JP2007010377A - Acceleration sensor - Google Patents

Acceleration sensor Download PDF

Info

Publication number
JP2007010377A
JP2007010377A JP2005188978A JP2005188978A JP2007010377A JP 2007010377 A JP2007010377 A JP 2007010377A JP 2005188978 A JP2005188978 A JP 2005188978A JP 2005188978 A JP2005188978 A JP 2005188978A JP 2007010377 A JP2007010377 A JP 2007010377A
Authority
JP
Japan
Prior art keywords
support member
vibration element
acceleration sensor
region
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005188978A
Other languages
Japanese (ja)
Inventor
Michihiko Kuwahata
道彦 桑畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005188978A priority Critical patent/JP2007010377A/en
Priority to US11/475,836 priority patent/US7394610B2/en
Priority to KR1020060057887A priority patent/KR100822775B1/en
Priority to CN200610100053A priority patent/CN100588970C/en
Publication of JP2007010377A publication Critical patent/JP2007010377A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acceleration sensor of small size with high acceleration detection sensitivity and reliability. <P>SOLUTION: This acceleration sensor is equipped with a vibration element made by disposing principal surface electrodes on two principal surfaces of a strip-like piezoelectric substrate and support members for sandwiching a part thereof. The support members are made of elastic bodies. A bend point of the vibration element is positioned in a support area where the vibration element is sandwiched between the support members. Because of this, an area of the piezoelectric substrate where strain is developed is enlarged, generated electric charge increases to increase an output voltage, and acceleration detection sensitivity can be enhanced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は加速度センサに関し、特に小型で高感度の加速度センサに関するものである。   The present invention relates to an acceleration sensor, and more particularly to a small and highly sensitive acceleration sensor.

従来からハードディスクドライブ等の電子機器に外部から加わる衝撃の検出などの用途に加速度センサが用いられており、短冊状の圧電基板の両主面に主面電極を形成した振動素子の端部の両主面を支持部材によって挟持したタイプの加速度センサが知られている。(例えば、特許文献1を参照。)。   Conventionally, acceleration sensors have been used for applications such as detecting external impacts on electronic devices such as hard disk drives, and both ends of vibration elements with main surface electrodes formed on both main surfaces of a strip-shaped piezoelectric substrate. An acceleration sensor of a type in which a main surface is sandwiched between support members is known. (For example, see Patent Document 1).

このような加速度センサにおいては、与えられた加速度により振動素子が撓むことによって圧電基板に歪みが生じ、圧電効果により発生した電荷によって圧電基板の両主面に形成した主面電極間に電位差が生じ、これを出力電圧として取り出すことによって加速度が検出される。
特開2000−321299号公報(図1)
In such an acceleration sensor, the piezoelectric element is distorted by bending of the vibration element due to the applied acceleration, and a potential difference is generated between the main surface electrodes formed on both main surfaces of the piezoelectric substrate due to charges generated by the piezoelectric effect. The acceleration is detected by taking this out as an output voltage.
JP 2000-32299 A (FIG. 1)

しかしながら、上述したような従来の加速度センサにおいては、加速度の検出感度を向上させるためには振動素子の長さを長くするか、あるいは振動素子の幅および厚みを小さくする必要があった。例えば、圧電基板を2枚張り合わせたバイモルフ型の振動素子の一方端部を支持部材によって挟持した加速度センサに加速度による力Fが加わったときに発生する出力電圧Vは、圧電基板の圧電定数をD、振動素子の支持部材によって挟持されていない部分の長さ(自由領域の長さ)をL、振動素子の幅をW、振動素子の厚みをTとすると、V=(3/2)・D・L/(W・T)・Fとなり、振動素子の自由領域の長さLに比例し、振動素子の幅Wおよび厚みTに反比例する。よって、加速度センサの加速度の検出感度を向上させるためには振動素子の自由領域の長さLを大きくして振動素子の幅Wおよび厚みTを小さくする必要があるが、振動素子の自由領域の長さLの増大は加速度センサの大型化を招き、振動素子の幅Wおよび厚みTの減少は機械的強度を低下させて信頼性の低下を招くという問題があった。   However, in the conventional acceleration sensor as described above, it is necessary to increase the length of the vibration element or reduce the width and thickness of the vibration element in order to improve the detection sensitivity of acceleration. For example, the output voltage V generated when an acceleration force F is applied to an acceleration sensor in which one end of a bimorph type vibration element in which two piezoelectric substrates are bonded together is sandwiched by a support member is expressed by the piezoelectric constant of the piezoelectric substrate as D When the length of the portion of the vibration element not sandwiched by the support member (length of the free region) is L, the width of the vibration element is W, and the thickness of the vibration element is T, V = (3/2) · D L / (W · T) · F, which is proportional to the length L of the free region of the vibration element and inversely proportional to the width W and thickness T of the vibration element. Therefore, in order to improve the acceleration detection sensitivity of the acceleration sensor, it is necessary to increase the length L of the free area of the vibration element and reduce the width W and thickness T of the vibration element. An increase in the length L causes an increase in the size of the acceleration sensor, and a decrease in the width W and the thickness T of the vibration element causes a problem that the mechanical strength is lowered and the reliability is lowered.

本発明は上記のような従来の技術における問題点に鑑み案出されたものであり、その目的は、小型で加速度の検出感度および信頼性が高い加速度センサを提供することにある。   The present invention has been devised in view of the problems in the conventional techniques as described above, and an object of the present invention is to provide a small acceleration sensor with high acceleration detection sensitivity and reliability.

本発明の加速度センサは、短冊状の圧電基板の両主面に主面電極を配置して成る振動素子と、該振動素子の一部を挟持する支持部材とを備えた加速度センサにおいて、前記支持部材が弾性体から成り、前記振動素子の屈曲点を前記支持部材によって挟持されている支持領域内に位置させたことを特徴とするものである。   The acceleration sensor according to the present invention is an acceleration sensor comprising: a vibration element in which main surface electrodes are arranged on both main surfaces of a strip-shaped piezoelectric substrate; and a support member that sandwiches a part of the vibration element. The member is made of an elastic body, and the bending point of the vibration element is located in a support region sandwiched by the support member.

また、本発明の加速度センサは、上記構成において、前記支持部材が、前記振動素子の両主面に内側が接するように配置されて前記振動素子を挟持する第1支持部材と、前記第1支持部材の外側に接して前記第1支持部材を挟持する第2支持部材とから成り、前記第1支持部材の弾性率が前記第2支持部材の弾性率よりも小さくされているようにしてもよい。   According to the acceleration sensor of the present invention, in the above configuration, the support member is disposed so that the inner side is in contact with both main surfaces of the vibration element, and the first support member sandwiches the vibration element. A second support member that is in contact with the outside of the member and sandwiches the first support member, and the elastic modulus of the first support member may be smaller than the elastic modulus of the second support member. .

さらに、本発明の加速度センサは、支持部材と、短冊状の圧電基板の両主面に主面電極が配置されて成り、該圧電基板の両主面が前記支持部材によって挟持された支持領域および撓み振動の振幅が最大となる振幅最大領域を有する振動素子とを備える加速度センサにおいて、前記支持部材が、前記振動素子の両主面に内側が接するように配置されて前記振動素子を挟持する第1支持部材と、前記第1支持部材の外側に接して前記第1支持部材を挟持する第2支持部材とから成り、該第2支持部材に対して前記第1支持部材が前記振動素子の振幅最大領域に向かって延出されていることを特徴とするものである。   Furthermore, the acceleration sensor of the present invention comprises a support member and main surface electrodes arranged on both main surfaces of the strip-shaped piezoelectric substrate, and a support region in which both main surfaces of the piezoelectric substrate are sandwiched by the support member, and An acceleration sensor comprising a vibration element having a maximum amplitude region in which the amplitude of flexural vibration is maximized, wherein the support member is disposed so that the inner surfaces thereof are in contact with both main surfaces of the vibration element, and holds the vibration element. A first support member and a second support member that is in contact with the outside of the first support member and sandwiches the first support member, and the first support member has an amplitude of the vibration element with respect to the second support member. It is characterized by extending toward the maximum area.

