JP2010107288A - Acceleration sensor and acceleration sensor mounting structure - Google Patents

Acceleration sensor and acceleration sensor mounting structure Download PDF

Info

Publication number
JP2010107288A
JP2010107288A JP2008278129A JP2008278129A JP2010107288A JP 2010107288 A JP2010107288 A JP 2010107288A JP 2008278129 A JP2008278129 A JP 2008278129A JP 2008278129 A JP2008278129 A JP 2008278129A JP 2010107288 A JP2010107288 A JP 2010107288A
Authority
JP
Japan
Prior art keywords
acceleration sensor
acceleration
pair
vibration element
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008278129A
Other languages
Japanese (ja)
Inventor
Hiroshi Mori
博 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008278129A priority Critical patent/JP2010107288A/en
Publication of JP2010107288A publication Critical patent/JP2010107288A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acceleration sensor which can be directly mounted on a conductive member, such as, a metallic member and has high acceleration detection sensitivity. <P>SOLUTION: The acceleration sensor includes external electrodes 41a, 41b, in a case 1 housing a vibrating element 12 therewithin and has a mounting surface, spaced apart from the mounting surface. The acceleration sensor mounting structure allows the mounting surface of the acceleration sensor to be glued to the conductive member, of which the acceleration is to be detected and allows external electrodes to be electrically connected to an external signal processing circuit through wiring. Since the acceleration sensor includes the external electrodes 41a, 41b, in the case 1 which has the mounting surface, spaced apart from the mounting surface, even when it is directly mounted on a metallic conductive member of which the acceleration is to be detected, the external electrodes 41a, 41b are not short-circuited through a metallic housing or interior parts, allowing it to be mounted directly on the metallic conductive member, thereby attaining an acceleration sensor which can be mounted directly on a conductive member, such as, a metallic member and has high acceleration detection sensitivity. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は加速度センサに関し、特に金属等の導体板上に直接実装可能な加速度センサに関するものである。   The present invention relates to an acceleration sensor, and more particularly to an acceleration sensor that can be directly mounted on a conductive plate such as metal.

従来からハードディスクドライブ等の電子機器に外部から加わる衝撃や落下による加速度の検出等の用途に加速度センサが用いられており、短冊状の圧電基板の両主面に主面電極を形成した振動素子の端部の両主面を支持部材によって挟持したタイプの加速度センサが知られている(例えば、特許文献1を参照。)。   Conventionally, an acceleration sensor has been used for applications such as detection of acceleration due to impact or fall applied to an electronic device such as a hard disk drive from the outside, and a vibration element having main surface electrodes formed on both main surfaces of a strip-shaped piezoelectric substrate. There is known an acceleration sensor of a type in which both main surfaces of end portions are sandwiched between support members (see, for example, Patent Document 1).

このような加速度センサにおいては、与えられた加速度により振動素子が撓むことによって圧電基板に歪みが生じ、圧電効果により発生した電荷によって圧電基板の両主面に形成した主面電極間に電位差が生じるので、これを出力電圧として取り出すことによって加速度が検出される。   In such an acceleration sensor, the piezoelectric element is distorted by bending of the vibration element due to the applied acceleration, and a potential difference is generated between the main surface electrodes formed on both main surfaces of the piezoelectric substrate due to charges generated by the piezoelectric effect. Therefore, the acceleration is detected by taking this as an output voltage.

また、特許文献1に記載されているような従来の加速度センサにおいては、加速度センサを構成する直方体状のケースの端面の全面に外部電極が形成されており、この外部電極を回路基板の一方主面上にはんだ付けすることにより加速度センサを回路基板上に接合している。そして、この加速度センサを接合した回路基板を、加速度を検出しようとする電子機器を構成する筺体等の部材に実装している。すなわち、加速度センサは、加速度を検出しようとする電子機器を構成する筺体等の部材に、回路基板を介して実装されている。
特開2004−170228号公報
Further, in the conventional acceleration sensor described in Patent Document 1, an external electrode is formed on the entire end face of a rectangular parallelepiped case constituting the acceleration sensor, and this external electrode is used as one main circuit board. The acceleration sensor is joined on the circuit board by soldering on the surface. And the circuit board which joined this acceleration sensor is mounted in members, such as a housing | casing which comprises the electronic device which is going to detect an acceleration. That is, the acceleration sensor is mounted via a circuit board on a member such as a casing constituting an electronic device for which acceleration is to be detected.
JP 2004-170228 A

しかしながら、上述したような従来の加速度センサは、加速度センサと加速度を検出しようとする電子機器を構成する筺体等の導体部材との間に回路基板を介在しているので、加速度を検出しようとする部材に加わった加速度が加速度センサに直接伝わりにくくなるため、加速度の検出感度を高くすることが難しいという問題点があった。   However, in the conventional acceleration sensor as described above, a circuit board is interposed between the acceleration sensor and a conductor member such as a casing constituting the electronic device for which the acceleration is to be detected. Since the acceleration applied to the member is not easily transmitted directly to the acceleration sensor, it is difficult to increase the acceleration detection sensitivity.

また、このような従来の加速度センサが実装されるハードディスクドライブ等の電子機器を構成する筺体や内部部品は金属製の導体部材であり、これら導体部材に加速度センサを直接実装すると、加速度センサの外部電極同士が導体部材によって短絡されてしまうため、加速度センサを金属製の導体部材に直接実装することができないという問題点もあった。   In addition, the casing and internal parts constituting an electronic device such as a hard disk drive on which such a conventional acceleration sensor is mounted are metal conductor members, and if the acceleration sensor is directly mounted on these conductor members, the exterior of the acceleration sensor Since the electrodes are short-circuited by the conductor member, the acceleration sensor cannot be directly mounted on the metal conductor member.

また、電子機器の小型化,低背化,軽量化の要求に伴い、加速度センサを厚みの薄い回路基板に接合することも考えられるが、このような場合には、加速度を検出しようとする導体部材に加速度が加わった際に、厚みの薄い回路基板が撓んでしまって加速度センサに加速度が伝わりにくくなり、正確な加速度を検出できないという問題点があった。   In response to the demands for smaller, lower, and lighter electronic devices, it may be possible to join the acceleration sensor to a thin circuit board. When acceleration is applied to the member, the circuit board having a small thickness is bent, and it becomes difficult to transmit the acceleration to the acceleration sensor, so that there is a problem that accurate acceleration cannot be detected.

本発明は上記のような従来の技術における問題点に鑑み案出されたものであり、その目的は、金属製の導体部材に直接実装可能で加速度の検出感度の高い加速度センサを提供することにある。   The present invention has been devised in view of the above-described problems in the prior art, and an object thereof is to provide an acceleration sensor that can be directly mounted on a metal conductor member and has high acceleration detection sensitivity. is there.

本発明の加速度センサは、内部に振動素子を収納した、実装面を有するケースに、前記実装面から間隔をあけて外部電極を有していることを特徴とするものである。   The acceleration sensor according to the present invention is characterized in that a case having a mounting surface in which a vibration element is housed has an external electrode spaced from the mounting surface.

また、本発明の加速度センサの実装構造は、上記構成の本発明の加速度センサの前記実装面が、加速度を検出しようとする金属部材に接着剤にて接合され、前記外部電極が外部の信号処理回路と配線により電気的に接続されてなることを特徴とするものである。   Further, the mounting structure of the acceleration sensor of the present invention is such that the mounting surface of the acceleration sensor of the present invention having the above configuration is bonded to a metal member to detect acceleration with an adhesive, and the external electrode is external signal processing. It is characterized in that it is electrically connected to the circuit by wiring.

