JP2010106079A - Joining method and joined body - Google Patents

Joining method and joined body Download PDF

Info

Publication number
JP2010106079A
JP2010106079A JP2008277463A JP2008277463A JP2010106079A JP 2010106079 A JP2010106079 A JP 2010106079A JP 2008277463 A JP2008277463 A JP 2008277463A JP 2008277463 A JP2008277463 A JP 2008277463A JP 2010106079 A JP2010106079 A JP 2010106079A
Authority
JP
Japan
Prior art keywords
bonding
base material
bonding film
film
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008277463A
Other languages
Japanese (ja)
Inventor
Minehiro Imamura
峰宏 今村
Mitsuru Sato
充 佐藤
Takatomo Yamamoto
隆智 山本
Nobuhiro Naito
信宏 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008277463A priority Critical patent/JP2010106079A/en
Publication of JP2010106079A publication Critical patent/JP2010106079A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joining method capable of inexpensively joining two substrates in a short time with an excellent joining strength; and to provide a joined body joined by such a joining method. <P>SOLUTION: The joining method includes the steps of: preparing a first substrate 21 and a second substrate 22, of which at least one has transmissivity to ultraviolet light, and forming a liquid coating 30 by supplying a liquid material 35 containing a silicone material to at least one of the substrates 21 and 22; drying the liquid coating 30 to make a joined film 3; expressing adhesiveness in the vicinity of the surface 32 of the joined film 3 by bringing plasma in contact with the joined film 3; obtaining the joined body 1 in which the substrates 21 and 22 are joined via the joined film 3; and adjusting the joining strength of the joined film 3 to higher strength than joining strength due to joining by the adhesiveness expressed by the contact of the plasma by irradiating the joined body 1 with ultraviolet light from a substrate side having the transmissivity to ultraviolet light in the substrates 21 and 22 on a predetermined condition. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、接合方法および接合体に関するものである。   The present invention relates to a joining method and a joined body.

各種の材料で構成される基材同士を接合する場合に、一方の基材の接合すべき面に紫外線を照射することにより、2つの基材を接合する方法が開示されている(例えば、特許文献1〜3参照。)。
ところが、これらの方法では、I:紫外線照射に1分〜数十分を要する、II:紫外線照射を短時間で行った場合、2つの基材を圧着するのに数十分以上を要する、III:場合によっては、2つの基材を加圧しながら、紫外線を照射することを要する等の問題がある。
すなわち、これらの方法を用いた場合、2つの基材同士を接合するのに、長時間を要したり、その操作が煩雑になるという問題がある。
When joining base materials composed of various materials, a method of joining two base materials by irradiating the surfaces to be joined of one base material with ultraviolet rays (for example, patents) is disclosed. Reference 1 to 3).
However, in these methods, I: It takes 1 minute to several tens of minutes for ultraviolet irradiation, II: When ultraviolet irradiation is performed in a short time, it takes several tens of minutes or more to press-bond two substrates, III : In some cases, there is a problem that it is necessary to irradiate ultraviolet rays while pressing two substrates.
That is, when these methods are used, there is a problem that it takes a long time to join two substrates together, and the operation becomes complicated.

特開2003−212613号公報JP 2003-212613 A 特開2007−130836号公報JP 2007-130836 A 特開2008−19348号公報JP 2008-19348 A

本発明の目的は、2つの基材同士を、短時間かつ低コストに、優れた接合強度で接合し得る接合方法、および、かかる接合方法により接合された接合体を提供することにある。   An object of the present invention is to provide a bonding method capable of bonding two base materials to each other with excellent bonding strength in a short time and at a low cost, and a bonded body bonded by the bonding method.

このような目的は、下記の本発明により達成される。
本発明の接合方法は、少なくとも一方が紫外線透過性を有する第1の基材と第2の基材とを用意し、前記第1の基材および前記第2の基材の少なくとも一方に、シリコーン材料を含有する液状材料を供給して液状被膜を形成する工程と、
前記液状被膜を乾燥して接合膜とする工程と、
前記接合膜にプラズマを接触させることにより、前記接合膜の表面付近に接着性を発現させる工程と、
当該接着性が発現した接合膜を介して前記第1の基材と前記第2の基材とを重ね合わせ、前記第1の基材と前記第2の基材とが前記接合膜を介して接合された接合体を得る工程と、
前記接合体に対して、前記第1の基材および前記第2の基材のうち前記紫外線透過性を有する基材側から紫外線を所定の条件で照射することにより、前記接合膜の接合強度を、前記プラズマの接触により発現した接着性により接合している接合強度よりも高い強度に調整する工程とを有することを特徴とする。
これにより、2つの基材同士を、短時間かつ低コストで、優れた接合強度で接合することができる。
Such an object is achieved by the present invention described below.
In the bonding method of the present invention, at least one of the first base material and the second base material having ultraviolet transparency is prepared, and at least one of the first base material and the second base material is provided with silicone. Supplying a liquid material containing the material to form a liquid film;
Drying the liquid film to form a bonding film;
A step of expressing adhesiveness in the vicinity of the surface of the bonding film by bringing plasma into contact with the bonding film;
The first base material and the second base material are overlapped with each other through the bonding film expressing the adhesiveness, and the first base material and the second base material are interposed through the bonding film. Obtaining a joined assembly; and
By irradiating the bonded body with ultraviolet rays under a predetermined condition from the side of the first substrate and the second substrate having the ultraviolet transparency, the bonding strength of the bonding film is increased. And a step of adjusting the bonding strength to be higher than the bonding strength bonded by the adhesiveness developed by the contact of the plasma.
Thereby, two base materials can be joined with excellent joining strength in a short time and at low cost.

本発明の接合方法では、前記紫外線の波長は、120〜365μmであることが好ましい。
これにより、接合膜の表面に残存する水酸基および未結合手を確実に活性化させることができる。
本発明の接合方法では、前記紫外線を照射する時間は、0.5〜20分であることが好ましい。
これにより、接合膜の接合強度を、プラズマの接触により発現した接着性により接合している接合強度よりも確実に高い強度とすることができる。
本発明の接合方法では、前記接合体に照射する前記紫外線の積算光量は、0.2〜8.0J/cmであることが好ましい。
かかる積算光量の範囲内に設定すれば、接合膜の接合強度を、プラズマの接触により発現した接着性により接合している接合強度よりも確実に高い強度とすることができる。
In the bonding method of the present invention, the wavelength of the ultraviolet light is preferably 120 to 365 μm.
Thereby, the hydroxyl groups and dangling bonds remaining on the surface of the bonding film can be reliably activated.
In the bonding method of the present invention, the time for irradiating the ultraviolet rays is preferably 0.5 to 20 minutes.
As a result, the bonding strength of the bonding film can surely be higher than the bonding strength bonded by the adhesiveness expressed by the plasma contact.
In the bonding method of the present invention, it is preferable that an integrated light amount of the ultraviolet rays irradiated to the bonded body is 0.2 to 8.0 J / cm 2 .
By setting within the range of the integrated light quantity, the bonding strength of the bonding film can be surely set to be higher than the bonding strength bonded by the adhesiveness expressed by the plasma contact.

本発明の接合方法では、前記プラズマの接触を、大気圧下で行うことが好ましい。
大気圧下で行われるプラズマの接触、すなわち、大気圧プラズマ処理によれば、接合膜の周囲が減圧状態とならないので、プラズマの作用により、例えば、接合膜を構成するシリコーン材料が含んでいるポリジメチルシロキサン骨格が備えるメチル基を切断、除去して、接合膜の表面付近に接着性を発現させる際に、この切断が不要に進行するのを防止することができる。
In the bonding method of the present invention, the plasma contact is preferably performed under atmospheric pressure.
According to plasma contact performed under atmospheric pressure, that is, atmospheric pressure plasma treatment, the periphery of the bonding film is not in a reduced pressure state. Therefore, the plasma action causes, for example, a polycrystal containing a silicone material constituting the bonding film. When cutting and removing the methyl group included in the dimethylsiloxane skeleton to develop adhesiveness in the vicinity of the surface of the bonding film, it is possible to prevent this cutting from proceeding unnecessarily.

本発明の接合方法では、前記プラズマの接触は、互いに対向する電極間に電圧を印加した状態で、これらの間にガスを導入することにより前記ガスをプラズマ化した後、当該プラズマ化された前記ガスを前記接合膜に供給することによりなされることが好ましい。
これにより、容易かつ確実に、接合膜にプラズマを接触させ、接合膜の表面付近に接着性を確実に発現させることができる。
In the bonding method of the present invention, the plasma contact is performed in a state where a voltage is applied between electrodes facing each other, and the gas is converted into plasma by introducing a gas between them, and then the plasma is converted into the plasma. It is preferable that gas is supplied to the bonding film.
Thereby, plasma can be easily and reliably brought into contact with the bonding film, and the adhesiveness can be reliably expressed in the vicinity of the surface of the bonding film.

本発明の接合方法では、前記プラズマは、ヘリウムガスを主成分とするガスをプラズマ化したものであることが好ましい。
これにより、接合膜の活性化の程度を制御し易くなる。
本発明の接合方法では、前記プラズマは、ヘリウムガスを主成分とするガスをプラズマ化したものであり、当該ガスの前記電極間への供給速度は、1000〜20000sccmであることが好ましい。
これにより、プラズマにより接合膜を活性化させる効果をさらに顕著に発揮させることができる。
本発明の接合方法では、前記ガス中の前記ヘリウムガスの含有量は、85vol%以上であることが好ましい。
このような速度でプラズマを接合膜に接触させることにより、短時間であるにもかかわらず、接合膜を十分かつ確実に活性化させることができる。
In the bonding method of the present invention, it is preferable that the plasma is a plasma of a gas containing helium gas as a main component.
This makes it easy to control the degree of activation of the bonding film.
In the bonding method of the present invention, the plasma is obtained by converting a gas mainly composed of helium gas into a plasma, and a supply rate of the gas between the electrodes is preferably 1000 to 20000 sccm.
As a result, the effect of activating the bonding film with plasma can be exhibited more remarkably.
In the bonding method of the present invention, the content of the helium gas in the gas is preferably 85 vol% or more.
By bringing the plasma into contact with the bonding film at such a speed, the bonding film can be sufficiently and reliably activated in spite of a short time.

本発明の接合方法では、前記シリコーン材料は、その主骨格がポリジメチルシロキサンで構成されることが好ましい。
かかる化合物は、比較的入手が容易で、かつ安価であるとともに、かかる化合物を含有する接合膜にエネルギーを付与することにより、化合物を構成するメチル基が容易に切断されて、その結果として、接合膜に確実に接着性を発現させることができるため、シリコーン材料として好適に用いられる。
In the bonding method of the present invention, it is preferable that the main skeleton of the silicone material is composed of polydimethylsiloxane.
Such a compound is relatively easily available and inexpensive, and by applying energy to a bonding film containing such a compound, the methyl group constituting the compound is easily cleaved, and as a result, bonding is performed. Since the film can surely exhibit adhesiveness, it is suitably used as a silicone material.

本発明の接合方法では、前記シリコーン材料は、シラノール基を有することが好ましい。
これにより、液状被膜を乾燥させて接合膜を得る際に、隣接するシリコーン材料が有するシラノール基に含まれる水酸基同士が結合することとなり、得られる接合膜の膜強度が優れたものとなる。
本発明の接合方法では、前記接合膜の平均厚さは、10〜10000nmであることが好ましい。
これにより、第1の基材と第2の基材とを接合した接合体の寸法精度が著しく低下するのを防止しつつ、これらをより強固に接合することができる。
In the bonding method of the present invention, the silicone material preferably has a silanol group.
Thereby, when drying a liquid film and obtaining a joining film, the hydroxyl groups contained in the silanol group which adjacent silicone material has will couple | bond together, and the film | membrane intensity | strength of the obtained joining film will be excellent.
In the bonding method of the present invention, the average thickness of the bonding film is preferably 10 to 10,000 nm.
Thereby, these can be joined more firmly, preventing that the dimensional accuracy of the joined body which joined the 1st base material and the 2nd base material falls remarkably.

本発明の接合方法では、前記第1の基材および前記第2の基材の前記接合膜と接触する面には、あらかじめ、前記接合膜との密着性を高める表面処理が施されていることが好ましい。
これにより、基材の接合面が清浄化および活性化され、接合面に対して接合膜が化学的に作用し易くなる。その結果、基材の接合面と接合膜との接合強度を高めることができる。
本発明の接合方法では、前記表面処理は、プラズマ処理または紫外線照射処理であることが好ましい。
これにより、接合膜を形成するために、基材の表面を特に最適化することができる。
本発明の接合体は、本発明の接合方法により、前記第1の基材と前記第2の基材とを、前記接合膜を介して接合してなることを特徴とする。
これにより、信頼性の高い接合体が得られる。
In the bonding method of the present invention, the surface of the first base material and the second base material that are in contact with the bonding film is previously subjected to a surface treatment for improving the adhesion with the bonding film. Is preferred.
Thereby, the bonding surface of the base material is cleaned and activated, and the bonding film easily acts chemically on the bonding surface. As a result, the bonding strength between the bonding surface of the base material and the bonding film can be increased.
In the bonding method of the present invention, the surface treatment is preferably plasma treatment or ultraviolet irradiation treatment.
Thereby, in order to form a joining film | membrane, the surface of a base material can be optimized especially.
The joined body of the present invention is characterized in that the first base material and the second base material are joined through the joining film by the joining method of the present invention.
Thereby, a highly reliable joined body is obtained.

