JP2010107211A - Liquid flow path device - Google Patents

Liquid flow path device Download PDF

Info

Publication number
JP2010107211A
JP2010107211A JP2008276468A JP2008276468A JP2010107211A JP 2010107211 A JP2010107211 A JP 2010107211A JP 2008276468 A JP2008276468 A JP 2008276468A JP 2008276468 A JP2008276468 A JP 2008276468A JP 2010107211 A JP2010107211 A JP 2010107211A
Authority
JP
Japan
Prior art keywords
liquid
tank
layer
flow path
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008276468A
Other languages
Japanese (ja)
Other versions
JP5228797B2 (en
Inventor
Shigeru Takahashi
茂 高橋
Masaaki Sakurai
正明 櫻井
Jiro Wakamatsu
二郎 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Kasei Co Ltd
Original Assignee
Fujikura Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008276468A priority Critical patent/JP5228797B2/en
Application filed by Fujikura Kasei Co Ltd filed Critical Fujikura Kasei Co Ltd
Priority to US12/739,325 priority patent/US8499794B2/en
Priority to EP09823321.6A priority patent/EP2352036B1/en
Priority to PCT/JP2009/005711 priority patent/WO2010050208A1/en
Priority to CN201310220337.9A priority patent/CN103341369B/en
Priority to CN2009801360340A priority patent/CN102150048B/en
Priority to CN201310220551.4A priority patent/CN103341370B/en
Priority to CN201310221154.9A priority patent/CN103341371B/en
Publication of JP2010107211A publication Critical patent/JP2010107211A/en
Application granted granted Critical
Priority to US13/934,314 priority patent/US9579653B2/en
Priority to US13/934,310 priority patent/US9283561B2/en
Priority to US13/934,320 priority patent/US9283562B2/en
Publication of JP5228797B2 publication Critical patent/JP5228797B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid passage device capable of simply converting a liquid passage to an open state from a closed state at a low cost. <P>SOLUTION: In the liquid passage device, the liquid passage 12, where a liquid comprising at least one of a sample and a reagent is circulated and a metering bath 14c for storing the liquid, are formed at least on one surface of a substrate 11A, where a cover plate 13 is stacked on the substrate 11A. In the liquid passage device, the metering bath 14c has a liquid sending means P1, for sending the liquid in the bath to a downstream side. The liquid-sending means P1 is operated by operation for pressing the cover plate 13, at a part corresponding to the metering bath 14c from the outside. The liquid sending means P1 may be operated by pressing the bottom of the metering bath 14c from the outside. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば血液中の抗原の検出、分析などに好適に使用される平板状の液体流路装置に関する。   The present invention relates to a flat liquid channel device that is suitably used for detecting and analyzing antigens in blood, for example.

近年、医療分野、環境分野などでは、液体試料中の微量成分の検出、分析が頻繁に行われており、その際、例えば医療分野では、基板に流路が形成されたマイクロチップと呼ばれる液体流路装置が使用される場合が多い。
例えば特許文献1には、マイクロチップに形成された液体流路内で、抗体を含有する試薬と血液とを混合、反応させた後、該マイクロチップごと検出装置に供して、抗原抗体反応を検出する技術が記載されている。このマイクロチップにおいては、別途併設されたマイクロポンプの作用により、試薬や血液が送液されるようになっている。
また、例えば特許文献2には、回転可能なディスクの半径方向に流路を複数形成し、この流路の一部にあらかじめ抗体を固定しておき、その後、ディスクを回転させて流路に体液を流通させることによって、抗原抗体反応により体液中の抗原を抗体に捕捉させるディスク状の液体流路装置が開示されている。
特開2007−139500号公報 特開平05−005741号公報
In recent years, detection and analysis of trace components in a liquid sample are frequently performed in the medical field, the environmental field, and the like. In this case, for example, in the medical field, a liquid flow called a microchip having a channel formed on a substrate is used. Road equipment is often used.
For example, in Patent Document 1, an antibody-containing reagent and blood are mixed and reacted in a liquid channel formed in a microchip, and then the whole microchip is provided to a detection device to detect an antigen-antibody reaction. The technology to do is described. In this microchip, a reagent and blood are fed by the action of a separately provided micropump.
Further, for example, in Patent Document 2, a plurality of flow paths are formed in the radial direction of a rotatable disk, and an antibody is fixed in advance in a part of the flow paths. A disk-like liquid flow path device is disclosed in which an antibody in an antigen is captured by an antigen-antibody reaction by circulating the antibody.
JP 2007-139500 A JP 05-005741 A

しかしながら、試薬や血液を液体流路中に流通させるために、特許文献1の液体流路装置では別途マイクロポンプを使用する必要があり、特許文献2の液体装置ではディスクを回転させる装置が必要であった。   However, in order to circulate the reagent and blood in the liquid flow path, the liquid flow path apparatus of Patent Document 1 needs to use a separate micropump, and the liquid apparatus of Patent Document 2 requires a device for rotating the disk. there were.

本発明の目的は、液体を流通させるための装置を別途必要とすることなく、液体を簡便かつ円滑に流路に流通させることのできる液体流路装置を低コストで提供することである。   An object of the present invention is to provide a liquid flow path device that can circulate a liquid easily and smoothly in a flow path at low cost without requiring a separate apparatus for flowing the liquid.

本発明の液体流路装置は、基板の少なくとも片面に、試料および試薬の少なくとも一方からなる液体が流通する液体流路と、前記液体が溜まる1つ以上の液槽とが形成され、前記基板の前記液体流路と前記液槽とが形成された流路形成面には蓋板が積層した液体流路装置であって、
前記液槽の少なくとも1つは、該液槽内の液体を液槽外に送液する送液手段を有し、該送液手段は、前記液槽に対応する部分の蓋板または前記液槽の底部を外側から押圧する操作により作動することを特徴とする。
本発明の液体流路装置は、前記液体流路の一部を閉止状態から開通状態にする開通手段と、開通状態から閉止状態にする閉止手段とをさらに有し、
前記蓋板は、該蓋板の表面を構成する第1基材層と、該第1基材層の内側に形成された強粘着層と、該強粘着層の内側に形成された第2基材層と、該第2基材層の内側に形成され、前記流路形成面に粘着する弱粘着層とを有し、
前記開通手段では、前記液体流路に第1凸部が形成され、該第1凸部の頂部と前記弱粘着層とが粘着し、かつ、前記強粘着層と前記第2基材層とが離間し、
前記閉止手段では、前記液体流路に第2凸部が形成され、該第2凸部の頂部と前記弱粘着層とが離間し、かつ、前記強粘着層と前記第2基材層との間にはスペーサ部材が介在し、該スペーサ部材と前記強粘着層とが粘着し、
前記送液手段では、前記強粘着層と前記第2基材層との間にはスペーサ部材が介在し、該スペーサ部材と前記強粘着層とが粘着していることが好ましい。
前記基板は、外層と、該外層の内側に積層した中間層と、該中間層の内側に積層した内層とからなり、前記内層には、前記液槽の上部と、前記液体流路と、前記第1凸部と、前記第2凸部とが形成され、前記中間層には、前記液槽の下部が形成されていることが好ましい。
または、前記基板は、外層と、該外層の内側に積層した内層とからなり、前記内層には、前記液槽と、前記液体流路と、前記第1凸部と、前記第2凸部とが形成されていることが好ましい。
前記送液手段が設けられた前記液槽には、該送液手段で送液される液体の逆流を防止する逆流防止手段が設けられていることが好ましい。
また、その場合、逆流防止手段は、前記内層に形成されていることが好ましい。
前記送液手段は、前記液槽の底部を外側から押圧する操作により作動するものである場合、前記底部は、外方に膨出して形成されていることが好ましい。
In the liquid channel device of the present invention, a liquid channel in which a liquid consisting of at least one of a sample and a reagent flows and at least one liquid tank in which the liquid is accumulated are formed on at least one surface of the substrate, A liquid flow path device in which a cover plate is laminated on a flow path forming surface on which the liquid flow path and the liquid tank are formed,
At least one of the liquid tanks has a liquid feeding means for feeding the liquid in the liquid tank to the outside of the liquid tank, and the liquid feeding means is a lid plate corresponding to the liquid tank or the liquid tank. It operates by the operation which presses the bottom part of this from the outside.
The liquid flow path device of the present invention further includes an opening means for making a part of the liquid flow path from a closed state to an open state, and a closing means for making the closed state from the open state,
The lid plate includes a first base layer constituting the surface of the lid plate, a strong adhesive layer formed inside the first base layer, and a second base formed inside the strong adhesive layer. A material layer and a weak adhesive layer formed on the inner side of the second base material layer and sticking to the flow path forming surface;
In the opening means, a first convex portion is formed in the liquid flow path, a top portion of the first convex portion and the weak adhesive layer are adhered, and the strong adhesive layer and the second base material layer are bonded to each other. Apart,
In the closing means, a second convex portion is formed in the liquid flow path, a top portion of the second convex portion and the weak adhesive layer are separated from each other, and the strong adhesive layer and the second base material layer are separated from each other. A spacer member is interposed between the spacer member and the strong adhesive layer,
In the liquid feeding means, it is preferable that a spacer member is interposed between the strong adhesion layer and the second base material layer, and the spacer member and the strong adhesion layer are adhered.
The substrate includes an outer layer, an intermediate layer laminated on the inner side of the outer layer, and an inner layer laminated on the inner side of the intermediate layer. The inner layer includes an upper part of the liquid tank, the liquid channel, It is preferable that a 1st convex part and the said 2nd convex part are formed, and the lower part of the said liquid tank is formed in the said intermediate | middle layer.
Alternatively, the substrate includes an outer layer and an inner layer laminated on the inner side of the outer layer, and the inner layer includes the liquid tank, the liquid flow path, the first convex portion, and the second convex portion. Is preferably formed.
The liquid tank provided with the liquid feeding means is preferably provided with a backflow preventing means for preventing a backflow of the liquid fed by the liquid feeding means.
In that case, the backflow prevention means is preferably formed in the inner layer.
When the liquid feeding means is operated by an operation of pressing the bottom of the liquid tank from the outside, the bottom is preferably formed to bulge outward.

本発明によれば、液体を流通させるための装置を別途必要とすることなく、液体を簡便かつ円滑に流路に流通させることのできる液体流路装置を低コストで提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the liquid flow-path apparatus which can distribute | circulate a liquid to a flow path simply and smoothly can be provided at low cost, without requiring the apparatus for distribute | circulating a liquid separately.

以下、本発明について詳細に説明する。
[第1実施形態例]
図1は第1実施形態例の液体流路装置10Aを概略的に示す平面透視図、図2は図1の液体流路装置10Aの一部を拡大した平面透視図、図3は図2のI−I’線に沿う断面図である。
この液体流路装置10Aは、平板からなる四角形の基板11Aの片面に、試料および試薬の少なくとも一方からなる液体が流通する溝状の液体流路12と、液体流路12の端部や途中において液体が溜まる複数(この例では9)の液槽(14a〜14i)とが形成され、基板11Aの液体流路12と液槽(14a〜14i)とが形成された側の流路形成面12aに、蓋板13が積層して構成されたものである。
この例の液体流路装置10Aは、図1中の上端部側が上方に、下端部側が下方に位置するように立てられただけでも、液体流路12の上流側の端部から下流側の端部に向けて矢印F方向に試料が重力により流通し、その途中で試料に対して各種の処理や試薬との混合がなされ、各種検出、分析に供される測定液が調製される。しかしながら、この例では、詳しくは後述するように、液槽の有する送液手段も併用することによって、液体を簡便かつ円滑に流通させ得るようになっている。
Hereinafter, the present invention will be described in detail.
[First Embodiment]
FIG. 1 is a plan perspective view schematically showing a liquid channel device 10A of the first embodiment, FIG. 2 is a plan perspective diagram showing an enlarged part of the liquid channel device 10A in FIG. 1, and FIG. It is sectional drawing which follows the II 'line.
This liquid flow path device 10A includes a groove-shaped liquid flow path 12 through which a liquid consisting of at least one of a sample and a reagent flows on one side of a flat substrate 11A made of a flat plate, and an end portion or a middle of the liquid flow path 12 A plurality of (9 in this example) liquid tanks (14a to 14i) in which liquid is accumulated are formed, and a flow path forming surface 12a on the side where the liquid flow path 12 and the liquid tanks (14a to 14i) of the substrate 11A are formed. Further, the cover plate 13 is laminated.
Even if the liquid channel device 10A of this example is erected so that the upper end side in FIG. 1 is located above and the lower end side is located below, the end on the downstream side from the upstream end of the liquid channel 12 The sample circulates in the direction of arrow F toward the part by gravity, and the sample is mixed with various treatments and reagents in the middle of the sample to prepare a measurement solution for various detections and analyses. However, in this example, as will be described in detail later, the liquid can be easily and smoothly circulated by using the liquid feeding means of the liquid tank in combination.