本発明の加速度センサは、内部に振動素子を収納した、実装面を有するケースに、実装面から間隔をあけて外部電極を有していることから、ハードディスクドライブ等の電子機器を構成する筺体あるいは磁気ヘッドを駆動するアームのような金属製の導体部材に直接接合しても、加速度センサの外部電極同士が導体部材によって短絡されることがないので、電子機器を構成している金属製の導体部材に直接実装することができ、加速度の検出感度を高くすることができる。   Since the acceleration sensor of the present invention has an external electrode in a case having a mounting surface in which a vibration element is housed and spaced from the mounting surface, the housing constituting the electronic device such as a hard disk drive or the like Even if directly joined to a metal conductor member such as an arm that drives a magnetic head, the external electrodes of the acceleration sensor are not short-circuited by the conductor member, so the metal conductor constituting the electronic device It can be directly mounted on the member, and the acceleration detection sensitivity can be increased.

また、本発明の加速度センサの実装構造によれば、上記構成の本発明の加速度センサの実装面が、加速度を検出しようとする導体部材に接着剤にて接合されていることから、加速度を検出しようとする金属製の導体部材に直接接合しても加速度センサの外部電極同士が短絡することがない。そして、加速度センサを金属製の導体部材に直接接合していることから、加速度を検出しようとする導体部材に加わった加速度が直接加速度センサに伝わることにより、加速度をより正確に検出することができるので、従来のように加速度センサと加速度を検出しようとする導体部材との間に回路基板を介在させて加速度センサを実装した構造に比べて、加速度の検出感度を高くすることができる。そして、このように導体部材に接合された加速度センサの外部電極と外部の信号処理回路とを配線により接続して実装していることにより、導体部材に作用した加速度に応じた電気信号を、配線を介して外部の信号処理回路へと出力することができる。   Further, according to the mounting structure of the acceleration sensor of the present invention, the mounting surface of the acceleration sensor of the present invention having the above configuration is joined to the conductor member for detecting the acceleration with an adhesive, so that the acceleration is detected. The external electrodes of the acceleration sensor are not short-circuited even when directly joined to the metal conductor member to be worked. Since the acceleration sensor is directly joined to the metal conductor member, the acceleration applied to the conductor member for detecting the acceleration is directly transmitted to the acceleration sensor, so that the acceleration can be detected more accurately. Therefore, the acceleration detection sensitivity can be increased as compared with the conventional structure in which the acceleration sensor is mounted with the circuit board interposed between the acceleration sensor and the conductor member to detect acceleration. And, by connecting the external electrode of the acceleration sensor joined to the conductor member in this way and the external signal processing circuit by wiring, the electrical signal corresponding to the acceleration acting on the conductor member is wired. Can be output to an external signal processing circuit.

以下に、本発明の加速度センサについて、振動素子の一方端部を支持部材により挟持した片端支持構造の加速度センサを例に、添付図面を参照しつつ詳細に説明する。   Hereinafter, an acceleration sensor according to the present invention will be described in detail with reference to the accompanying drawings, taking as an example an acceleration sensor having a one-end support structure in which one end of a vibration element is held by a support member.

図1は本発明の加速度センサの実施の形態の一例を模式的に示す外観斜視図である。図2(a)は図1に示す加速度センサ10の外部電極41a,41bを取り除いた状態を模式的に示す正面図であり、図2(b)は図1のA−A線断面図であり、図2(c)は図1のB−B線断面図である。図3は図1に示す加速度センサ10の側面保護部材33を取り除いた状態を示す側面図である。図4は図1に示す加速度センサ10を電子機器(図示せず)を構成する導体部材に実装した状態を示す側面図である。図5は図1に示す加速度センサ10に用いられる振動素子12を模式的に示す外観斜視図である。図6は図5に示す振動素子12の分解斜視図である。   FIG. 1 is an external perspective view schematically showing an example of an embodiment of an acceleration sensor of the present invention. 2A is a front view schematically showing a state in which the external electrodes 41a and 41b of the acceleration sensor 10 shown in FIG. 1 are removed, and FIG. 2B is a cross-sectional view taken along line AA in FIG. FIG. 2C is a cross-sectional view taken along line BB in FIG. FIG. 3 is a side view showing a state in which the side surface protection member 33 of the acceleration sensor 10 shown in FIG. 1 is removed. FIG. 4 is a side view showing a state in which the acceleration sensor 10 shown in FIG. 1 is mounted on a conductor member constituting an electronic device (not shown). FIG. 5 is an external perspective view schematically showing the vibration element 12 used in the acceleration sensor 10 shown in FIG. 6 is an exploded perspective view of the vibration element 12 shown in FIG.

これら図1〜図6に示す本例の加速度センサ10は、圧電基板11に主面電極15a,15bが配置されてなる振動素子12が、長手方向における一方端の両主面を一対の支持部材21およびそれを介してケース1を構成する一対の主面保護部材31によって挟持されて支持されることによって、片端支持構造の加速度センサ10とされている。   In the acceleration sensor 10 of this example shown in FIGS. 1 to 6, the vibration element 12 in which the principal surface electrodes 15a and 15b are arranged on the piezoelectric substrate 11 has a pair of supporting members on both principal surfaces at one end in the longitudinal direction. The acceleration sensor 10 having a one-end support structure is formed by being sandwiched and supported by 21 and a pair of main surface protection members 31 constituting the case 1 via the same.

本例の加速度センサ10は、図1および図2(a)〜(c)に示すように、振動素子12の長手方向における一方端の両主面のそれぞれに配置された一対の支持部材21と、長手方向における一方端および他方端の端面が振動素子12の長手方向における一方端および他方端の端面とそれぞれ同一平面上にあり、一対の支持部材21を介して振動素子12の両主面のそれぞれと間隔をあけて配置された、矩形状の一対の主面保護部材31とを有している。また、本例の加速度センサ10は、一対の主面保護部材31の長手方向における他方端の端面にそれぞれ配置された一対の端面スペーサ部材22と、端面スペーサ部材22を介して振動素子12および一対の主面保護部材31の長手方向における他方端の端面と間隔をあけて配置された端面保護部材32とを有している。さらに、本例の加速度センサ10は、振動素子12の長手方向における一方端の両側面ならびに一対の主面保護部材31および端面保護部材32および一対の支持部材21および一対の端面スペーサ部材22の両側面のそれぞれに配置された一対の側面スペーサ部材23と、一対の側面スペーサ部材23を介して振動素子12,一対の主面保護部材31,端面保護部材32,一対の支持部材21および一対の端面スペーサ部材22の両側面のそれぞれと間隔をあけて配置された一対の側面保護部材33とを備えている。なお、振動素子12,一対の支持部材21,一対の主面保護部材31,一対の端面スペーサ部材22および端面保護部材32の両側面は、それぞれ同一平面上に位置している。   As shown in FIG. 1 and FIGS. 2A to 2C, the acceleration sensor 10 of this example includes a pair of support members 21 disposed on both main surfaces at one end in the longitudinal direction of the vibration element 12. The end faces of the one end and the other end in the longitudinal direction are on the same plane as the end faces of the one end and the other end in the longitudinal direction of the vibration element 12, respectively, and both main surfaces of the vibration element 12 are interposed via a pair of support members 21. It has a pair of rectangular main surface protection members 31 that are spaced apart from each other. In addition, the acceleration sensor 10 of the present example includes a pair of end surface spacer members 22 disposed on the end surfaces of the other end in the longitudinal direction of the pair of main surface protection members 31, and the vibration element 12 and the pair of paired main surface protection members 31 via the end surface spacer members 22. The main surface protection member 31 has an end surface protection member 32 disposed at a distance from the other end surface in the longitudinal direction. Further, the acceleration sensor 10 of the present example includes both side surfaces at one end in the longitudinal direction of the vibration element 12, and both sides of the pair of main surface protection members 31, the end surface protection members 32, the pair of support members 21, and the pair of end surface spacer members 22. A pair of side spacer members 23 disposed on each of the surfaces, and the vibration element 12, a pair of main surface protection members 31, an end surface protection member 32, a pair of support members 21, and a pair of end surfaces via the pair of side spacer members 23 A pair of side surface protection members 33 arranged with a space from each of both side surfaces of the spacer member 22 are provided. Note that the vibration element 12, the pair of support members 21, the pair of main surface protection members 31, the pair of end surface spacer members 22, and the both end surfaces of the end surface protection member 32 are located on the same plane.