以下、本発明の接合方法および接合体を、添付図面に示す好適実施形態に基づいて詳細に説明する。
<接合方法>
本発明の接合方法は、[1]少なくとも一方が紫外線透過性を有する第1の基材21と第2の基材22とを用意し、第1の基材21および第2の基材22の少なくとも一方に、シリコーン材料を含有する液状材料を供給して液状被膜30を形成する液状被膜形成工程と、[2]液状被膜を乾燥して接合膜3とする接合膜形成工程と、[3]接合膜3にプラズマを接触させることにより、接合膜3の表面付近に接着性を発現させる接着性発現工程と、[4]接着性が発現した接合膜3を介して第1の基材21と第2の基材22とを重ね合わせ、第1の基材21と第2の基材22とが接合膜3を介して接合された接合体1を得る接合体形成工程と、[5]接合体1に対して、第1の基材21および第2の基材22のうち紫外線透過性を有する基材側から紫外線を所定の条件で照射することにより、接合膜3の接合強度を、プラズマの接触により発現した接着性により接合している接合強度よりも高い強度に調整する接合強度調整工程とを有する。
Hereinafter, a joining method and a joined object of the present invention are explained in detail based on a suitable embodiment shown in an accompanying drawing.
<Join method>
In the bonding method of the present invention, [1] a first base material 21 and a second base material 22 having at least one of which is UV transmissive are prepared, and the first base material 21 and the second base material 22 A liquid film forming step of forming a liquid film 30 by supplying a liquid material containing a silicone material to at least one; [2] a bonding film forming step of drying the liquid film to form the bonding film 3; [3] By bringing plasma into contact with the bonding film 3, an adhesion developing step for developing adhesiveness in the vicinity of the surface of the bonding film 3, and [4] the first base material 21 via the bonding film 3 exhibiting adhesiveness A joined body forming step of superposing the second base material 22 to obtain the joined body 1 in which the first base material 21 and the second base material 22 are joined via the joining film 3, and [5] joining A base material having ultraviolet transparency among the first base material 21 and the second base material 22 with respect to the body 1 By irradiating ultraviolet rays under predetermined conditions from having a bonding strength of the bonding film 3, and a bonding strength adjusting step of adjusting to a higher strength than the bonding strength are joined by adhesion expressed by the contact of the plasma.

以下、この本発明の接合方法の第1実施形態を、工程ごとに詳述する。
<<第1実施形態>>
図1および図2は、本発明の接合方法の第1実施形態を説明するための図(縦断面図)である。なお、以下の説明では、図1および図2中の上側を「上」、下側を「下」と言う。
Hereinafter, this 1st Embodiment of the joining method of this invention is explained in full detail for every process.
<< First Embodiment >>
1 and 2 are views (longitudinal sectional views) for explaining a first embodiment of the joining method of the present invention. In the following description, the upper side in FIGS. 1 and 2 is referred to as “upper” and the lower side is referred to as “lower”.

[1]液状被膜形成工程
[1−1]まず、接合膜3を介して互いに接合すべき、第1の基材21と第2の基材22とを用意する(図1(a))。なお、図1(a)では、第2の基材22を省略している。
本発明では、後工程[5]において、接合体1に対して紫外線を照射した際に、この紫外線を第1の基材21と第2の基材22との間に挾持されている接合膜3に照射させる必要がある。そのため、第1の基材21および第2の基材22のうちの少なくとも一方は、紫外線透過性を有するもので構成される。
そこで、以下では、第2の基材22が紫外線透過性を有するものとして説明する。
[1] Liquid Film Forming Step [1-1] First, a first base material 21 and a second base material 22 that are to be bonded to each other via the bonding film 3 are prepared (FIG. 1A). In addition, the 2nd base material 22 is abbreviate | omitted in Fig.1 (a).
In the present invention, when the bonded body 1 is irradiated with ultraviolet rays in the post-process [5], the bonding film is held between the first base material 21 and the second base material 22. 3 need to be irradiated. For this reason, at least one of the first base material 21 and the second base material 22 is configured to have ultraviolet transparency.
Therefore, in the following description, it is assumed that the second base material 22 has ultraviolet transparency.

第1の基材21構成材料は、紫外線透過性を有するものであっても有さないものであってもよく、例えば、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−アクリル酸エステル共重合体、エチレン−アクリル酸共重合体、ポリブテン−1、エチレン−酢酸ビニル共重合体(EVA)等のポリオレフィン、環状ポリオレフィン、変性ポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリアミド、ポリイミド、ポリアミドイミド、ポリカーボネート、ポリ−(4−メチルペンテン−1)、アイオノマー、アクリル系樹脂、ポリメチルメタクリレート(PMMA)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、アクリロニトリル−スチレン共重合体(AS樹脂)、ブタジエン−スチレン共重合体、ポリオキシメチレン、ポリビニルアルコール(PVA)、エチレン−ビニルアルコール共重合体(EVOH)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリブチレンテレフタレート(PBT)、ポリシクロヘキサンテレフタレート(PCT)等のポリエステル、ポリエーテル、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド、ポリアセタール(POM)、ポリフェニレンオキシド、変性ポリフェニレンオキシド、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリアリレート、芳香族ポリエステル(液晶ポリマー)、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、その他フッ素系樹脂、スチレン系、ポリオレフィン系、ポリ塩化ビニル系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、トランスポリイソプレン系、フッ素ゴム系、塩素化ポリエチレン系等の各種熱可塑性エラストマー、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、アラミド系樹脂、不飽和ポリエステル、シリコーン樹脂、ポリウレタン等、またはこれらを主とする共重合体、ブレンド体、ポリマーアロイ等の樹脂系材料、Fe、Ni、Co、Cr、Mn、Zn、Pt、Au、Ag、Cu、Pd、Al、W、Ti、V、Mo、Nb、Zr、Pr、Nd、Smのような金属、またはこれらの金属を含む合金、炭素鋼、ステンレス鋼、インジウム錫酸化物(ITO)、ガリウムヒ素のような金属系材料、単結晶シリコン、多結晶シリコン、非晶質シリコンのようなシリコン系材料、ケイ酸ガラス(石英ガラス)、ケイ酸アルカリガラス、ソーダ石灰ガラス、カリ石灰ガラス、鉛(アルカリ)ガラス、バリウムガラス、ホウケイ酸ガラスのようなガラス系材料、シリカ、アルミナ、ジルコニア、MgAl、フェライト、窒化ケイ素、窒化アルミニウム、窒化ホウ素、窒化チタン、炭化ケイ素、炭化ホウ素、炭化チタン、炭化タングステンのようなセラミックス系材料、グラファイトのような炭素系材料、またはこれらの各材料の1種または2種以上を組み合わせた複合材料等が挙げられる。 The constituent material of the first base material 21 may or may not have ultraviolet transparency. For example, polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-acrylic acid ester copolymer Polyolefin such as polymer, ethylene-acrylic acid copolymer, polybutene-1, ethylene-vinyl acetate copolymer (EVA), cyclic polyolefin, modified polyolefin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, polyimide, polyamideimide , Polycarbonate, poly- (4-methylpentene-1), ionomer, acrylic resin, polymethyl methacrylate (PMMA), acrylonitrile-butadiene-styrene copolymer (ABS resin), acrylonitrile-styrene copolymer (AS resin) , Butaj -Styrene copolymer, polyoxymethylene, polyvinyl alcohol (PVA), ethylene-vinyl alcohol copolymer (EVOH), polyethylene terephthalate (PET), polyethylene naphthalate, polybutylene terephthalate (PBT), polycyclohexane terephthalate (PCT) Polyester), polyether, polyether ketone (PEK), polyether ether ketone (PEEK), polyether imide, polyacetal (POM), polyphenylene oxide, modified polyphenylene oxide, polysulfone, polyether sulfone, polyphenylene sulfide, poly Arylate, aromatic polyester (liquid crystal polymer), polytetrafluoroethylene, polyvinylidene fluoride, other fluororesins, styrene Various thermoplastic elastomers such as polyolefin, polyvinyl chloride, polyurethane, polyester, polyamide, polybutadiene, trans polyisoprene, fluoro rubber, chlorinated polyethylene, epoxy resin, phenol resin, urea resin, Melamine resin, aramid resin, unsaturated polyester, silicone resin, polyurethane, etc., or resin-based materials such as copolymers, blends, and polymer alloys mainly composed of these, Fe, Ni, Co, Cr, Mn, Zn, Pt, Au, Ag, Cu, Pd, Al, W, Ti, V, Mo, Nb, Zr, Pr, Nd, Sm, or alloys containing these metals, carbon steel, stainless steel, indium tin Metal materials such as oxide (ITO), gallium arsenide, single crystal silicon, polycrystalline silicon Silicon materials such as amorphous silicon, silicate glass (quartz glass), alkali silicate glass, soda lime glass, potassium lime glass, lead (alkali) glass, barium glass, borosilicate glass Material, silica, alumina, zirconia, MgAl 2 O 4 , ferrite, silicon nitride, aluminum nitride, boron nitride, titanium nitride, silicon carbide, boron carbide, titanium carbide, tungsten carbide, ceramic materials such as graphite Examples thereof include a carbon-based material, or a composite material obtained by combining one or more of these materials.

一方、第2の基材22の構成材料としては、第1の基材21の構成材料として挙げたもののうち紫外線透過性を有するものを1種または2種以上を組み合わせて用いることができる。また、紫外線透過性を有するものの中でも、ケイ酸ガラス(石英ガラス)、シリカ(水晶)等の酸化シリコン系材料を用いるのが好ましい。酸化シリコン系材料は、特に優れた紫外線透過性を有するとともに、耐熱性、耐溶剤性等の各種特性にも優れるものであることから、第2の基材22の構成材料として特に好適に用いられる。また、後述する接合膜3の主材料であるシリコーン材料もシリコン系の材料であることから、第2の基材22と接合膜3との密着性の向上も図ることができる。
なお、第1の基材21と第2の基材22の構成材料は、第2の基材22が紫外線透過性を有するものであれば、同種(同一)であっても、異種であってもよい。
On the other hand, as a constituent material of the 2nd base material 22, what has ultraviolet transmissivity among what was mentioned as a constituent material of the 1st base material 21 can be used 1 type or in combination of 2 or more types. Of those having ultraviolet transparency, it is preferable to use a silicon oxide-based material such as silicate glass (quartz glass) or silica (quartz). The silicon oxide-based material is particularly preferably used as a constituent material of the second base material 22 because it has particularly excellent ultraviolet transmittance and is excellent in various properties such as heat resistance and solvent resistance. . In addition, since the silicone material that is the main material of the bonding film 3 described later is also a silicon-based material, the adhesion between the second base material 22 and the bonding film 3 can be improved.
It should be noted that the constituent materials of the first base material 21 and the second base material 22 may be of the same type (same) or different as long as the second base material 22 has ultraviolet transparency. Also good.

また、第1の基材21および第2の基材22は、それぞれ、その表面に、Niめっきのようなめっき処理、クロメート処理のような不働態化処理、または窒化処理等を施したものであってもよい。
また、第1の基材21の熱膨張率と第2の基材22の熱膨張率は、ほぼ等しいのが好ましい。これらの熱膨張率がほぼ等しければ、第1の基材21と第2の基材22とを接合した際に、その接合界面に熱膨張に伴う応力が発生し難くなる。その結果、最終的に得られる接合体1において、剥離を確実に防止することができる。
なお、後に詳述するが、第1の基材21の熱膨張率と第2の基材22の熱膨張率が互いに異なる場合でも、後述する工程において、第1の基材21と第2の基材22とを接合する際の条件を最適化することにより、これらを高い寸法精度で強固に接合することができる。
In addition, the first base material 21 and the second base material 22 are each subjected to plating treatment such as Ni plating, passivation treatment such as chromate treatment, nitriding treatment, or the like on the surface thereof. There may be.
Moreover, it is preferable that the thermal expansion coefficient of the 1st base material 21 and the thermal expansion coefficient of the 2nd base material 22 are substantially equal. If these thermal expansion coefficients are substantially equal, when the first base material 21 and the second base material 22 are joined, it is difficult for stress associated with thermal expansion to occur at the joint interface. As a result, peeling can be reliably prevented in the finally obtained bonded body 1.
In addition, although it explains in full detail later, even when the thermal expansion coefficient of the 1st base material 21 and the thermal expansion coefficient of the 2nd base material 22 mutually differ, in the process mentioned later, the 1st base material 21 and 2nd By optimizing the conditions for joining the base material 22, these can be firmly joined with high dimensional accuracy.

また、2つの基材21、22は、互いに剛性が異なるのが好ましい。これにより、2つの基材21、22をより強固に接合することができる。
また、2つの基材21、22のうち、少なくとも一方の構成材料は、樹脂材料であるのが好ましい。樹脂材料は、その柔軟性により、2つの基材21、22を接合した際に、その接合界面に発生する応力(例えば、熱膨張に伴う応力等)を緩和することができる。このため、接合界面が破壊し難くなり、結果的に、2つの基材21、22が高い接合強度で接合された接合体1を得ることができる。
Moreover, it is preferable that the two base materials 21 and 22 have mutually different rigidity. Thereby, the two base materials 21 and 22 can be joined more firmly.
Moreover, it is preferable that at least one constituent material of the two base materials 21 and 22 is a resin material. The resin material can relieve stress (for example, stress accompanying thermal expansion) generated at the bonding interface when the two base materials 21 and 22 are bonded due to its flexibility. For this reason, it becomes difficult to destroy the bonding interface, and as a result, the bonded body 1 in which the two base materials 21 and 22 are bonded with high bonding strength can be obtained.