液体流路12の上流側の端部には、投入された試料が溜まる試料投入槽14aが設けられ、この試料投入槽14aの下流には、試料投入槽14aから流通してきた試料に対してろ過処理が施される図示略のフィルタが内蔵されたろ過槽14bが設けられている。
ろ過槽14bの下流には、その内容積が所定量に形成され、ろ過処理された試料を計量できる計量槽14cが設けられている。
At the upstream end of the liquid channel 12, there is provided a sample loading tank 14a in which the loaded sample is collected, and the sample flowing from the sample loading tank 14a is filtered downstream of the sample loading tank 14a. A filtration tank 14b containing a filter (not shown) to be processed is provided.
Downstream of the filtration tank 14b, there is provided a measuring tank 14c whose inner volume is formed in a predetermined amount and capable of weighing the filtered sample.

計量槽14cの下流には、計量槽14cで計量された試料と、あらかじめ第1試薬槽14eに所定量封入されている液体の第1試薬とが混合される第1混合槽14fが設けられ、第1混合槽14fの下流には、第1混合槽14fで調製された中間調製液と、あらかじめ第2試薬槽14gに所定量封入されている液体の第2試薬とが混合される第2混合槽14hが設けられている。
そして、第2混合槽14hの下流には測定槽14iが設けられ、第2混合槽14hで調製された測定液がここに貯留され、図示略の検出分析手段により、各種成分の検出や分析がなされるようになっている。
なお、この例では、測定槽14iの下流に、測定槽14iと液体流路12により連通した混合機能槽14dが設けられている。詳しくは後述するが、測定槽14i内の測定液を混合機能槽14dに一旦送った後、測定槽14iに返送する混合操作を必要に応じて繰り返すことにより、測定液が十分に攪拌混合され、より検出や分析に適した状態になる。
また、各液槽には、大気と連通する開閉可能な図示略の連通孔が設けられている。
Downstream of the measuring tank 14c, a first mixing tank 14f is provided in which the sample weighed in the measuring tank 14c and the liquid first reagent previously sealed in the first reagent tank 14e are mixed. Downstream of the first mixing tank 14f is a second mixing in which the intermediate preparation liquid prepared in the first mixing tank 14f and the liquid second reagent sealed in a predetermined amount in the second reagent tank 14g are mixed. A tank 14h is provided.
And the measurement tank 14i is provided downstream of the 2nd mixing tank 14h, the measurement liquid prepared by the 2nd mixing tank 14h is stored here, and detection and analysis of various components are carried out by the detection analysis means not shown. It has been made.
In this example, a mixing function tank 14d communicating with the measurement tank 14i and the liquid channel 12 is provided downstream of the measurement tank 14i. As will be described in detail later, the measurement liquid is sufficiently stirred and mixed by repeating the mixing operation of returning the measurement liquid in the measurement tank 14i to the mixing function tank 14d and then returning to the measurement tank 14i as necessary. It becomes a state more suitable for detection and analysis.
Each liquid tank is provided with a communication hole (not shown) that can be opened and closed and communicates with the atmosphere.

この液体流路装置10Aの蓋板13は、図3に示すように、蓋板13の表面を構成する第1基材層13aと、第1基材層13aの内側に形成された強粘着層13bと、強粘着層13bの内側に形成された第2基材層13cと、第2基材層13cの内側に形成され、流路形成面12aに粘着する弱粘着層13dとを有して構成されている。
第1基材層13aは、表面側から垂直方向(第1基材層13aと垂直に交差する方向)の荷重が加えられた場合には撓み、その後、荷重が取り去られた場合には元に戻る復元力を有する材料からなっている。一方、第2基材層13cは、同様の荷重により容易に撓み、荷重を取り去っても復元しない、すなわち容易に塑性変形する材料からなっている。また、強粘着層13bの粘着力は、弱粘着層13dよりも大きく形成されている。
As shown in FIG. 3, the lid plate 13 of the liquid flow path device 10A includes a first base layer 13a constituting the surface of the lid plate 13, and a strong adhesive layer formed on the inner side of the first base layer 13a. 13b, a second base material layer 13c formed inside the strong adhesive layer 13b, and a weak adhesive layer 13d formed inside the second base material layer 13c and sticking to the flow path forming surface 12a. It is configured.
The first base material layer 13a bends when a load in the vertical direction (a direction perpendicular to the first base material layer 13a) is applied from the surface side, and then returns to the original when the load is removed. It is made of a material having a restoring force to return to On the other hand, the second base material layer 13c is made of a material that is easily bent by the same load and does not recover even when the load is removed, that is, easily plastically deformed. Moreover, the adhesive force of the strong adhesion layer 13b is formed larger than the weak adhesion layer 13d.

また、この液体流路装置10Aは、液体流路12の一部を閉止状態から開通状態にする開通手段S1〜S7と、開通状態から閉止状態にする閉止手段T1とを有している。
この例では、開通手段S1〜S7は、試料投入槽14aとろ過槽14bとの間、ろ過槽14bと計量槽14cとの間、計量槽14cと第1混合槽14fとの間、第1混合槽14fと第2混合槽14hとの間、第1試薬槽14eと第1混合槽14fとの間、第2試薬槽14gと第2混合槽14hとの間、第2混合槽14hと測定槽14iとの間の各液体流路12にそれぞれ1ずつ設けられている。
一方、閉止手段T1は、ろ過槽14bと計量槽14cとの間の液体流路12において、開通手段S2よりも下流側に設けられている。
Further, the liquid flow path device 10A includes opening means S1 to S7 for bringing a part of the liquid flow path 12 from the closed state to the open state, and a closing means T1 for changing the open state to the closed state.
In this example, the opening means S1 to S7 include the first mixing tank 14a and the filtering tank 14b, the filtering tank 14b and the measuring tank 14c, the measuring tank 14c and the first mixing tank 14f, Between the tank 14f and the second mixing tank 14h, between the first reagent tank 14e and the first mixing tank 14f, between the second reagent tank 14g and the second mixing tank 14h, and between the second mixing tank 14h and the measuring tank One is provided in each liquid flow path 12 between 14i.
On the other hand, the closing means T1 is provided downstream of the opening means S2 in the liquid channel 12 between the filtration tank 14b and the measuring tank 14c.

そして、各開通手段S1〜S7においては、図3のS1およびS2を例示して説明すると、液体流路12に第1凸部15が形成され、この第1凸部15の頂部15aと弱粘着層13dとが粘着し、かつ、強粘着層13bと第2基材層13cとが離間している。
よって、各開通手段S1〜S7における液体流路12は、第1凸部15とこれの頂部15aに粘着した弱粘着層13dとにより閉じられ、通常時は閉止状態となっている。ところが、図4に開通手段S1を例に挙げて示すように、この開通手段S1おける第1基材層13aを表面側から矢印Aで示すように押圧して、第1基材層13aに垂直方向の荷重を加えた場合には、図4(a)に示すように、第1基材層13aが撓み、第1基材層13aの内側の強粘着層13bが第2基材層13cに粘着する。そして、その後に荷重を取り去ると、図4(b)に示すように、第1基材層13aはその復元力により元の状態に復元し、その際、第1基材層13aの内側に粘着した強粘着層13bと、強粘着層13bに粘着し、容易に塑性変形可能な第2基材層13cと、第2基材層13cの内側に粘着した弱粘着層13dも第1基材層13aの復元に追従し、持ち上がる。その結果、第1凸部15の頂部15aと弱粘着層13dとの間が新たに離間し、ここを液体が流通できるようになる。
このように開通手段S1〜S7においては、蓋板13を表面側から押圧して垂直方向の荷重を加えた後、この荷重を取り去る押圧操作によって、元々は粘着していた第1凸部15の頂部15aと弱粘着層13dとの間が離間し、その結果、この部分の液体流路12が閉止状態から開通状態となる。
And in each opening means S1-S7, if S1 and S2 of FIG. 3 are illustrated and demonstrated, the 1st convex part 15 will be formed in the liquid flow path 12, and the top part 15a of this 1st convex part 15 and weak adhesion The layer 13d is adhered, and the strong adhesion layer 13b and the second base material layer 13c are separated from each other.
Therefore, the liquid flow path 12 in each of the opening means S1 to S7 is closed by the first convex portion 15 and the weak adhesive layer 13d adhered to the top portion 15a, and is normally closed. However, as shown in FIG. 4 taking the opening means S1 as an example, the first base material layer 13a in the opening means S1 is pressed from the surface side as indicated by the arrow A, and is perpendicular to the first base material layer 13a. When a load in the direction is applied, as shown in FIG. 4A, the first base material layer 13a bends, and the strong adhesive layer 13b inside the first base material layer 13a becomes the second base material layer 13c. Stick. Then, when the load is removed thereafter, as shown in FIG. 4B, the first base material layer 13a is restored to its original state by its restoring force, and at that time, the first base material layer 13a is adhered to the inside of the first base material layer 13a. The strong adhesion layer 13b, the second substrate layer 13c that adheres to the strong adhesion layer 13b and can be easily plastically deformed, and the weak adhesion layer 13d that adheres to the inside of the second substrate layer 13c are also the first substrate layer. Follows the recovery of 13a and lifts. As a result, the top portion 15a of the first convex portion 15 and the weak adhesive layer 13d are newly separated from each other, and the liquid can flow therethrough.
In this way, in the opening means S1 to S7, after pressing the cover plate 13 from the surface side and applying a load in the vertical direction, by the pressing operation to remove this load, the first convex portion 15 that was originally adhered is removed. The top portion 15a and the weak adhesive layer 13d are separated from each other, and as a result, the liquid flow path 12 in this portion is changed from the closed state to the open state.

一方、閉止手段T1においては、図3に示すように、液体流路12に第2凸部16が形成され、この第2凸部16の頂部16aと弱粘着層13dとは離間し、かつ、強粘着層13bと第2基材層13cとの間にはスペーサ部材17が介在し、スペーサ部材17と強粘着層13bとが粘着している。
よって、閉止手段T1における液体流路12では、第2凸部16の頂部16aと弱粘着層13dとの間が離間して流路が保たれ、通常時は開通状態となっている。ところが、図5(a)に示すように、閉止手段T1における第1基材層13aを表面側から矢印Bで示すように押圧して、第1基材層13aに垂直方向の荷重を加えた場合には、第1基材層13aが撓み、その結果、蓋板13の内層の弱粘着層13dが第2凸部16の頂部16aに粘着する。そして、その後に荷重を取り去ると、図5(b)に示すように、第1基材層13aはその復元力により元の状態に復元し、その際、第1基材層13aの内側に粘着した強粘着層13bと、強粘着層13bに粘着したスペーサ部材17は、第1基材層13aの復元に追従して持ち上がる。一方、スペーサ部材17と第2基材層13cとの間は粘着していないとともに、第2基材層13cは容易に塑性変形可能であるために、ここで荷重を取り去っても、第2基材層13cと弱粘着層13dは第1基材層13aの復元には追従しない。その結果、第2凸部16の頂部16aと弱粘着層13dとは粘着した状態となって液体流路12を閉止し、液体はここを流通できなくなる。
このように閉止手段T1においては、蓋板13を表面側から押圧して垂直方向の荷重を加えた後、この荷重を取り去る押圧操作によって、元々は離間していた第2凸部16の頂部16aと弱粘着層13dとの間が粘着して閉塞し、その結果、この部分の液体流路12が開通状態から閉止状態となる。
On the other hand, in the closing means T1, as shown in FIG. 3, a second convex portion 16 is formed in the liquid flow path 12, and the top portion 16a of the second convex portion 16 and the weak adhesive layer 13d are separated from each other, and A spacer member 17 is interposed between the strong adhesion layer 13b and the second base material layer 13c, and the spacer member 17 and the strong adhesion layer 13b are adhered.
Therefore, in the liquid flow path 12 in the closing means T1, the top portion 16a of the second convex portion 16 and the weak adhesive layer 13d are separated from each other to maintain the flow path, and are normally open. However, as shown to Fig.5 (a), the 1st base material layer 13a in the closure means T1 was pressed from the surface side as shown by arrow B, and the load of the perpendicular direction was added to the 1st base material layer 13a. In this case, the first base material layer 13a bends, and as a result, the weak adhesive layer 13d of the inner layer of the cover plate 13 adheres to the top 16a of the second convex portion 16. Then, when the load is removed thereafter, as shown in FIG. 5B, the first base material layer 13a is restored to its original state by its restoring force, and at that time, the first base material layer 13a is adhered to the inside of the first base material layer 13a. The strong adhesive layer 13b and the spacer member 17 adhered to the strong adhesive layer 13b are lifted following the restoration of the first base material layer 13a. On the other hand, the spacer member 17 is not adhered between the second base material layer 13c and the second base material layer 13c can be easily plastically deformed. The material layer 13c and the weak adhesive layer 13d do not follow the restoration of the first base material layer 13a. As a result, the top portion 16a of the second convex portion 16 and the weak adhesive layer 13d are in an adhesive state, and the liquid channel 12 is closed, so that the liquid cannot flow therethrough.
As described above, in the closing means T1, the top plate 16a of the second convex portion 16 that was originally separated by pressing the cover plate 13 from the surface side and applying a load in the vertical direction and then removing the load. And the weak adhesive layer 13d are adhered and closed, and as a result, the liquid flow path 12 in this portion is changed from the open state to the closed state.