またさらに、本発明の加速度センサは、上記構成において、前記第1支持部材の弾性率が前記第2支持部材の弾性率よりも小さくされているようにしてもよい。 Furthermore, the acceleration sensor of the present invention may be configured such that, in the above configuration, the elastic modulus of the first support member is smaller than the elastic modulus of the second support member.

本発明の加速度センサは、支持部材を弾性体から成し、振動素子の屈曲点を支持部材によって挟持されている支持領域内に位置させている。ここで屈曲点とは、振動素子において撓みが生じている部分と撓みが生じていない部分との境目のことである。この屈曲点を支持領域内に位置させることにより、支持領域内に位置する圧電基板にも振動素子の撓みによる歪みが生じることになる。よって、従来の加速度センサのように支持領域と自由領域の境界に屈曲点が存在する場合と比較して、圧電基板における歪みが生じる領域が大きくなり、発生する電荷が増加して出力電圧が増大し、加速度の検出感度を高くすることができる。また、振動素子の自由領域の長さを大きくしないので加速度センサの大型化を招くこともなく、振動素子の幅および厚みを小さくしないので機械的強度不足による信頼性の低下を招くこともない。   In the acceleration sensor of the present invention, the support member is made of an elastic body, and the bending point of the vibration element is located in the support region sandwiched by the support member. Here, the bending point is a boundary between a portion where the vibration element is bent and a portion where the bending is not generated. By positioning the bending point in the support region, the piezoelectric substrate positioned in the support region is also distorted by the bending of the vibration element. Therefore, compared to the case where a bending point exists at the boundary between the support region and the free region as in the conventional acceleration sensor, the region where the distortion occurs in the piezoelectric substrate becomes larger, and the generated charge increases and the output voltage increases. In addition, the acceleration detection sensitivity can be increased. Further, since the length of the free region of the vibration element is not increased, the acceleration sensor is not increased in size, and the width and thickness of the vibration element are not decreased, so that reliability is not deteriorated due to insufficient mechanical strength.

また、本発明の加速度センサは、上記構成において、振動素子の両主面に内側が接するように配置されて振動素子を挟持する第1支持部材と、第1支持部材の外側に接して第1支持部材を挟持する第2支持部材とから支持部を構成し、第1支持部材の弾性率を第2支持部材の弾性率よりも小さくしてもよく、これによって加速度の検出感度を高めることができる。この理由は以下のように考えられる。すなわち、第1支持部材が第2支持部材よりも小さい弾性率を有しているため、第1支持部材が振動素子から受ける力によって容易に変形し、支持領域内において振動素子が撓むことが可能となり、支持領域内に位置する圧電基板にも振動素子の撓みによる歪みが生じることになる。これによって、従来の加速度センサのように支持領域と自由領域の境界に屈曲点が存在する場合、すなわち支持領域と自由領域との境界部から撓み始める場合と比較して、圧電基板における歪みが生じる領域が大きくなり、発生する電荷が増加して出力電圧が増大し、加速度の検出感度を高くすることができるのである。しかも、第2支持部材の弾性率が第1支持部材の弾性率よりも大きく設定されているため第2支持部材には殆ど変形が生じることがなく、第2支持部材の変形によって振動素子2の変形が抑制されて加速度の検出感度が低下するという問題が発生しない。   The acceleration sensor according to the present invention has a first support member that is arranged so that the inner surfaces thereof are in contact with both main surfaces of the vibration element and sandwiches the vibration element, and a first contact member that is in contact with the outer side of the first support member. The support portion may be configured from the second support member that sandwiches the support member, and the elastic modulus of the first support member may be smaller than the elastic modulus of the second support member, thereby increasing the detection sensitivity of acceleration. it can. The reason is considered as follows. That is, since the first support member has a smaller elastic modulus than the second support member, the first support member is easily deformed by the force received from the vibration element, and the vibration element is bent in the support region. As a result, the piezoelectric substrate located in the support region is also distorted by the bending of the vibration element. This causes distortion in the piezoelectric substrate as compared with the case where a bending point exists at the boundary between the support region and the free region as in the conventional acceleration sensor, that is, when the bending starts from the boundary between the support region and the free region. The area becomes larger, the generated charge increases, the output voltage increases, and the acceleration detection sensitivity can be increased. In addition, since the elastic modulus of the second support member is set to be larger than that of the first support member, the second support member is hardly deformed, and the deformation of the second support member causes the vibration element 2 to be deformed. The problem that the deformation is suppressed and the acceleration detection sensitivity is reduced does not occur.

さらに、本発明の加速度センサは、支持部材が、振動素子の両主面に内側が接するように配置されて振動素子を挟持する第1支持部材と、第1支持部材の外側に接して第1支持部材を挟持する第2支持部材とから成り、第2支持部材に対して第1支持部材が振動素子の振幅最大領域に向かって延出されている。ここで振幅最大領域とは、振動素子において撓み振動の振幅が最大となる領域のことであり、振動素子の長手方向における一方端部付近を支持領域とした場合は他方端部付近が、振動素子の長手方向における中央部付近を支持領域とした場合は両端部付近が、振動素子の長手方向における両端部付近を支持領域とした場合は中央部付近がそれぞれ振幅最大領域となる。このような本発明の加速度センサによれば、第1支持部材における第2支持部材によって挟持されていない部分が振動素子の撓みを規制しながら振動素子と共にある程度撓むことになるので、この部分においても振動素子の撓みが発生する。そして、振動素子において、第1支持部材によって挟持されている領域の端部を起点とする撓みと、第1支持部材に加えて第2支持部材よっても挟持されている領域の端部を起点とする撓みとの両方が発生するため、圧電基板における歪みが生じる領域が大きくなり、発生する電荷が増加して出力電圧が増大し、加速度の検出感度を高くすることができる。   In the acceleration sensor of the present invention, the support member is arranged so that the inner side is in contact with both main surfaces of the vibration element, the first support member sandwiching the vibration element, and the first support member in contact with the outer side of the first support member. The second support member sandwiches the support member, and the first support member extends toward the maximum amplitude region of the vibration element with respect to the second support member. Here, the maximum amplitude region is a region where the amplitude of flexural vibration is maximum in the vibration element. When the vicinity of one end in the longitudinal direction of the vibration element is used as the support region, the vicinity of the other end is the vibration element. When the vicinity of the center in the longitudinal direction is the support region, the vicinity of both ends is the maximum amplitude region, and when the vicinity of both ends of the vibration element is the support region, the vicinity of the center is the maximum amplitude region. According to such an acceleration sensor of the present invention, the portion of the first support member that is not sandwiched between the second support members bends to some extent together with the vibration element while restricting the bending of the vibration element. Also, the bending of the vibration element occurs. In the vibration element, the bending starts from the end of the region sandwiched by the first support member, and the end of the region sandwiched by the second support member in addition to the first support member starts. Since both the bending and the bending occur, a region where distortion occurs in the piezoelectric substrate is increased, the generated charge is increased, the output voltage is increased, and the acceleration detection sensitivity can be increased.

またさらに、本発明の加速度センサは、上記構成において、前記第1支持部材の弾性率を前記第2支持部材の弾性率よりも小さくしたときは、第1支持部材における第2支持部材によって挟持されていない部分が振動素子と共にさらに撓みやすくなると共に、第2支持部材によって挟持されている領域内においても振動素子から受ける力によって第1支持部材が容易に変形して振動素子が撓むことが可能となり、圧電基板における歪みが生じる領域が更に大きくなり、発生する電荷が増加して出力電圧が増大し、加速度の検出感度を高くすることができる。しかも、第2支持部材の弾性率が第1支持部材の弾性率よりも大きく設定されているため第2支持部材には殆ど変形が生じることがなく、第2支持部材の変形によって振動素子2の変形が抑制されて加速度の検出感度が低下するという問題が発生しない。   Furthermore, the acceleration sensor according to the present invention is sandwiched by the second support member in the first support member when the elastic modulus of the first support member is smaller than the elastic modulus of the second support member in the above configuration. The unsupported portion can be more easily bent with the vibration element, and the first support member can be easily deformed by the force received from the vibration element even in the region sandwiched by the second support member, and the vibration element can be bent. As a result, the region where distortion occurs in the piezoelectric substrate is further increased, the generated charge is increased, the output voltage is increased, and the acceleration detection sensitivity can be increased. In addition, since the elastic modulus of the second support member is set to be larger than that of the first support member, the second support member is hardly deformed, and the deformation of the second support member causes the vibration element 2 to be deformed. The problem that the deformation is suppressed and the acceleration detection sensitivity is reduced does not occur.