そして、これら主面保護部材31,端面保護部材32,側面保護部材33,側面スペーサ部材23および端面スペーサ部材22によって振動素子12を収納するケース1が構成されており、ケース1の一方主面が加速度を検出しようとする導体部材に対向して実装される実装面である。   The main surface protection member 31, the end surface protection member 32, the side surface protection member 33, the side surface spacer member 23, and the end surface spacer member 22 constitute a case 1 in which the vibration element 12 is accommodated. It is a mounting surface mounted facing the conductor member for which acceleration is to be detected.

本例の加速度センサ10に用いられる振動素子12は、図5および図6に示すように、短冊状の一対の圧電基板11が厚み方向に積層され、両主面にそれぞれ主面電極15a,15bが配置された構造を有している。さらに、本例の加速度センサ10に用いられる振動素子12においては、一対の圧電基板11の互いに対向する側の主面にもそれぞれ主面電極15a,15bが配置されて、間に絶縁性接着剤19を介して厚み方向に積層されている。そして、それぞれの圧電基板11において、その両主面に形成された主面電極15a,15bは、圧電基板11を介して一部が互いに対向するように配置されている。   As shown in FIGS. 5 and 6, the vibration element 12 used in the acceleration sensor 10 of this example is formed by laminating a pair of strip-shaped piezoelectric substrates 11 in the thickness direction, and the principal surface electrodes 15a and 15b are formed on both principal surfaces, respectively. Are arranged. Furthermore, in the vibration element 12 used in the acceleration sensor 10 of the present example, the principal surface electrodes 15a and 15b are respectively disposed on the principal surfaces of the pair of piezoelectric substrates 11 facing each other, and an insulating adhesive is interposed therebetween. 19 are stacked in the thickness direction. In each piezoelectric substrate 11, main surface electrodes 15 a and 15 b formed on both main surfaces thereof are arranged so that parts thereof face each other with the piezoelectric substrate 11 interposed therebetween.

また、主面電極15a,15bは、振動素子12の長手方向における一方端の端面において、互いに幅方向の逆側に引き出されており、主面電極15aは図2(b)および(c)に示す外部電極41aに接続され、主面電極15bは図3に示す接続導体42を介して外部電極41bに接続されている。   Further, the main surface electrodes 15a and 15b are drawn to the opposite sides in the width direction at one end face in the longitudinal direction of the vibration element 12, and the main surface electrodes 15a are shown in FIGS. 2 (b) and 2 (c). The main surface electrode 15b is connected to the external electrode 41b via the connection conductor 42 shown in FIG.

このような構造を有する本例の加速度センサ10は、振動素子12の主面に垂直な方向の成分を有する加速度が作用すると、一対の支持部材21によって挟持されて支持されている部分を支点として振動素子12が厚み方向に撓むことになり、圧電基板11に歪みが生じて圧電効果によって発生した電荷を主面電極15a,15bによって取り出すことができる。このようにして、作用した加速度に応じた電気信号を主面電極15a,15bにそれぞれ接続された外部電極41a,41bを通して外部へ出力することができるので、加速度センサ10として機能する。   In the acceleration sensor 10 of this example having such a structure, when acceleration having a component in a direction perpendicular to the main surface of the vibration element 12 is applied, a portion sandwiched and supported by the pair of support members 21 is used as a fulcrum. The vibration element 12 bends in the thickness direction, and the piezoelectric substrate 11 is distorted, and charges generated by the piezoelectric effect can be taken out by the main surface electrodes 15a and 15b. In this way, an electrical signal corresponding to the applied acceleration can be output to the outside through the external electrodes 41a and 41b connected to the main surface electrodes 15a and 15b, respectively, and thus functions as the acceleration sensor 10.

なお、加速度センサ10の回路基板等への実装に際して、振動素子12の主面が実装面と平行になるようにした場合には、実装面に垂直な方向の成分を有する加速度を検出することが可能となり、振動素子12の主面が実装面と垂直になるようにした場合には、実装面に平行かつ振動素子12の主面に垂直な方向の成分を有する加速度を検出することが可能となる。また、振動素子12が水平方向に対して傾斜するように固定された場合には、その垂直方向のみならず横方向からの衝撃による加速度も検出することが可能となる。この場合には、ケース1の実装面となる主面に対して垂直な面と振動素子12の主面とが成す角(鋭角になる側の角)を、用途に応じて20〜50°の範囲に設定するとよい。   When the acceleration sensor 10 is mounted on a circuit board or the like, if the main surface of the vibration element 12 is parallel to the mounting surface, acceleration having a component in a direction perpendicular to the mounting surface can be detected. When the main surface of the vibration element 12 is perpendicular to the mounting surface, it is possible to detect acceleration having a component in a direction parallel to the mounting surface and perpendicular to the main surface of the vibration element 12. Become. Further, when the vibration element 12 is fixed so as to be inclined with respect to the horizontal direction, it is possible to detect acceleration due to an impact from the lateral direction as well as the vertical direction. In this case, the angle formed by the surface perpendicular to the main surface serving as the mounting surface of the case 1 and the main surface of the vibration element 12 (the angle on the acute angle side) is 20 to 50 ° depending on the application. Set to a range.

本例の加速度センサ10によれば、振動素子12の長手方向における一方端が両主面のそれぞれに配置された一対の支持部材21およびそれを介して一対の主面保護部材31によって挟持されて支持された片端支持構造とされていることから、両端支持構造の加速度センサと比較して加速度による振動素子12の撓みが大きくなるため、加速度の検出感度が高い加速度センサ10とすることができる。   According to the acceleration sensor 10 of the present example, one end in the longitudinal direction of the vibration element 12 is sandwiched between the pair of support members 21 disposed on both main surfaces and the pair of main surface protection members 31 via the support members 21. Since the supported one-end support structure is used, the deflection of the vibration element 12 due to the acceleration is larger than that of the acceleration sensor having the both-end support structure, so that the acceleration sensor 10 having high acceleration detection sensitivity can be obtained.

本例の加速度センサ10において、振動素子12を収納するケース1は、上述の様に主面保護部材31,端面保護部材32,側面保護部材33,側面スペーサ部材23および端面スペーサ部材22により、内部に振動素子12が振動するための空間を有して直方体状に構成されている。   In the acceleration sensor 10 of this example, the case 1 that houses the vibration element 12 includes the main surface protection member 31, the end surface protection member 32, the side surface protection member 33, the side surface spacer member 23, and the end surface spacer member 22 as described above. The oscillating element 12 has a space for vibrating, and is configured in a rectangular parallelepiped shape.

このような本例の加速度センサ10のケース1を構成する一対の端面スペーサ部材22および一対の側面スペーサ部材23としては、各種セラミックスや合成樹脂等の絶縁性材料を用いることができるが、絶縁性の接着剤を用いることによって、製造工程を大幅に簡略化することができる。特に、炭素繊維やガラス繊維に樹脂を含浸させたプリプレグや、本硬化前に半硬化状態(Bステージ)とすることができる接着剤を用いることにより、振動素子12の周囲に所望の大きさの振動空間を形成することが容易になる。例えば、熱硬化型のエポキシ系接着剤を使用する場合には、接合すべき部材の一方の接着面に印刷法を用いて接着剤を塗布した後に、50℃〜70℃程度の温度で1時間〜2時間程度保持してその接着剤を半硬化状態とし、接合すべき部材の他方を貼り合わせて必要に応じて部材間の間隔を調整した後に、100℃〜200℃程度の温度で1時間〜2時間程度保持して接着剤を本硬化させればよい。   As the pair of end face spacer members 22 and the pair of side face spacer members 23 constituting the case 1 of the acceleration sensor 10 of this example, various insulating materials such as ceramics and synthetic resins can be used. By using this adhesive, the manufacturing process can be greatly simplified. In particular, by using a prepreg obtained by impregnating carbon fiber or glass fiber with a resin or an adhesive that can be in a semi-cured state (B stage) before the main curing, a desired size is provided around the vibration element 12. It becomes easy to form the vibration space. For example, when a thermosetting epoxy adhesive is used, after applying the adhesive on one adhesive surface of the members to be joined using a printing method, the temperature is approximately 50 ° C. to 70 ° C. for 1 hour. Hold for about 2 hours to make the adhesive semi-cured, paste the other of the members to be joined together and adjust the spacing between members as necessary, then at a temperature of about 100 ° C to 200 ° C for 1 hour It may be held for about 2 hours to fully cure the adhesive.