さらに、この例の液体流路装置10Aでは、計量槽14cと、第1混合槽14fと、第2混合槽14hと、測定槽14iと、混合機能槽14dは、各液槽内の液体を液槽外に送液する送液手段P1〜P5をそれぞれ有している。
これら送液手段P1〜P5のうち、計量槽14cの送液手段P1は、計量槽14c内の液体を下流側、すなわち第1混合槽14fへと送液するものである。同様に、第1混合槽14fの送液手段P2は、第1混合槽14f内の液体を下流側、すなわち第2混合槽14hへと送液するものであり、第2混合槽14hの送液手段P3は、第2混合槽14h内の液体を下流側、すなわち測定槽14iへと送液するものである。また、測定槽14iの送液手段P4は、測定槽14i内の液体を下流側、すなわち混合機能槽14dへと送液するものである。
一方、混合機能槽14dの送液手段P5は、混合機能槽14d内の液体を上流側、すなわち測定槽14iへと返送するものである。
Furthermore, in the liquid channel device 10A of this example, the measuring tank 14c, the first mixing tank 14f, the second mixing tank 14h, the measuring tank 14i, and the mixing function tank 14d are configured to liquidate liquid in each liquid tank. Each has liquid feeding means P1 to P5 for feeding liquid outside the tank.
Among these liquid feeding means P1 to P5, the liquid feeding means P1 of the weighing tank 14c feeds the liquid in the weighing tank 14c to the downstream side, that is, the first mixing tank 14f. Similarly, the liquid feeding means P2 in the first mixing tank 14f feeds the liquid in the first mixing tank 14f to the downstream side, that is, the second mixing tank 14h, and the liquid feeding means in the second mixing tank 14h. The means P3 sends the liquid in the second mixing tank 14h to the downstream side, that is, to the measurement tank 14i. Moreover, the liquid feeding means P4 of the measuring tank 14i feeds the liquid in the measuring tank 14i to the downstream side, that is, the mixing function tank 14d.
On the other hand, the liquid feeding means P5 of the mixing function tank 14d returns the liquid in the mixing function tank 14d to the upstream side, that is, the measurement tank 14i.

そして、この例では、各送液手段P1〜P5を有する各液槽に対応する部分の蓋板13(各液槽を閉塞する部分の蓋板)においては、強粘着層13bと第2基材層13cとの間は離間しているのではなく、スペーサ部材17が介在して、スペーサ部材17と強粘着層13bとが粘着し、層間が密に構成されている。
そのため、送液手段P1を例に挙げて図6に示すように、この部分の蓋板13を外側から矢印Cで示す方向に押圧した場合(図6(b))、押圧された部分の蓋板13は内側に撓む。その結果、計量槽14cの内容積が小さくなり、計量槽14c内の液体が吐出されて送液され、送液手段P1としての作用が発現するようになっている。ここで仮に、強粘着層13bと第2基材層13cとの間が離間し、スペーサ部材17が介在しておらず、層間が密でないと、この部分の蓋板13を外側から押圧しても、強粘着層13bが第2基材層13cに粘着するだけで、計量槽14cの内容積が小さくならない可能性がある。その場合、送液手段としての作用は発現しない。
And in this example, in the cover plate 13 (the cover plate of the part which closes each liquid tank) of the part corresponding to each liquid tank which has each liquid feeding means P1-P5, the strong adhesion layer 13b and the 2nd base material The spacer 13 is not spaced apart from the layer 13c, but the spacer member 17 and the strong adhesion layer 13b are adhered to each other, and the layers are densely formed.
Therefore, when the liquid feeding means P1 is taken as an example and the cover plate 13 of this part is pressed from the outside in the direction indicated by the arrow C as shown in FIG. 6 (FIG. 6B), the cover of the pressed part is covered. The plate 13 bends inward. As a result, the internal volume of the measuring tank 14c is reduced, the liquid in the measuring tank 14c is discharged and fed, and the action as the liquid feeding means P1 is developed. Here, if the strong adhesion layer 13b and the second base material layer 13c are separated from each other, the spacer member 17 is not interposed, and the interlayer is not dense, the cover plate 13 of this portion is pressed from the outside. However, there is a possibility that the internal volume of the measuring tank 14c is not reduced only by the strong adhesion layer 13b sticking to the second base material layer 13c. In that case, the action as a liquid feeding means does not appear.

また、この例では、このような送液手段P1〜P4がそれぞれ設けられた計量槽14cと、第1混合槽14fと、第2混合槽14hと、測定槽14iとには、図1および図2に示すように、送液手段P1〜P4で送液される液体の上流側への逆流を防止する逆流防止手段G1〜G6も設けられている。そのため、送液手段P1〜P4を作動させた際に、各液槽内の液体は上流側には逆流せず、下流側にのみ送液されるようになっている。   In this example, the measuring tank 14c, the first mixing tank 14f, the second mixing tank 14h, and the measuring tank 14i each provided with such liquid feeding means P1 to P4 are shown in FIGS. As shown in FIG. 2, backflow preventing means G1 to G6 for preventing the backflow of the liquid sent by the liquid sending means P1 to P4 to the upstream side are also provided. Therefore, when the liquid feeding means P1 to P4 are operated, the liquid in each liquid tank does not flow backward to the upstream side but is fed only to the downstream side.

逆流防止手段G1〜G6は、この例では、可撓性のある堰板18から構成されている。例えば、計量槽14cを例示すると、堰板18は、図6および図7に示すように、計量槽14cと計量槽14cの上流側の液体流路12との境界部分において、堰板18の先端18aが下流側に傾くように、基端18bのみが液体流路12の底部に固定されていて、先端18aや両側端は固定されていない。
そのため、図6および図7では図示略のろ過槽から計量槽14cへ液体が送液される場合には、液体は堰板18の先端18aを超えて計量槽14cへと流入することができる。一方、計量槽14cの有する送液手段P1が作動し、計量槽14cの内容積が小さくなった場合には、このような堰板18が配置されているために、図6(b)に示すように、計量槽14c内の液体は下流側にしか送液されず、上流側、すなわちろ過槽側へは逆流しない。
In this example, the backflow prevention means G1 to G6 are composed of a flexible weir plate 18. For example, when the measuring tank 14c is illustrated, the weir plate 18 is, as shown in FIGS. 6 and 7, the tip of the weir plate 18 at the boundary portion between the measuring tank 14c and the liquid channel 12 on the upstream side of the measuring tank 14c. Only the base end 18b is fixed to the bottom of the liquid flow path 12 so that 18a is inclined to the downstream side, and the tip 18a and both side ends are not fixed.
6 and 7, when the liquid is sent from the filtration tank (not shown) to the measuring tank 14c, the liquid can flow into the measuring tank 14c beyond the tip 18a of the weir plate 18. On the other hand, when the liquid feeding means P1 included in the measuring tank 14c is activated and the internal volume of the measuring tank 14c is reduced, such a weir plate 18 is disposed, and therefore, as shown in FIG. Thus, the liquid in the measuring tank 14c is sent only to the downstream side, and does not flow backward to the upstream side, that is, the filtration tank side.

なお、混合機能槽14dは、上述したように、その上流側の測定槽14iとの間で測定液を行き来させることで、測定液を十分に攪拌混合するために設けられたものである。よって、混合機能槽14dには、液体の上流側への逆流を防止する逆流防止手段を設ける必要はない。   As described above, the mixing function tank 14d is provided to sufficiently stir and mix the measurement liquid by moving the measurement liquid back and forth between the measurement tank 14i on the upstream side. Therefore, the mixing function tank 14d need not be provided with a backflow preventing means for preventing the backflow of the liquid to the upstream side.

この液体流路装置10Aを用いて、測定液を調製する具体的な方法としては、まず、この液体流路装置10Aを試料投入槽14a側が上方に、測定槽14i側が下方に位置するように立てて、液体が重力によって上流側から下流側に流れやすい状態とする。
ついで、試料をシリンジなどにサンプリングし、このシリンジの針を試料投入槽14aに対応する部分の蓋板13に突き刺して、試料投入槽14aに試料を注入する。その後、試料投入槽14aとろ過槽14bとの間に設けられた開通手段S1を上述の押圧操作、すなわち、第1基材層13aを表面側から押圧して荷重を加えた後、取り去る操作で作動させ、この部分の液体流路12を開通状態とし、試料を重力によりろ過槽14bまで導入する。
この際、押圧操作は、作業者が指で第1基材層13aを表面側から押す手動により行ってもよいし、押圧位置がXY座標としてあらかじめプログラムされている押圧装置などを使用して、所定の位置を押すようにしてもよい。
As a specific method for preparing the measurement liquid using the liquid channel device 10A, first, the liquid channel device 10A is set up so that the sample introduction tank 14a side is located above and the measurement tank 14i side is located below. Thus, the liquid easily flows from the upstream side to the downstream side by gravity.
Next, the sample is sampled in a syringe or the like, and the needle of this syringe is pierced into the cover plate 13 corresponding to the sample loading tank 14a to inject the sample into the sample loading tank 14a. Thereafter, the opening means S1 provided between the sample charging tank 14a and the filtration tank 14b is pressed as described above, that is, the first base material layer 13a is pressed from the surface side to add a load, and then removed. The liquid channel 12 in this portion is opened, and the sample is introduced to the filtration tank 14b by gravity.
At this time, the pressing operation may be performed manually by the operator manually pressing the first base material layer 13a from the surface side with a finger, or the pressing position is pre-programmed as XY coordinates, You may make it push a predetermined position.

ついで、ろ過槽14bでろ過処理がなされた後、ろ過槽14bと計量槽14cとの間に設けられた開通手段S2を押圧操作で作動させて、この部分の液体流路12を開通状態とし、試料を重力により計量槽14cに導入する。
ついで、計量槽14cにおいて、所定量の試料が溜まって計量された時点で、ろ過槽14bと計量槽14cとの間に設けられた閉止手段T1を押圧操作で作動させて、この部分の液体流路12を閉止状態とする。このようにして、計量槽14cに上流側からの液体がさらに流入するのを停止させてから、計量槽14cの下流に設けられた開通手段S3を押圧操作で作動させて、この部分の液体流路12を開通状態とする。ついで、計量槽14cを閉塞する部分の蓋板13を外側から押圧して、送液手段P1を作動させ、重力の作用と送液手段P1の作用とにより、計量後の試料を第1混合槽14fに導入する。
Next, after the filtration treatment is performed in the filtration tank 14b, the opening means S2 provided between the filtration tank 14b and the measuring tank 14c is operated by pressing operation, and the liquid flow path 12 of this portion is opened, The sample is introduced into the weighing tank 14c by gravity.
Next, when a predetermined amount of sample is accumulated and weighed in the measuring tank 14c, the closing means T1 provided between the filtration tank 14b and the measuring tank 14c is operated by a pressing operation, and the liquid flow in this portion is measured. The path 12 is closed. In this way, after further stopping the flow of the liquid from the upstream side into the measuring tank 14c, the opening means S3 provided downstream of the measuring tank 14c is operated by a pressing operation, and the liquid flow in this portion The path 12 is opened. Next, the lid plate 13 that closes the weighing tank 14c is pressed from the outside to operate the liquid feeding means P1, and the sample after weighing is fed into the first mixing tank by the action of gravity and the action of the liquid feeding means P1. 14f.

こうして計量後の試料を第1混合槽14fに導入する一方で、第1試薬槽14eと第1混合槽14fとの間の開通手段S4を押圧操作で作動させて第1試薬を第1混合槽14fに導入し、試料と第1試薬とを第1混合槽14fにおいて混合し、中間調製液を調製する。
ついで、第1混合槽14fと第2混合槽14hとの間の開通手段S5を押圧操作で作動させて、この部分の液体流路12を開通状態とし、ついで、送液手段P2を送液手段P1と同様にして作動させ、重力の作用と送液手段P2との作用により、第1混合槽14fで調製された中間調製液を第2混合槽14hに導入する。一方、第2試薬槽14gと第2混合槽14hとの間の開通手段S6を押圧操作で作動させて第2試薬を第2混合槽14hに導入し、中間調製液と第2試薬とを第2混合槽14hにおいて混合し、測定液を調製する。
In this way, while the sample after weighing is introduced into the first mixing tank 14f, the opening means S4 between the first reagent tank 14e and the first mixing tank 14f is operated by a pressing operation so that the first reagent is put into the first mixing tank 14f. The sample is introduced into 14f, and the sample and the first reagent are mixed in the first mixing tank 14f to prepare an intermediate preparation solution.
Next, the opening means S5 between the first mixing tank 14f and the second mixing tank 14h is operated by a pressing operation so that the liquid flow path 12 of this portion is opened, and then the liquid supply means P2 is set as the liquid supply means. It is operated in the same manner as P1, and the intermediate preparation liquid prepared in the first mixing tank 14f is introduced into the second mixing tank 14h by the action of gravity and the action of the liquid feeding means P2. On the other hand, the opening means S6 between the second reagent tank 14g and the second mixing tank 14h is operated by a pressing operation to introduce the second reagent into the second mixing tank 14h, and the intermediate preparation solution and the second reagent are supplied to the second reagent tank 14g. 2 Mix in the mixing tank 14h to prepare a measurement solution.