以下、本発明の加速度センサを添付した図面を参照しつつ詳細に説明する。   Hereinafter, the acceleration sensor of the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の一実施形態に係る加速度センサを模式的に示す外観斜視図である。同図に示す加速度センサは、大略的にはリード電極1a、1bを有したケース1内に振動素子2を収納し、開口部1hを封止用樹脂5で封止した構造を有している。   FIG. 1 is an external perspective view schematically showing an acceleration sensor according to an embodiment of the present invention. The acceleration sensor shown in the figure generally has a structure in which a vibration element 2 is housed in a case 1 having lead electrodes 1a and 1b, and an opening 1h is sealed with a sealing resin 5. .

振動素子2を収納する直方体状のケース1は、一端側に開口部1hを有した容器体であり、材質としては例えば、液晶ポリマー(LCP)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等が用いられる。   The rectangular parallelepiped case 1 for housing the vibration element 2 is a container body having an opening 1h on one end side, and examples of the material include liquid crystal polymer (LCP), polyphenylene sulfide (PPS), polyether ether ketone (PEEK). ) Etc. are used.

ケース1にはリード電極1a、1bが取り付けられており、ハンダ等によって外部の回路配線基板との電気的な接続及び固定を行う。リード電極1a、1bは、材質としては例えばリン青銅等が用いられ、その厚みは例えば0.1〜0.5mmに設定される。尚、本実施形態の加速度センサにおいては、リード電極1a、1bは、インサートモールドによりケース1に一体成型させた。   Lead electrodes 1a and 1b are attached to the case 1, and are electrically connected and fixed to an external circuit wiring board by solder or the like. The lead electrodes 1a and 1b are made of, for example, phosphor bronze, and the thickness thereof is set to 0.1 to 0.5 mm, for example. In the acceleration sensor of this embodiment, the lead electrodes 1a and 1b are integrally formed with the case 1 by insert molding.

封止用樹脂5は、ケース1の開口部1hを塞ぐようにして形成され、材質としては例えばエポキシ系樹脂等が用いられる。   The sealing resin 5 is formed so as to close the opening 1h of the case 1, and as the material, for example, an epoxy resin or the like is used.

図2は本実施形態の加速度センサに用いる振動素子2および振動素子2の両主面の一方端部側を挟持する第1支持部材3a,3bを模式的に示す外観斜視図であり、図3は図2の第1支持部材3a,3bを透視して示した斜視図である。同図に示す振動素子2は、両主面に一対の主面電極21a,21bが被着した短冊状の圧電基板21と、両主面に一対の主面電極22a,22bが被着した短冊状の圧電基板22とが接着剤23を介して貼り合わされて構成されており、一般的にバイモルフ形と呼ばれる構造を有している。   FIG. 2 is an external perspective view schematically showing the vibration element 2 used in the acceleration sensor of the present embodiment and the first support members 3a and 3b that sandwich one end side of both main surfaces of the vibration element 2. FIG. FIG. 3 is a perspective view illustrating the first support members 3a and 3b in FIG. The vibration element 2 shown in the figure includes a strip-shaped piezoelectric substrate 21 having a pair of main surface electrodes 21a and 21b attached to both main surfaces, and a strip having a pair of main surface electrodes 22a and 22b attached to both main surfaces. A piezoelectric substrate 22 is bonded to each other via an adhesive 23 and has a structure generally called a bimorph shape.

圧電基板21,22は、厚み方向に分極されており、材質としては例えばチタン酸ジルコン酸鉛やチタン酸鉛等の圧電セラミック材料から成り、寸法は長さが0.5〜5.0mm、幅が0.2〜1.0mm、厚みが0.1〜1.0mmの短冊状に設定される。   The piezoelectric substrates 21 and 22 are polarized in the thickness direction, and are made of, for example, a piezoelectric ceramic material such as lead zirconate titanate or lead titanate. The dimensions are 0.5 to 5.0 mm in length and width. Is set to a strip shape having a thickness of 0.2 to 1.0 mm and a thickness of 0.1 to 1.0 mm.

圧電基板21,22の製作には、原料粉末にバインダを加えてプレスする方法、或いは、原料粉末を水、分散剤と共にボールミルを用いて混合及び乾燥し、バインダ、溶剤、可塑剤等を加えてドクターブレード法により成型する方法などによってシート状と成す工程、1100℃〜1400℃のピーク温度で数10分〜数時間焼成して基板を形成する工程、厚み方向に、例えば60℃〜150℃の温度にて3kV/mm〜15kV/mmの電圧をかけて分極処理を施す工程を含む製造方法が採用される。   The piezoelectric substrates 21 and 22 are manufactured by adding a binder to the raw material powder and pressing it, or mixing and drying the raw material powder with water and a dispersant using a ball mill, and adding a binder, a solvent, a plasticizer, and the like. A step of forming a sheet by a method such as molding by a doctor blade method, a step of baking at a peak temperature of 1100 ° C. to 1400 ° C. for several tens of minutes to several hours, and forming a substrate, for example, 60 ° C. to 150 ° C. A manufacturing method including a step of applying a polarization treatment by applying a voltage of 3 kV / mm to 15 kV / mm at a temperature is employed.

圧電基板21,22の両主面に被着された主面電極21a,21b,22a,22bは、材質としては、例えば金、銀、銅、クロム、ニッケル、錫、鉛、アルミニウム等の良導電性の金属から成り、これらの金属材料を従来周知の真空蒸着やスパッタリング法等によって圧電基板21,22の両主面に被着・形成されるか、或いは、上述した金属材料を含む所定の導体ペーストを従来周知の印刷法等によって所定パターンに塗布し、高温で焼き付けることにより被着・形成される。   The main surface electrodes 21a, 21b, 22a, 22b attached to both main surfaces of the piezoelectric substrates 21, 22 are made of, for example, highly conductive materials such as gold, silver, copper, chromium, nickel, tin, lead, and aluminum. These metal materials are deposited and formed on both main surfaces of the piezoelectric substrates 21 and 22 by a conventionally known vacuum deposition or sputtering method, or a predetermined conductor containing the above-described metal material. The paste is applied to a predetermined pattern by a conventionally known printing method or the like, and is applied and formed by baking at a high temperature.

圧電基板21,22を貼り合わせる接着剤23は、材質としては、ガラス布基材エポキシ樹脂、無機質ガラス、エポキシ樹脂などの絶縁材料や、導電性接着材、金属シート等の導体材料が用いられる。ガラス布基材エポキシ樹脂による接合では、ガラス繊維の間にエポキシ樹脂を含浸させたプリプレグ材を間に挟んで圧電基板を上下に重ね合わせ、加圧しながら加熱することによりエポキシ樹脂を所定の厚みに圧縮して硬化させる。無機質ガラスによる接合では、ガラスペーストを印刷塗布した後、重ね合わせ、荷重を加えながら焼成炉を用いて溶融一体化する。焼成炉では300〜700℃に加熱される。焼成の際は、真空炉の中で行っておけば、ガラス接合中間層中の気泡混入を抑制することができる。300℃以上の高温度で接合した場合は圧電基板の分極が減極するので接合後に分極処理する必要がある。   The adhesive 23 for bonding the piezoelectric substrates 21 and 22 is made of an insulating material such as a glass cloth base epoxy resin, inorganic glass, or epoxy resin, or a conductive material such as a conductive adhesive or a metal sheet. In bonding with a glass cloth base epoxy resin, a piezoelectric substrate is superimposed on the top and bottom with a prepreg material impregnated with an epoxy resin between glass fibers, and heated while being pressed to a predetermined thickness. Compress and cure. In joining with inorganic glass, glass paste is printed and applied, and then superposed and melted and integrated using a firing furnace while applying a load. In a baking furnace, it is heated to 300 to 700 ° C. If firing is performed in a vacuum furnace, mixing of bubbles in the glass bonding intermediate layer can be suppressed. When bonding is performed at a high temperature of 300 ° C. or higher, the polarization of the piezoelectric substrate is depolarized. Therefore, it is necessary to perform polarization processing after bonding.