また、ケース1を構成する一対の主面保護部材31,端面保護部材32および一対の側面保護部材33は、一対の支持部材21,一対の端面スペーサ部材22および一対の側面スペーサ部材23の厚みによって決定される振動空間を振動素子12の周囲に確保して、振動素子12を保護する機能を有する。また、一対の主面保護部材31は、振動素子12の両主面を一対の支持部材21を介して支持する機能も併せて有しているため、一対の側面保護部材33および端面保護部材32よりも厚みを厚くするのが望ましい。これによって、振動素子12を確実に支持しつつ加速度センサ10をできるだけ小型化することができる。よって、一対の主面保護部材31の厚みは例えば0.6mm〜0.8mm程度に設定され、一対の側面保護部材33および端面保護部材32の厚みは例えば0.15mm〜0.2mm程度に設定される。   Further, the pair of main surface protection members 31, the end surface protection members 32, and the pair of side surface protection members 33 constituting the case 1 depend on the thickness of the pair of support members 21, the pair of end surface spacer members 22, and the pair of side surface spacer members 23. The vibration space to be determined is secured around the vibration element 12, and the vibration element 12 is protected. Further, since the pair of main surface protection members 31 also have a function of supporting both main surfaces of the vibration element 12 via the pair of support members 21, the pair of side surface protection members 33 and end surface protection members 32 are also included. It is desirable to increase the thickness. Thus, the acceleration sensor 10 can be made as small as possible while the vibration element 12 is reliably supported. Therefore, the thickness of the pair of main surface protection members 31 is set to about 0.6 mm to 0.8 mm, for example, and the thickness of the pair of side surface protection members 33 and end surface protection members 32 is set to about 0.15 mm to 0.2 mm, for example.

このような主面保護部材31,端面保護部材32および側面保護部材33としては、各種セラミックスや合成樹脂等の絶縁性材料を用いることができるが、絶縁性,耐湿性,耐熱性および接着性等に優れたエポキシ系の樹脂を使用することが望ましい。例えば、三井化学(株)製の「EPOX」(登録商標)等を好適に使用することができる。   As such main surface protection member 31, end surface protection member 32, and side surface protection member 33, insulating materials such as various ceramics and synthetic resins can be used, but insulation, moisture resistance, heat resistance, adhesiveness, etc. It is desirable to use an epoxy-based resin that excels in resistance. For example, “EPOX” (registered trademark) manufactured by Mitsui Chemicals, Inc. can be suitably used.

本例の加速度センサ10の振動素子12を構成する圧電基板11は、例えばチタン酸ジルコン酸鉛やチタン酸鉛等の圧電セラミック材料から成り、その形状は長さが1.5〜3.0mm、幅が0.4〜1.0mm、厚みが0.05〜0.2mmの短冊状とされ、それぞれ厚み方向に分極されている。   The piezoelectric substrate 11 constituting the vibration element 12 of the acceleration sensor 10 of this example is made of, for example, a piezoelectric ceramic material such as lead zirconate titanate or lead titanate, and the shape thereof is 1.5 to 3.0 mm in length and 0.4 in width. It has a strip shape of ˜1.0 mm and a thickness of 0.05 to 0.2 mm, and is polarized in the thickness direction.

このような圧電基板11は、原料粉末にバインダを加えてプレスする方法を用いて、あるいは、原料粉末を水,分散剤と共にボールミルを用いて混合した後に乾燥し、バインダ,溶剤,可塑剤等を加えてドクターブレード法により成型する方法等によってシート状とし、それを必要に応じて積層してプレスし、この積層体を例えば1100℃〜1400℃のピーク温度で数時間焼成して基板を形成した後に、厚み方向に例えば60℃〜150℃の温度にて3kV/mm〜15kV/mmの電圧をかけて分極処理を施すことによって作製することができる。   Such a piezoelectric substrate 11 is dried by adding a binder to the raw material powder and pressing the raw material powder, or after mixing the raw material powder with water and a dispersing agent using a ball mill to remove the binder, solvent, plasticizer, etc. In addition, it is formed into a sheet by a method such as molding by the doctor blade method, and is laminated and pressed as necessary, and this laminate is fired at a peak temperature of, for example, 1100 ° C. to 1400 ° C. for several hours to form a substrate. Later, it can be fabricated by applying a polarization treatment by applying a voltage of 3 kV / mm to 15 kV / mm at a temperature of 60 ° C. to 150 ° C. in the thickness direction.

圧電基板11の両主面に被着された主面電極15a,15bは、材料としては、例えば金,銀,銅,クロム,ニッケル,錫,鉛,アルミニウム等の良導電性の金属から成り、その厚みは例えば0.1μm〜3μm程度とされ、圧電基板11を介してその一部が互いに対向するように形成されている。このような主面電極15a,15bは、金属材料を従来周知の真空蒸着やスパッタリング法等によって圧電基板11の両主面に被着させるか、あるいは上述した金属材料を含む所定の導体ペーストを従来周知の印刷法等によって所定パターンに塗布し、高温で焼き付けることにより被着形成することができる。   The main surface electrodes 15a and 15b deposited on both main surfaces of the piezoelectric substrate 11 are made of a highly conductive metal such as gold, silver, copper, chromium, nickel, tin, lead, and aluminum as materials. The thickness is, for example, about 0.1 μm to 3 μm, and parts thereof are formed to face each other with the piezoelectric substrate 11 interposed therebetween. For such main surface electrodes 15a and 15b, a metal material is deposited on both main surfaces of the piezoelectric substrate 11 by a conventionally known vacuum deposition, sputtering method or the like, or a predetermined conductor paste containing the above metal material is conventionally used. It can be formed by applying to a predetermined pattern by a known printing method or the like and baking at a high temperature.

圧電基板11を貼り合わせる絶縁性接着剤19は、例えばガラス布基材エポキシ樹脂,無機質ガラス,エポキシ樹脂等の絶縁材料を用いることができる。例えば、ガラス布基材エポキシ樹脂による接合では、ガラス繊維の間にエポキシ樹脂を含浸させたプリプレグ材を間に挟んで2つの圧電基板11を上下に重ね合わせて、これを加圧しながら加熱することにより、エポキシ樹脂を所定の厚みに圧縮して硬化させる。また、無機質ガラスによる接合では、両主面に主面電極15a,15bが形成された一対の圧電基板11の間にガラスペーストを印刷塗布した後、これらを重ね合わせて、これに荷重を加えながら焼成炉を用いて溶融一体化する。なお、焼成炉では300〜700℃に加熱される。焼成の際は、真空炉の中で行なえば、ガラス中への気泡の混入を抑制することができる。このとき、300℃以上の高温度で接合した場合には、圧電基板11の分極が減極するので、接合後にもう一度分極処理する必要がある。   As the insulating adhesive 19 for bonding the piezoelectric substrate 11, an insulating material such as glass cloth base epoxy resin, inorganic glass, epoxy resin or the like can be used. For example, in bonding with a glass cloth base epoxy resin, two piezoelectric substrates 11 are stacked one above the other with a prepreg material impregnated with an epoxy resin between glass fibers, and heated while pressing them. The epoxy resin is compressed to a predetermined thickness and cured. In addition, in bonding with inorganic glass, glass paste is printed and applied between a pair of piezoelectric substrates 11 having main surface electrodes 15a and 15b formed on both main surfaces, and then these are superimposed and a load is applied thereto. Melt and integrate using a firing furnace. In addition, it heats at 300-700 degreeC in a baking furnace. If firing is performed in a vacuum furnace, bubbles can be prevented from being mixed into the glass. At this time, when the bonding is performed at a high temperature of 300 ° C. or higher, the polarization of the piezoelectric substrate 11 is depolarized, and therefore it is necessary to perform the polarization process again after the bonding.