ついで、第2混合槽14hと測定槽14iとの間の開通手段S7を押圧操作で作動させて、この部分の液体流路12を開通状態とし、ついで、送液手段P3を作動させて、重力の作用と送液手段P3との作用により、第2混合槽14hで調製された測定液を測定槽14iに導入する。
ついで、送液手段P4を作動させて、測定槽14i内の測定液を混合機能槽14dに一旦送液する。その後、送液手段P5を作動させて、混合機能槽14d内の測定液を測定槽14iに返送する。このような混合操作を必要に応じて繰り返して、測定液を十分に攪拌混合した後、この液体流路装置10Aごと検出分析手段に供し、測定槽14i内の測定液について、目的成分の検出や測定を行う。
なお、このように送液手段P1〜P5を作動させ、液体流路装置10Aの液体流路12に液体を流通させる場合には、必要に応じて、各液槽に設けられている図示略の連通孔を適宜開閉して、液体がより円滑に流れるようにすることが好適である。例えば、送液手段P1を作動させるにあたって、計量槽14cに対応する部分の蓋板13を押圧した後、押圧を解除する前に計量槽14cに設けられた連通孔を閉止状態から開通状態とし、その後、押圧を解除することにより、計量槽14c内が減圧状態となって下流に送液された液体が計量槽14cに逆流することを防止できる。
Next, the opening means S7 between the second mixing tank 14h and the measuring tank 14i is operated by pressing, so that the liquid flow path 12 in this portion is opened, and then the liquid feeding means P3 is operated to reduce the gravity. The measurement liquid prepared in the second mixing tank 14h is introduced into the measurement tank 14i by the action of the above and the action of the liquid feeding means P3.
Next, the liquid feeding means P4 is operated to temporarily feed the measurement liquid in the measurement tank 14i to the mixing function tank 14d. Thereafter, the liquid feeding means P5 is operated to return the measurement liquid in the mixing function tank 14d to the measurement tank 14i. Such a mixing operation is repeated as necessary, and the measurement liquid is sufficiently stirred and mixed. Then, the entire liquid flow path device 10A is provided to the detection analysis means, and the target liquid is detected in the measurement liquid in the measurement tank 14i. Measure.
In addition, when operating the liquid feeding means P1 to P5 and causing the liquid to flow through the liquid flow path 12 of the liquid flow path device 10A as described above, an unillustrated illustration provided in each liquid tank is provided as necessary. It is preferable to open and close the communication holes as appropriate so that the liquid flows more smoothly. For example, in operating the liquid feeding means P1, after pressing the cover plate 13 corresponding to the measuring tank 14c, before releasing the press, the communication hole provided in the measuring tank 14c is changed from the closed state to the open state, Thereafter, by releasing the pressure, it is possible to prevent the liquid sent downstream from the metering tank 14c from flowing back into the metering tank 14c due to the reduced pressure inside the metering tank 14c.

このような液体流路装置10Aによれば、液槽内の液体を送液する送液手段P1〜P5が、計量槽14cと、第1混合槽14fと、第2混合槽14hと、測定槽14iと、混合機能槽14dとにそれぞれ設けられているため、たとえ試料、中間調製液、測定液が粘性を有するなどして、液体流路12を流れ難いものである場合でも、液体を流通させるための装置を別途必要とすることなく、液体を簡便かつ円滑に流通させることができる。
また、この例の送液手段P1〜P5は、液体流路装置10Aの蓋板13を利用した構成であるため、送液手段P1〜P5のための別部材を新たに用意する必要がなく、低コストであるとともに構成もシンプルである。また、送液手段P1〜P5も押圧だけの簡便な操作で作動するため、操作性にも優れる。
According to such a liquid channel device 10A, the liquid feeding means P1 to P5 for feeding the liquid in the liquid tank include the measuring tank 14c, the first mixing tank 14f, the second mixing tank 14h, and the measuring tank. 14i and the mixing function tank 14d are respectively provided, so that the liquid is circulated even if the sample, the intermediate preparation liquid, and the measurement liquid are difficult to flow through the liquid flow path 12 due to their viscosity. Therefore, the liquid can be easily and smoothly circulated without requiring a separate device.
Moreover, since the liquid feeding means P1 to P5 in this example are configured using the lid plate 13 of the liquid flow path device 10A, there is no need to newly prepare another member for the liquid feeding means P1 to P5. It is low cost and simple in construction. Moreover, since the liquid feeding means P1-P5 operate | move by simple operation only of a press, it is excellent also in operativity.

さらに、この例では、送液手段P1〜P4がそれぞれ設けられた計量槽14cと第1混合槽14fと第2混合槽14hと測定槽14iとには、逆流防止手段G1〜G6としての堰板18が設けられているため、送液手段P1〜P4を作動させた場合に液体が上流側へと逆流してしまうこともない。   Furthermore, in this example, weir plates as backflow preventing means G1 to G6 are provided in the measuring tank 14c, the first mixing tank 14f, the second mixing tank 14h, and the measuring tank 14i provided with the liquid feeding means P1 to P4, respectively. Since 18 is provided, the liquid does not flow backward to the upstream side when the liquid feeding means P1 to P4 are operated.

さらにこの例の液体流路装置10Aは、液体流路12を閉止状態から開通状態にする開通手段S1〜S7と、開通状態から閉止状態にする閉止手段T1とを有するため、液体流路12中の液体の流れを制御でき、その結果、精度の高い検出や分析を速やかに行うことができる。
例えば、この例では、計量槽14cの上流には閉止手段T1が設けられ、下流には開通手段S3が設けられている。そのため、計量槽14cで試料を正確かつ速やかに計量して、第1混合槽14fに導入することができる。ここで仮に、計量槽14cの下流に開通手段S3が設けられておらず、この部分の液体流路12が常に開通した状態であると、計量中であっても計量槽14cから試料が連続的に流出してしまい、試料を一定量溜めることができず、計量自体が困難となる。また、計量槽14cの上流に閉止手段T1が設けられていない場合には、一定量の試料を計量槽14cに溜めた後にも、試料投入槽14aに注入された試料の量によっては、ろ過槽14bを経た試料が計量槽14cに流入し続け、やはり、計量自体が困難となる可能性がある。その点、この例のように、計量槽14cの上流に閉止手段T1が設けられていると、ろ過槽14bを経た試料の全量が計量槽14cに完全に流入し終わらなくても、計量槽14cにおいて一定量の試料が計量された時点で閉止手段T1を作動させて、計量槽14cへの試料のさらなる流入を停止することができ、試料を正確かつ速やかに計量することができる。
Furthermore, the liquid flow path device 10A of this example includes the opening means S1 to S7 that bring the liquid flow path 12 from the closed state to the open state, and the closing means T1 that changes the open state from the open state to the closed state. As a result, highly accurate detection and analysis can be performed promptly.
For example, in this example, closing means T1 is provided upstream of the weighing tank 14c, and opening means S3 is provided downstream. Therefore, the sample can be accurately and quickly measured in the measuring tank 14c and introduced into the first mixing tank 14f. Here, if the opening means S3 is not provided downstream of the measuring tank 14c, and the liquid flow path 12 in this portion is always open, the sample continuously from the measuring tank 14c even during measurement. The sample cannot be collected in a certain amount, and the measurement itself becomes difficult. Further, in the case where the closing means T1 is not provided upstream of the measuring tank 14c, even after a certain amount of sample is stored in the measuring tank 14c, depending on the amount of the sample injected into the sample feeding tank 14a, the filtration tank The sample that has passed through 14b continues to flow into the weighing tank 14c, and the weighing itself may still be difficult. In this respect, when the closing means T1 is provided upstream of the measuring tank 14c as in this example, the measuring tank 14c can be used even if the entire amount of the sample passing through the filtration tank 14b does not completely flow into the measuring tank 14c. When a certain amount of sample is weighed in, the closing means T1 can be operated to stop further flow of the sample into the weighing tank 14c, and the sample can be accurately and quickly measured.

また、この例では、第1混合槽14fと第2混合槽14hとの間に開通手段S5が設けられ、第2混合槽14hと測定槽14iとの間に開通手段S7が設けられている。そのため、第1混合槽14fおよび第2混合槽14hにおいて、目的の混合や反応が十分に進行してから、これら開通手段S5、S7を開通させ、ついで、送液手段P2、P3を作動させ、中間調製液や測定液をそれぞれ第2混合槽14hや測定槽14iに導入することができる。よって、混合や反応が不十分なことに起因する検出や分析の精度低下を防止することができる。   In this example, an opening means S5 is provided between the first mixing tank 14f and the second mixing tank 14h, and an opening means S7 is provided between the second mixing tank 14h and the measurement tank 14i. Therefore, in the first mixing tank 14f and the second mixing tank 14h, after the target mixing and reaction has sufficiently progressed, the opening means S5 and S7 are opened, and then the liquid feeding means P2 and P3 are operated. The intermediate preparation liquid and the measurement liquid can be introduced into the second mixing tank 14h and the measurement tank 14i, respectively. Therefore, it is possible to prevent a decrease in detection and analysis accuracy due to insufficient mixing and reaction.

さらに、この例では、第1試薬槽14eと第1混合槽14fとの間、第2試薬槽14gと第2混合槽14hとの間にも開通手段S4、S6が設けられているため、所望の時点でこれらを開通させて、あらかじめ第1試薬槽14eおよび第2試薬槽14gにそれぞれ封入されている第1試薬および第2試薬を第1混合槽14fや第2混合槽14hに流入させることができる。仮に開通手段S4、S6が設けられていない場合には、液体流路装置10Aの保管時などに、第1試薬および第2試薬が下流側に流れ始めてしまうおそれがある。   Furthermore, in this example, since the opening means S4 and S6 are provided between the first reagent tank 14e and the first mixing tank 14f and between the second reagent tank 14g and the second mixing tank 14h, it is desirable. These are opened at the point of time, and the first reagent and the second reagent previously sealed in the first reagent tank 14e and the second reagent tank 14g, respectively, are caused to flow into the first mixing tank 14f and the second mixing tank 14h. Can do. If the opening means S4 and S6 are not provided, the first reagent and the second reagent may start to flow downstream when the liquid channel device 10A is stored.

また、この例の液体流路装置10Aの開通手段S1〜S7および閉止手段T1は、液体流路12に形成された第1凸部15および第2凸部16と蓋板13とが組み合わされた構成であるため、液体流路12を開通したり閉止したりするための別部材を新たに用意する必要がなく、低コストであるとともに構成もシンプルである。また、開通および閉止の操作も簡便な押圧操作のみで、操作性にも優れる。   Further, the opening means S1 to S7 and the closing means T1 of the liquid channel device 10A of this example are a combination of the first convex portion 15 and the second convex portion 16 formed in the liquid channel 12 and the lid plate 13. Since it is a structure, it is not necessary to prepare another member for opening and closing the liquid flow path 12, and it is low-cost and the structure is also simple. In addition, the opening and closing operations can be performed only by a simple pressing operation, and the operability is excellent.

なお、以上例示した液体流路装置10Aでは、計量槽14cと、第1混合槽14fと、第2混合槽14fと、測定槽14iと、混合機能槽14dとが送液手段P1〜P5をそれぞれ有する形態とした。しかしながら、これらの全ての液槽が送液手段を有していなくてもよく、また、これら以外の他の液槽が送液手段を有していてもよい。すなわち、試料や試薬の種類、特性などに応じて、どの液槽に送液手段を備えるか適宜決定することができる。例えば、この例では、液体流路装置10Aを用いて測定液を調製する場合には、まず、この液体流路装置10Aを試料投入槽14a側が上方に、測定槽14i側が下方に位置するように立てて、液体が重力によって上流側から下流側に流れやすい状態としたうえで、送液手段P1〜P5をも送液に利用する形態、すなわち、重力の作用と送液手段の作用とを併用して、液体を流通させる形態について例示した。しかしながら、すべての液槽に送液手段を設けることによって、重力を利用しなくても、液体を送液できるように液体流路装置を構成することもできる。
また、液体流路装置10Aでは、9の液槽が形成された形態としたが、液槽の種類、数、配置の順序などは目的に応じて適宜設定できる。
In the liquid channel device 10A exemplified above, the measuring tank 14c, the first mixing tank 14f, the second mixing tank 14f, the measuring tank 14i, and the mixing function tank 14d respectively supply the liquid feeding means P1 to P5. It was set as the form which has. However, all of these liquid tanks may not have the liquid feeding means, and other liquid tanks other than these may have the liquid feeding means. That is, it is possible to appropriately determine which liquid tank is provided with the liquid feeding means according to the type and characteristics of the sample and the reagent. For example, in this example, when the measurement liquid is prepared using the liquid flow path device 10A, first, the liquid flow path device 10A is positioned so that the sample introduction tank 14a side is positioned upward and the measurement tank 14i side is positioned downward. In a state where the liquid easily flows from the upstream side to the downstream side due to gravity, the liquid feeding means P1 to P5 are also used for liquid feeding, that is, the action of gravity and the action of the liquid feeding means are used in combination. Then, an example of the form in which the liquid is circulated has been illustrated. However, by providing liquid feeding means in all the liquid tanks, the liquid flow path device can be configured so that liquid can be fed without using gravity.
Further, in the liquid flow path device 10A, nine liquid tanks are formed. However, the type, number, order of arrangement, and the like of the liquid tanks can be appropriately set according to the purpose.