第1支持部材3a,3bの弾性率は10MPa〜10GPa程度が望ましく、1〜10GPa程度が特に望ましい。よって、第1支持部材3a,3bの材質としては、例えば弾性率が6GPa程度のエポキシ系樹脂等が好適に用いられる。また、その厚みは20〜100μmとされ、幅方向は振動素子2の全体に渡って、長さ方向は振動素子2の一方端部から0.5〜1.5mmの範囲に渡って形成される。このような第1支持部材3a,3bの形成に際しては、先ず、圧電基板21,22となる2枚の圧電母基板が接合されたシートを準備し、シートの両主面の所定位置にスクリーン印刷で樹脂ペーストを印刷・硬化させる。必要に応じてスクリーン印刷を複数回重ねたり、厚み精度を出すために硬化した樹脂ペーストの表面を研磨してもよい。そして、硬化した樹脂ペーストの位置を確認しながら所定の長さの第1支持部材3a,3bと振動素子2が得られるようにダイシングソー等を用いて切断することによって、第1支持部材3a,3bが取着された振動素子2を得ることができる。   The elastic modulus of the first support members 3a and 3b is preferably about 10 MPa to 10 GPa, and particularly preferably about 1 to 10 GPa. Therefore, as the material of the first support members 3a and 3b, for example, an epoxy resin having an elastic modulus of about 6 GPa is preferably used. Further, the thickness is 20 to 100 μm, the width direction is formed over the entire vibration element 2, and the length direction is formed over a range of 0.5 to 1.5 mm from one end of the vibration element 2. . In forming the first support members 3a and 3b, first, a sheet in which two piezoelectric mother substrates to be the piezoelectric substrates 21 and 22 are joined is prepared, and screen printing is performed at predetermined positions on both main surfaces of the sheet. Print and cure the resin paste with If necessary, screen printing may be repeated a plurality of times, or the surface of the cured resin paste may be polished to obtain thickness accuracy. Then, while confirming the position of the cured resin paste, the first support members 3a, 3b and a vibrating element 2 are cut using a dicing saw or the like so that the vibration elements 2 are obtained. The vibration element 2 to which 3b is attached can be obtained.

このようにして得られる振動素子2の形状は、例えば長さ3mm、幅0.5mm、厚み0.3mm、第1支持部材3a,3bによって挟持された支持領域の長さ1mm、第1支持部材3a,3bによって挟持されていない自由領域の長さ2mmとされる。なお、以後の説明において、振動素子2の一方端部(第1支持部材3a,3bによって挟持されている側の端部)を固定端、他方端部を自由端と称することとする。   The shape of the vibration element 2 obtained in this way is, for example, a length of 3 mm, a width of 0.5 mm, a thickness of 0.3 mm, a length of the support region sandwiched between the first support members 3a and 3b, and a first support member. The length of the free region not sandwiched between 3a and 3b is 2 mm. In the following description, one end of the vibration element 2 (the end on the side sandwiched between the first support members 3a and 3b) is referred to as a fixed end, and the other end is referred to as a free end.

上記のように、第1支持部材3a、3bを弾性体により形成し、振動素子2の屈曲点を第1支持部材3a、3bによって挟持されている支持領域内に位置させていることにより、支持領域内に位置する圧電基板21、22にも振動素子2の撓みによる歪みが生じることになる。よって、従来の加速度センサのように支持領域と自由領域の境界に屈曲点が存在する場合と比較して、圧電基板における歪みが生じる領域が大きくなり、発生する電荷が増加して出力電圧が増大し、加速度の検出感度を高くすることができる。また、振動素子2の自由領域の長さを大きくしないので加速度センサの大型化を招くこともなく、振動素子2の幅および厚みを小さくしないので機械的強度不足による信頼性の低下を招くこともない。   As described above, the first support members 3a and 3b are formed of an elastic body, and the bending point of the vibration element 2 is positioned in the support region sandwiched between the first support members 3a and 3b. The piezoelectric substrates 21 and 22 located in the region are also distorted by the bending of the vibration element 2. Therefore, compared to the case where a bending point exists at the boundary between the support region and the free region as in the conventional acceleration sensor, the region where the distortion occurs in the piezoelectric substrate becomes larger, and the generated charge increases and the output voltage increases. In addition, the acceleration detection sensitivity can be increased. In addition, since the length of the free region of the vibration element 2 is not increased, the acceleration sensor is not increased in size, and the width and thickness of the vibration element 2 are not decreased, so that reliability is deteriorated due to insufficient mechanical strength. Absent.

図4は本実施形態の加速度センサに用いる第2支持部材4の外観斜視図である。第2支持部材4には振動素子2を挿入する貫通孔4hが設けられており、挿入された振動素子2の両主面の一方端部に取着された第1支持部材3a,3bの外側を挟持して振動素子2を支持する作用を為す。第2支持部材4の弾性率は第1支持部材3a、3bの弾性率よりも大きくされており、その値としては10〜500GPa程度が望ましく、特に20〜400GPa程度が望ましい。よって第2支持部材4の材質としては、液晶ポリマー(LCP)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等や、あるいはアルミナなどのセラミック材料が用いられる。また、第2支持部材4は振動素子2の長手方向において、0.5〜1.5mmの長さで第1支持部材の外側を挟持するようにされている。第2支持部材4はケース1内の開口部1h付近に設けられるが、ケース1と同一材料を用いてケース1の一部として一体的に形成すると製造が容易となる。また、後述する導電性接着材6a,6bをポッティングするための凹部4a,4bが設けられており、凹部4a,4b内にはケース1の内部を通って延出されたリード電極1a,1bの端部7a,7bが露出されている。   FIG. 4 is an external perspective view of the second support member 4 used in the acceleration sensor of the present embodiment. The second support member 4 is provided with a through-hole 4h into which the vibration element 2 is inserted, and outside of the first support members 3a and 3b attached to one end portions of both main surfaces of the inserted vibration element 2. The vibration element 2 is supported by sandwiching. The elastic modulus of the second support member 4 is larger than the elastic modulus of the first support members 3a and 3b, and the value is preferably about 10 to 500 GPa, particularly about 20 to 400 GPa. Therefore, as the material of the second support member 4, a liquid crystal polymer (LCP), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), or a ceramic material such as alumina is used. Further, the second support member 4 is configured to sandwich the outside of the first support member with a length of 0.5 to 1.5 mm in the longitudinal direction of the vibration element 2. The second support member 4 is provided in the vicinity of the opening 1 h in the case 1. However, if the second support member 4 is integrally formed as a part of the case 1 using the same material as the case 1, manufacturing becomes easy. Further, recesses 4a and 4b for potting conductive adhesive materials 6a and 6b, which will be described later, are provided. In the recesses 4a and 4b, lead electrodes 1a and 1b extending through the inside of the case 1 are provided. The end portions 7a and 7b are exposed.

このような第2支持部材4の貫通孔4hに前述した振動素子2を自由端側から挿入し、固定端側に取着された第1支持部材3a,3bを貫通孔4hに圧入することにより、振動素子2の両主面を挟持する第1支持部材3a,3bの外側が第2支持部材4によって更に挟持されてケース1に固定される。   By inserting the vibration element 2 described above into the through hole 4h of the second support member 4 from the free end side and press-fitting the first support members 3a and 3b attached to the fixed end side into the through hole 4h. The outer sides of the first support members 3 a and 3 b that sandwich both main surfaces of the vibration element 2 are further sandwiched by the second support member 4 and fixed to the case 1.