なお、上記のような観点から、2つの基材21、22のうちの少なくとも一方は、可撓性を有しているのが好ましい。これにより、接合膜3を介した2つの基材21、22の接合強度のさらなる向上を図ることができる。さらに、2つの基材21、22の双方が可撓性を有している場合には、全体として可撓性を有し、機能性の高い接合体1が得られる。
また、各基材21、22の形状は、それぞれ、接合膜3を支持する面を有するような形状であればよく、例えば、板状(層状)、塊状(ブロック状)、棒状等とされる。
From the above viewpoint, it is preferable that at least one of the two base materials 21 and 22 has flexibility. Thereby, the joint strength of the two base materials 21 and 22 through the bonding film 3 can be further improved. Furthermore, when both the two base materials 21 and 22 have flexibility, the joined body 1 which has flexibility as a whole and has high functionality can be obtained.
Moreover, the shape of each base material 21 and 22 should just be a shape which has the surface which supports the bonding film 3, respectively, For example, it is set as plate shape (layer shape), lump shape (block shape), rod shape, etc. .

なお、本実施形態では、図1、2に示すように、各基材21、22がそれぞれ板状をなしている。これにより、各基材21、22は撓み易くなり、2つの基材21、22を重ね合わせたときに、互いの形状に沿って十分に変形し得るものとなる。このため、2つの基材21、22を重ね合わせたときの密着性が高くなり、最終的に得られる接合体1における2つの基材21、22同士の接合強度が高くなる。
また、各基材21、22が撓むことによって、接合界面に生じる応力を、ある程度緩和する作用が期待できる。
この場合、各基材21、22の平均厚さは、特に限定されないが、0.01〜10mm程度であるのが好ましく、0.1〜3mm程度であるのがより好ましい。
In the present embodiment, as shown in FIGS. 1 and 2, the base materials 21 and 22 each have a plate shape. Thereby, each base material 21 and 22 becomes easy to bend, and when the two base materials 21 and 22 are overlap | superposed, it can fully deform | transform along a mutual shape. For this reason, the adhesiveness when the two base materials 21 and 22 are overlapped increases, and the joint strength between the two base materials 21 and 22 in the finally obtained bonded body 1 increases.
In addition, it is expected that the base material 21 and 22 are bent to alleviate the stress generated at the joint interface to some extent.
In this case, the average thickness of each of the base materials 21 and 22 is not particularly limited, but is preferably about 0.01 to 10 mm, and more preferably about 0.1 to 3 mm.

次に、必要に応じて、第1の基材21の接合面23に形成される接合膜3との密着性を高める表面処理を施す。これにより、接合面23を清浄化および活性化され、接合面23に対して接合膜3が化学的に作用し易くなる。その結果、後述する工程において、接合面23上に接合膜3を形成したとき、接合面23と接合膜3との接合強度を高めることができる。   Next, if necessary, a surface treatment is performed to improve the adhesion with the bonding film 3 formed on the bonding surface 23 of the first base material 21. Thereby, the bonding surface 23 is cleaned and activated, and the bonding film 3 easily acts on the bonding surface 23 chemically. As a result, when the bonding film 3 is formed on the bonding surface 23 in a process described later, the bonding strength between the bonding surface 23 and the bonding film 3 can be increased.

この表面処理としては、特に限定されないが、例えば、スパッタリング処理、ブラスト処理のような物理的表面処理、酸素プラズマ、窒素プラズマ等を用いたプラズマ処理、コロナ放電処理、エッチング処理、電子線照射処理、紫外線照射処理、オゾン暴露処理のような化学的表面処理、または、これらを組み合わせた処理等が挙げられる。
なお、表面処理を施す第1の基材21が、樹脂材料(高分子材料)で構成されている場合には、特に、コロナ放電処理、窒素プラズマ処理等が好適に用いられる。
This surface treatment is not particularly limited, for example, physical treatment such as sputtering treatment, blast treatment, plasma treatment using oxygen plasma, nitrogen plasma, corona discharge treatment, etching treatment, electron beam irradiation treatment, Examples thereof include a chemical surface treatment such as ultraviolet irradiation treatment, ozone exposure treatment, or a combination thereof.
In addition, when the 1st base material 21 which performs surface treatment is comprised with the resin material (polymer material), especially a corona discharge process, a nitrogen plasma process, etc. are used suitably.

また、表面処理として、特にプラズマ処理または紫外線照射処理を行うことにより、接合面23を、より清浄化および活性化することができる。その結果、接合面23と接合膜3との接合強度を特に高めることができる。
また、第1の基材21の構成材料によっては、上記のような表面処理を施さなくても、接合膜3との接合強度が十分に高くなるものがある。このような効果が得られる第1の基材21の構成材料としては、例えば、前述したような各種金属系材料、各種シリコン系材料、各種ガラス系材料等を主材料とするものが挙げられる。
In addition, the surface 23 can be cleaned and activated more particularly by performing plasma treatment or ultraviolet irradiation treatment. As a result, the bonding strength between the bonding surface 23 and the bonding film 3 can be particularly increased.
In addition, depending on the constituent material of the first base material 21, the bonding strength with the bonding film 3 is sufficiently high without performing the surface treatment as described above. Examples of the constituent material of the first base material 21 that can obtain such an effect include materials mainly composed of various metal-based materials, various silicon-based materials, various glass-based materials and the like as described above.

このような材料で構成された第1の基材21は、その表面が酸化膜で覆われており、この酸化膜の表面には、水酸基が結合(露出)している。したがって、このような酸化膜で覆われた第1の基材21を用いることにより、上記のような表面処理を施さなくても、第1の基材21の接合面23と接合膜3との接合強度を高めることができる。
なお、この場合、第1の基材21の全体が上記のような材料で構成されていなくてもよく、少なくとも接合膜3を形成する接合面23付近が上記のような材料で構成されていればよい。
The surface of the first substrate 21 made of such a material is covered with an oxide film, and hydroxyl groups are bonded (exposed) to the surface of the oxide film. Therefore, by using the first base material 21 covered with such an oxide film, the bonding surface 23 of the first base material 21 and the bonding film 3 are not subjected to the surface treatment as described above. Bonding strength can be increased.
In this case, the entire first base material 21 may not be made of the material as described above, and at least the vicinity of the bonding surface 23 for forming the bonding film 3 may be made of the material as described above. That's fine.

また、表面処理に代えて、第1の基材21の接合面23に、あらかじめ、中間層を形成しておいてもよい。
この中間層は、いかなる機能を有するものであってもよく、例えば、接合膜3との密着性を高める機能、クッション性(緩衝機能)、応力集中を緩和する機能等を有するものが好ましい。このような中間層上に接合膜3を成膜することにより、最終的に、信頼性の高い接合体1を得ることができる。
Instead of the surface treatment, an intermediate layer may be formed in advance on the bonding surface 23 of the first base material 21.
The intermediate layer may have any function. For example, a layer having a function of improving adhesion to the bonding film 3, a cushioning function (buffer function), a function of reducing stress concentration, and the like are preferable. By forming the bonding film 3 on such an intermediate layer, a highly reliable bonded body 1 can be finally obtained.

かかる中間層の構成材料としては、例えば、アルミニウム、チタンのような金属系材料、金属酸化物、シリコン酸化物のような酸化物系材料、金属窒化物、シリコン窒化物のような窒化物系材料、グラファイト、ダイヤモンドライクカーボンのような炭素系材料、シランカップリング剤、チオール系化合物、金属アルコキシド、金属−ハロゲン化合物のような自己組織化膜材料、樹脂系接着剤、樹脂フィルム、樹脂コーティング材、各種ゴム材料、各種エラストマーのような樹脂系材料等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
また、これらの各材料で構成された中間層の中でも、酸化物系材料で構成された中間層によれば、第1の基材21と接合膜3との間の接合強度を特に高めることができる。
Examples of the constituent material of the intermediate layer include metal materials such as aluminum and titanium, metal oxides, oxide materials such as silicon oxide, metal nitrides, and nitride materials such as silicon nitride. Carbon materials such as graphite and diamond-like carbon, silane coupling agents, thiol compounds, metal alkoxides, self-assembled film materials such as metal-halogen compounds, resin adhesives, resin films, resin coating materials, Various rubber materials, resin materials such as various elastomers, and the like can be used, and one or more of these can be used in combination.
Further, among the intermediate layers made of these materials, the intermediate layer made of an oxide-based material can particularly increase the bonding strength between the first base material 21 and the bonding film 3. it can.

一方、第1の基材21と同様、第2の基材22の接合面24(後述する工程において、接合膜3と密着する面)にも、必要に応じて、あらかじめ接合膜3との密着性を高める表面処理を施してもよい。これにより、接合面24を清浄化および活性化する。その結果、後述する工程において、接合面24と接合膜3とを密着させ、これらを接合したとき、接合面24と接合膜3との接合強度を高めることができる。   On the other hand, as in the case of the first base material 21, the bonding surface 24 of the second base material 22 (the surface that is in close contact with the bonding film 3 in a process described later) is also in close contact with the bonding film 3 in advance as necessary. Surface treatment that enhances the properties may be applied. Thereby, the bonding surface 24 is cleaned and activated. As a result, the bonding strength between the bonding surface 24 and the bonding film 3 can be increased when the bonding surface 24 and the bonding film 3 are brought into close contact with each other in the process described later.

この表面処理としては、特に限定されないが、前述の第1の基材21の接合面23に対する表面処理と同様の処理を用いることができる。
また、第1の基材21の場合と同様に、第2の基材22の構成材料によっては、上記のような表面処理を施さなくても、接合膜3との密着性が十分に高くなるものがある。このような効果が得られる第2の基材22の構成材料としては、例えば、前述したような各種金属系材料、各種シリコン系材料、各種ガラス系材料等を主材料とするものが挙げられる。
Although it does not specifically limit as this surface treatment, The process similar to the surface treatment with respect to the joint surface 23 of the above-mentioned 1st base material 21 can be used.
Further, as in the case of the first base material 21, depending on the constituent material of the second base material 22, the adhesion with the bonding film 3 is sufficiently high without performing the surface treatment as described above. There is something. Examples of the constituent material of the second base material 22 that can obtain such an effect include materials mainly composed of various metal-based materials, various silicon-based materials, various glass-based materials and the like as described above.

すなわち、このような材料で構成された第2の基材22は、その表面が酸化膜で覆われており、この酸化膜の表面には、水酸基が結合(露出)している。したがって、このような酸化膜で覆われた第2の基材22を用いることにより、上記のような表面処理を施さなくても、第2の基材22の接合面24と接合膜3との接合強度を高めることができる。
なお、この場合、第2の基材22の全体が上記のような材料で構成されていなくてもよく、少なくとも接合面24付近が上記のような材料で構成されていればよい。
That is, the surface of the second substrate 22 made of such a material is covered with an oxide film, and hydroxyl groups are bonded (exposed) to the surface of the oxide film. Therefore, by using the second base material 22 covered with such an oxide film, the bonding surface 24 of the second base material 22 and the bonding film 3 are not subjected to the surface treatment as described above. Bonding strength can be increased.
In this case, the entire second base material 22 may not be made of the material as described above, and at least the vicinity of the bonding surface 24 may be made of the material as described above.

また、第2の基材22の接合面24に、以下の基や物質を有する場合には、上記のような表面処理を施さなくても、第2の基材22の接合面24と接合膜3との接合強度を十分に高くすることができる。
このような基や物質としては、例えば、水酸基、チオール基、カルボキシル基、アミノ基、ニトロ基、イミダゾール基のような各種官能基、各種ラジカル、開環分子または、2重結合、3重結合のような不飽和結合を有する脱離性中間体分子、F、Cl、Br、Iのようなハロゲン、過酸化物からなる群から選択される少なくとも1つの基や物質、または、これらの基が脱離することにより、終端化されていない原子が有する未結合手(ダングリングボンド)が挙げられる。
このうち、脱離性中間体分子は、開環分子または不飽和結合を有する炭化水素分子であるのが好ましい。このような炭化水素分子は、開環分子および不飽和結合の顕著な反応性に基づき、接合膜3に対して強固に作用する。したがって、このような炭化水素分子を有する接合面24は、接合膜3に対して特に強固に接合可能なものとなる。
Further, when the bonding surface 24 of the second base material 22 includes the following groups and substances, the bonding surface 24 and the bonding film of the second base material 22 are not subjected to the surface treatment as described above. 3 can be sufficiently increased in bonding strength.
Examples of such groups and substances include various functional groups such as hydroxyl group, thiol group, carboxyl group, amino group, nitro group, and imidazole group, various radicals, ring-opening molecules, double bonds, and triple bonds. At least one group or substance selected from the group consisting of a leaving intermediate molecule having an unsaturated bond, a halogen such as F, Cl, Br, and I, a peroxide, or the group is desorbed. By separating, an unbonded hand (dangling bond) of an unterminated atom can be used.
Of these, the leaving intermediate molecule is preferably a ring-opening molecule or a hydrocarbon molecule having an unsaturated bond. Such hydrocarbon molecules act strongly on the bonding film 3 based on the remarkable reactivity of ring-opening molecules and unsaturated bonds. Therefore, the bonding surface 24 having such hydrocarbon molecules can be bonded to the bonding film 3 particularly firmly.