支持部材21は弾性体である。例えば、その弾性率が主面保護部材31の弾性率よりも小さいものである場合には、振動素子12が一対の支持部材21によって挟持されている領域内においても撓みやすくなり、一対の圧電基板11のそれぞれにおいて歪みが発生する領域が増加するので、加速度の検出感度を高くすることができる。   The support member 21 is an elastic body. For example, when the elastic modulus is smaller than the elastic modulus of the main surface protection member 31, it becomes easy to bend even in the region where the vibration element 12 is sandwiched between the pair of support members 21, and the pair of piezoelectric substrates. Since the area where distortion occurs in each of 11 increases, the detection sensitivity of acceleration can be increased.

この場合の支持部材21の弾性率は10MPa〜10GPa程度が望ましく、1GPa〜10GPa程度が特に望ましい。よって、支持部材21の材料としては、例えば弾性率が6GPa程度のエポキシ系樹脂等が好適に用いられる。また、その厚みは20〜100μmとされ、幅方向は振動素子12の全体に渡るように、長さ方向は振動素子12の一方端部から0.5〜1.0mmの範囲に渡るように形成されたものが用いられる。   In this case, the elastic modulus of the support member 21 is desirably about 10 MPa to 10 GPa, and particularly desirably about 1 GPa to 10 GPa. Therefore, for example, an epoxy resin having an elastic modulus of about 6 GPa is preferably used as the material of the support member 21. Further, the thickness is 20-100 μm, the width direction extends over the entire vibration element 12, and the length direction extends from one end of the vibration element 12 to a range of 0.5-1.0 mm. Is used.

このような支持部材21の形成に際しては、まず、圧電基板11となる2枚の圧電母基板が接合されたシートを準備し、シートの両主面の所定位置にスクリーン印刷で樹脂ペーストを印刷して、これを硬化させる。このとき、必要に応じてスクリーン印刷を複数回重ねたり、厚み精度を出すために硬化した樹脂ペーストの表面を研磨してもよい。そして、硬化した樹脂ペーストの位置を確認しながら所定の長さの支持部材21と振動素子12が得られるようにダイシングソー等を用いて切断することによって、支持部材21が取着された振動素子12を得ることができる。   In forming such a support member 21, first, a sheet in which two piezoelectric mother substrates to be the piezoelectric substrate 11 are joined is prepared, and a resin paste is printed by screen printing at predetermined positions on both main surfaces of the sheet. This is cured. At this time, if necessary, screen printing may be repeated a plurality of times, or the surface of the cured resin paste may be polished in order to obtain thickness accuracy. Then, while confirming the position of the cured resin paste, the vibration element having the support member 21 attached thereto is cut by using a dicing saw or the like so that the support member 21 and the vibration element 12 having a predetermined length are obtained. You can get 12.

このようにして得られる振動素子12の形状は、例えば長さが3mmで、幅が0.5mmで、厚みが0.3mmである直方体状であり、支持部材21によって挟持された支持領域の長さは1mmとされ、支持部材21によって挟持されていない自由領域の長さは2mmとされる。なお、以後の説明において、振動素子12の一方端部(支持部材21によって挟持されている側の端部)を固定端と称し、他方端部を自由端と称する。   The shape of the vibration element 12 obtained in this way is, for example, a rectangular parallelepiped shape having a length of 3 mm, a width of 0.5 mm, and a thickness of 0.3 mm. The length of the support region sandwiched between the support members 21 is The length of the free region that is 1 mm and is not sandwiched between the support members 21 is 2 mm. In the following description, one end of the vibration element 12 (end on the side sandwiched by the support member 21) is referred to as a fixed end, and the other end is referred to as a free end.

本例の加速度センサ10において、外部電極41a,41bとしては、例えば樹脂中に導電性フィラーを含有した導電性接着剤を使用できる。導電性接着剤に含有される導電性フィラーとしては、銀,銅等の導電性の良いものが望ましい。また、導電性接着剤における接着樹脂としては、圧電基板11の分極の消失を防止するために、300℃未満で硬化するものが望ましく、例えばエポキシ系樹脂等を好適に使用することができる。   In the acceleration sensor 10 of this example, as the external electrodes 41a and 41b, for example, a conductive adhesive containing a conductive filler in resin can be used. As the conductive filler contained in the conductive adhesive, those having good conductivity such as silver and copper are desirable. In addition, as the adhesive resin in the conductive adhesive, in order to prevent the polarization of the piezoelectric substrate 11 from being lost, it is desirable to cure at less than 300 ° C. For example, an epoxy resin or the like can be preferably used.

外部電極41a,41bは、振動素子12で発生した電位差を配線を介して外部の信号処理回路に伝えるためのものである。加速度センサ10が実装されるのは、例えばハードディスクの磁気ヘッドを保持する金属製のアームやハードディスクドライブを構成する金属製の筺体等である。   The external electrodes 41a and 41b are used to transmit a potential difference generated in the vibration element 12 to an external signal processing circuit via wiring. The acceleration sensor 10 is mounted on, for example, a metal arm that holds a magnetic head of a hard disk, a metal housing that constitutes a hard disk drive, or the like.

外部電極41a,41bは、実装面を有する直方体状のケース1の端面に、実装面から0.2mm以上の間隔をあけて形成しておけばよい。例えば、寸法が幅2.1mm、奥行2.1mm、厚み1.5mmの加速度センサの場合には、実装面から0.2〜0.4mmの間隔をあけて、端面の幅方向に1.8mm〜2.4mm、厚み方向に0.7mm〜1.0mmの大きさに形成する。このように外部電極41a,41bを実装面から間隔をあけて形成することにより、導体の付着やマイグレーションの発生等によって外部電極41a,41b間が短絡されることを有効に防止することができる。   The external electrodes 41a and 41b may be formed on the end face of the rectangular parallelepiped case 1 having a mounting surface with a spacing of 0.2 mm or more from the mounting surface. For example, in the case of an acceleration sensor with dimensions of 2.1 mm in width, 2.1 mm in depth, and 1.5 mm in thickness, a distance of 0.2 to 0.4 mm from the mounting surface and 1.8 mm to 2.4 mm in the width direction of the end surface, in the thickness direction A size of 0.7 mm to 1.0 mm is formed. By forming the external electrodes 41a and 41b at a distance from the mounting surface in this manner, it is possible to effectively prevent the external electrodes 41a and 41b from being short-circuited due to the adhesion of conductors or the occurrence of migration.

したがって、本例の加速度センサ10は、内部に振動素子12を収納し、実装面を有する直方体状のケース1の端面に、実装面から間隔をあけて外部電極41a,41bが形成されていることから、ハードディスクの磁気ヘッドを保持する金属製のアームやハードディスクドライブ等の電子機器を構成する筺体等のような加速度を検出しようとする金属製の導体部材51に直接接合しても、外部電極41a,41b間が導体部材51によって短絡されることがないので、図4に示すように、加速度センサ10を導体部材上に直接実装することができる。   Therefore, in the acceleration sensor 10 of this example, the vibrating element 12 is housed inside, and the external electrodes 41a and 41b are formed on the end face of the rectangular parallelepiped case 1 having the mounting surface at a distance from the mounting surface. Even if it is directly joined to a metal conductor member 51 that is to detect acceleration, such as a metal arm that holds a magnetic head of a hard disk or a housing that constitutes an electronic device such as a hard disk drive, the external electrode 41a 41b are not short-circuited by the conductor member 51, the acceleration sensor 10 can be directly mounted on the conductor member as shown in FIG.

以上のように、本例の加速度センサ10は、外部電極41a,41bが実装面を有する直方体状のケース1の端面に実装面から間隔をあけて形成されていることから、加速度を検出しようとする金属製の導体部材51に直接接合しても、外部電極41a,41bが金属製の筺体や内部部品によって短絡されることがない。   As described above, in the acceleration sensor 10 of this example, the external electrodes 41a and 41b are formed on the end surface of the rectangular parallelepiped case 1 having the mounting surface at a distance from the mounting surface. Even if directly joined to the metallic conductor member 51, the external electrodes 41a and 41b are not short-circuited by the metallic casing or internal parts.