このようにして固定された振動素子2は、外部から物理的な衝撃が加わると第1支持部材3a,3bに挟持されていない自由領域が撓み、貼り合わされている圧電基板21,22に歪みが生じることによって電荷が発生し、圧電基板21の両主面に被着した主面電極21a,21bの間、および圧電基板22の両主面に被着した主面電極22a,22bの間に電位差が生じ、これを出力電圧として取り出すことによって加速度が検出される。   In the vibration element 2 fixed in this way, when a physical impact is applied from the outside, the free region not sandwiched between the first support members 3a and 3b is bent, and the bonded piezoelectric substrates 21 and 22 are distorted. As a result, electric charges are generated, and a potential difference is generated between the main surface electrodes 21a and 21b applied to both main surfaces of the piezoelectric substrate 21 and between the main surface electrodes 22a and 22b applied to both main surfaces of the piezoelectric substrate 22. The acceleration is detected by taking this as an output voltage.

なお、振動素子2は水平方向に対して傾斜するように固定され、その垂直方向のみならず横方向からの衝撃も感知することが可能となっている。具体的には、ケース1の実装面となる主面に対して垂直な面と振動素子2の主面とが成す角(鋭角になる側の角)が、用途に応じて20〜50°の範囲で設定される。   The vibration element 2 is fixed so as to be inclined with respect to the horizontal direction, and can sense not only the vertical direction but also an impact from the horizontal direction. Specifically, an angle formed by a surface perpendicular to the main surface serving as the mounting surface of the case 1 and the main surface of the vibration element 2 (an angle on an acute angle side) is 20 to 50 ° depending on the application. Set by range.

図5は図1に示す加速度センサの封止用樹脂を除いた図であり、図6は図1のA−A’線断面図である。   5 is a view excluding the sealing resin of the acceleration sensor shown in FIG. 1, and FIG. 6 is a cross-sectional view taken along the line A-A 'of FIG.

主面電極21a,21b,22a,22bの一部は圧電基板21,22の側方側周縁部まで延在されており、この延在部が、振動素子2の側面近傍までケース1内で延出されたリード電極1a,1bの端部7a,7bと導電性接着材6a,6bを介して電気的に接続されているので、主面電極21a,21b間および主面電極22a,22b間に発生した出力電圧はリード電極1a,1bから外部に出力される。なお、振動素子2の主面で固定され側面で電気的な接続が行われているので、振動素子2の固定領域が効率良く小さくなり、加速度センサがより小型なものとされている。尚、導電性接着材6a,6bは凹部4a,4bに被着されており、ポッティングした際の広がりが抑えられている。   Part of the main surface electrodes 21 a, 21 b, 22 a, and 22 b extends to the side peripheral edges of the piezoelectric substrates 21 and 22, and this extended portion extends in the case 1 to the vicinity of the side surface of the vibration element 2. Since the lead electrodes 1a and 1b are electrically connected to the end portions 7a and 7b through the conductive adhesives 6a and 6b, the main surface electrodes 21a and 21b and the main surface electrodes 22a and 22b are connected. The generated output voltage is output to the outside from the lead electrodes 1a and 1b. Since the vibration element 2 is fixed on the main surface and is electrically connected on the side surface, the fixed region of the vibration element 2 is efficiently reduced, and the acceleration sensor is made smaller. The conductive adhesives 6a and 6b are attached to the recesses 4a and 4b, and the spread when potting is performed is suppressed.

第2支持部材4表面のケース1の開口部1h側の所定領域から、一対の第1支持部材3a,3b表面のケース1の開口部1h側の所定領域にかけては樹脂の堰8a、8bが設けられており、振動素子2の一方の側面近傍に形成される導電性接着材6a,6bが流動しても、流動した導電性接着材6a,6bが振動素子2の他方の側面まで到達することが抑制されており、リード電極1a,1b間の短絡発生が低減されている。   Resin weirs 8a and 8b are provided from a predetermined region on the surface of the second support member 4 on the opening 1h side of the case 1 to a predetermined region on the surface of the pair of first support members 3a and 3b on the opening 1h side of the case 1. Even if the conductive adhesives 6 a and 6 b formed near one side surface of the vibration element 2 flow, the flowed conductive adhesive materials 6 a and 6 b reach the other side surface of the vibration element 2. Is suppressed, and occurrence of a short circuit between the lead electrodes 1a and 1b is reduced.

本実施形態の圧力センサにおいては、第1支持部材3a,3bの弾性率を第2支持部材4の弾性率よりも小さくしているので、第1支持部材3a,3bが振動素子2から受ける力によって容易に変形して支持領域内において振動素子2が撓むことが可能となり、支持領域内でも圧電基板の歪みによる電荷が発生するとともに、第2支持部材の変形が抑制されてそれによる加速度の検出感度の低下が発生しないため、加速度の検出感度を高めることができる。   In the pressure sensor of the present embodiment, the elastic modulus of the first support members 3a and 3b is smaller than the elastic modulus of the second support member 4, and therefore the force that the first support members 3a and 3b receive from the vibration element 2 It is possible to easily deform the vibrating element 2 in the support region, and the electric charge due to the distortion of the piezoelectric substrate is generated in the support region, and the deformation of the second support member is suppressed, and the acceleration caused thereby is reduced. Since the detection sensitivity does not decrease, the acceleration detection sensitivity can be increased.

図7の(a)〜(b)は本発明の加速度センサが有する圧力検出感度を高める効果を確認するために行った有限要素法によるシミュレーションにおいて、加速度センサに衝撃を与えたときに振動素子2の表面に発生する電荷の分布を示す図であり、発生する電荷の密度が高い領域ほど色が白く表示されている。なお、これらのシミュレーションにおいては、振動素子2の長さを3mm、幅を0.5mm、厚みを0.3mm、第1支持部材3a,3bによって挟持された支持領域の長さ1mm、第1支持部材3a,3bによって挟持されていない自由領域の長さ2mm、支持部材1の厚みを30μmとした。図7の(b)は本実施形態の加速度センサのシミュレーション結果を示す図であり、破線よりも左側が第1支持部材3a、3bおよび第2支持部材4によって挟持された支持領域、破線よりも右側が自由領域となっており、第1支持部材の弾性率が4GPa、第2支持部材の弾性率が500GPaとされている。また、図7の(a)は比較のための従来の加速度センサのシミュレーション結果を示す図であり、破線よりも左側が支持部材によって挟持された支持領域、破線よりも右側が自由領域となっており、支持部材の弾性率は500GPaとされている。   FIGS. 7A and 7B show the vibration element 2 when a shock is applied to the acceleration sensor in the simulation by the finite element method performed to confirm the effect of increasing the pressure detection sensitivity of the acceleration sensor of the present invention. FIG. 6 is a diagram showing the distribution of charges generated on the surface of the film, and the region where the density of generated charges is higher is displayed in white. In these simulations, the length of the vibration element 2 is 3 mm, the width is 0.5 mm, the thickness is 0.3 mm, the length of the support region sandwiched between the first support members 3a and 3b is 1 mm, and the first support is provided. The length of the free region not sandwiched between the members 3a and 3b was 2 mm, and the thickness of the support member 1 was 30 μm. FIG. 7B is a diagram showing a simulation result of the acceleration sensor according to the present embodiment. The left side of the broken line is a support region sandwiched between the first support members 3a and 3b and the second support member 4 and the broken line. The right side is a free region, and the elastic modulus of the first support member is 4 GPa and the elastic modulus of the second support member is 500 GPa. FIG. 7A is a diagram showing a simulation result of a conventional acceleration sensor for comparison. The left side of the broken line is a support area sandwiched by the support member, and the right side of the broken line is a free area. The elastic modulus of the support member is 500 GPa.

図7の(a)に示された従来の加速度センサにおいては、殆ど自由領域のみに電荷が発生しており、しかも支持領域近傍に集中している。これは支持領域内では圧電基板21,22に歪みが発生していないこと、すなわち支持領域内では振動素子2に撓みが生じていないことを示している。また、振動素子2の自由領域において圧電基板21,22に生じる歪みが支持領域近傍ほど大きく、逆に振動素子2の自由端付近では殆ど歪みが生じていないことを示しており、これはそれぞれの場所に加わる力のモーメントの違いに起因していると考えられる。振動素子の自由端付近は殆ど重りとしてしか機能していないと思われる。   In the conventional acceleration sensor shown in FIG. 7A, electric charges are generated almost only in the free region and are concentrated in the vicinity of the support region. This indicates that no distortion occurs in the piezoelectric substrates 21 and 22 within the support region, that is, no deflection occurs in the vibration element 2 within the support region. In addition, the distortion generated in the piezoelectric substrates 21 and 22 in the free region of the vibration element 2 is larger in the vicinity of the support region, and conversely, almost no distortion is generated in the vicinity of the free end of the vibration element 2. This is thought to be due to the difference in the moment of force applied to the place. The vicinity of the free end of the vibration element seems to function only as a weight.

