrically connecting the first and second counter electrodes in series; And a detector having an output terminal that is provided at a connection midpoint of the inter-electrode wiring and outputs a detection signal representing a change in capacitance,
A capacitance sensor, wherein a film-like medium is inserted between two electrodes of the first counter electrode.
前記検出器が、前記膜状媒体の進行方向に沿ってまたは進行方向に直角に、複数個並列して配置されていることを特徴とする請求項1に記載の静電容量センサ。   2. The capacitance sensor according to claim 1, wherein a plurality of the detectors are arranged in parallel along or in a direction perpendicular to the traveling direction of the film-like medium. 前記第1対向電極が、共通の前記交流電源に接続された複数の第1サブ対向電極を備えており、
複数の該第1サブ対向電極が、前記膜状媒体の進行方向に沿って並列に配置されており、
前記電極間配線が、前記第1サブ対向電極のそれぞれと共通の前記第2対向電極とを電気的に直列に接続する複数のサブ電極間配線を備えており、
該サブ電極間配線のそれぞれには、当該サブ電極間配線を切り替えるためのスイッチが設けられていることを特徴とする請求項1に記載の静電容量センサ。
The first counter electrode includes a plurality of first sub counter electrodes connected to the common AC power source;
A plurality of the first sub counter electrodes are arranged in parallel along the traveling direction of the film medium,
The inter-electrode wiring includes a plurality of inter-electrode wirings that electrically connect each of the first sub counter electrodes and the common second counter electrode in series;
2. The capacitance sensor according to claim 1, wherein each of the inter-sub-electrode wirings is provided with a switch for switching the inter-sub-electrode wirings.
JP2008279751A 2008-10-30 2008-10-30 Capacitance sensor Withdrawn JP2010107359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008279751A JP2010107359A (en) 2008-10-30 2008-10-30 Capacitance sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008279751A JP2010107359A (en) 2008-10-30 2008-10-30 Capacitance sensor

Publications (1)

Publication Number Publication Date
JP2010107359A true JP2010107359A (en) 2010-05-13

Family

ID=42296946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008279751A Withdrawn JP2010107359A (en) 2008-10-30 2008-10-30 Capacitance sensor

Country Status (1)

Country Link
JP (1) JP2010107359A (en)

Similar Documents

Publication Publication Date Title
KR102079146B1 (en) Film thickness detector
US7795881B2 (en) Capacitive physical quantity detection device
JP2004279370A (en) Capacity type humidity sensor
EP3640842A1 (en) Fingerprint detecting apparatus
EP2982991A1 (en) Capacitance type sensor, and method for correcting non-linear output
US20130038566A1 (en) Capacitive Touch Sensor Control Unit With Sampling Capacitors For Differential Integration
JP6619992B2 (en) Magnetic detector
US7944217B2 (en) Object proximity detector and object position detector
JP2011119398A (en) Signal processor of infrared sensor, and infrared sensor
JP4941938B2 (en) Capacitance change detection circuit, touch panel, and determination method
US9317163B2 (en) Signal processing circuit of a touch screen
JP2010223862A (en) Magnetic sensor
JP2010107359A (en) Capacitance sensor
US9581613B2 (en) Micromechanical acceleration sensor
US6370960B1 (en) Capacitive sensor
US8833135B2 (en) Sensor system and method for calibrating a sensor system
US20150138130A1 (en) Capacitive touch system and gain control method thereof
KR101665187B1 (en) A sensing technique based on dielectric changes in metal capacitor
US10942595B2 (en) Semiconductor device, control method thereof, and coupling relation setting process program
JP2004239808A (en) Surface potential sensor
EP3130894B1 (en) Abnormality detection device for sensor and sensor device
KR101865328B1 (en) Fingerprint Sensor Cell Structure and Isolation Strategy for Pseudo-Direct Scheme
WO2022080224A1 (en) Electrostatic capacitance detecting device
US10466313B2 (en) Magnetic field sensor and apparatus for measuring magnetic field
KR20200097718A (en) Fingerprint detection device with edge correction structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120110