したがって、加速度センサ10を導体部材51に直接実装することができるので、加速度を検出しようとする導体部材51に加わった加速度が直接加速度センサ10に伝わることによって、加速度をより正確に検出することができるので、加速度センサの検出感度を上げるのに効果的である。なお、このように加速度センサ10を実装することにより、作用した加速度に応じた電気信号を、外部電極41a,41bから接続導体42を介して外部の信号処理回路へと出力することができる。ここで、外部電極41a,41bと外部の信号処理回路との電気的な接続を行なう配線としては、導線や金属リード板等を用いることができる。   Therefore, since the acceleration sensor 10 can be directly mounted on the conductor member 51, the acceleration applied to the conductor member 51 to detect the acceleration is directly transmitted to the acceleration sensor 10, so that the acceleration can be detected more accurately. This is effective in increasing the detection sensitivity of the acceleration sensor. By mounting the acceleration sensor 10 in this way, an electrical signal corresponding to the applied acceleration can be output from the external electrodes 41a and 41b to the external signal processing circuit via the connection conductor. Here, as the wiring for electrically connecting the external electrodes 41a and 41b and the external signal processing circuit, a conductive wire, a metal lead plate, or the like can be used.

次に、図7は本発明の加速度センサ10の実施の形態の他の例を示す外観斜視図である。図7において、図1と同様の部位には同様の符号を付している。   Next, FIG. 7 is an external perspective view showing another example of the embodiment of the acceleration sensor 10 of the present invention. 7, parts similar to those in FIG. 1 are denoted by the same reference numerals.

図7に示す例の加速度センサ10においては、内部に振動素子12を収納した、実装面を有する直方体状のケース1の端面に、互いに対向する一対の面のそれぞれから間隔をあけて外部電極41a,41bが形成されていることから、対向する一対の面のうちのどちらかを加速度を検出しようとする金属部材に接合して実装すればよいので、対向する一対の面のそれぞれを実装可能な面とすることができ、加速度センサ10の実装をより容易に行なうことができる。   In the acceleration sensor 10 of the example shown in FIG. 7, the external electrode 41a is spaced from each of a pair of surfaces facing each other on the end surface of a rectangular parallelepiped case 1 having a mounting surface in which the vibration element 12 is housed. 41b is formed, it is only necessary to join and mount one of a pair of opposing surfaces to a metal member to detect acceleration, so that each of the pair of opposing surfaces can be mounted. The acceleration sensor 10 can be mounted more easily.

次に、図8は本発明の加速度センサ10の実施の形態のさらに他の例を示す外観斜視図である。図8において、図1と同様の部位には同様の符号を付している。   Next, FIG. 8 is an external perspective view showing still another example of the embodiment of the acceleration sensor 10 of the present invention. In FIG. 8, the same parts as those in FIG.

図8に示す例の加速度センサ10は、内部に振動素子12を収納した、実装面を有する直方体状のケース1の一方端側の端面に、互いに対向する一対の面のそれぞれから間隔をあけて外部電極41a,41bが形成されていることから、加速度センサ10を作製する際に外部電極41a,41bを同時に形成することができる。また、外部電極41bと主面電極15bとをつなぐ接続導体42を用いることなく加速度センサ10を構成することもできるので、加速度センサ10の構造がより単純になり、工程を短縮する上で有利である。   The acceleration sensor 10 in the example shown in FIG. 8 has an end face on one end side of a rectangular parallelepiped case 1 having a mounting surface in which the vibration element 12 is housed, spaced from each of a pair of faces facing each other. Since the external electrodes 41a and 41b are formed, the external electrodes 41a and 41b can be formed simultaneously when the acceleration sensor 10 is manufactured. Further, since the acceleration sensor 10 can be configured without using the connection conductor 42 that connects the external electrode 41b and the main surface electrode 15b, the structure of the acceleration sensor 10 becomes simpler, which is advantageous in shortening the process. is there.

なお、本発明は上述した実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更,改良が可能である。   The present invention is not limited to the embodiments described above, and various changes and improvements can be made without departing from the scope of the present invention.

例えば、上述した振動素子12は、全て振動素子12の一方端部を支持部材21により挟持する片端支持構造の加速度センサであったが、それよりも加速度の検出感度を低下させてもよい場合であれば、振動素子12が両端部を支持部材21により挟持される両端支持構造の加速度センサとしてもよい。   For example, the above-described vibration element 12 is an acceleration sensor having a one-end support structure in which one end portion of the vibration element 12 is sandwiched by the support member 21, but the acceleration detection sensitivity may be further reduced. If present, the vibration element 12 may be an acceleration sensor having a both-ends support structure in which both ends are sandwiched between the support members 21.

また、上述した加速度センサ10は、振動素子12の振動方向に垂直な面が実装面であったが、振動素子12の振動方向に平行な面が実装面である加速度センサとしてもよい。   In addition, although the acceleration sensor 10 described above has a mounting surface that is perpendicular to the vibration direction of the vibration element 12, it may be an acceleration sensor in which a surface parallel to the vibration direction of the vibration element 12 is the mounting surface.

次に、本発明の加速度センサの具体例について、図1〜図3,図5および図6に示した実施の形態の一例の加速度センサ10を例にとって説明する。   Next, a specific example of the acceleration sensor of the present invention will be described by taking the acceleration sensor 10 of the embodiment shown in FIGS. 1 to 3, 5 and 6 as an example.

まず、チタン酸ジルコン酸鉛の原料粉末にバインダを加えてプレス成形し、1200℃のピーク温度で焼成して、圧電体のブロックを得た。   First, a binder was added to a raw material powder of lead zirconate titanate, press-molded, and fired at a peak temperature of 1200 ° C. to obtain a block of a piezoelectric body.

次に、この圧電体のブロックをワイヤーソーを用いてスライスし、さらにラップ研磨機を用いて両面をラップ研磨することによって、分割されて圧電基板11となる複数の素子領域を有する圧電母基板を作製した。ここで、圧電母基板の厚みは100μmとした。   Next, this piezoelectric block is sliced using a wire saw, and both sides are lapped using a lapping machine, whereby a piezoelectric mother substrate having a plurality of element regions that are divided into piezoelectric substrates 11 is obtained. Produced. Here, the thickness of the piezoelectric mother substrate was 100 μm.

次に、パターニングされて主面電極15a,15bとなる金属薄膜を、スパッタ装置を用いて圧電母基板の両主面に形成した。それぞれの金属薄膜はクロムと銀との2層構造とし、クロム薄膜を0.3μmの厚みで形成した後に、その上に銀薄膜を0.3μmの厚みで形成した。   Next, metal thin films to be patterned to become main surface electrodes 15a and 15b were formed on both main surfaces of the piezoelectric mother substrate using a sputtering apparatus. Each metal thin film has a two-layer structure of chromium and silver, and after forming a chromium thin film with a thickness of 0.3 μm, a silver thin film is formed thereon with a thickness of 0.3 μm.

次に、両主面に金属薄膜が形成された圧電母基板を分極槽に投入し、両主面の金属薄膜間に300Vの電圧を10秒間印加して、圧電母基板を厚み方向に分極処理した。   Next, a piezoelectric mother substrate having a metal thin film formed on both main surfaces is put into a polarization chamber, and a voltage of 300 V is applied for 10 seconds between the metal thin films on both main surfaces to polarize the piezoelectric mother substrate in the thickness direction. did.

次に、スクリーン印刷法を用いて金属薄膜の表面にレジストパターンを形成した後に、エッチング液に浸漬して金属薄膜のパターニングを行ない、その後、トルエンに浸漬してレジストを除去することによって、圧電母基板の各素子領域の両主面に主面電極15a,15bを形成した。   Next, after forming a resist pattern on the surface of the metal thin film using a screen printing method, the metal thin film is patterned by immersion in an etching solution, and then the resist is removed by immersion in toluene. Main surface electrodes 15a and 15b were formed on both main surfaces of each element region of the substrate.