さらに、この例の液体流路装置10Aでは、送液手段P1〜P4が設けられた液槽に配置される逆流防止手段G1〜G6として、堰板18が用いられているが、逆流防止手段の形態には制限はなく、堰板18以外のものであってもよい。また、堰板18を設ける場合においても、2枚以上の堰板18を直列に配置するなどして、逆流防止効果がより得られるようにしてもよいし、堰板18と他の逆流防止手段を併用してもよい。   Furthermore, in the liquid flow path device 10A of this example, the weir plate 18 is used as the backflow prevention means G1 to G6 disposed in the liquid tank provided with the liquid feeding means P1 to P4. There is no restriction | limiting in a form, A thing other than the weir board 18 may be sufficient. In the case where the barrier plate 18 is provided, two or more barrier plates 18 may be arranged in series so that the effect of preventing the reverse flow can be obtained, or the barrier plate 18 and other reverse flow preventing means. May be used in combination.

さらに、逆流防止手段G1〜G6を設ける代わりに、その箇所において、液体流路12を開通状態から閉止状態にする閉止手段を設け、送液手段P1〜P4を作動させる前に閉止手段を作動させることにより、液体が上流側へ逆流することを防ぐようにすることも可能である。
このように閉止手段を逆流防止目的に使用する形態は、例えば、計量槽として、計量槽に連通したオーバーフロー流路とその下流に設けられた廃液槽とからなるオーバーフロー手段が備えられたものを採用した場合などに特に有効である。このような計量槽は、計量槽で一定量を超えた試料がオーバーフローしてオーバーフロー流路を流れ、廃液槽に流入し、その結果、計量槽で一定量の試料を計量することができるようになっている。そのため、計量の際には、計量槽からオーバーフロー流路へスムーズに試料が流れる必要がある。一方、計量槽に備えられた送液手段を作動させ、計量後の試料を下流側に送る場合には、試料が計量槽からオーバーフロー流路に流れ込むことを防止する必要がある。このように、両方向に試料が流れる必要がある箇所には、逆流防止手段を設けることはできない。よって、このような箇所には、閉止手段を設け、必要な場合にのみ、その箇所を閉止状態にできるように構成することが好ましい。
Furthermore, instead of providing the backflow prevention means G1 to G6, a closing means for closing the liquid flow path 12 from the open state to the closed state is provided at that location, and the closing means is operated before the liquid feeding means P1 to P4 are operated. Thus, it is also possible to prevent the liquid from flowing back to the upstream side.
In this way, the form in which the closing means is used for the purpose of preventing backflow, for example, employs a measuring tank equipped with an overflow means comprising an overflow channel communicating with the measuring tank and a waste liquid tank provided downstream thereof. This is particularly effective when In such a measuring tank, a sample exceeding a certain amount in the measuring tank overflows, flows through the overflow channel, and flows into the waste liquid tank, so that a certain amount of sample can be measured in the measuring tank. It has become. Therefore, it is necessary for the sample to flow smoothly from the measuring tank to the overflow channel when measuring. On the other hand, when the liquid feeding means provided in the measurement tank is operated and the sample after measurement is sent downstream, it is necessary to prevent the sample from flowing into the overflow channel from the measurement tank. Thus, a backflow prevention means cannot be provided at a location where the sample needs to flow in both directions. Therefore, it is preferable to provide a closing means at such a location so that the location can be closed only when necessary.

以上説明した液体流路装置10A、10Bにおいて、液体流路12および液槽が形成される基板11Aには、例えば、スチレン樹脂、アクリル樹脂、ポリカーボネート樹脂、塩化ビニル樹脂、PEN樹脂、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ABS樹脂、ポリプロピレン樹脂、繊維強化プラスチックなどの樹脂板や、ガラス板が使用できる。これらのなかでも、透明であって、液体流路12を流通する液体の様子を基板11A側から目視することができる点では、ガラス板や、スチレン樹脂、アクリル樹脂、ポリカーボネート樹脂、塩化ビニル樹脂、PEN樹脂、ポリエステル樹脂が好ましい。また、ガラス板よりも破損しにくく取扱性に優れる点では、樹脂板の方が好ましい。
基板11Aの厚さには特に制限はなく、形成される液体流路12の深さなどに応じて決定されればよいが、通常0.5〜7mmである。
In the liquid flow path apparatuses 10A and 10B described above, the substrate 11A on which the liquid flow path 12 and the liquid tank are formed includes, for example, styrene resin, acrylic resin, polycarbonate resin, vinyl chloride resin, PEN resin, polyester resin, epoxy Resin plates such as resin, phenol resin, ABS resin, polypropylene resin, and fiber reinforced plastic, and glass plates can be used. Among these, a glass plate, a styrene resin, an acrylic resin, a polycarbonate resin, a vinyl chloride resin, a transparent plate, and the state of the liquid flowing through the liquid flow channel 12 can be visually observed from the substrate 11A side. PEN resin and polyester resin are preferable. In addition, a resin plate is preferable in that it is less likely to break than a glass plate and has excellent handleability.
The thickness of the substrate 11A is not particularly limited and may be determined according to the depth of the liquid channel 12 to be formed, but is usually 0.5 to 7 mm.

液体流路12や液槽は、基板11Aの片面上に、例えばフォトリソグラフィ、射出成形、ブロー成形、接合形成、溶解形成、切削形成、機械加工などの技術により溝状に形成される。
液体流路12の断面形状(流れに対して垂直方向の断面)には特に制限はなく、例えば、半円形状、四角形状、逆三角形状などが挙げられる。液体流路12の幅や深さにも特に制限はなく、求められる液体の流量などに応じて決定されればよいが、幅および深さがそれぞれ10〜5000μmの範囲であれば、小さな流路抵抗で液体を流すことができ、かつ、流通させる液体の量も少量ですむ点で好ましい。
また、液体流路12には、液体を流れやすくするために、液体の種類に応じた表面処理を施すことが好ましい。このような表面処理としては、塗料の塗布処理、プラズマ処理、フレーム処置、薬品処理、生理活性処理、抗体処理などが挙げられる。さらに、液体流路12には、必要に応じて、邪魔板、攪拌板、突起を設けたり、分水形状を形成したりして、流通する液体が均一な混合状態となるようにしてもよい。
各液槽も、形状などには特に制限はなく、各液槽に要求される容積などに応じて適宜形成されればよい。
各堰板は、可撓性を有する樹脂シートなどで形成され、所定の部位に配されてもよいし、液体流路12や液槽を形成する際に基板11Aから一体に形成されたものであってもよい。
The liquid flow path 12 and the liquid tank are formed in a groove shape on one surface of the substrate 11A by techniques such as photolithography, injection molding, blow molding, bonding formation, dissolution formation, cutting formation, and machining.
There is no particular limitation on the cross-sectional shape of the liquid channel 12 (the cross-section in the direction perpendicular to the flow), and examples thereof include a semicircular shape, a square shape, and an inverted triangular shape. The width and depth of the liquid channel 12 are not particularly limited and may be determined according to the required flow rate of the liquid. However, if the width and depth are in the range of 10 to 5000 μm, the small channel It is preferable in that a liquid can be flowed by resistance and a small amount of liquid can be circulated.
The liquid flow path 12 is preferably subjected to a surface treatment according to the type of liquid in order to facilitate the flow of the liquid. Examples of such surface treatment include coating application treatment, plasma treatment, flame treatment, chemical treatment, physiological activity treatment, and antibody treatment. Furthermore, the liquid flow path 12 may be provided with a baffle plate, a stirring plate, a protrusion, or formed with a water diverting shape, if necessary, so that the flowing liquid is in a uniform mixed state. .
Each liquid tank is not particularly limited in shape, and may be appropriately formed according to the volume required for each liquid tank.
Each dam plate is formed of a flexible resin sheet or the like, and may be disposed at a predetermined site, or is integrally formed from the substrate 11A when forming the liquid channel 12 or the liquid tank. There may be.

蓋板13の表面を構成する第1基材層13aは、その表面側から垂直方向の荷重を加えられた場合には撓み、その後、戻ろうとする復元力を有するものである。このような特性、すなわち、可撓性と復元力とを有する基材であれば、第1基材層13aとして使用でき、その材質や厚みには特に制限はないが、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリイミドなどからなる厚さ50〜500μmのフィルムであれば、第1基材層13aとして使用するのに適切な可撓性と復元力を有するため好ましい。   The first base material layer 13a constituting the surface of the cover plate 13 has a restoring force to bend and then return when a vertical load is applied from the surface side. If it is a base material having such characteristics, that is, flexibility and restoring force, it can be used as the first base material layer 13a, and its material and thickness are not particularly limited, but polyethylene terephthalate (PET), A film having a thickness of 50 to 500 μm made of polyethylene naphthalate (PEN), polycarbonate (PC), polyimide, or the like is preferable because it has flexibility and resilience appropriate for use as the first base material layer 13a. .

一方、第2基材層13cは、垂直方向の荷重により容易に撓むものであればよく、復元しないものがさらに好ましい。このような特性を有する基材であれば、第2基材層13cとして使用でき、その材質や厚みには特に制限はないが、アルミニウム箔、銅箔などの金属箔、紙、PET、PEN、PC、ポリイミドなどの樹脂からなる厚さ5〜50μmのフィルムであれば、第2基材層13cとして使用するのに好ましい。紙を使用する場合には、防水処理された紙が好ましく、金属箔を使用する場合には、防錆処理された金属箔が好ましい。   On the other hand, the 2nd base material layer 13c should just be easily bent by the load of a perpendicular direction, and the thing which does not restore | restore is still more preferable. If it is the base material which has such a characteristic, it can be used as the 2nd base material layer 13c, Although there is no restriction | limiting in particular in the material and thickness, Metal foil, such as aluminum foil and copper foil, paper, PET, PEN, A film having a thickness of 5 to 50 μm made of a resin such as PC or polyimide is preferable for use as the second base material layer 13c. When using paper, waterproof paper is preferable, and when using metal foil, rust-proof metal foil is preferable.

強粘着層13bおよび弱粘着層13dには、従来公知の粘着剤の中から第1基材層13aや第2基材層13cの材質などに応じて適宜選択することができるが、その際、強粘着層13bを形成する粘着剤の粘着力(粘着強度)は、弱粘着層13dを形成する粘着剤の粘着力よりも強いことが必要である。強粘着層13bを形成する粘着剤の粘着力が弱粘着層13dを形成する粘着剤の粘着力以下であると、開通手段S1〜S14において押圧操作をした場合でも、第1凸部15の頂部15aと弱粘着層13dとを離間させることができず、液体流路12を開通できなくなる。強粘着層13bを形成する粘着剤の粘着力は、弱粘着層13dを形成する粘着剤の粘着力よりも0.1N/cm以上大きいことが好ましい。さらには、0.1〜30N/cmの範囲で大きいことが好ましい。強粘着層13bを形成する粘着剤の粘着力が弱粘着層13dを形成する粘着剤の粘着力よりも0.1N/cm以上大きいと、開通手段S1〜S14を確実に作動させることができる。一方、粘着力の差が30N/cmを超えるようにこれらの粘着層を構成することは困難である。
また、そのうえで、強粘着層13bの粘着力を1〜30N/cmの範囲とし、弱粘着層13dの粘着力を0.05〜5N/cmの範囲とすることが好ましい。
The strong adhesive layer 13b and the weak adhesive layer 13d can be appropriately selected from conventionally known adhesives according to the material of the first base material layer 13a and the second base material layer 13c. The adhesive force (adhesive strength) of the adhesive forming the strong adhesive layer 13b needs to be stronger than the adhesive force of the adhesive forming the weak adhesive layer 13d. When the pressure-sensitive adhesive of the pressure-sensitive adhesive forming the strong pressure-sensitive adhesive layer 13b is equal to or lower than the pressure-sensitive adhesive of the pressure-sensitive adhesive forming the weak pressure-sensitive adhesive layer 13d, even when a pressing operation is performed in the opening means S1 to S14, 15a and the weak adhesion layer 13d cannot be separated, and the liquid flow path 12 cannot be opened. It is preferable that the adhesive strength of the adhesive forming the strong adhesive layer 13b is 0.1 N / cm or more larger than the adhesive strength of the adhesive forming the weak adhesive layer 13d. Furthermore, it is preferable that it is large in the range of 0.1-30 N / cm. When the adhesive force of the adhesive forming the strong adhesive layer 13b is 0.1 N / cm or more larger than the adhesive force of the adhesive forming the weak adhesive layer 13d, the opening means S1 to S14 can be operated reliably. On the other hand, it is difficult to configure these adhesive layers so that the difference in adhesive strength exceeds 30 N / cm.
Moreover, it is preferable that the adhesive force of the strong adhesive layer 13b is in the range of 1 to 30 N / cm and the adhesive force of the weak adhesive layer 13d is in the range of 0.05 to 5 N / cm.