また、接合面24が有する官能基は、特に水酸基が好ましい。これにより、接合面24は、接合膜3に対して特に容易かつ強固に接合可能なものとなる。特に接合膜3の表面に水酸基が露出している場合には、水酸基同士間に生じる水素結合に基づいて、接合面24と接合膜3との間を短時間で強固に接合することができる。
また、このような基や物質を有するように、接合面24に対して上述したような各種表面処理を適宜選択して行うことにより、接合膜3に対して強固に接合可能な第2の基材22が得られる。
このうち、第2の基材22の接合面24には、水酸基が存在しているのが好ましい。このような接合面24には、水酸基が露出した接合膜3との間に、水素結合に基づく大きな引力が生じる。これにより、最終的に、第1の基材21と第2の基材22とを特に強固に接合することができる。
The functional group possessed by the bonding surface 24 is particularly preferably a hydroxyl group. Thereby, the bonding surface 24 can be bonded to the bonding film 3 particularly easily and firmly. In particular, when a hydroxyl group is exposed on the surface of the bonding film 3, the bonding surface 24 and the bonding film 3 can be firmly bonded in a short time based on the hydrogen bond generated between the hydroxyl groups.
In addition, by appropriately selecting and performing various surface treatments as described above on the bonding surface 24 so as to have such groups and substances, the second group that can be firmly bonded to the bonding film 3 is used. A material 22 is obtained.
Among these, it is preferable that the bonding surface 24 of the second base material 22 has a hydroxyl group. A large attractive force based on the hydrogen bond is generated between the bonding surface 24 and the bonding film 3 where the hydroxyl group is exposed. Thereby, finally, the first base material 21 and the second base material 22 can be bonded particularly firmly.

また、表面処理に代えて、第2の基材22の接合面24に、あらかじめ、表面層を形成しておいてもよい。
この表面層は、いかなる機能を有するものであってもよく、例えば、前記第1の基材21の場合と同様に、接合膜3との密着性を高める機能、クッション性(緩衝機能)、応力集中を緩和する機能等を有するものが好ましい。このような表面層を介して、第2の基材22と接合膜3とを接合することにより、最終的に、信頼性の高い接合体1を得ることができる。
かかる表面層の構成材料には、例えば、前記第1の基材21の接合面23に形成する中間層の構成材料と同様の材料を用いることができる。
なお、上記のような表面処理および表面層の形成は、必要に応じて行えばよく、特に高い接合強度を必要としない場合には、省略することができる。
Instead of the surface treatment, a surface layer may be formed in advance on the bonding surface 24 of the second base material 22.
This surface layer may have any function. For example, as in the case of the first substrate 21, the surface layer has a function of improving adhesion to the bonding film 3, a cushioning function (buffer function), a stress. What has the function etc. which ease concentration is preferable. By bonding the second base material 22 and the bonding film 3 through such a surface layer, the bonded body 1 with high reliability can be finally obtained.
As the constituent material of the surface layer, for example, the same material as the constituent material of the intermediate layer formed on the bonding surface 23 of the first base member 21 can be used.
The surface treatment and the formation of the surface layer as described above may be performed as necessary, and can be omitted when a particularly high bonding strength is not required.

[1−2]次に、シリコーン材料を含有する液状材料35を、第1の基材21の接合面23上に供給する。これにより、図1(b)に示すように、第1の基材21上に、液状被膜30が形成される。
ここで、接合面23に液状材料35を付与する方法としては、例えば、浸漬法、液滴吐出法(例えば、インクジェット法)、スピンコート法、ドクターブレード法、バーコート法、刷毛塗り等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
[1-2] Next, a liquid material 35 containing a silicone material is supplied onto the bonding surface 23 of the first base material 21. Thereby, as shown in FIG.1 (b), the liquid film 30 is formed on the 1st base material 21. FIG.
Here, examples of a method for applying the liquid material 35 to the bonding surface 23 include an immersion method, a droplet discharge method (for example, an ink jet method), a spin coating method, a doctor blade method, a bar coating method, and a brush coating method. Of these, one or two or more of these can be used in combination.

液状材料35の粘度(25℃)は、これを接合面23に付与する方法によっても若干異なるが、通常、0.5〜200mPa・s程度であるのが好ましく、3〜20mPa・s程度であるのがより好ましい。液状材料35の粘度をかかる範囲とすることにより、均一な膜厚の液状被膜30を形成することが容易となる。さらに、液状材料35の粘度がかかる範囲であれば、液状材料35は、接合膜3を形成するのに必要かつ十分な量のシリコーン材料を含むものとなる。   The viscosity (25 ° C.) of the liquid material 35 is slightly different depending on the method of applying it to the bonding surface 23, but is usually preferably about 0.5 to 200 mPa · s, and about 3 to 20 mPa · s. Is more preferable. By setting the viscosity of the liquid material 35 within such a range, it becomes easy to form the liquid coating 30 with a uniform film thickness. Further, if the viscosity of the liquid material 35 is within such a range, the liquid material 35 includes a silicone material in an amount necessary and sufficient for forming the bonding film 3.

また、接合面23への液状材料35の付与に液滴吐出法を用いる場合には、液状材料35の粘度をかかる範囲内とすれば、具体的には、液滴の量(液状材料35の1滴の量)を、平均で、0.1〜40pL程度に、より現実的には1〜30pL程度に設定し得る。これにより、接合面23に供給された際の液滴の着弾径が小さなものとなることから、微細な形状を有する接合膜3であっても確実に形成することができるようになる。   In addition, when the droplet discharge method is used for applying the liquid material 35 to the bonding surface 23, the amount of the droplet (the liquid material 35 of the liquid material 35 is specifically determined if the viscosity of the liquid material 35 is within the above range. The amount of one drop) can be set to about 0.1 to 40 pL on average, more practically about 1 to 30 pL. Thereby, since the landing diameter of the droplet when supplied to the bonding surface 23 is small, the bonding film 3 having a fine shape can be reliably formed.

この液状材料35は、前述のようにシリコーン材料を含有するものであるが、シリコーン材料単独で、液状をなし目的とする粘度範囲である場合、シリコーン材料をそのまま液状材料35として用いることができる。また、シリコーン材料単独で、固形状または高粘度の液状をなす場合には、液状材料35として、シリコーン材料の溶液または分散液を用いることができる。   The liquid material 35 contains a silicone material as described above, but the silicone material can be used as the liquid material 35 as it is when the silicone material alone is liquid and has a target viscosity range. When the silicone material alone forms a solid or high-viscosity liquid, a solution or dispersion of the silicone material can be used as the liquid material 35.

シリコーン材料を溶解または分散するための溶媒または分散媒としては、例えば、アンモニア、水、過酸化水素、四塩化炭素、エチレンカーボネイト等の無機溶媒や、メチルエチルケトン(MEK)、アセトン、等のケトン系溶媒、メタノール、エタノール、イソブタノール等のアルコール系溶媒、ジエチルエーテル、ジイソプロピルエーテル等のエーテル系溶媒、メチルセロソルブ等のセロソルブ系溶媒、ヘキサン、ペンタン等の脂肪族炭化水素系溶媒、トルエン、キシレン、ベンゼン等の芳香族炭化水素系溶媒、ピリジン、ピラジン、フラン等の芳香族複素環化合物系溶媒、N,N−ジメチルホルムアミド(DMF)等のアミド系溶媒、ジクロロメタン、クロロホルム等のハロゲン化合物系溶媒、酢酸エチル、酢酸メチル等のエステル系溶媒、ジメチルスルホキシド(DMSO)、スルホラン等の硫黄化合物系溶媒、アセトニトリル、プロピオニトリル、アクリロニトリル等のニトリル系溶媒、ギ酸、トリフルオロ酢酸等の有機酸系溶媒のような各種有機溶媒、または、これらを含む混合溶媒等を用いることができる。
シリコーン材料は、液状材料35中に含まれ、次工程[2]において、この液状材料35を乾燥させることにより形成される接合膜3の主材料となるものである。
Examples of the solvent or dispersion medium for dissolving or dispersing the silicone material include inorganic solvents such as ammonia, water, hydrogen peroxide, carbon tetrachloride, and ethylene carbonate, and ketone solvents such as methyl ethyl ketone (MEK) and acetone. Alcohol solvents such as methanol, ethanol and isobutanol, ether solvents such as diethyl ether and diisopropyl ether, cellosolve solvents such as methyl cellosolve, aliphatic hydrocarbon solvents such as hexane and pentane, toluene, xylene, benzene, etc. Aromatic hydrocarbon solvents, aromatic heterocyclic compound solvents such as pyridine, pyrazine, furan, amide solvents such as N, N-dimethylformamide (DMF), halogen compound solvents such as dichloromethane and chloroform, ethyl acetate Esters such as methyl acetate Various organic solvents such as solvents, sulfur compound solvents such as dimethyl sulfoxide (DMSO), sulfolane, nitrile solvents such as acetonitrile, propionitrile, acrylonitrile, organic acid solvents such as formic acid, trifluoroacetic acid, or the like A mixed solvent containing can be used.
The silicone material is contained in the liquid material 35 and becomes the main material of the bonding film 3 formed by drying the liquid material 35 in the next step [2].

ここで、「シリコーン材料」とは、ポリオルガノシロキサン骨格を有する化合物であり、通常、主骨格(主鎖)部分が主としてオルガノシロキサン単位の繰り返しからなる化合物のことを言い、主鎖の途中から枝分かれする分枝状の構造を有するものであってもよく、主鎖が環状をなす環状体であってもよく、主鎖の末端同士が連結しない直鎖状のものであってもよい。
例えば、ポリオルガノシロキサン骨格を有する化合物において、オルガノシロキサン単位は、その末端部では下記一般式(1)で表わされる構造単位を有し、連結部では下記一般式(2)で表わされる構造単位を有し、また、分枝部では下記一般式(3)で表わされる構造単位を有している。
Here, the “silicone material” is a compound having a polyorganosiloxane skeleton, and generally means a compound in which the main skeleton (main chain) portion is mainly composed of repeating organosiloxane units, and branches from the middle of the main chain. It may have a branched structure, a cyclic structure in which the main chain forms a ring, or a linear structure in which the ends of the main chain are not connected to each other.
For example, in a compound having a polyorganosiloxane skeleton, the organosiloxane unit has a structural unit represented by the following general formula (1) at the terminal portion and a structural unit represented by the following general formula (2) at the connecting portion. In addition, the branch part has a structural unit represented by the following general formula (3).

Figure 2010106079
[式中、各Rは、それぞれ独立して、置換または無置換の炭化水素基を表し、各Zは、それぞれ独立して、水酸基または加水分解基を表し、Xはシロキサン残基を表し、aは0または1〜3の整数を表し、bは0または1〜2の整数を表し、cは0または1を表す。]
Figure 2010106079
[In the formula, each R independently represents a substituted or unsubstituted hydrocarbon group, each Z independently represents a hydroxyl group or a hydrolyzable group, X represents a siloxane residue, a Represents an integer of 0 or 1 to 3, b represents an integer of 0 or 1 to 2, and c represents 0 or 1. ]

なお、シロキサン残基とは、酸素原子を介して隣接する構造単位が有するケイ素原子に結合しており、シロキサン結合を形成している置換基のことを表す。具体的には、−O−(Si)構造(Siは隣接する構造単位が有するケイ素原子)となっている。
このようなシリコーン材料において、ポリオルガノシロキサン骨格は、分枝状をなすもの、すなわち上記一般式(1)で表わされる構造単位、上記一般式(2)で表わされる構造単位および上記一般式(3)で表わされる構造単位で構成されているのが好ましい。この分枝状をなすポリオルガノシロキサン骨格を有する化合物(以下、「分枝状化合物」と略すこともある。)は、主骨格(主鎖)部分が主としてオルガノシロキサン単位の繰り返しからなる化合物であり、主鎖の途中でオルガノシロキサン単位の繰り返しが分枝するとともに、主鎖の末端同士が連結しないものである。
この分枝状化合物を用いることにより、次工程[2]において、液状材料35中に含まれるこの化合物の分枝鎖同士が互いに絡まり合うようにして接合膜3が形成されることから、得られる接合膜3は特に膜強度に優れたものとなる。
The siloxane residue is a substituent that is bonded to a silicon atom of an adjacent structural unit through an oxygen atom and forms a siloxane bond. Specifically, it has an —O— (Si) structure (Si is a silicon atom of an adjacent structural unit).
In such a silicone material, the polyorganosiloxane skeleton is branched, that is, the structural unit represented by the general formula (1), the structural unit represented by the general formula (2), and the general formula (3). It is preferable that it is comprised by the structural unit represented by this. The compound having a branched polyorganosiloxane skeleton (hereinafter sometimes abbreviated as “branched compound”) is a compound in which the main skeleton (main chain) portion is mainly composed of repeating organosiloxane units. The repeating of the organosiloxane unit branches in the middle of the main chain, and the ends of the main chain are not connected to each other.
By using this branched compound, in the next step [2], the bonding film 3 is formed so that the branched chains of this compound contained in the liquid material 35 are entangled with each other. The bonding film 3 is particularly excellent in film strength.