これに対して、図7の(b)に示された本実施形態の加速度センサにおいては、第1・第2支持部材に挟持された支持領域内の自由領域近傍においても電荷が発生しており、これは支持領域内の圧電基板21,22にも歪みが発生していること、すなわち支持領域内においても振動素子2が撓んでいることを示している。これは第1支持部材3a,3bが第2支持部材4よりも小さい弾性率を有しているため、第1支持部材3a,3bが振動素子2から受ける力によって容易に変形し、支持領域内においても振動素子2が撓むことが可能となるからであると考えられる。   On the other hand, in the acceleration sensor of the present embodiment shown in FIG. 7B, electric charges are generated even in the vicinity of the free region in the support region sandwiched between the first and second support members. This indicates that the piezoelectric substrates 21 and 22 in the support region are also distorted, that is, the vibration element 2 is also bent in the support region. This is because the first support members 3 a and 3 b have a smaller elastic modulus than the second support member 4, and thus the first support members 3 a and 3 b are easily deformed by the force received from the vibration element 2, so It is thought that this is because the vibration element 2 can be bent.

図8は本発明の加速度センサと従来の加速度センサにおける振動素子2の変形の様子を模式的に示す部分的な断面図である。図8の(a)に示す従来の加速度センサにおいては自由領域におけるL0で示されたごく限られた範囲に振動素子2の撓みが主に生じているのに対して、図8の(b)に示す本実施形態の加速度センサにおいては、支持領域の途中から自由領域に渡るL1で示された広い範囲で振動素子2の撓みが生じるために、図7の(a),(b)に示したシミュレーション結果が得られたと考えられる。   FIG. 8 is a partial cross-sectional view schematically showing the deformation state of the vibration element 2 in the acceleration sensor of the present invention and the conventional acceleration sensor. In the conventional acceleration sensor shown in FIG. 8A, the vibration element 2 is mainly bent in a very limited range indicated by L0 in the free region, whereas in FIG. In the acceleration sensor of this embodiment shown in FIG. 7, since the bending of the vibration element 2 occurs in a wide range indicated by L1 from the middle of the support area to the free area, the acceleration sensor shown in FIGS. It is thought that the simulation result was obtained.

このように本実施形態の加速度センサにおいては、支持領域内の一部においても電荷が発生するため、従来の加速度センサと比較して振動素子2における電荷の発生領域が広くなり、振動素子2において発生する電荷量が増大するため、振動素子2のサイズを変えることなく、且つ振動素子2の機械的強度を低下させることなく加速度検出感度を高めることができる。   As described above, in the acceleration sensor according to the present embodiment, charges are generated even in a part of the support region. Therefore, the charge generation region in the vibration element 2 is wider than that in the conventional acceleration sensor. Since the amount of generated charges increases, the acceleration detection sensitivity can be increased without changing the size of the vibration element 2 and without reducing the mechanical strength of the vibration element 2.

本実施形態の加速度センサにおいて第1支持部材3a,3bの弾性率と第2支持部材4の弾性率を変動させたときの加速度の検出感度(1Gの加速度当たりの主面電極に発生する電荷量)の変化をシミュレーションした結果を表1に示す。なお、このシミュレーションにおける弾性率以外の各種条件については前述したとおりである。第1支持部材3a,3bの弾性率を小さく、第2支持部材4の弾性率を大きくすることによって加速度の検出感度が向上することが確認できた。

Figure 2007010377
In the acceleration sensor according to the present embodiment, the detection sensitivity of the acceleration when the elastic modulus of the first support members 3a and 3b and the elastic modulus of the second support member 4 are changed (the amount of charge generated in the main surface electrode per 1G acceleration). Table 1 shows the result of simulating the change in (). Various conditions other than the elastic modulus in this simulation are as described above. It was confirmed that the acceleration detection sensitivity was improved by decreasing the elastic modulus of the first support members 3a and 3b and increasing the elastic modulus of the second support member 4.
Figure 2007010377

図9は本発明の他の実施形態に係る加速度センサを模式的に示す図6と同様の断面図である。なお、本実施形態の加速度センサにおいては前述した実施形態と異なる点についてのみ説明し、同様の構成要素については同一の参照符号を用いて重複する説明を省略するものとする。   FIG. 9 is a cross-sectional view similar to FIG. 6 schematically showing an acceleration sensor according to another embodiment of the present invention. In the acceleration sensor of the present embodiment, only differences from the above-described embodiment will be described, and the same components will be denoted by the same reference numerals and redundant description will be omitted.

図9に示す加速度センサの特徴的な部分は、第1の支持部材3a,3bが第2支持部材4に対して振動素子2の振幅最大領域すなわち自由端に向かって延出されていることである。このような形状とすることにより、第1の支持部材3a,3bにおける第2支持部材4によって挟持されていない部分が振動素子の撓みを規制しながら振動素子と共にある程度撓むことになり、この部分においても振動素子の撓みが発生する。そして、振動素子において、第1の支持部材3a,3bによって挟持されている領域の端部を起点とする撓みと、第1の支持部材3a,3bに加えて第2支持部材4よっても挟持されている領域の端部を起点とする撓みとの両方が発生するため、圧電基板における歪みが生じて電荷が発生する領域が大きくなり、発生する電荷が増加して出力電圧が増大し、加速度の検出感度を高くすることができる。   The characteristic part of the acceleration sensor shown in FIG. 9 is that the first support members 3 a and 3 b are extended toward the maximum amplitude region of the vibration element 2, that is, the free end with respect to the second support member 4. is there. By adopting such a shape, the portions of the first support members 3a and 3b that are not sandwiched between the second support members 4 are bent to some extent together with the vibration elements while restricting the bending of the vibration elements. In this case, the vibration element is bent. Further, in the vibration element, the second support member 4 is sandwiched in addition to the bending starting from the end of the region sandwiched by the first support members 3a and 3b and the first support members 3a and 3b. As a result, both the deflection starting from the end of the region where the current occurs and the piezoelectric substrate are distorted, the region where charges are generated increases, the generated charges increase, the output voltage increases, and the acceleration Detection sensitivity can be increased.

またさらに、本実施形態の加速度センサは、上記構成において、前記第1の支持部材3a,3bの弾性率を前記第2支持部材4の弾性率よりも小さくしているので、第1の支持部材3a,3bにおける第2支持部材4によって挟持されていない部分が振動素子2と共にさらに撓みやすくなると共に、第2支持部材4によって挟持されている領域内においても振動素子から受ける力によって第1の支持部材3a,3bが変形して振動素子2が撓むことが可能となる。これによって、圧電基板21,22における歪みが生じて電荷が発生する領域が更に大きくなり、発生する電荷が増加して出力電圧が増大し、加速度の検出感度をさらに高くすることができる。   Furthermore, the acceleration sensor according to the present embodiment has the above-described configuration in which the elastic modulus of the first support members 3a and 3b is smaller than the elastic modulus of the second support member 4, so that the first support member The portions of 3a and 3b that are not sandwiched by the second support member 4 are more easily bent together with the vibration element 2, and the first support is also provided by the force received from the vibration element even in the region sandwiched by the second support member 4. The members 3a and 3b are deformed and the vibration element 2 can be bent. As a result, a region where electric charges are generated due to distortion in the piezoelectric substrates 21 and 22 is further increased, the generated electric charges are increased and the output voltage is increased, and the acceleration detection sensitivity can be further increased.