強粘着層13bおよび弱粘着層13dに使用する粘着剤としては、例えば、アクリル系、ゴム系、ポリウレタン系、ポリエステル系、シリコン系などが挙げられる。これらのうち、例えば、強粘着層13bにはアクリル系、ゴム系などを使用し、さらに芯材として、不織布、ポリエステル繊維などを含ませてもよい。弱粘着層13dには、アクリル系、シリコン系のものを使用することが好ましい。強粘着層13bと弱粘着層13dとの粘着力の差を上述の好適な範囲とするためには、各粘着剤を構成する樹脂のガラス転移温度を適宜調整したり、粘着剤に粘着付与剤、硬化剤、芯材などの添加剤を加えたり、その添加量を調整したりする方法が挙げられる。
また、強粘着層および弱粘着層の厚さには制限はないが、通常、10〜1000μmである。
Examples of the adhesive used for the strong adhesive layer 13b and the weak adhesive layer 13d include acrylic, rubber-based, polyurethane-based, polyester-based, and silicon-based adhesives. Among these, for example, the strong adhesive layer 13b may be made of acrylic or rubber, and may further include a nonwoven fabric, polyester fiber, or the like as a core material. The weak adhesive layer 13d is preferably made of acrylic or silicon. In order to make the difference in adhesive strength between the strong adhesive layer 13b and the weak adhesive layer 13d within the above-mentioned preferable range, the glass transition temperature of the resin constituting each adhesive is appropriately adjusted, or the tackifier is added to the adhesive. And a method of adding additives such as a curing agent and a core material and adjusting the amount of the additive.
Moreover, although there is no restriction | limiting in the thickness of a strong adhesion layer and a weak adhesion layer, Usually, it is 10-1000 micrometers.

なお、ここで「粘着力」とは、JIS Z 0237のステンレス板に対する180度引きはがし粘着力のことである。   Here, “adhesive strength” refers to the adhesive strength that peels 180 degrees from a stainless steel plate of JIS Z 0237.

スペーサ部材17としては、PET、PEN、PC、アクリル樹脂、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂などの樹脂の他、紙なども使用できる。スペーサ部材17の厚みには特に制限はないが、50〜2000μmの範囲にすると、開通手段S1〜S14の作動前には、強粘着層13bと第2基材層13cとを確実に離間させておくことができ、一方、作動時には、強粘着層13bと第2基材層13cとを確実に粘着させることができる。   As the spacer member 17, paper, etc. can be used in addition to resins such as PET, PEN, PC, acrylic resin, epoxy resin, phenol resin, and polyurethane resin. Although there is no restriction | limiting in particular in the thickness of the spacer member 17, If it is set as the range of 50-2000 micrometers, before the opening means S1-S14 act | operates, the strong adhesion layer 13b and the 2nd base material layer 13c will be spaced apart reliably. On the other hand, at the time of operation, the strong adhesion layer 13b and the second base material layer 13c can be reliably adhered.

[第2実施形態例]
以上説明した第1実施形態例の液体流路装置10Aでは、送液手段P1〜P5として、液槽に対応する部分の蓋板13を外側から押圧する操作により、この部分の蓋板13を撓ませ、その液槽の内容積を小さくすることによって、液体を送液する形態について例示した。第2実施形態例では、蓋板13を外側から押圧する操作の代わりに、液槽の底部を外側から押圧する操作により、液槽の内容積を小さくして、液槽内の液体を送液する形態の送液手段について説明する。
[Second Embodiment]
In the liquid channel device 10A of the first embodiment described above, as the liquid feeding means P1 to P5, the lid plate 13 of this portion is bent by an operation of pressing the lid plate 13 of the portion corresponding to the liquid tank from the outside. However, the mode of sending the liquid by reducing the internal volume of the liquid tank is illustrated. In the second embodiment, instead of the operation of pressing the cover plate 13 from the outside, the operation of pressing the bottom of the liquid tank from the outside reduces the internal volume of the liquid tank and feeds the liquid in the liquid tank. The liquid feeding means of the form to be described will be described.

図8は、第1実施形態例と同様に9の液槽を備えた第2実施形態例の液体流路装置10Bについて、送液手段P1’を有する計量槽14cを含む要部について示したものである。
この例では、基板11Bは、外層11eと、その内側に積層した中間層11fと、その内側に積層した内層11gの3層から構成されている。
内層11gには、液槽(この例では計量槽14cのみ図示)の上部と、液体流路12と、第1凸部15と、第2凸部16とが形成されている。
中間層11fには、液槽の下部が形成されている。また、この中間層11fは、液体流路12の底部を構成している。
外層11eは、基板11Bの最も外側に配置され、液槽の底部を構成している。この例では、液槽の底部を矢印C’で示すように外側から押圧する操作により、液槽の底部を構成する外層11eが内側に撓んで、計量槽14cの内容積が小さくなることにより、送液手段P1’が作動するようになっている。
FIG. 8 shows the main part including the measuring tank 14c having the liquid feeding means P1 ′ for the liquid channel device 10B of the second embodiment example having nine liquid tanks as in the first embodiment. It is.
In this example, the substrate 11B is composed of three layers: an outer layer 11e, an intermediate layer 11f stacked on the inner side, and an inner layer 11g stacked on the inner side.
In the inner layer 11g, an upper portion of a liquid tank (only the measuring tank 14c is shown in this example), a liquid flow path 12, a first convex portion 15, and a second convex portion 16 are formed.
A lower part of the liquid tank is formed in the intermediate layer 11f. The intermediate layer 11 f constitutes the bottom of the liquid flow path 12.
The outer layer 11e is disposed on the outermost side of the substrate 11B and constitutes the bottom of the liquid tank. In this example, the operation of pressing the bottom of the liquid tank from the outside as indicated by the arrow C ′ causes the outer layer 11e constituting the bottom of the liquid tank to bend inward, and the internal volume of the measuring tank 14c is reduced. The liquid feeding means P1 ′ is activated.

さらにこの例では、図9にも示すように、内層11gに逆流防止手段としての堰板18が形成されている。この例の堰板18は、計量槽14cと計量槽14cの上流側の液体流路12との境界部分において、堰板18の先端18aが下流側に傾くように、基端18bが液体流路12の一方の側壁に固定されていて、先端18aや両側端は固定されていない。
そのため、上流の図示略のろ過槽から計量槽14cへ液体が送液される場合には、液体は堰板18の先端18aを超えて計量槽14cへと流入することができる。一方、計量槽14cの有する送液手段P1’が作動した場合には、堰板18の作用により計量槽14c内の液体は下流側にしか送液されず、上流側へは逆流しない。
Furthermore, in this example, as shown in FIG. 9, a weir plate 18 as a backflow preventing means is formed on the inner layer 11g. In this example, the dam plate 18 has a base end 18b at the boundary between the measuring tank 14c and the liquid channel 12 on the upstream side of the measuring tank 14c so that the distal end 18a of the dam plate 18 is inclined downstream. 12 is fixed to one side wall, and the tip 18a and both side ends are not fixed.
Therefore, when the liquid is sent from the upstream unillustrated filtration tank to the measuring tank 14 c, the liquid can flow into the measuring tank 14 c beyond the tip 18 a of the weir plate 18. On the other hand, when the liquid feeding means P1 ′ of the measuring tank 14c is activated, the liquid in the measuring tank 14c is fed only to the downstream side by the action of the weir plate 18 and does not flow backward to the upstream side.

この例の基板11Bは、図10に示すようにして製造することができる。
まず、内層11gをなすシート11g’を用意し、このシート11g’において、液体流路12に対応する箇所を線状に打ち抜くとともに、液槽の上部に相当する部分を孔状に打ち抜く。また、この際、第1凸部15と第2凸部16となる部分は打ち抜かず、残しておき、その後、第2凸部16の高さが第1凸部15よりも低くなるように、研磨などにより第2凸部の高さを調節しておく。また、この例では、堰板18も内層11gから形成されているため、このシート11g’において堰板18となる部分も打ち抜かずに残しておく。
一方、中間層11fをなすシート11f’を用意し、このシート11f’において、計量槽14cなどの各液槽の下部に対応する箇所を孔状に打ち抜く。
ついで、外層11eをなすシート11e’を用意し、これに中間層11fをなすシート11f’と、内層11gをなすシート11g’を積層し、接着することにより、基板11Bを製造することができる。
The substrate 11B of this example can be manufactured as shown in FIG.
First, a sheet 11g ′ forming an inner layer 11g is prepared. In this sheet 11g ′, a portion corresponding to the liquid flow path 12 is punched in a linear shape, and a portion corresponding to the upper portion of the liquid tank is punched in a hole shape. Further, at this time, the portions that become the first convex portion 15 and the second convex portion 16 are not punched out and are left behind, and thereafter, the height of the second convex portion 16 is lower than the first convex portion 15. The height of the second convex portion is adjusted by polishing or the like. Further, in this example, since the barrier plate 18 is also formed from the inner layer 11g, the portion that becomes the barrier plate 18 in the sheet 11g ′ is left without being punched.
On the other hand, a sheet 11f ′ forming the intermediate layer 11f is prepared, and in this sheet 11f ′, a portion corresponding to the lower part of each liquid tank such as the measuring tank 14c is punched out into a hole shape.
Then, a sheet 11e ′ forming the outer layer 11e is prepared, and a sheet 11f ′ forming the intermediate layer 11f and a sheet 11g ′ forming the inner layer 11g are laminated and bonded to each other, whereby the substrate 11B can be manufactured.

各シート11e’、11f’、11g’の材質としては、第1実施形態例で例示した基板11Aの材質の中などから選択することができる。特にシート11e’は、液槽の底部を構成し、送液手段の作動時には外側から押圧されるものであるため、可撓性を有するものを使用する必要がある。
また、シート11g’の厚さは、形成される液体流路12の深さに相当し、シート11g’とシート11f’の厚さの和は液槽の総深さに相当する。よって、液槽や液体流路12に求められる深さを考慮して、これらシート11f’およびシート11g’の厚みを決定する。液槽の深さは、要求される容積などに応じて適宜設定すればよい。また、液体流路12の好適な深さは、第1実施形態例と同様の範囲である。一方、シート11e’は上述のように送液手段の作動時には撓む必要があるため、材質にもよるが、具体的には、20〜300μmとすることが好適である。
The material of each sheet 11e ′, 11f ′, 11g ′ can be selected from the materials of the substrate 11A exemplified in the first embodiment. In particular, since the sheet 11e ′ constitutes the bottom of the liquid tank and is pressed from the outside when the liquid feeding means is operated, it is necessary to use a flexible sheet.
Further, the thickness of the sheet 11g ′ corresponds to the depth of the liquid flow path 12 to be formed, and the sum of the thicknesses of the sheet 11g ′ and the sheet 11f ′ corresponds to the total depth of the liquid tank. Therefore, the thicknesses of the sheet 11f ′ and the sheet 11g ′ are determined in consideration of the depth required for the liquid tank and the liquid channel 12. What is necessary is just to set the depth of a liquid tank suitably according to the volume etc. which are requested | required. Moreover, the suitable depth of the liquid flow path 12 is the same range as the first embodiment. On the other hand, since the sheet 11e ′ needs to be bent when the liquid feeding means is operated as described above, it is preferably 20 to 300 μm, although it depends on the material.

なお、基板11Bは、シート11e’とシート11g’とが積層してなり、外層11eと内層11gとの2層から構成されるものであってもよい。この場合、液体流路12と液槽の深さは同じとなる。   Note that the substrate 11B may be formed by laminating a sheet 11e 'and a sheet 11g' and including two layers of an outer layer 11e and an inner layer 11g. In this case, the depth of the liquid channel 12 and the liquid tank are the same.

また、この形態の液体流路装置10Bにおいて、より送液手段P1’を効果的に作用させるために、図11に示すように、計量槽14cに対応する部分の基板11Bの外層11e、すなわち、計量槽14cの底部を外方に膨出させておいてもよい。このように膨出させておくことによって、送液手段P1’を作動させる際にこの部分を内側に押圧すると、計量槽14cの内容積をより小さくすることができ、その結果、計量槽14c中の液体をより効果的に送液することが可能となる。   Further, in the liquid flow path device 10B of this embodiment, in order to make the liquid feeding means P1 ′ act more effectively, as shown in FIG. 11, the outer layer 11e of the substrate 11B corresponding to the measuring tank 14c, that is, The bottom of the measuring tank 14c may be bulged outward. By bulging in this way, when this portion is pressed inward when the liquid feeding means P1 ′ is operated, the internal volume of the measuring tank 14c can be reduced, and as a result, the measuring tank 14c It becomes possible to deliver the liquid more effectively.