なお、上記一般式(1)〜上記一般式(3)中、基R(置換または無置換の炭化水素基)としては、例えば、メチル基、エチル基、プロピル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、フェニル基、トリル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基等のアラルキル基等が挙げられる。さらに、これらの基の炭素原子に結合している水素原子の一部または全部が、I)フッ素原子、塩素原子、臭素原子のようなハロゲン原子、II)グリシドキシ基のようなエポキシ基III)メタクリル基のような(メタ)アクリロイル基、IV)カルボキシル基、スルフォニル基のようなアニオン性基等で置換された基等が挙げられる。   In the general formula (1) to the general formula (3), examples of the group R (substituted or unsubstituted hydrocarbon group) include, for example, an alkyl group such as a methyl group, an ethyl group, and a propyl group, a cyclopentyl group, Examples thereof include cycloalkyl groups such as cyclohexyl group, aryl groups such as phenyl group, tolyl group and biphenylyl group, aralkyl groups such as benzyl group and phenylethyl group. In addition, some or all of the hydrogen atoms bonded to the carbon atoms of these groups are I) halogen atoms such as fluorine, chlorine and bromine atoms, II) epoxy groups such as glycidoxy groups, III) methacryl And a group substituted with an anionic group such as a (meth) acryloyl group such as a group, IV) a carboxyl group, and a sulfonyl group.

加水分解基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等のアルコキシ基、ジメチルケトオキシム基、メチルエチルケトオキシム基等のケトオキシム基、アセトキシ基等のアシルオキシ基、イソプロペニルオキシ基、イソブテニルオキシ基等のアルケニルオキシ基等が挙げられる。
また、分枝状化合物は、その分子量が、1×10〜1×10程度のものであるのが好ましく、1×10〜1×10程度のものであるのがより好ましい。分子量をかかる範囲内に設定することにより、液状材料35の粘度を上述したような範囲内に比較的容易に設定することができる。
Hydrolysis groups include alkoxy groups such as methoxy group, ethoxy group, propoxy group and butoxy group, ketoxime groups such as dimethyl ketoxime group and methylethyl ketoxime group, acyloxy groups such as acetoxy group, isopropenyloxy group, isobutenyl Examples include alkenyloxy groups such as oxy groups.
Further, the branched compound preferably has a molecular weight of about 1 × 10 4 to 1 × 10 6, more preferably about 1 × 10 5 to 1 × 10 6 . By setting the molecular weight within such a range, the viscosity of the liquid material 35 can be set relatively easily within the above-described range.

このような分枝状化合物は、シラノール基を有するものであるのが好ましい。すなわち、上記一般式(1)〜上記一般式(3)で表わされる構造単位において、各基Zは水酸基であるのが好ましい。これにより、次工程[2]において、液状被膜30を乾燥して接合膜3とする際に、隣接する分枝状化合物が有するシラノール基に含まれる水酸基同士が結合することとなり、得られる接合膜3の膜強度が優れたものとなる。さらに、第1の基材21として、前述したように、その接合面(表面)23から水酸基が露出しているものを用いた場合には、分枝状化合物が備える水酸基と、第1の基材21が備える水酸基とが結合することから、分枝状化合物を物理的な結合ばかりでなく、化学的な結合によっても第1の基材21に結合させることができる。その結果、接合膜3は、第1の基材21の接合面23に対して、強固に結合したものとなる。   Such branched compounds are preferably those having a silanol group. That is, in the structural units represented by the general formula (1) to the general formula (3), each group Z is preferably a hydroxyl group. Thus, in the next step [2], when the liquid film 30 is dried to form the bonding film 3, the hydroxyl groups contained in the silanol groups of the adjacent branched compounds are bonded to each other, and the resulting bonding film is obtained. No. 3 film strength is excellent. Furthermore, as described above, when the first base member 21 having a hydroxyl group exposed from the bonding surface (surface) 23 is used, the hydroxyl group included in the branched compound and the first group Since the hydroxyl group of the material 21 is bonded, the branched compound can be bonded to the first substrate 21 not only by physical bonding but also by chemical bonding. As a result, the bonding film 3 is firmly bonded to the bonding surface 23 of the first base material 21.

また、シラノール基が有するシリコン原子に連結している炭化水素基は、フェニル基であるのが好ましい。すなわち、基Zが水酸基である上記一般式(1)〜上記一般式(3)で表わされる構造単位に存在する基Rは、フェニル基であるのが好ましい。これにより、シラノール基の反応性がより向上するため、隣接する分枝状化合物が有する水酸基同士の結合がより円滑に行われるようになる。   Moreover, it is preferable that the hydrocarbon group connected to the silicon atom of the silanol group is a phenyl group. That is, the group R present in the structural unit represented by the general formula (1) to the general formula (3) in which the group Z is a hydroxyl group is preferably a phenyl group. Thereby, since the reactivity of a silanol group improves more, the coupling | bonding of the hydroxyl groups which an adjacent branched compound has comes to be performed more smoothly.

さらに、シラノール基が存在しないシリコン原子に連結している炭化水素基は、メチル基であるのが好ましい。すなわち、基Zが存在しない上記一般式(1)〜上記一般式(3)で表わされる構造単位に存在する基Rは、メチル基であるのが好ましい。このように、基Zが存在しない上記一般式(1)〜上記一般式(3)で表わされる構造単位に存在する基Rがメチル基である化合物は、比較的入手が容易で、かつ安価であるとともに、後工程[3]において、接合膜3にプラズマを接触させることにより、メチル基が容易に切断されて、その結果として、接合膜3に確実に接着性を発現させることができるため、分枝状化合物(シリコーン材料)として好適に用いられる。
以上のことを考慮すると、分枝状化合物としては、例えば、下記一般式(4)で表わされる化合物が好適に用いられる。
Furthermore, the hydrocarbon group linked to the silicon atom in which no silanol group is present is preferably a methyl group. That is, the group R present in the structural unit represented by the general formula (1) to the general formula (3) in which the group Z does not exist is preferably a methyl group. Thus, a compound in which the group R present in the structural unit represented by the general formula (1) to the general formula (3) in which the group Z does not exist is a methyl group is relatively easily available and inexpensive. In addition, in the post-process [3], by bringing plasma into contact with the bonding film 3, the methyl group is easily cleaved, and as a result, the bonding film 3 can reliably exhibit adhesiveness. It is suitably used as a branched compound (silicone material).
Considering the above, as the branched compound, for example, a compound represented by the following general formula (4) is preferably used.

Figure 2010106079
[式中、nは、それぞれ独立して、0または1以上の整数を表す。]
Figure 2010106079
[Wherein n independently represents an integer of 0 or 1 or more. ]

さらに、上述した分枝状化合物は、比較的柔軟性に富む材料である。そのため、後工程[4]において、接合膜3を介して第1の基材21に第2の基材22を接合して接合体1を得る際に、例えば、第1の基材21と第2の基材22との各構成材料が互いに異なるものを用いる場合であったとしても、各基材21、22間に生じる熱膨張に伴う応力を確実に緩和することができる。これにより、最終的に得られる接合体1において、剥離が生じるのを確実に防止することができる。   Furthermore, the above-mentioned branched compound is a material having a relatively high flexibility. Therefore, in the post-process [4], when the second base material 22 is joined to the first base material 21 via the joining film 3 to obtain the joined body 1, for example, the first base material 21 and the first base material 21 Even if it is a case where each constituent material with 2 base materials 22 uses mutually different, the stress accompanying the thermal expansion which arises between each base materials 21 and 22 can be relieved reliably. Thereby, it can prevent reliably that peeling arises in the bonded body 1 finally obtained.

また、分枝状化合物は、耐薬品性(耐溶剤性)に優れているため、薬品類等に長期にわたって曝されるような部材の接合に際して効果的に用いることができる。具体的には、例えば、樹脂材料を浸食し易い有機系インクが用いられる工業用インクジェットプリンタの液滴吐出ヘッドを製造する際に、接合膜3を用いて接合すれば、その耐久性を確実に向上させることができる。また、分枝状化合物は、耐熱性にも優れていることから、高温下に曝されるような部材の接合に際しても効果的に用いることができる。   In addition, since the branched compound is excellent in chemical resistance (solvent resistance), it can be effectively used for joining members that are exposed to chemicals for a long time. Specifically, for example, when manufacturing a droplet discharge head of an industrial inkjet printer that uses an organic ink that easily erodes a resin material, if the bonding film 3 is used for bonding, the durability can be ensured. Can be improved. In addition, since the branched compound is excellent in heat resistance, it can be effectively used for joining members that are exposed to high temperatures.

[2]接合膜形成工程
次に、第1の基材21上に供給された液状材料35、すなわち、液状被膜30を乾燥して接合膜3とする。これにより、図1(c)に示すように、第1の基材21上に接合膜3が得られる。
液状被膜30を乾燥させる際の温度は、25℃以上であるのが好ましく、25〜100℃程度であるのがより好ましい。
また、乾燥させる時間は、0.5〜48時間程度であるのが好ましく、15〜30時間程度であるのがより好ましい。
[2] Bonding Film Forming Step Next, the liquid material 35 supplied onto the first substrate 21, that is, the liquid film 30 is dried to form the bonding film 3. Thereby, as shown in FIG.1 (c), the joining film | membrane 3 is obtained on the 1st base material 21. FIG.
The temperature at which the liquid coating 30 is dried is preferably 25 ° C. or higher, more preferably about 25 to 100 ° C.
Further, the drying time is preferably about 0.5 to 48 hours, more preferably about 15 to 30 hours.

かかる条件で液状被膜30を乾燥させることにより、次工程[3]において、プラズマに接触させることにより接着性が好適に発現する接合膜3を確実に形成することができる。また、シリコーン材料として前記工程[1]で説明したようなシラノール基を有するものを用いた場合には、シリコーン材料が有するシラノール基同士を、さらには、シリコーン材料が有するシラノール基と第1の基材21が有する水酸基とを、確実に結合させることができるため、形成される接合膜3を膜強度に優れ、かつ第1の基材21に対して強固に結合したものとすることができる。   By drying the liquid coating 30 under such conditions, in the next step [3], it is possible to reliably form the bonding film 3 in which adhesiveness is suitably developed by contacting with plasma. In addition, when the silicone material having a silanol group as described in the above step [1] is used, the silanol groups included in the silicone material, the silanol groups included in the silicone material, and the first group are further included. Since the hydroxyl group of the material 21 can be reliably bonded, the formed bonding film 3 is excellent in film strength and can be firmly bonded to the first base material 21.

さらに、乾燥させる際の雰囲気の圧力は、大気圧であってもよいが、減圧であるのが好ましい。具体的には、減圧の程度は、133.3×10−5〜1333Pa(1×10−5〜10Torr)程度であるのが好ましく、133.3×10−4〜133.3Pa(1×10−4〜1Torr)程度であるのがより好ましい。これにより、接合膜3の膜密度が高まり、すなわち、接合膜3が緻密化して、接合膜3をより優れた膜強度を有するものとすることができる。
以上のように、接合膜3を形成する際の条件を適宜設定することにより、形成される接合膜3の膜強度等を所望のものとすることができる。
Furthermore, the atmospheric pressure during drying may be atmospheric pressure, but is preferably reduced pressure. Specifically, the degree of decompression is preferably about 133.3 × 10 −5 to 1333 Pa (1 × 10 −5 to 10 Torr), preferably 133.3 × 10 −4 to 133.3 Pa (1 × 10 -4 to 1 Torr) is more preferable. Thereby, the film density of the bonding film 3 is increased, that is, the bonding film 3 is densified, and the bonding film 3 can have higher film strength.
As described above, the film strength and the like of the formed bonding film 3 can be made desired by appropriately setting the conditions for forming the bonding film 3.

接合膜3の平均厚さは、10〜10000nm程度であるのが好ましく、100〜5000nm程度であるのがより好ましい。供給する液状材料35の量を適宜設定して、形成される接合膜3の平均厚さを前記範囲内とすることにより、第1の基材21と第2の基材22とを接合した接合体の寸法精度が著しく低下するのを防止しつつ、より強固に接合することができる。
すなわち、接合膜3の平均厚さが前記下限値を下回った場合は、接合膜3を介した第1の基材21と第2の基材22との接合に十分な接合強度が得られないおそれがある。一方、接合膜3の平均厚さが前記上限値を上回った場合は、接合体の寸法精度が著しく低下するおそれがある。
The average thickness of the bonding film 3 is preferably about 10 to 10000 nm, and more preferably about 100 to 5000 nm. The joining which joined the 1st base material 21 and the 2nd base material 22 by setting the quantity of the liquid material 35 to supply suitably, and making the average thickness of the joining film 3 formed into the said range. It is possible to bond more firmly while preventing the dimensional accuracy of the body from significantly decreasing.
That is, when the average thickness of the bonding film 3 is less than the lower limit, sufficient bonding strength for bonding the first base material 21 and the second base material 22 through the bonding film 3 cannot be obtained. There is a fear. On the other hand, when the average thickness of the bonding film 3 exceeds the upper limit, the dimensional accuracy of the bonded body may be significantly reduced.