次に、両主面の各素子領域に主面電極15a,15bが形成された2枚の圧電母基板を真空オーブンに投入して、両者の間にガラス布基材エポキシ樹脂のプリプレグを介在させて貼り合わせ、荷重を加えながら180℃の温度で2時間保持して接合した。なお、プリプレグの厚みは0.1mm程度になるようにし、2枚の圧電母基板の分極の向きが互いに逆向きになるようにして貼り合わせた。   Next, the two piezoelectric mother substrates on which the principal surface electrodes 15a and 15b are formed in the element regions on both principal surfaces are put into a vacuum oven, and a glass cloth base epoxy resin prepreg is interposed therebetween. Bonding was carried out by holding at 180 ° C. for 2 hours while applying a load. The prepreg was bonded so that the thickness of the prepreg was about 0.1 mm and the polarization directions of the two piezoelectric mother substrates were opposite to each other.

次に、圧電母基板をダイシングソーを用いて各素子領域の境界に沿って切断して個片に分割し、図5および図6に示すような振動素子12を複数個同時に得た。なお、振動素子12の形状は、長さが3mmで、幅が0.5mmで、厚みが0.3mmの矩形平板状とした。   Next, the piezoelectric mother substrate was cut along a boundary of each element region using a dicing saw and divided into individual pieces, and a plurality of vibration elements 12 as shown in FIGS. 5 and 6 were obtained simultaneously. The shape of the vibration element 12 was a rectangular flat plate having a length of 3 mm, a width of 0.5 mm, and a thickness of 0.3 mm.

次に、振動素子12の長手方向における一方端の端部から1mmの範囲の両主面に、支持部材21となるエポキシ樹脂を塗布し、60℃の温度で1時間程度保持して半硬化状態にした。なお、一対の支持部材21の厚みはそれぞれ100μmに設定し、その材料として硬化後の支持部材の弾性率が6GPaとなるエポキシ樹脂を用いた。   Next, an epoxy resin serving as a support member 21 is applied to both main surfaces within a range of 1 mm from one end in the longitudinal direction of the vibration element 12 and kept at a temperature of 60 ° C. for about 1 hour to be semi-cured. I made it. The thickness of each of the pair of support members 21 was set to 100 μm, and an epoxy resin having a cured support member with an elastic modulus of 6 GPa was used as its material.

次に、長さおよび幅が振動素子12と同じで、厚みが0.6mmの矩形平板状である一対の主面保護部材31を、長手方向における両端の端面が振動素子12の長手方向における両端の端面と同一平面上に位置し、半硬化状態の一対の支持部材21を介して振動素子12の両主面と間隔をあけて対向するように貼り付けて、150℃の温度で1時間保持して支持部材21を本硬化させることによって固定した。   Next, a pair of main surface protective members 31 having the same length and width as the vibration element 12 and a rectangular flat plate shape with a thickness of 0.6 mm are arranged so that the end surfaces at both ends in the longitudinal direction are at both ends in the longitudinal direction of the vibration element 12. It is located on the same plane as the end face, and is pasted with a pair of semi-cured support members 21 so as to face both main surfaces of the vibration element 12 with a gap, and is held at a temperature of 150 ° C. for 1 hour. The support member 21 was fixed by being fully cured.

次に、一対の主面保護部材31の長手方向における他方端部に、一対の端面スペーサ部材22となるエポキシ樹脂を塗布し、60℃の温度で1時間程度保持して半硬化状態にした。なお、一対の端面スペーサ部材22の厚みはそれぞれ50μmに設定した。   Next, an epoxy resin to be a pair of end surface spacer members 22 was applied to the other end portion in the longitudinal direction of the pair of main surface protection members 31, and kept at a temperature of 60 ° C. for about 1 hour to be in a semi-cured state. The thickness of the pair of end face spacer members 22 was set to 50 μm.

次に、半硬化状態の一対の端面スペーサ部材22を介して一対の主面保護部材31の長手方向における他方端および振動素子12の長手方向における他方端の端面と間隔をあけて対向するように端面保護部材32を貼り付けて、150℃の温度で1時間保持して一対の端面スペーサ部材22を硬化させることによって固定した。なお、端面保護部材32の形状は、長さが1.7mmで、幅が0.5mmで、厚みが0.2mmの矩形平板状とした。また、振動素子12,一対の支持部材21,一対の主面保護部材31,一対の端面スペーサ部材22および端面保護部材32の両側面が、それぞれ同一面上に位置するようにした。   Next, the other end in the longitudinal direction of the pair of main surface protection members 31 and the end surface of the other end in the longitudinal direction of the vibration element 12 are opposed to each other via a pair of semi-cured end surface spacer members 22 with a space therebetween. The end face protection member 32 was affixed, held at a temperature of 150 ° C. for 1 hour, and fixed by curing the pair of end face spacer members 22. The shape of the end face protection member 32 was a rectangular flat plate having a length of 1.7 mm, a width of 0.5 mm, and a thickness of 0.2 mm. Further, both side surfaces of the vibration element 12, the pair of support members 21, the pair of main surface protection members 31, the pair of end surface spacer members 22 and the end surface protection member 32 are positioned on the same surface.

次に、振動素子12の長手方向における一方端の両側面ならびに一対の主面保護部材31および端面保護部材32および一対の支持部材21および一対の端面スペーサ部材22の両側面のそれぞれに、一対の側面スペーサ部材23となるエポキシ樹脂を塗布し、60℃の温度で1時間程度保持して半硬化状態にした。なお、一対の側面スペーサ部材23の厚みはそれぞれ50μmに設定した。   Next, a pair of side surfaces of one end in the longitudinal direction of the vibration element 12 and a pair of main surface protection member 31, end surface protection member 32, a pair of support members 21, and a pair of end surface spacer members 22 The epoxy resin used as the side spacer member 23 was applied, and kept at a temperature of 60 ° C. for about 1 hour to be in a semi-cured state. The thickness of the pair of side spacer members 23 was set to 50 μm.

次に、半硬化状態の一対の側面スペーサ部材23を介して、振動素子12,一対の主面保護部材31,端面保護部材32,一対の支持部材21および一対の端面スペーサ部材22と間隔をあけて対向するように一対の側面保護部材33を貼付し、150℃の温度で1時間保持して一対の側面スペーサ部材23を本硬化させることによって固定した。なお、一対の側面保護部材33の形状は、それぞれ長さが3.25mmで、幅が1.7mmで、厚みが0.2mmの矩形平板状とした。   Next, the vibration element 12, the pair of main surface protection members 31, the end surface protection member 32, the pair of support members 21, and the pair of end surface spacer members 22 are spaced apart from each other through a pair of semi-cured side spacer members 23. A pair of side surface protection members 33 were attached so as to face each other and held at a temperature of 150 ° C. for 1 hour to fix the pair of side surface spacer members 23 by main curing. The pair of side surface protection members 33 each have a rectangular flat plate shape having a length of 3.25 mm, a width of 1.7 mm, and a thickness of 0.2 mm.

次に、加速度センサ10の長手方向における一方端の端面において、端面に引き出された主面電極15aと接続するように外部電極41aとなる導電性樹脂を塗布し、加速度センサ10の長手方向における他方端の端面において、主面電極15bと接続導体42を介して接続するように外部電極41bとなる導電性樹脂を塗布し、150℃の温度で1時間保持して硬化させることにより、一対の外部電極41a,41bを形成して加速度センサ10を完成させた。なお、導電性樹脂としては、導電性フィラーとして銀粒子を含んだエポキシ樹脂系の導電性接着剤を用いた。なお、外部電極41a,41bは、加速度センサ10の端面のそれぞれに両主面から0.2mmの間隔をあけて形成した。   Next, a conductive resin serving as the external electrode 41a is applied to one end face in the longitudinal direction of the acceleration sensor 10 so as to be connected to the main surface electrode 15a drawn to the end face, and the other in the longitudinal direction of the acceleration sensor 10 is applied. On the end face of the end, a conductive resin to be the external electrode 41b is applied so as to be connected to the main surface electrode 15b via the connection conductor 42, and is kept at 150 ° C. for 1 hour to be cured, thereby making a pair of external The electrodes 41a and 41b were formed to complete the acceleration sensor 10. As the conductive resin, an epoxy resin conductive adhesive containing silver particles as a conductive filler was used. The external electrodes 41a and 41b were formed on the end surfaces of the acceleration sensor 10 with an interval of 0.2 mm from both main surfaces.