図7の(c)は図9に示す加速度センサに衝撃を与えたときに振動素子2の表面に発生する電荷の分布を示すシミュレーション結果であり、図において左側の破線よりも左側が第1支持部材3a、3bおよび第2支持部材4によって挟持された領域であり、左側と右側の破線の間が第1支持部材3a、3bのみによって挟持された領域であり、右側の破線よりも右側が自由領域となっている。なお、このシミュレーションにおいては、図7の(b)の場合と同様に、第1支持部材3a,3bの弾性率は4GPa、第2支持部材4の
弾性率は500GPaとされている。図7の(b)との比較で明らかなように、前述した実施形態の加速度センサよりも電荷が発生する領域がさらに増大していることがわかる。すなわち、図8の(c)に本実施形態の加速度センサにおける振動素子2の変形の様子を模式的に示すが、同図のL2に示したような広い範囲に渡って振動素子2の撓みが生じたことによって電荷の発生領域がさらに広くなったと考えられる。
FIG. 7C is a simulation result showing a distribution of electric charges generated on the surface of the vibration element 2 when an impact is applied to the acceleration sensor shown in FIG. 9. The region sandwiched between the members 3a and 3b and the second support member 4, the region between the left and right broken lines is the region sandwiched only by the first support members 3a and 3b, and the right side is freer than the right broken line. It is an area. In this simulation, the elastic modulus of the first support members 3a and 3b is 4 GPa and the elastic modulus of the second support member 4 is 500 GPa, as in the case of FIG. As is clear from comparison with FIG. 7B, it can be seen that the region where charges are generated is further increased as compared with the acceleration sensor of the above-described embodiment. That is, FIG. 8C schematically shows a state of deformation of the vibration element 2 in the acceleration sensor of the present embodiment. The bending of the vibration element 2 over a wide range as indicated by L2 in FIG. It is considered that the generation region of electric charges has become wider due to the occurrence.

しかも、本実施形態の加速度センサにおいては、第2支持部材4の弾性率が第1の支持部材3a,3bの弾性率よりも大きく設定されているため、第2支持部材4には殆ど変形が生じることがなく、第2支持部材4の変形によって振動素子2の変形が抑制されて加速度の検出感度が低下するという問題も発生しない。   Moreover, in the acceleration sensor of the present embodiment, since the elastic modulus of the second support member 4 is set larger than the elastic modulus of the first support members 3a and 3b, the second support member 4 is hardly deformed. There is no problem that the deformation of the vibration element 2 is suppressed by the deformation of the second support member 4 and the detection sensitivity of the acceleration is reduced.

図10は図9に示す加速度センサにおいて第1支持部材3a,3bの第2支持部材4に対する延出量を変化させたときの加速度の検出感度の変化を示すシミュレーション結果を示すグラフである。このグラフにおいて、横軸は第1支持部材3a,3bの延出量(図9におけるLa/Lb)を示し、縦軸は加速度の検出感度(1Gの加速度当たりの主面電極に発生する電荷量)を示す。なお、このシミュレーションにおいては、振動素子2の長さを3mm、幅を0.5mm、厚みを0.3mm、支持部材1の厚みを30μm、第2支持部材4の弾性率を300GPa、第2支持部材4によって挟持された領域の長さを1mm、として計算した。このシミュレーションによって第1支持部材3a,3bを第2支持部材4に対して自由端側に延出させることによって加速度の検出感度を高めることができることを確認できた。なお、図10に示すグラフから明らかなように、第1支持部材3a,3bの第2支持部材4に対する延出量を5〜10%の範囲とすることによって、加速度の検出感度をより高くすることができる。   FIG. 10 is a graph showing simulation results showing changes in acceleration detection sensitivity when the extension amounts of the first support members 3a and 3b relative to the second support member 4 are changed in the acceleration sensor shown in FIG. In this graph, the horizontal axis indicates the amount of extension of the first support members 3a and 3b (La / Lb in FIG. 9), and the vertical axis indicates the acceleration detection sensitivity (the amount of charge generated in the main surface electrode per 1G of acceleration). ). In this simulation, the length of the vibration element 2 is 3 mm, the width is 0.5 mm, the thickness is 0.3 mm, the thickness of the support member 1 is 30 μm, the elastic modulus of the second support member 4 is 300 GPa, and the second support. The length of the region sandwiched between the members 4 was calculated as 1 mm. From this simulation, it was confirmed that the acceleration detection sensitivity could be increased by extending the first support members 3a and 3b toward the free end side with respect to the second support member 4. As is apparent from the graph shown in FIG. 10, the acceleration detection sensitivity is further increased by setting the extension amount of the first support members 3a and 3b to the second support member 4 in the range of 5 to 10%. be able to.

尚、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良が可能である。   In addition, this invention is not limited to embodiment mentioned above, A various change and improvement are possible in the range which does not deviate from the summary of this invention.

例えば、上述した実施形態においては、を2枚の圧電基板を貼り合わせたバイモルフ形の振動素子としているが、もっと多数の圧電基板を積層しても構わないし、逆にモノモルフ形としても構わない。   For example, in the above-described embodiment, is a bimorph type vibration element in which two piezoelectric substrates are bonded together, but a larger number of piezoelectric substrates may be laminated, or conversely, a monomorph type may be used.

また、上述した実施形態においては、振動素子の長手方向における一方端部付近を支持部材で挟持した構造としたが、振動素子の両端部を支持部材で挟持する構造としても構わないし、振動素子の中央部付近を支持部材によって挟持する構造としても構わない。   In the above-described embodiment, the structure in which the vicinity of one end in the longitudinal direction of the vibration element is sandwiched by the support member is used. However, the structure may be such that both ends of the vibration element are sandwiched by the support member. A structure in which the vicinity of the center portion is sandwiched between the support members may be used.

さらに、上述した実施形態においては、第1支持部材を3aと3bの2つに分けて形成したが、振動素子2の上下面および側面を取り囲むように一体的に形成しても構わない。   Furthermore, in the above-described embodiment, the first support member is divided into two parts 3a and 3b. However, the first support member may be integrally formed so as to surround the upper and lower surfaces and side surfaces of the vibration element 2.

本発明の一実施形態に係る加速度センサを模式的に示す外観斜視図である。1 is an external perspective view schematically showing an acceleration sensor according to an embodiment of the present invention. 本発明の一実施形態に係る加速度センサに用いる振動素子を模式的に示す外観斜視図である。It is an appearance perspective view showing typically a vibration element used for an acceleration sensor concerning one embodiment of the present invention. 図2の振動検出素子の第1支持部材を透視した外観斜視図である。It is the external appearance perspective view which saw through the 1st support member of the vibration detection element of FIG. 本発明の一実施形態に係る加速度センサに用いる第2支持部材を模式的に示す外観斜視図である。It is an external appearance perspective view which shows typically the 2nd supporting member used for the acceleration sensor which concerns on one Embodiment of this invention. 図1に示す加速度センサの封止用樹脂を除いた図である。FIG. 2 is a diagram excluding a sealing resin of the acceleration sensor shown in FIG. 1. 図1のA−A’線断面図である。FIG. 2 is a cross-sectional view taken along line A-A ′ of FIG. 1. 加速度センサに衝撃を与えたときに振動素子2の表面に発生する電荷の分布のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the distribution of the electric charge which generate | occur | produces on the surface of the vibration element 2 when an impact is given to an acceleration sensor. 振動素子2の変形の様子を模式的に示す部分断面図である。3 is a partial cross-sectional view schematically showing how a vibration element 2 is deformed. FIG. 本発明の他の実施形態に係る加速度センサを模式的に示す断面図である。It is sectional drawing which shows typically the acceleration sensor which concerns on other embodiment of this invention. 本発明の他の実施形態に係る加速度センサにおいて第1支持部材の延出量を変動させたときの加速度の検出感度の変化のシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of the change of the detection sensitivity of an acceleration when the extension amount of the 1st support member is changed in the acceleration sensor which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1・・・ケース
1a、1b・・・リード電極
1h・・・開口部
2・・・振動素子
21,22・・・圧電基板
21a,21b,22a,22b・・・主面電極
23・・・接着剤
3a、3b・・・第1支持部材
4・・・第2支持部材
4a、4b・・・凹部
4h・・・貫通孔
5・・・封止用樹脂
6a、6b・・・導電性接着材
7a、7b・・・リード電極の端部
8a、8b・・・樹脂の堰
DESCRIPTION OF SYMBOLS 1 ... Case 1a, 1b ... Lead electrode 1h ... Opening part 2 ... Vibrating element 21,22 ... Piezoelectric substrate 21a, 21b, 22a, 22b ... Main surface electrode 23 ... Adhesive 3a, 3b ... 1st support member 4 ... 2nd support member 4a, 4b ... Recess 4h ... Through-hole 5 ... Resin for sealing 6a, 6b ... Conductive adhesion Material 7a, 7b ... End of lead electrode 8a, 8b ... Resin weir