さらに、接合膜3の平均厚さをかかる範囲とすることにより、接合膜3がある程度弾性に富むものとなることから、後工程[4]において、第1の基材21と第2の基材22とを接合する際に、接合膜3と接触させる第2の基材22の接合面24にパーティクル等が付着していても、このパーティクルを接合膜3で取り囲むようにして接合膜3と接合面24とが接合することとなる。そのため、このパーティクルが存在することによって、接合膜3と接合面24との界面における接合強度が低下したり、この界面において剥離が生じたりするのを的確に抑制または防止することができる。
また、本発明では、液状材料35を供給して接合膜3を形成する構成となっていることから、たとえ第1の基材21の接合面23に凹凸が存在している場合であっても、その凹凸の高さにもよるが、凹凸の形状を吸収するようにして接合膜3を形成ことができる。その結果、接合膜3の表面32がほぼ平坦面を構成することとなる。
Further, by setting the average thickness of the bonding film 3 in such a range, the bonding film 3 becomes rich in elasticity to some extent. Therefore, in the post-process [4], the first substrate 21 and the second substrate. Even when particles or the like are attached to the bonding surface 24 of the second base material 22 to be brought into contact with the bonding film 3 when bonding to the bonding film 3, the particles are surrounded by the bonding film 3 and bonded to the bonding film 3. The surface 24 is joined. For this reason, the presence of the particles can accurately suppress or prevent the bonding strength at the interface between the bonding film 3 and the bonding surface 24 from being reduced or the separation from occurring at the interface.
In the present invention, since the bonding material 3 is formed by supplying the liquid material 35, even if the bonding surface 23 of the first base member 21 has irregularities. Depending on the height of the unevenness, the bonding film 3 can be formed so as to absorb the uneven shape. As a result, the surface 32 of the bonding film 3 forms a substantially flat surface.

[3]接着性発現工程
次に、接合面23に形成された接合膜3の表面32に対してプラズマを接触させる(照射する)。
接合膜3にプラズマを接触させると、この接合膜3では、特に表面32付近(接合膜3の最表面)の分子結合の一部が選択的に切断されることに起因して、表面32が活性化されて表面32付近に第2の基材22に対する接着性が発現する。
このような状態の第1の基材21は、第2の基材22と、化学的結合に基づいて強固に接合可能なものとなる。
[3] Adhesive expression step Next, plasma is brought into contact (irradiated) with the surface 32 of the bonding film 3 formed on the bonding surface 23.
When the plasma is brought into contact with the bonding film 3, the surface of the bonding film 3 is caused by selective cutting of a part of molecular bonds particularly in the vicinity of the surface 32 (the outermost surface of the bonding film 3). When activated, adhesion to the second base material 22 is developed near the surface 32.
The first base material 21 in such a state can be strongly bonded to the second base material 22 based on chemical bonding.

なお、本明細書中において、表面32が「活性化された」状態とは、上述のように接合膜3の表面32の分子結合の一部、具体的には、例えば、ポリジメチルシロキサン骨格が備えるメチル基が切断されて、接合膜3を構成する原子が終端化されないで、未結合手(または、「ダングリングボンド」)が生じた状態の他、この未結合手を持っていた原子が、水酸基(OH基)によって終端化された状態、さらに、これらの状態が混在した状態を含めて、接合膜3が「活性化された」状態と言うこととする。   In the present specification, the state where the surface 32 is “activated” means that a part of molecular bonds on the surface 32 of the bonding film 3 as described above, specifically, for example, a polydimethylsiloxane skeleton. In addition to the state in which the methyl group provided is cleaved and the atoms constituting the bonding film 3 are not terminated, and dangling bonds (or “dangling bonds”) are generated, the atoms having dangling bonds The bonding film 3 is referred to as an “activated” state including a state terminated by a hydroxyl group (OH group) and a state where these states are mixed.

ここで、従来のように、接合膜3の表面32の活性化のために、紫外線を用いた場合には、次のような問題がある。
A:接合膜3の表面32の活性化に長時間(例えば、1分〜数十分)を要する。また、紫外線照射を短時間にした場合、第1の基材21と第2の基材22とを接合する工程において、その接合に長時間(数十分以上)を要する。すなわち、接合体1を得るのに長時間を要する。
Here, as in the prior art, when ultraviolet rays are used to activate the surface 32 of the bonding film 3, there are the following problems.
A: It takes a long time (for example, 1 minute to several tens of minutes) to activate the surface 32 of the bonding film 3. Moreover, when ultraviolet irradiation is made into a short time, in the process of joining the 1st base material 21 and the 2nd base material 22, long time (several tens of minutes or more) is required for the joining. That is, it takes a long time to obtain the joined body 1.

B:また、紫外線を用いた場合、この紫外線は、接合膜3を厚さ方向に透過し易い。このため、基材(本実施形態では、第1の基材21)の構成材料(例えば、樹脂材料)等によっては、基材の接合膜3との界面(接触面)において劣化が生じ、接合膜3が基材から剥離し易くなる。
さらに、紫外線は、接合膜3の厚さ方向に透過する際に、接合膜3全体に作用し、その全体において、例えば、ポリジメチルシロキサン骨格が備えるメチル基が切断、除去される。すなわち、接合膜3中における有機成分の量が極端に低下し、その無機化が進行する。このため、有機成分の存在に起因する接合膜3の柔軟性が全体として低下し、得られる接合体1では、接合膜3の層内剥離が生じ易くなる。
B: When ultraviolet rays are used, the ultraviolet rays are likely to pass through the bonding film 3 in the thickness direction. For this reason, depending on the constituent material (for example, resin material) of the base material (in this embodiment, the first base material 21), deterioration occurs at the interface (contact surface) with the bonding film 3 of the base material. The film 3 is easily peeled from the substrate.
Further, when ultraviolet rays are transmitted in the thickness direction of the bonding film 3, they act on the entire bonding film 3, and, for example, methyl groups included in the polydimethylsiloxane skeleton are cut and removed in the entire film. That is, the amount of the organic component in the bonding film 3 is extremely reduced and the mineralization proceeds. For this reason, the flexibility of the bonding film 3 due to the presence of the organic component is lowered as a whole, and in the resulting bonded body 1, the in-layer peeling of the bonding film 3 easily occurs.

C:さらに、接合された接合体1を、第1の基材21を第2の基材22から剥離して、各基材21、22をそれぞれ分別してリサイクルや再利用に用いる場合、この操作は、接合体1に対して、剥離用エネルギーを付与することにより各基材21、22同士を剥離し得る。このとき、例えば、接合膜3中に残存するメチル基(有機成分)がポリジメチルシロキサン骨格から切断、除去され、切断された有機成分がガスとなる。このガス(ガス状の有機成分)は、接合膜3にへき乖を生じさせ、接合膜3が分割される。   C: Further, when the bonded body 1 is peeled off from the first base material 21 from the second base material 22 and the base materials 21 and 22 are separated and used for recycling or reuse, this operation is performed. Can exfoliate each base material 21 and 22 mutually by giving energy for exfoliation to joined object 1. At this time, for example, methyl groups (organic components) remaining in the bonding film 3 are cut and removed from the polydimethylsiloxane skeleton, and the cut organic components become gas. This gas (gaseous organic component) causes a gap in the bonding film 3 and the bonding film 3 is divided.

しかしながら、紫外線を照射した場合、前述のように、接合膜3全体の無機化が進行するため、剥離用エネルギーを付与した場合でも、ガスになる有機成分が極めて少なく、接合膜3にへき乖が生じ難い。
これに対して、本発明では、接合膜3の表面32の活性化にプラズマが用いられる。プラズマを用いることにより、接合膜3の表面32付近において、選択的に、この接合膜3を構成する材料の分子結合の一部、例えば、ポリジメチルシロキサン骨格が備えるメチル基が切断される。
However, when the ultraviolet rays are irradiated, the entire bonding film 3 is mineralized as described above. Therefore, even when the peeling energy is applied, the organic component that becomes a gas is extremely small, and the bonding film 3 has a gap. It is hard to occur.
On the other hand, in the present invention, plasma is used to activate the surface 32 of the bonding film 3. By using plasma, in the vicinity of the surface 32 of the bonding film 3, a part of the molecular bond of the material constituting the bonding film 3, for example, a methyl group included in the polydimethylsiloxane skeleton is selectively cut.

なお、このプラズマによる分子結合の切断は、プラズマの荷電に基づく化学的な作用のみならず、プラズマのペニング効果に基づく物理的な作用によって引き起こされるため、極めて短時間で生じる。したがって、接合膜3を、極めて短時間(例えば、数秒程度)で活性化させることが可能であり、結果として、接合体1を短時間で製造することができる。   Note that this molecular bond breakage by plasma is caused not only by a chemical action based on the plasma charge but also by a physical action based on the plasma penning effect, and thus occurs in a very short time. Therefore, the bonding film 3 can be activated in a very short time (for example, about several seconds), and as a result, the bonded body 1 can be manufactured in a short time.

また、プラズマは、接合膜3の表面32に選択的に作用し、その内部にまで影響を及ぼし難い。このため、分子結合の切断は、接合膜3の表面32付近で選択的に生じる。すなわち、接合膜3は、その表面32付近で選択的に活性化される。しかがって、紫外線を用いて接合膜3を活性化させる場合の不都合(前述したようなBおよびCの不都合)が生じ難い。
このように、接合膜3の活性化にプラズマを用いることにより、接合体1において、接合膜3の層内剥離が生じ難く、第1の基材21を第2の基材22から剥離する場合には、この剥離操作を確実に行うことができる。
Further, the plasma selectively acts on the surface 32 of the bonding film 3 and hardly influences the inside thereof. For this reason, the molecular bond breakage occurs selectively in the vicinity of the surface 32 of the bonding film 3. That is, the bonding film 3 is selectively activated in the vicinity of the surface 32 thereof. Therefore, inconveniences (the inconveniences of B and C as described above) when the bonding film 3 is activated using ultraviolet rays are unlikely to occur.
As described above, when the plasma is used for the activation of the bonding film 3, the bonding film 3 hardly peels in the layer in the bonded body 1, and the first base material 21 is peeled from the second base material 22. Therefore, this peeling operation can be performed reliably.

また、紫外線照射により接合膜3を活性化させる場合、照射する紫外線の強度に依存する接合膜3の活性化の程度の変化が極めて大きい。このため、第1の基材21と第2の基材22との接合に適した程度に接合膜3を活性化させるのには、紫外線照射の厳密な条件管理が必要である。また、厳密な管理をしない場合、得られる接合体1間における、第1の基材21と第2の基材22との接合強度のバラつきが生じる。   Further, when the bonding film 3 is activated by ultraviolet irradiation, the change in the degree of activation of the bonding film 3 depending on the intensity of the irradiated ultraviolet ray is extremely large. For this reason, in order to activate the bonding film 3 to an extent suitable for bonding between the first base material 21 and the second base material 22, strict condition management of ultraviolet irradiation is necessary. Moreover, when not managing strictly, the joining strength of the 1st base material 21 and the 2nd base material 22 between the joined bodies 1 obtained arises.

これに対して、プラズマにより接合膜3を活性化させる場合、接触させるプラズマの濃度に依存する接合膜3の活性化の程度の変化は穏やかである。したがって、第1の基材21と第2の基材22との接合に適した程度に接合膜3を活性化させるのに、プラズマを発生させる条件を厳密に管理する必要がない。換言すれば、接合膜3の活性化にプラズマを用いる場合、接合体1の製造条件の許容範囲が広い。また、厳密な管理をしなくとも、得られる接合体1間において、第1の基材21と第2の基材22との接合強度のバラつきが生じ難い。
さらに、紫外線照射により接合膜3を活性化させる場合、接合膜3の活性化すなわち接合膜3中の有機物の脱離に伴って、接合膜3自体が収縮(特に、膜厚の低下)するという問題がある。接合膜3が収縮した場合、第1の基材21と第2の基材22とを高い接合強度で接合することが困難となる。
On the other hand, when the bonding film 3 is activated by plasma, the change in the degree of activation of the bonding film 3 depending on the concentration of plasma to be contacted is gentle. Therefore, in order to activate the bonding film 3 to an extent suitable for bonding the first substrate 21 and the second substrate 22, it is not necessary to strictly manage the conditions for generating plasma. In other words, when plasma is used to activate the bonding film 3, the allowable range of manufacturing conditions for the bonded body 1 is wide. In addition, even if strict management is not performed, variations in the bonding strength between the first base material 21 and the second base material 22 hardly occur between the obtained bonded bodies 1.
Further, when the bonding film 3 is activated by ultraviolet irradiation, the bonding film 3 itself contracts (particularly, the film thickness decreases) with the activation of the bonding film 3, that is, the desorption of organic substances in the bonding film 3. There's a problem. When the bonding film 3 contracts, it becomes difficult to bond the first base material 21 and the second base material 22 with high bonding strength.

これに対して、プラズマにより接合膜3を活性化させる場合、前述したように、接合膜3の表面付近が選択的に活性化されるため、接合膜3の収縮はないか極めて少ない。したがって、接合膜3を比較的薄く形成した場合であっても、第1の基材21と第2の基材22とを高い接合強度で接合することができる。また、この場合、高い寸法精度の接合体1を得ることができるとともに、接合体1の薄型化を図ることも可能である。   On the other hand, when the bonding film 3 is activated by plasma, the vicinity of the surface of the bonding film 3 is selectively activated as described above, so that the bonding film 3 is not contracted or very little. Therefore, even when the bonding film 3 is formed relatively thin, the first base material 21 and the second base material 22 can be bonded with high bonding strength. In this case, the bonded body 1 with high dimensional accuracy can be obtained, and the bonded body 1 can be thinned.