このような基板11Bに、第1実施形態例と同様の構成の蓋板13を設けることにより、第2実施形態例の液体流路装置10Bを得ることができる。すなわち、この例でも、図8にも示すように、計量槽14cに対応する部分の蓋板13においては、強粘着層13bと第2基材層13cとの間は離間しているのではなく、スペーサ部材17が介在してスペーサ部材17と強粘着層13bとが粘着し、層間が密に構成されている。そのため、計量槽14cの底部を外側から押圧して撓ませ、送液手段P1’を作動させた際には、計量槽14cの内容積が小さくなり、送液手段としての作用が発現する。ここで仮に、強粘着層13bと第2基材層13cとの間が離間し、スペーサ部材17が介在しておらず、層間が密でないと、計量槽14cの底部を外側から押圧した際に、第2基材層13cと弱粘着層13dとが計量槽14cの内圧により外方に撓んでしまい、計量槽14cの内容積が小さくならず、送液手段としての作用が発現しない可能性がある。   By providing the cover plate 13 having the same configuration as that of the first embodiment on such a substrate 11B, the liquid channel device 10B of the second embodiment can be obtained. That is, also in this example, as shown in FIG. 8, in the cover plate 13 corresponding to the weighing tank 14c, the strong adhesion layer 13b and the second base material layer 13c are not separated from each other. The spacer member 17 is interposed between the spacer member 17 and the strong adhesive layer 13b so that the layers are densely formed. Therefore, when the bottom portion of the measuring tank 14c is pressed and bent from the outside and the liquid feeding means P1 'is operated, the internal volume of the measuring tank 14c is reduced, and the action as the liquid feeding means is exhibited. Here, if the strong adhesion layer 13b and the second base material layer 13c are separated from each other, the spacer member 17 is not interposed, and the interlayer is not dense, the bottom of the measuring tank 14c is pressed from the outside. The second base material layer 13c and the weak adhesive layer 13d are bent outward due to the internal pressure of the measuring tank 14c, the internal volume of the measuring tank 14c is not reduced, and there is a possibility that the function as the liquid feeding means does not appear. is there.

このような液体流路装置10Bにおいては、特に基板11Bが、外層11eと中間層11fと内層11gの3層、または、外層11eと内層11gの2層から構成され、液槽、液体流路12、堰板18、第1凸部15および第2凸部16は、中間層11fを構成するシート11f’や内層11gを構成するシート11g’を打ち抜くことで形成されている。そのため、一枚の平板からなる基板に対して、液槽や液体流路を例えばフォトリソグラフィなどで形成する方法、射出成形などで液槽や液体流路の形成された基板を成形する方法などにくらべて、低い製造コストで簡便に、液槽などを形成でき、大量生産も可能となる。  In such a liquid channel device 10B, in particular, the substrate 11B is composed of three layers of the outer layer 11e, the intermediate layer 11f and the inner layer 11g, or two layers of the outer layer 11e and the inner layer 11g. The barrier plate 18, the first convex portion 15 and the second convex portion 16 are formed by punching out the sheet 11f ′ constituting the intermediate layer 11f and the sheet 11g ′ constituting the inner layer 11g. Therefore, for a substrate made of a single flat plate, a method for forming a liquid tank or a liquid flow path by, for example, photolithography, a method for forming a substrate in which a liquid tank or a liquid flow path is formed by injection molding, etc. Compared with a low manufacturing cost, a liquid tank etc. can be formed easily and mass production is also possible.

なお、以上の説明した第1実施形態例および第2実施形態例においては、基板11A、11Bの片面のみに液体流路12が形成された液体流路装置10A、10Bを例示したが、基板11A、11Bの両面に液体流路12が形成されてもよい。
また、各液槽に設けられる、開閉可能な連通孔の形態には制限はなく、蓋板に形成された連通孔に、嵌め込み式のキャップを抜き差しすることで、連通孔を開通、閉止できる形態などでもよいが、液体流路12に設けられる開通手段S1〜S7および閉止手段T1と同様の構成の開通手段と閉止手段とを設けてもよい。
また、第1実施形態例のように、基板11Aを一枚の平板から構成した場合でも、液槽の底部を押圧することで作動する送液手段を液槽に設けてもよいし、第2実施形態例のように、基板11Bを複数層から構成した場合でも、液槽に対応する蓋板13を押圧することで作動する送液手段を液槽に設けてもよい。さらに、以上の説明では、閉止手段および開通手段を備えた液体流路装置を例に挙げたため、蓋板13として、第1基材層13a、強粘着層13b、第2基材層13c、弱粘着層13d、スペーサ部材17から構成されるものを例示したが、送液手段の作動のためには、蓋板13をこのように複数の層から構成する必要はなく、単層からなる蓋板であってもよい。
また、以上の例においては、液体を流通させるために、重力の作用と送液手段の作用とを利用した形態について示したが、さらに、液体流路12、液槽の一部、またはこれらの両方を加熱して液体流路12や液槽内の空気を膨張させたり、液体流路12の一部に酸素吸収剤(酸化しやすい鉄粉など)を封入しておき、液体流路12内の酸素を吸収することで液体流路12内を減圧にしたりして、液体を移動させ、流通させる方法などを併用してもよい。
In the first embodiment and the second embodiment described above, the liquid channel devices 10A and 10B in which the liquid channel 12 is formed only on one surface of the substrates 11A and 11B are illustrated. The liquid channel 12 may be formed on both surfaces of the 11B.
Moreover, there is no restriction | limiting in the form of the communication hole which can be opened and closed provided in each liquid tank, The form which can open and close a communication hole by inserting and extracting a fitting type cap to the communication hole formed in the cover plate. However, an opening means and a closing means having the same configuration as the opening means S1 to S7 and the closing means T1 provided in the liquid channel 12 may be provided.
Further, as in the first embodiment, even when the substrate 11A is composed of a single flat plate, a liquid feeding means that operates by pressing the bottom of the liquid tank may be provided in the liquid tank, or the second Even in the case where the substrate 11B is composed of a plurality of layers as in the embodiment, liquid feeding means that operates by pressing the cover plate 13 corresponding to the liquid tank may be provided in the liquid tank. Furthermore, in the above description, since the liquid flow path device provided with the closing means and the opening means is taken as an example, the first base layer 13a, the strong adhesion layer 13b, the second base layer 13c, the weak base plate 13 are used as the lid plate 13. Although an example composed of the adhesive layer 13d and the spacer member 17 is illustrated, the lid plate 13 does not need to be composed of a plurality of layers in this way for the operation of the liquid feeding means, and the lid plate is composed of a single layer. It may be.
Moreover, in the above example, in order to distribute | circulate the liquid, it showed about the form using the effect | action of gravity and the effect | action of a liquid feeding means, but also, the liquid flow path 12, some liquid tanks, or these Both are heated to expand the air in the liquid flow path 12 and the liquid tank, or an oxygen absorbent (such as iron powder that easily oxidizes) is sealed in a part of the liquid flow path 12, For example, a method of reducing the pressure in the liquid flow path 12 by absorbing the oxygen and moving and circulating the liquid may be used in combination.

また、以上の説明では、試料投入槽14aに試料を注入する方法として、シリンジの針を蓋板13に突き刺す方法を例示しているが、例えば、あらかじめ蓋板13に試料注入孔を形成しておき、そこから試料を注入してもよい。その場合、試料注入孔には保護テープを被せておき、シリンジを保護テープに突き刺すことで注入してもよいし、保護テープを剥がして試料注入孔にシリンジを挿入して注入してもよい。   In the above description, as a method of injecting the sample into the sample loading tank 14a, a method of piercing the needle of the syringe into the cover plate 13 is exemplified. For example, a sample injection hole is formed in the cover plate 13 in advance. Alternatively, the sample may be injected therefrom. In that case, the sample injection hole may be covered with a protective tape and injected by piercing the syringe with the protective tape, or the protective tape may be peeled off and the syringe inserted into the sample injection hole for injection.

液体流路装置10A、10Bを流通させる試料および試薬としては、特に制限はなく、医療分野、環境分野などで従来より採用されている試料と試薬とを適宜組み合わせて使用することができる。例えば、医療分野おいては、試料として、血液(全血)、血漿、血清、バフィーコート、尿、糞便、唾液、喀痰などの生体由来のもの、ウィルス、細菌、カビ、酵母、動植物の細胞などが挙げられる。また、これらから単離したDNAまたはRNAを用いてもよいし、これらに対して何らかの前処理、希釈などが施されたものを試料としてもよい。試薬としては、試料中に存在する抗原を分析する場合には、それに対する抗体を含有する試薬が好ましい。
また、液体流路装置10A、10Bで調製された測定液の検出分析手段としては、従来公知の光学的手段、電気的手段などを適宜採用することができる。
There are no particular limitations on the sample and reagent through which the liquid flow path devices 10A and 10B are circulated, and a sample and a reagent that have been conventionally employed in the medical field, the environmental field, and the like can be used in appropriate combination. For example, in the medical field, samples (such as blood (whole blood), plasma, serum, buffy coat, urine, feces, saliva, sputum, etc.), viruses, bacteria, fungi, yeast, animal and plant cells, etc. Is mentioned. In addition, DNA or RNA isolated from these may be used, or a sample obtained by subjecting these to any pretreatment or dilution may be used. As a reagent, when an antigen present in a sample is analyzed, a reagent containing an antibody against the antigen is preferable.
Moreover, conventionally known optical means, electrical means, and the like can be appropriately employed as detection / analysis means for the measurement liquid prepared by the liquid flow path apparatuses 10A and 10B.

第1実施形態例の液体流路装置を示す概略平面透視図である。It is a schematic plane perspective view which shows the liquid channel apparatus of the example of 1st Embodiment. 図1の液体流路装置の一部を拡大した平面透視図である。FIG. 2 is an enlarged plan perspective view of a part of the liquid channel device in FIG. 1. 図2のI−I’線に沿う断面図である。It is sectional drawing which follows the I-I 'line of FIG. 図1の液体流路装置において、開通手段が作動する様子を説明する説明図である。FIG. 2 is an explanatory diagram for explaining how the opening means operates in the liquid channel device of FIG. 1. 図1の液体流路装置において、閉止手段が作動する様子を説明する説明図である。FIG. 2 is an explanatory diagram for explaining how the closing means operates in the liquid channel device of FIG. 1. 図1の液体流路装置において、送液手段が作動する様子を説明する説明図である。FIG. 2 is an explanatory diagram for explaining a state in which a liquid feeding unit operates in the liquid channel device of FIG. 1. 図1の液体流路装置の基板の一部を拡大した斜視図である。FIG. 2 is an enlarged perspective view of a part of a substrate of the liquid channel device in FIG. 1. 第2実施形態例の液体流路装置において、送液手段が作動する様子を説明する説明図である。It is explanatory drawing explaining a mode that a liquid feeding means act | operates in the liquid flow-path apparatus of 2nd Embodiment. 図8の液体流路装置の基板の一部を拡大した斜視図である。It is the perspective view which expanded a part of board | substrate of the liquid flow-path apparatus of FIG. 図8の液体流路装置の基板の製造工程を示す概略図である。It is the schematic which shows the manufacturing process of the board | substrate of the liquid flow-path apparatus of FIG. 第2実施形態例の液体流路装置の基板について、他の形態を示す断面図である。It is sectional drawing which shows another form about the board | substrate of the liquid flow-path apparatus of 2nd Embodiment.

符号の説明Explanation of symbols

10A、10B 液体流路装置
11A、11B 基板
11e 外層
11f 中間層
11g 内層
12 液体流路
12a 流路形成面
13 蓋板
13a 第1基材層
13b 強粘着層
13c 第2基材層
13d 弱粘着層
14c 計量槽
15 第1凸部
15a 第1凸部の頂部
16 第2凸部
16a 第2凸部の頂部
17 スペーサ部材
18 堰板
S1〜S14 開通手段
T1〜T2 閉止手段
P1〜P5、P1’ 送液手段
G1〜G6 逆流防止手段
10A, 10B Liquid channel device 11A, 11B Substrate 11e Outer layer 11f Intermediate layer 11g Inner layer 12 Liquid channel 12a Channel forming surface 13 Cover plate 13a First substrate layer 13b Strong adhesion layer 13c Second substrate layer 13d Weak adhesion layer 14c Measuring tank 15 1st convex part 15a Top part 16 of the 1st convex part 2nd convex part 16a Top part of the 2nd convex part 17 Spacer member 18 Dam plate S1-S14 Opening means T1-T2 Closing means P1-P5, P1 ' Liquid means G1-G6 Backflow prevention means

Claims (7)