Claims (4)

短冊状の圧電基板の両主面に主面電極を配置して成る振動素子と、該振動素子の一部を挟持する支持部材とを備えた加速度センサにおいて、
前記支持部材が弾性体から成り、前記振動素子の屈曲点を前記支持部材によって挟持されている支持領域内に位置させたことを特徴とする加速度センサ。
In an acceleration sensor including a vibration element in which main surface electrodes are arranged on both main surfaces of a strip-shaped piezoelectric substrate, and a support member that sandwiches a part of the vibration element,
The acceleration sensor according to claim 1, wherein the support member is made of an elastic body, and a bending point of the vibration element is located in a support region sandwiched by the support member.
前記支持部材が、前記振動素子の両主面に内側が接するように配置されて前記振動素子を挟持する第1支持部材と、前記第1支持部材の外側に接して前記第1支持部材を挟持する第2支持部材とから成り、前記第1支持部材の弾性率が前記第2支持部材の弾性率よりも小さくされていることを特徴とする請求項1に記載の加速度センサ。   The support member is disposed so that the inner surfaces thereof are in contact with both main surfaces of the vibration element, and sandwiches the vibration element. The first support member is in contact with the outer side of the first support member and sandwiches the first support member. The acceleration sensor according to claim 1, further comprising: a second support member configured such that an elastic modulus of the first support member is smaller than an elastic modulus of the second support member. 支持部材と、短冊状の圧電基板の両主面に主面電極が配置されて成り、該圧電基板の両主面が前記支持部材によって挟持された支持領域および撓み振動の振幅が最大となる振幅最大領域を有する振動素子とを備える加速度センサにおいて、
前記支持部材が、前記振動素子の両主面に内側が接するように配置されて前記振動素子を挟持する第1支持部材と、前記第1支持部材の外側に接して前記第1支持部材を挟持する第2支持部材とから成り、該第2支持部材に対して前記第1支持部材が前記振動素子の振幅最大領域に向かって延出されていることを特徴とする加速度センサ。
The main surface electrodes are arranged on both main surfaces of the support member and the strip-shaped piezoelectric substrate, and the main region of the piezoelectric substrate is sandwiched by the support member and the amplitude at which the amplitude of the flexural vibration is maximized. In an acceleration sensor comprising a vibration element having a maximum area,
The support member is disposed so that the inner surfaces thereof are in contact with both main surfaces of the vibration element, and sandwiches the vibration element. The first support member is in contact with the outer side of the first support member and sandwiches the first support member. An acceleration sensor, wherein the first support member extends toward the maximum amplitude region of the vibration element with respect to the second support member.
前記第1支持部材の弾性率が前記第2支持部材の弾性率よりも小さくされていることを特徴とする請求項3に記載の加速度センサ。   The acceleration sensor according to claim 3, wherein an elastic modulus of the first support member is smaller than an elastic modulus of the second support member.
JP2005188978A 2005-06-28 2005-06-28 Acceleration sensor Pending JP2007010377A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005188978A JP2007010377A (en) 2005-06-28 2005-06-28 Acceleration sensor
US11/475,836 US7394610B2 (en) 2005-06-28 2006-06-27 Acceleration sensor and magnetic disk device using the same
KR1020060057887A KR100822775B1 (en) 2005-06-28 2006-06-27 Acceleration sensor and magnetic disk device using the same
CN200610100053A CN100588970C (en) 2005-06-28 2006-06-27 Acceleration sensor and magnetic disk device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005188978A JP2007010377A (en) 2005-06-28 2005-06-28 Acceleration sensor

Publications (1)

Publication Number Publication Date
JP2007010377A true JP2007010377A (en) 2007-01-18

Family

ID=37597315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005188978A Pending JP2007010377A (en) 2005-06-28 2005-06-28 Acceleration sensor

Country Status (2)

Country Link
JP (1) JP2007010377A (en)
CN (1) CN100588970C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111983256A (en) * 2019-05-22 2020-11-24 爱睦威株式会社 Acceleration sensor core unit and method for preventing substrate on which acceleration sensor is mounted from flexing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002262A1 (en) * 2014-07-04 2016-01-07 株式会社村田製作所 Piezoelectric sensor and piezoelectric element
JP6442899B2 (en) * 2014-07-30 2018-12-26 セイコーエプソン株式会社 Vibration device, electronic device, and moving object
CN107251251B (en) * 2015-05-29 2019-11-29 株式会社村田制作所 Piezo-electric device and electronic equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155700A (en) * 1984-12-28 1986-07-15 Toshiba Corp Blower using piezo-electric bimorph vibrating plate
JPH07318578A (en) * 1994-03-31 1995-12-08 Matsushita Electric Ind Co Ltd Acceleration sensor and its manufacture
JP2000321299A (en) * 1999-05-14 2000-11-24 Matsushita Electric Ind Co Ltd Acceleration sensor
JP2001074467A (en) * 1999-09-07 2001-03-23 Tokin Corp Energy confinement piezoelectric vibrator and piezoelectric vibration gyro
JP2001148522A (en) * 1999-09-07 2001-05-29 Matsushita Electric Ind Co Ltd Anisotropic piezoelectric plate and piezoelectric application device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155700A (en) * 1984-12-28 1986-07-15 Toshiba Corp Blower using piezo-electric bimorph vibrating plate
JPH07318578A (en) * 1994-03-31 1995-12-08 Matsushita Electric Ind Co Ltd Acceleration sensor and its manufacture
JP2000321299A (en) * 1999-05-14 2000-11-24 Matsushita Electric Ind Co Ltd Acceleration sensor
JP2001074467A (en) * 1999-09-07 2001-03-23 Tokin Corp Energy confinement piezoelectric vibrator and piezoelectric vibration gyro
JP2001148522A (en) * 1999-09-07 2001-05-29 Matsushita Electric Ind Co Ltd Anisotropic piezoelectric plate and piezoelectric application device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111983256A (en) * 2019-05-22 2020-11-24 爱睦威株式会社 Acceleration sensor core unit and method for preventing substrate on which acceleration sensor is mounted from flexing

Also Published As

Publication number Publication date
CN100588970C (en) 2010-02-10
CN1892231A (en) 2007-01-10

Similar Documents

Publication Publication Date Title
JP5487672B2 (en) Physical quantity sensor
US10825980B2 (en) Vibrating device
CN108291796B (en) Piezoelectric deflection sensor and detection device
JP4822769B2 (en) Acceleration sensor
KR100822775B1 (en) Acceleration sensor and magnetic disk device using the same
JP6133609B2 (en) Piezoelectric parts
JP4583188B2 (en) Acceleration sensor
JPWO2017082104A1 (en) Piezoelectric deflection sensor
JPWO2008093680A1 (en) Acceleration sensor
JP2007010377A (en) Acceleration sensor
JP7088341B2 (en) Vibration device
US7942055B2 (en) Acceleration sensor
JP4645376B2 (en) Tuning fork type piezoelectric vibrator
JP7055950B2 (en) Vibration generators and electronic devices
JP5931536B2 (en) Piezoelectric vibrator
JP6457345B2 (en) Electronic component mounting package and electronic device
JP2006234795A (en) Acceleration sensor
JP2012073161A (en) Acceleration sensor
US20150333729A1 (en) Piezoelectric package
JP2008232697A (en) Acceleration sensor
JP6994980B2 (en) Piezoelectric parts
JP4894363B2 (en) Acceleration sensor
JP2006270944A (en) Piezo-electric component
JP2009008512A (en) Acceleration sensor
JP2010107288A (en) Acceleration sensor and acceleration sensor mounting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110607