以上のように、プラズマにより接合膜3を活性化させる場合には、紫外線により接合膜3を活性化させる場合に比べて、多くのメリットがある。
接合膜3に対するプラズマの接触は、減圧下で行うようにしてもよいが、大気圧下において行うのが好ましい。すなわち、接合膜3を大気圧プラズマで処理するのが好ましい。大気圧プラズマ処理によれば、接合膜3の周囲が減圧状態とならないので、プラズマの作用により、例えば、ポリジメチルシロキサン骨格が備えるメチル基を切断、除去する際(接合膜3の活性化の際)に、この切断が不要に進行するのを防止することができる。
As described above, when the bonding film 3 is activated by plasma, there are many merits compared to the case where the bonding film 3 is activated by ultraviolet rays.
The plasma contact with the bonding film 3 may be performed under reduced pressure, but is preferably performed under atmospheric pressure. That is, it is preferable to treat the bonding film 3 with atmospheric pressure plasma. According to the atmospheric pressure plasma treatment, since the periphery of the bonding film 3 is not in a reduced pressure state, for example, when the methyl group included in the polydimethylsiloxane skeleton is cut and removed by the action of the plasma (when the bonding film 3 is activated). ) Can be prevented from proceeding unnecessarily.

かかる大気圧下におけるプラズマ処理は、例えば、図3に示す大気圧プラズマ処理装置を用いて行うことができる。
図3は、大気圧プラズマ装置の構成を示す概略図である。
図3に示す大気圧プラズマ装置1000は、接合膜3が形成された第1の基材21(以下、単に「被処理基板W」と言う。)を搬送する搬送装置1002と、搬送装置1002の上方に設置されたヘッド1010とを備えている。
この大気圧プラズマ装置1000では、ヘッド1010が備える印加電極1015と対向電極1019との間に、プラズマが発生するプラズマ発生領域Pが形成される。
Such plasma processing under atmospheric pressure can be performed using, for example, an atmospheric pressure plasma processing apparatus shown in FIG.
FIG. 3 is a schematic diagram showing the configuration of the atmospheric pressure plasma apparatus.
An atmospheric pressure plasma apparatus 1000 illustrated in FIG. 3 includes a transport device 1002 that transports the first base material 21 (hereinafter simply referred to as “target substrate W”) on which the bonding film 3 is formed, and a transport device 1002. And a head 1010 installed above.
In the atmospheric pressure plasma apparatus 1000, a plasma generation region P in which plasma is generated is formed between the application electrode 1015 and the counter electrode 1019 included in the head 1010.

以下、各部の構成について説明する。
搬送装置1002は、被処理基板Wを積載可能な移動ステージ1020を有している。この移動ステージ1020は、搬送装置1002が有する移動手段(図示せず)の作動により、x軸方向に移動することができる。
なお、移動ステージ1020は、例えば、ステンレス鋼、アルミニウム等の金属材料で構成されている。
Hereinafter, the configuration of each unit will be described.
The transport apparatus 1002 includes a moving stage 1020 on which the substrate to be processed W can be loaded. The moving stage 1020 can move in the x-axis direction by the operation of a moving means (not shown) included in the transfer device 1002.
The moving stage 1020 is made of, for example, a metal material such as stainless steel or aluminum.

ヘッド1010は、ヘッド本体1101と、印加電極1015と、対向電極1019とを有している。
ヘッド1010には、移動ステージ1020(搬送装置1002)の上面とヘッド1010の下面1103との間隙1102に、プラズマ化された処理ガスGを供給するガス供給流路1018が設けられている。
The head 1010 includes a head main body 1101, an application electrode 1015, and a counter electrode 1019.
The head 1010 is provided with a gas supply channel 1018 for supplying the plasma-processed processing gas G in a gap 1102 between the upper surface of the moving stage 1020 (conveying device 1002) and the lower surface 1103 of the head 1010.

ガス供給流路1018は、ヘッド1010の下面1103に形成された開口部1181で開口している。また、図3に示すように、下面1103の左側には、段差が形成されている。これにより、ヘッド本体1101の左側部分と移動ステージ1020との間隙1104が、間隙1102よりも小さく(狭く)なっている。このため、プラズマ化された処理ガスGが間隙1104に入り込むのを抑制または防止されて、x軸正方向に優先的に流れるようになっている。
なお、ヘッド本体1101は、例えば、アルミナ、石英等の誘電体材料で構成されている。
The gas supply channel 1018 is opened at an opening 1181 formed in the lower surface 1103 of the head 1010. Further, as shown in FIG. 3, a step is formed on the left side of the lower surface 1103. As a result, the gap 1104 between the left portion of the head main body 1101 and the moving stage 1020 is smaller (narrower) than the gap 1102. For this reason, the plasma-ized processing gas G is prevented or prevented from entering the gap 1104 and flows preferentially in the positive x-axis direction.
The head body 1101 is made of a dielectric material such as alumina or quartz.

ヘッド本体1101には、ガス供給流路1018を挟むように、印加電極1015と対向電極1019とが対抗して設置され、これにより一対の平行平板型電極が構成されている。これらのうち、印加電極1015は高周波電源1017に電気的に接続され、対向電極1019は接地されている。
これら印加電極1015および対向電極1019は、例えば、ステンレス鋼、アルミニウム等の金属材料で構成されている。
In the head main body 1101, an application electrode 1015 and a counter electrode 1019 are installed so as to sandwich the gas supply flow path 1018, thereby forming a pair of parallel plate electrodes. Among these, the application electrode 1015 is electrically connected to the high-frequency power source 1017, and the counter electrode 1019 is grounded.
The application electrode 1015 and the counter electrode 1019 are made of a metal material such as stainless steel or aluminum.

このような大気圧プラズマ装置1000を用いて、被処理基板Wをプラズマ処理する場合、まず、印加電極1015と対向電極1019との間に電圧を印加して、電界Eを発生させる。この状態で、ガス供給流路1018に、処理ガスGを流入させる。このとき、ガス供給路1018に流入した処理ガスGは、電界Eの作用により放電してプラズマ化される。このプラズマ化された処理ガスGは、下面1103側の開口部1181から、間隙1102内に供給される。これにより、プラズマ化された処理ガスGが被処理基板Wに設けられた接合膜3の表面32に接触して、プラズマ処理が施される。
かかる大気圧プラズマ装置1000を用いることにより、容易かつ確実に、接合膜3にプラズマを接触させ、接合膜3を活性化させることができる。
When plasma processing is performed on the substrate W to be processed using such an atmospheric pressure plasma apparatus 1000, first, a voltage is applied between the application electrode 1015 and the counter electrode 1019 to generate an electric field E. In this state, the processing gas G is caused to flow into the gas supply channel 1018. At this time, the processing gas G flowing into the gas supply path 1018 is discharged into plasma by the action of the electric field E. The plasma processing gas G is supplied into the gap 1102 from the opening 1181 on the lower surface 1103 side. Thereby, the plasma-ized processing gas G comes into contact with the surface 32 of the bonding film 3 provided on the substrate W to be processed, and plasma processing is performed.
By using the atmospheric pressure plasma apparatus 1000, plasma can be contacted with the bonding film 3 easily and reliably, and the bonding film 3 can be activated.

ここで、印加電極1015と移動ステージ1020(被処理基板W)と間の距離、すなわち、間隙1102高さ(図3中、h1で示す長さ)は、高周波電源1017の出力や、被処理基板Wに施すプラズマ処理の種類等を考慮して適宜決定されるが、0.2〜2mm程度であるのが好ましく、0.2〜1mm程度であるのがより好ましい。これにより、接合膜3にプラズマを接触させて、接合膜3をより確実に活性化させることができる。   Here, the distance between the application electrode 1015 and the moving stage 1020 (substrate W to be processed), that is, the height of the gap 1102 (the length indicated by h1 in FIG. 3) depends on the output of the high frequency power source 1017 and the substrate to be processed. Although it is appropriately determined in consideration of the type of plasma treatment applied to W, etc., it is preferably about 0.2 to 2 mm, more preferably about 0.2 to 1 mm. As a result, the bonding film 3 can be activated more reliably by bringing plasma into contact with the bonding film 3.

また、印加電極1015と対向電極1019との間に印加する電圧は、1.0〜3.0kVp−p程度であるのが好ましく、1.0〜1.5kVp−p程度であるのがより好ましい。これにより、印加電極1015と移動ステージ1020と間に電界Eをより確実に発生させることができ、ガス供給路1018に供給された処理ガスGを確実にプラズマ化させることができる。
高周波電源1017の周波数(印加する電圧の周波数)は、特に限定されないが、10〜50MHz程度であるのが好ましく、10〜40MHz程度であるのがより好ましい。
The voltage applied between the application electrode 1015 and the counter electrode 1019 is preferably about 1.0 to 3.0 kVp-p, and more preferably about 1.0 to 1.5 kVp-p. . Thereby, the electric field E can be more reliably generated between the application electrode 1015 and the moving stage 1020, and the processing gas G supplied to the gas supply path 1018 can be reliably turned into plasma.
The frequency of the high-frequency power source 1017 (frequency of the voltage to be applied) is not particularly limited, but is preferably about 10 to 50 MHz, and more preferably about 10 to 40 MHz.

処理ガスGの種類としては、特に限定されないが、例えば、ヘリウムガス、アルゴンガスのような希ガス、酸素ガス等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。中でも、処理ガスGには、希ガスを主成分とするガスを用いるのが好ましく、特にヘリウムガスを主成分とするガスを用いるのが好ましい。
すなわち、処理に用いるプラズマは、ヘリウムガスを主成分とするガスをプラズマ化したものであるのが好ましい。ヘリウムガスを主成分とするガス(処理ガスG)は、プラズマ化の際にオゾンを発生させ難く、このため、接合膜3の表面32のオゾンによる変質(酸化)を防止することができる。その結果、接合膜3の活性化の程度が低下するのを抑制すること、すなわち、接合膜3を確実に活性化させることができる。さらに、ヘリウムガスのプラズマは、前述したペニング効果が極めて高く、接合膜3の活性化を短時間でかつ確実に行うことができる観点からも好ましい。
Although it does not specifically limit as a kind of process gas G, For example, helium gas, rare gas like argon gas, oxygen gas etc. are mentioned, Among these, it can use combining 1 type (s) or 2 or more types. . Among them, the processing gas G is preferably a gas containing a rare gas as a main component, and particularly preferably a gas containing a helium gas as a main component.
That is, it is preferable that the plasma used for the treatment is a plasma of a gas mainly composed of helium gas. The gas (processing gas G) containing helium gas as a main component is unlikely to generate ozone at the time of being converted to plasma, so that alteration (oxidation) of the surface 32 of the bonding film 3 due to ozone can be prevented. As a result, it is possible to suppress a decrease in the degree of activation of the bonding film 3, that is, to reliably activate the bonding film 3. Furthermore, the plasma of helium gas is preferable from the viewpoint that the above-described Penning effect is extremely high, and that the bonding film 3 can be activated in a short time.

この場合、ヘリウムガスを主成分とするガスのガス供給路1018への供給速度は、1000〜20000sccm程度であるのが好ましく、5000〜15000sccm程度であるのがより好ましい。これにより、接合膜3の活性化の程度を制御し易くなる。
また、このガス(処理ガスG)中のヘリウムガスの含有量は、85vol%以上が好ましく、90vol%以上(100%も含む)がより好ましい。これにより、前述した効果をさらに顕著に発揮させることができる。
また、移動ステージ1020の移動速度は、特に限定されないが、0.1〜10mm/秒程度であるのが好ましく、0.5〜2mm/秒程度であるのがより好ましい。このような速度でプラズマを接合膜3に接触させることにより、短時間であるにもかかわらず、接合膜3を十分かつ確実に活性化させることができる。
In this case, the supply rate of the gas containing helium gas as the main component to the gas supply path 1018 is preferably about 1000 to 20000 sccm, and more preferably about 5000 to 15000 sccm. This makes it easy to control the degree of activation of the bonding film 3.
Moreover, 85 vol% or more is preferable and, as for content of helium gas in this gas (processing gas G), 90 vol% or more (100% is also included) is more preferable. Thereby, the effect mentioned above can be exhibited more notably.
Further, the moving speed of the moving stage 1020 is not particularly limited, but is preferably about 0.1 to 10 mm / second, and more preferably about 0.5 to 2 mm / second. By bringing the plasma into contact with the bonding film 3 at such a speed, the bonding film 3 can be sufficiently and reliably activated in spite of a short time.

[4]接合体形成工程
次に、接合膜3と第2の基材22とが密着するように、第1の基材21と第2の基材22とを重ね合わせる(図2(e)参照)。これにより、前記工程[3]において、接合膜3の表面32に第2の基材22に対する接着性が発現していることから、接合膜3と第2の基材22の接合面24とが化学的に結合する。その結果、第1の基材21と第2の基材22とが接合膜3を介して接合され、図2(f)に示すような接合体1が得られる。
[4] Assembly Forming Step Next, the first substrate 21 and the second substrate 22 are overlapped so that the bonding film 3 and the second substrate 22 are in close contact with each other (FIG. 2E). reference). Thereby, in the said process [3], since the adhesiveness with respect to the 2nd base material 22 has expressed on the surface 32 of the joining film | membrane 3, the joining film 3 and the joining surface 24 of the 2nd base material 22 become. Bond chemically. As a result, the first base material 21 and the second base material 22 are bonded via the bonding film 3, and the bonded body 1 as shown in FIG. 2 (f) is obtained.

このような接合方法によれば、高温(例えば、700℃以上)での熱処理を必要としないことから、耐熱性の低い材料で構成された第1の基材21および第2の基材22をも、接合に供することができる。
また、接合膜3を介して第1の基材21と第2の基材22とを接合しているため、各基材21、22の構成材料に制約がないという利点もある。
According to such a joining method, since the heat treatment at a high temperature (for example, 700 ° C. or higher) is not required, the first base material 21 and the second base material 22 made of a material having low heat resistance are used. Can also be used for bonding.
In addition, since the first base material 21 and the second base material 22 are bonded via the bonding film 3, there is an advantage that the constituent materials of the base materials 21 and 22 are not restricted.