基板の少なくとも片面に、試料および試薬の少なくとも一方からなる液体が流通する液体流路と、前記液体が溜まる1つ以上の液槽とが形成され、前記基板の前記液体流路と前記液槽とが形成された流路形成面には蓋板が積層した液体流路装置であって、
前記液槽の少なくとも1つは、該液槽内の液体を液槽外に送液する送液手段を有し、
該送液手段は、前記液槽に対応する部分の蓋板または前記液槽の底部を外側から押圧する操作により作動することを特徴とする液体流路装置。
A liquid channel through which a liquid consisting of at least one of a sample and a reagent flows and at least one liquid tank in which the liquid is stored are formed on at least one surface of the substrate, and the liquid channel and the liquid tank of the substrate Is a liquid flow path device in which a cover plate is laminated on the flow path forming surface on which is formed,
At least one of the liquid tanks has liquid feeding means for feeding the liquid in the liquid tank to the outside of the liquid tank,
The liquid feeding device is actuated by an operation of pressing a lid plate corresponding to the liquid tank or a bottom of the liquid tank from the outside.
前記液体流路の一部を閉止状態から開通状態にする開通手段と、開通状態から閉止状態にする閉止手段とをさらに有し、
前記蓋板は、該蓋板の表面を構成する第1基材層と、該第1基材層の内側に形成された強粘着層と、該強粘着層の内側に形成された第2基材層と、該第2基材層の内側に形成され、前記流路形成面に粘着する弱粘着層とを有し、
前記開通手段では、前記液体流路に第1凸部が形成され、該第1凸部の頂部と前記弱粘着層とが粘着し、かつ、前記強粘着層と前記第2基材層とが離間し、
前記閉止手段では、前記液体流路に第2凸部が形成され、該第2凸部の頂部と前記弱粘着層とが離間し、かつ、前記強粘着層と前記第2基材層との間にはスペーサ部材が介在し、該スペーサ部材と前記強粘着層とが粘着し、
前記送液手段では、前記強粘着層と前記第2基材層との間にはスペーサ部材が介在し、該スペーサ部材と前記強粘着層とが粘着していることを特徴とする請求項1に記載の液体流路装置。
An opening means for opening a part of the liquid channel from the closed state to an open state; and a closing means for changing the open state from the open state to a closed state,
The lid plate includes a first base layer constituting the surface of the lid plate, a strong adhesive layer formed inside the first base layer, and a second base formed inside the strong adhesive layer. A material layer and a weak adhesive layer formed on the inner side of the second base material layer and sticking to the flow path forming surface;
In the opening means, a first convex portion is formed in the liquid flow path, a top portion of the first convex portion and the weak adhesive layer are adhered, and the strong adhesive layer and the second base material layer are bonded to each other. Apart,
In the closing means, a second convex portion is formed in the liquid flow path, a top portion of the second convex portion and the weak adhesive layer are separated from each other, and the strong adhesive layer and the second base material layer are separated from each other. A spacer member is interposed between the spacer member and the strong adhesive layer,
2. The liquid feeding means, wherein a spacer member is interposed between the strong adhesive layer and the second base material layer, and the spacer member and the strong adhesive layer are adhered to each other. The liquid flow path device described in 1.
前記基板は、外層と、該外層の内側に積層した中間層と、該中間層の内側に積層した内層とからなり、
前記内層には、前記液槽の上部と、前記液体流路と、前記第1凸部と、前記第2凸部とが形成され、
前記中間層には、前記液槽の下部が形成されていることを特徴とする請求項2に記載の液体流路装置。
The substrate comprises an outer layer, an intermediate layer laminated inside the outer layer, and an inner layer laminated inside the intermediate layer,
In the inner layer, an upper portion of the liquid tank, the liquid flow path, the first convex portion, and the second convex portion are formed,
The liquid channel device according to claim 2, wherein a lower portion of the liquid tank is formed in the intermediate layer.
前記基板は、外層と、該外層の内側に積層した内層とからなり、
前記内層には、前記液槽と、前記液体流路と、前記第1凸部と、前記第2凸部とが形成されていることを特徴とする請求項2に記載の液体流路装置。
The substrate comprises an outer layer and an inner layer laminated inside the outer layer,
The liquid channel device according to claim 2, wherein the inner layer is formed with the liquid tank, the liquid channel, the first convex portion, and the second convex portion.
前記送液手段が設けられた前記液槽には、該送液手段で送液される液体の逆流を防止する逆流防止手段が設けられていることを特徴とする請求項1ないし4のいずれかに記載の液体流路装置。   5. The liquid tank provided with the liquid feeding means is provided with a back flow preventing means for preventing a back flow of the liquid fed by the liquid feeding means. The liquid flow path device described in 1. 前記送液手段が設けられた前記液槽には、該送液手段で送液される液体の逆流を防止する逆流防止手段が設けられ、
該逆流防止手段は、前記内層に形成されていることを特徴とする請求項3または4に記載の液体流路装置。
The liquid tank provided with the liquid feeding means is provided with a back flow preventing means for preventing a back flow of the liquid fed by the liquid feeding means,
The liquid channel device according to claim 3 or 4, wherein the backflow prevention means is formed in the inner layer.
前記送液手段は、前記液槽の底部を外側から押圧する操作により作動し、
前記底部は、外方に膨出して形成されていることを特徴とする請求項1ないし6のいずれかに記載の液体流路装置。
The liquid feeding means is operated by an operation of pressing the bottom of the liquid tank from the outside,
The liquid channel device according to claim 1, wherein the bottom portion is formed to bulge outward.
JP2008276468A 2008-06-26 2008-10-28 Liquid channel device Active JP5228797B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2008276468A JP5228797B2 (en) 2008-10-28 2008-10-28 Liquid channel device
CN201310221154.9A CN103341371B (en) 2008-10-28 2009-10-28 Liquid passage device and manufacturing method
PCT/JP2009/005711 WO2010050208A1 (en) 2008-10-28 2009-10-28 Liquid flow path device and method of manufacturing same
CN201310220337.9A CN103341369B (en) 2008-10-28 2009-10-28 Liquid passage device and manufacturing method
CN2009801360340A CN102150048B (en) 2008-10-28 2009-10-28 Liquid flow path device and method of manufacturing same
CN201310220551.4A CN103341370B (en) 2008-10-28 2009-10-28 Liquid passage device and manufacturing method
US12/739,325 US8499794B2 (en) 2008-10-28 2009-10-28 Liquid channel device and production method therefor
EP09823321.6A EP2352036B1 (en) 2008-10-28 2009-10-28 Liquid flow path device
US13/934,314 US9579653B2 (en) 2008-06-26 2013-07-03 Liquid channel device and production method therefor
US13/934,310 US9283561B2 (en) 2008-06-26 2013-07-03 Liquid channel device and production method therefor
US13/934,320 US9283562B2 (en) 2008-06-26 2013-07-03 Liquid channel device and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008276468A JP5228797B2 (en) 2008-10-28 2008-10-28 Liquid channel device

Publications (2)

Publication Number Publication Date
JP2010107211A true JP2010107211A (en) 2010-05-13
JP5228797B2 JP5228797B2 (en) 2013-07-03

Family

ID=42296812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008276468A Active JP5228797B2 (en) 2008-06-26 2008-10-28 Liquid channel device

Country Status (1)

Country Link
JP (1) JP5228797B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2487353A (en) * 2011-01-11 2012-07-25 Ffei Ltd Micro capillary tubing
JP2012173181A (en) * 2011-02-23 2012-09-10 Kyoritsu Denki Kk Trace substance detecting apparatus
JP2014163713A (en) * 2013-02-22 2014-09-08 Hitachi High-Technologies Corp Biochemical cartridge and biochemical liquid feeding system
JP2015096285A (en) * 2013-11-15 2015-05-21 積水化学工業株式会社 Micro valve, liquid balancing device, and micro device
JP2019002926A (en) * 2017-06-19 2019-01-10 積水化学工業株式会社 Microfluidic device and method for feeding fluid
US20210170394A1 (en) * 2019-12-09 2021-06-10 Fujifilm Corporation Liquid feeding device
JP2021092423A (en) * 2019-12-09 2021-06-17 富士フイルム株式会社 Inspection container
JP2021092422A (en) * 2019-12-09 2021-06-17 富士フイルム株式会社 Inspection container

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510275A (en) * 1997-07-21 2001-07-31 ワイエスアイ インコーポレーテッド Microfluidic analysis module
JP2003107094A (en) * 2001-09-27 2003-04-09 Toshiba Corp Instrument and method for chemical analysis
JP2004516127A (en) * 2000-06-28 2004-06-03 スリーエム イノベイティブ プロパティズ カンパニー Sample processing equipment and carrier
JP2004291187A (en) * 2003-03-27 2004-10-21 Shimadzu Corp Electrostatic micro valve and micro pump
JP2005176836A (en) * 2003-11-28 2005-07-07 Toshiba Tec Corp Nucleic acid detecting cassette, apparatus for detecting nucleic acid and nucleic acid detecting system
JP2005283331A (en) * 2004-03-30 2005-10-13 Pentax Corp Microchip and micropump
JP2006058112A (en) * 2004-08-19 2006-03-02 Kawamura Inst Of Chem Res Trace sample measuring device, trace sample measuring instrument, and trace sample measuring method
JP2007501940A (en) * 2003-08-11 2007-02-01 シンエックスエックスエス・マイクロテクノロジー・アクチエンゲゼルシヤフト A flow cell comprising a laminate with coupling means
WO2007034404A2 (en) * 2005-09-20 2007-03-29 Koninklijke Philips Electronics N.V. Magnatic microfluidic valve

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510275A (en) * 1997-07-21 2001-07-31 ワイエスアイ インコーポレーテッド Microfluidic analysis module
JP2004516127A (en) * 2000-06-28 2004-06-03 スリーエム イノベイティブ プロパティズ カンパニー Sample processing equipment and carrier
JP2003107094A (en) * 2001-09-27 2003-04-09 Toshiba Corp Instrument and method for chemical analysis
JP2004291187A (en) * 2003-03-27 2004-10-21 Shimadzu Corp Electrostatic micro valve and micro pump
JP2007501940A (en) * 2003-08-11 2007-02-01 シンエックスエックスエス・マイクロテクノロジー・アクチエンゲゼルシヤフト A flow cell comprising a laminate with coupling means
JP2005176836A (en) * 2003-11-28 2005-07-07 Toshiba Tec Corp Nucleic acid detecting cassette, apparatus for detecting nucleic acid and nucleic acid detecting system
JP2005283331A (en) * 2004-03-30 2005-10-13 Pentax Corp Microchip and micropump
JP2006058112A (en) * 2004-08-19 2006-03-02 Kawamura Inst Of Chem Res Trace sample measuring device, trace sample measuring instrument, and trace sample measuring method
WO2007034404A2 (en) * 2005-09-20 2007-03-29 Koninklijke Philips Electronics N.V. Magnatic microfluidic valve

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2487353A (en) * 2011-01-11 2012-07-25 Ffei Ltd Micro capillary tubing
GB2487353B (en) * 2011-01-11 2016-11-30 Ffei Ltd Micro-capillary method and apparatus
JP2012173181A (en) * 2011-02-23 2012-09-10 Kyoritsu Denki Kk Trace substance detecting apparatus
JP2014163713A (en) * 2013-02-22 2014-09-08 Hitachi High-Technologies Corp Biochemical cartridge and biochemical liquid feeding system
JP2015096285A (en) * 2013-11-15 2015-05-21 積水化学工業株式会社 Micro valve, liquid balancing device, and micro device
JP2019002926A (en) * 2017-06-19 2019-01-10 積水化学工業株式会社 Microfluidic device and method for feeding fluid
US20210170394A1 (en) * 2019-12-09 2021-06-10 Fujifilm Corporation Liquid feeding device
JP2021092423A (en) * 2019-12-09 2021-06-17 富士フイルム株式会社 Inspection container
JP2021092422A (en) * 2019-12-09 2021-06-17 富士フイルム株式会社 Inspection container
JP2021092424A (en) * 2019-12-09 2021-06-17 富士フイルム株式会社 Liquid feed device
US11541387B2 (en) 2019-12-09 2023-01-03 Fujifilm Corporation Test container for examination
JP7278933B2 (en) 2019-12-09 2023-05-22 富士フイルム株式会社 inspection container
JP7278934B2 (en) 2019-12-09 2023-05-22 富士フイルム株式会社 Liquid delivery device
JP7278932B2 (en) 2019-12-09 2023-05-22 富士フイルム株式会社 inspection container
US11738338B2 (en) 2019-12-09 2023-08-29 Fujifilm Corporation Test container for examination

Also Published As

Publication number Publication date
JP5228797B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5228797B2 (en) Liquid channel device
US8499794B2 (en) Liquid channel device and production method therefor
US20230338951A1 (en) System for portable and easy-to-use detection of analytes with mobile computing device
US9383293B2 (en) Device for plasma separation by means of a central channel structure
EP3027317B1 (en) A cartridge, cartridge reader and method for preventing reuse of the cartridge
EP3027320B1 (en) System and method for processing fluid in a fluidic cartridge
EP2684607A2 (en) Fluid analysis cartridge
CA2918571A1 (en) A valve which depressurises, and a valve system
EP3177928B1 (en) Lateral-flow assay device with filtration flow control
JP5229158B2 (en) Liquid channel device and manufacturing method thereof
JP5071272B2 (en) Liquid channel device
JP5359686B2 (en) Liquid channel device and manufacturing method thereof
JP5446597B2 (en) Liquid channel device and manufacturing method thereof
CN105628660B (en) A kind of passive micro-valve POCT chips
US20220289448A1 (en) Functional laminate packaging and method of manufacture
CN210427608U (en) On-chip laboratory
JP2006346626A (en) Reaction chip
JP6049446B2 (en) Microchip
US11137390B2 (en) Liquid distribution and diagnostic device and system
US20220072557A1 (en) Assay sample cards and adaptors and use of the same (ii)
JP6143157B2 (en) 3D inspection / diagnostic sheet, 3D inspection / diagnostic device, 3D inspection / diagnostic sheet manufacturing method and inspection method
US20200384462A1 (en) Assay sample cards and adaptors and use of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5228797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250