このようにして得られた本発明の加速度センサは、実装面を有するケースに、実装面から間隔をあけて外部電極を有していることから、ハードディスクの磁気ヘッドを保持する金属製のアームやハードディスクドライブ等の電子機器を構成する筺体等の、加速度を検出しようとする金属製の導体部材に直接接合しても、外部電極同士が金属製の導体部材によって短絡されることがなく、金属製の導体部材に直接実装できるものであった。また、金属製の導体部材に直接実装できることから、加速度を検出しようとする金属製の導体部材に加わる加速度が直接加速度センサに伝わるので、加速度の検出感度の向上を図ることができた。   Since the acceleration sensor of the present invention thus obtained has external electrodes spaced from the mounting surface in a case having a mounting surface, a metal arm that holds the magnetic head of the hard disk, Even if it is directly joined to a metal conductor member that is to detect acceleration, such as a housing constituting an electronic device such as a hard disk drive, the external electrodes are not short-circuited by the metal conductor member. It can be directly mounted on the conductor member. Further, since it can be directly mounted on a metal conductor member, the acceleration applied to the metal conductor member for detecting the acceleration is directly transmitted to the acceleration sensor, so that the acceleration detection sensitivity can be improved.

したがって、このようにして得られた本発明の加速度センサは、加速度を検出しようとする金属製の導体部材に直接実装可能であり、加速度の検出感度の高い優れた加速度センサであった。   Therefore, the acceleration sensor of the present invention thus obtained can be directly mounted on a metal conductor member to detect acceleration, and is an excellent acceleration sensor with high acceleration detection sensitivity.

本発明の加速度センサの実施の形態の一例を模式的に示す外観斜視図である。It is an appearance perspective view showing typically an example of an embodiment of an acceleration sensor of the present invention. (a)は図1に示す加速度センサの外部電極41a,41bを取り除いた状態を模式的に示す正面図であり、(b)は図1のA−A線断面図であり、(c)は図1のB−B線断面図である。(A) is a front view schematically showing a state in which the external electrodes 41a and 41b of the acceleration sensor shown in FIG. 1 are removed, (b) is a cross-sectional view taken along the line AA in FIG. It is the BB sectional view taken on the line of FIG. 図1に示す加速度センサの側面保護部材33を取り除いた状態を示す側面図である。It is a side view which shows the state which removed the side surface protection member 33 of the acceleration sensor shown in FIG. 図1に示す加速度センサを実装した状態を示す側面図である。It is a side view which shows the state which mounted the acceleration sensor shown in FIG. 図1に示す加速度センサに用いられる振動素子を模式的に示す外観斜視図である。It is an external appearance perspective view which shows typically the vibration element used for the acceleration sensor shown in FIG. 図5に示す振動素子の分解斜視図である。FIG. 6 is an exploded perspective view of the vibration element shown in FIG. 5. 本発明の加速度センサの実施の形態の他の例を示す外観斜視図である。It is an external appearance perspective view which shows the other example of embodiment of the acceleration sensor of this invention. 本発明の加速度センサの実施の形態のさらに他の例を示す外観斜視図である。It is an external appearance perspective view which shows the other example of embodiment of the acceleration sensor of this invention.

符号の説明Explanation of symbols

1・・・・ケース
10・・・・加速度センサ
11・・・・圧電基板
12・・・・振動素子
13・・・・弾性体
15a,15b・・・・主面電極
21・・・・支持部材
22・・・・端面スペーサ部材
23・・・・側面スペーサ部材
31・・・・主面保護部材
32・・・・端面保護部材
33・・・・側面保護部材
41a,41b・・・・外部電極
42・・・・接続導体
51・・・・導体部材
52・・・・接着剤
1. Case
10. ・ Acceleration sensor
11 ... Piezoelectric substrate
12 ... Vibration element
13 .... Elastic body
15a, 15b ... Main surface electrode
21 ... Support members
22 ・ ・ ・ ・ End spacer
23 .. Side spacer member
31 ... Main surface protection member
32 ... End face protection member
33 ... Side protection member
41a, 41b ... External electrodes
42 ・ ・ ・ ・ Connection conductor
51 ・ ・ ・ ・ Conductive member
52 ・ ・ ・ ・ Adhesive

Claims (2)

内部に振動素子を収納した、実装面を有するケースに、前記実装面から間隔をあけて外部電極を有していることを特徴とする加速度センサ。   An acceleration sensor comprising: a case having a mounting surface in which a vibration element is housed; and an external electrode spaced from the mounting surface. 請求項1記載の加速度センサの前記実装面が、加速度を検出しようとする導体部材に接着剤にて接合され、前記外部電極が外部の信号処理回路と配線により電気的に接続されてなることを特徴とする加速度センサの実装構造。   The mounting surface of the acceleration sensor according to claim 1 is bonded to a conductor member to detect acceleration by an adhesive, and the external electrode is electrically connected to an external signal processing circuit by wiring. The mounting structure of the characteristic acceleration sensor.
JP2008278129A 2008-10-29 2008-10-29 Acceleration sensor and acceleration sensor mounting structure Pending JP2010107288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008278129A JP2010107288A (en) 2008-10-29 2008-10-29 Acceleration sensor and acceleration sensor mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008278129A JP2010107288A (en) 2008-10-29 2008-10-29 Acceleration sensor and acceleration sensor mounting structure

Publications (1)

Publication Number Publication Date
JP2010107288A true JP2010107288A (en) 2010-05-13

Family

ID=42296880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008278129A Pending JP2010107288A (en) 2008-10-29 2008-10-29 Acceleration sensor and acceleration sensor mounting structure

Country Status (1)

Country Link
JP (1) JP2010107288A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171175A1 (en) * 2013-04-17 2014-10-23 株式会社村田製作所 Acceleration detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171175A1 (en) * 2013-04-17 2014-10-23 株式会社村田製作所 Acceleration detection device

Similar Documents

Publication Publication Date Title
US8256292B2 (en) Acceleration sensor with surface protection
JP6133609B2 (en) Piezoelectric parts
JP4822769B2 (en) Acceleration sensor
KR100822775B1 (en) Acceleration sensor and magnetic disk device using the same
JP4583188B2 (en) Acceleration sensor
JP2007010377A (en) Acceleration sensor
JP2010107288A (en) Acceleration sensor and acceleration sensor mounting structure
US7942055B2 (en) Acceleration sensor
JP2010078389A (en) Acceleration sensor
JP6487169B2 (en) Piezoelectric device
JP6760809B2 (en) Piezoelectric parts
JP2010175269A (en) Acceleration sensor
JP4508997B2 (en) Piezoelectric resonance component
JP6117555B2 (en) Piezoelectric parts
JP5586248B2 (en) Piezoelectric laminated parts
JP6563792B2 (en) Piezoelectric parts
JP2008232697A (en) Acceleration sensor
JP5377243B2 (en) Piezoelectric electronic components
JP6994980B2 (en) Piezoelectric parts
JP6777566B2 (en) Piezoelectric parts
JP6923476B2 (en) Piezoelectric vibrating device and electronic equipment equipped with it
JP2006234795A (en) Acceleration sensor
JP2012073161A (en) Acceleration sensor
JP2000040936A (en) Piezo-resonator, manufacture of the piezo-resonator, piezo resonance component and manufacture of piezo- resonance part
JP2020205370A (en) Piezoelectric element