以上のことから、本発明によれば、第1の基材21および第2の基材22の各構成材料の選択の幅をそれぞれ広げることができる。
また、第1の基材21の熱膨張率と第2の基材22の熱膨張率が互いに異なっている場合には、できるだけ低温下で接合を行うのが好ましい。接合を低温下で行うことにより、接合界面に発生する熱応力のさらなる低減を図ることができる。
From the above, according to the present invention, the range of selection of each constituent material of the first base material 21 and the second base material 22 can be expanded.
Moreover, when the thermal expansion coefficient of the 1st base material 21 and the thermal expansion coefficient of the 2nd base material 22 are mutually different, it is preferable to join at as low a temperature as possible. By performing the bonding at a low temperature, it is possible to further reduce the thermal stress generated at the bonding interface.

具体的には、第1の基材21と第2の基材22との熱膨張率の差にもよるが、第1の基材21および第2の基材22の温度が25〜50℃程度である状態下で、第1の基材21と第2の基材22とを貼り合わせるのが好ましく、25〜40℃程度である状態下で貼り合わせるのがより好ましい。このような温度範囲であれば、第1の基材21と第2の基材22との熱膨張率の差がある程度大きくても、接合界面に発生する熱応力を十分に低減することができる。その結果、接合体1における反りや剥離等の発生を確実に抑制または防止することができる。
また、この場合、具体的な第1の基材21と第2の基材22との間の熱膨張係数の差が、5×10−5/K以上あるような場合には、上記のようにして、できるだけ低温下で接合を行うことが特に推奨される。
Specifically, the temperature of the first base material 21 and the second base material 22 is 25 to 50 ° C., depending on the difference in thermal expansion coefficient between the first base material 21 and the second base material 22. It is preferable that the first base material 21 and the second base material 22 are bonded together under the condition of about 25 to 40 ° C., and more preferable. Within such a temperature range, even if the difference in thermal expansion coefficient between the first base material 21 and the second base material 22 is large to some extent, the thermal stress generated at the bonding interface can be sufficiently reduced. . As a result, it is possible to reliably suppress or prevent the occurrence of warpage or peeling in the bonded body 1.
In this case, when the specific difference in thermal expansion coefficient between the first base material 21 and the second base material 22 is 5 × 10 −5 / K or more, as described above. Therefore, it is particularly recommended to perform bonding at as low a temperature as possible.

ここで、本工程において、第1の基材21と第2の基材22とを接合するメカニズムについて説明する。
例えば、第2の基材22の接合面24に水酸基が露出している場合を例に説明すると、本工程において、第1の基材21に形成された接合膜3と、第2の基材22の接合面24とが接触するように、これらを重ね合わせたとき、接合膜3の表面32に存在する水酸基と、第2の基材22の接合面24に存在する水酸基とが、水素結合によって互いに引き合い、水酸基同士の間に引力が発生する。この引力によって、第1の基材21と第2の基材22とが接合されると推察される。
Here, a mechanism for joining the first base material 21 and the second base material 22 in this step will be described.
For example, the case where a hydroxyl group is exposed on the bonding surface 24 of the second substrate 22 will be described as an example. In this step, the bonding film 3 formed on the first substrate 21 and the second substrate When these are superposed so that the bonding surface 24 of 22 is in contact, the hydroxyl groups present on the surface 32 of the bonding film 3 and the hydroxyl groups present on the bonding surface 24 of the second base material 22 are hydrogen bonded. Attract each other, and an attractive force is generated between the hydroxyl groups. It is inferred that the first base material 21 and the second base material 22 are joined by this attractive force.

また、この水素結合によって互いに引き合う水酸基同士は、温度条件等によって、脱水縮合を伴って表面から切断される。その結果、第1の基材21と第2の基材22との接触界面では、水酸基が結合していた結合手同士が結合する。これにより、第1の基材21と第2の基材22とがより強固に接合されると推察される。
また、第1の基材21の接合膜3の表面32および第2の基材22の接合面24に、それぞれ終端化されていない結合手すなわち未結合手(ダングリングボンド)が存在している場合、第1の基材21と第2の基材22とを貼り合わせた時、これらの未結合手同士が再結合する。この再結合は、互いに重なり合う(絡み合う)ように複雑に生じることから、接合界面にネットワーク状の結合が形成されることとなる。これにより、接合膜3と第2の基材22とが特に強固に接合される。
Further, the hydroxyl groups attracting each other by the hydrogen bond are cleaved from the surface with dehydration condensation depending on the temperature condition or the like. As a result, at the contact interface between the first base material 21 and the second base material 22, the bonds in which the hydroxyl groups are bonded are bonded to each other. Thereby, it is guessed that the 1st base material 21 and the 2nd base material 22 are joined more firmly.
Further, unterminated bonds, i.e., dangling bonds, are present on the surface 32 of the bonding film 3 of the first substrate 21 and the bonding surface 24 of the second substrate 22. In this case, when the first base material 21 and the second base material 22 are bonded together, these unbonded hands are recombined. Since this recombination occurs in a complicated manner so as to overlap (entangle) with each other, a network-like bond is formed at the joint interface. Thereby, the bonding film 3 and the second base material 22 are particularly strongly bonded.

なお、前記工程[3]で活性化された接合膜3の表面32は、その活性状態が経時的に緩和してしまう。このため、前記工程[3]の終了後、できるだけ早く本工程[4]を行うようにするのが好ましい。具体的には、前記工程[3]の終了後、60分以内に本工程[4]を行うようにするのが好ましく、5分以内に行うのがより好ましい。かかる時間内であれば、接合膜3の表面が十分な活性状態を維持しているので、第1の基材21と第2の基材22とを貼り合わせたとき、これらの間に十分な接合強度を得ることができる。   Note that the active state of the surface 32 of the bonding film 3 activated in the step [3] relaxes with time. For this reason, it is preferable to perform this process [4] as soon as possible after completion of the process [3]. Specifically, after the completion of the step [3], the step [4] is preferably performed within 60 minutes, and more preferably within 5 minutes. If it is within such a time, the surface of the bonding film 3 maintains a sufficiently active state, and therefore, when the first base material 21 and the second base material 22 are bonded together, there is sufficient space between them. Bonding strength can be obtained.

換言すれば、活性化させる前の接合膜3は、シリコーン材料を乾燥させて得られた接合膜であるため、化学的に比較的安定であり、耐候性に優れている。このため、活性化させる前の接合膜3は、長期にわたる保存に適したものとなる。したがって、そのような接合膜3を備えた第1の基材21を多量に製造または購入して保存しておき、本工程の貼り合わせを行う直前に、必要な個数のみに前記工程[3]に記載したエネルギーの付与を行うようにすれば、接合体1の製造効率の観点から有効である。   In other words, since the bonding film 3 before activation is a bonding film obtained by drying a silicone material, it is chemically relatively stable and has excellent weather resistance. For this reason, the bonding film 3 before being activated is suitable for long-term storage. Therefore, a large amount of the first base material 21 provided with such a bonding film 3 is manufactured or purchased and stored, and the step [3] is applied only to the necessary number immediately before bonding in this step. If the application of energy described in 1 is performed, it is effective from the viewpoint of manufacturing efficiency of the joined body 1.

[5]接合強度調整工程
次に、図2(g)に示すように、接合体1の第2の基材22側から紫外線を照射する。
本発明では、この照射する紫外線の条件を、接合膜3の接合強度を、プラズマの接触により発現した接着性により接合している接合強度、すなわち前記工程[4]で得られた接合体1の接合膜3の接合強度よりも高い強度となるように調整することに特徴を有する。
[5] Bonding Strength Adjustment Step Next, as shown in FIG. 2G, ultraviolet rays are irradiated from the second base material 22 side of the bonded body 1.
In the present invention, the condition of the ultraviolet rays to be irradiated is determined based on the bonding strength of the bonding film 3 by the bonding strength expressed by the plasma contact, that is, the bonding body 1 obtained in the step [4]. It is characterized in that it is adjusted so as to have a strength higher than the bonding strength of the bonding film 3.

ここで、本発明者の検討により、前記工程[4]で得られた接合体1に対して、第2の基材22側から紫外線を照射すると、図4に示すように、前記工程[4]で得られた接合体1の接合膜3の接合強度と比較して、時間の経過により、接合膜3の接合強度が高くなるが、ある所定の時間に達すると接合強度はピークに達し、その後は経時的にその接合強度は低くなる。そして、さらに紫外線を照射し続けると、前記工程[4]で得られた接合体1の接合膜3の接合強度よりも低くなり、最終的には接合膜3の剥離に至ることが判った。   Here, as a result of the study of the present inventors, when the joined body 1 obtained in the step [4] is irradiated with ultraviolet rays from the second base material 22 side, as shown in FIG. In comparison with the bonding strength of the bonding film 3 of the bonded body 1 obtained in the above, the bonding strength of the bonding film 3 increases with the passage of time, but the bonding strength reaches a peak when a certain predetermined time is reached, Thereafter, the bonding strength decreases with time. Further, it was found that when the ultraviolet rays were further irradiated, the bonding strength of the bonding film 3 of the bonded body 1 obtained in the step [4] was lowered, and eventually the bonding film 3 was peeled off.

このことは、以下に示すようなメカニズムにより生じているものと推察される。
すなわち、前記工程[4]で得られた接合体1では、前記工程[3]における接合膜3に対するプラズマの接触により、接合膜3の表面32が選択的に活性化されることに起因して、表面32に接着性が発現し、この接着性により接合膜3と第2の基材22が接合されている。このようなプラズマの接触による表面32の活性化では、活性化し得る水酸基や未結合手が残存しており、これらの水酸基および未結合手が活性化されることにより、表面32と第2の基材22との間で新たな結合(接合)が生じ、これにより接合膜3の接合強度が一時的に高くなる。ところが、接合膜3に対する紫外線の照射を更に続けると、紫外線は、前述したように、接合膜3を透過する透過性が高く、接合膜3中を透過する際に、ポリジメチルシロキサン骨格が備えるメチル基を切断し、接合膜3の無機化を進行させ、最終的には接合膜3の剥離に至らしめることから、かかる作用によって、接合膜3の接合強度が低くなるものと推察される。
This is presumably caused by the following mechanism.
That is, in the joined body 1 obtained in the step [4], the surface 32 of the bonding film 3 is selectively activated by the plasma contact with the bonding film 3 in the step [3]. Adhesiveness is developed on the surface 32, and the bonding film 3 and the second base material 22 are bonded by this adhesiveness. In the activation of the surface 32 by such plasma contact, the hydroxyl groups and dangling bonds that can be activated remain, and these hydroxyl groups and dangling bonds are activated, whereby the surface 32 and the second group are activated. A new bond (bonding) occurs with the material 22, thereby temporarily increasing the bonding strength of the bonding film 3. However, when the irradiation of the bonding film 3 is further continued, as described above, the ultraviolet light has a high permeability through the bonding film 3, and the methyl which the polydimethylsiloxane skeleton has when passing through the bonding film 3. It is presumed that the bonding strength of the bonding film 3 is lowered by this action because the group is cut and the mineralization of the bonding film 3 is advanced, and finally the bonding film 3 is peeled off.

以上のことから、接合体1の第2の基材22側から紫外線を照射する時間を、前記工程[4]で得られた接合体1の接合膜3の接合強度よりも高くなる時間、すなわち、図4中に示すT未満に設定することにより、接合体1の接合膜3の接合強度より高くすることができる。
この際に照射する紫外線の波長は、120〜365nm程度であるのが好ましく、120〜200nm程度であるのがより好ましい。これにより、表面32に残存する水酸基および未結合手を確実に活性化させることができる。
From the above, the time during which the ultraviolet rays are irradiated from the second base material 22 side of the bonded body 1 is higher than the bonding strength of the bonding film 3 of the bonded body 1 obtained in the step [4]. by setting below T 1 shown in FIG. 4, it may be higher than the bonding strength of the bonding films 3 of the joint body 1.
The wavelength of the ultraviolet rays irradiated at this time is preferably about 120 to 365 nm, and more preferably about 120 to 200 nm. As a result, the hydroxyl groups and dangling bonds remaining on the surface 32 can be reliably activated.

また、上記Tは、照射する紫外線の照度にも依存し、この照度を適宜設定することによっても、前記工程[4]で得られた接合体1の接合膜3の接合強度よりも高くすることができ、具体的には、紫外線の照度は、好ましくは1mW/cm〜1W/cm程度、より好ましくは5mW/cm〜50mW/cm程度に設定される。
かかる条件で、紫外線を接合体1の第2の基材22側から照射したとき、紫外線の照射時間は、0.5〜10分程度であるのが好ましく、1〜5分程度であるのがより好ましい。これにより、前記工程[4]で得られた接合体1の接合膜3の接合強度よりも確実に高くすることができる。
The T 1 also depends on the illuminance of the ultraviolet rays to be radiated. By appropriately setting the illuminance, the T 1 is made higher than the bonding strength of the bonding film 3 of the bonded body 1 obtained in the step [4]. it can be, specifically, the illuminance of ultraviolet rays is preferably 1mW / cm 2 ~1W / cm 2 or so, more preferably set to about 5mW / cm 2 ~50mW / cm 2 .
Under such conditions, when the ultraviolet rays are irradiated from the second substrate 22 side of the joined body 1, the irradiation time of the ultraviolet rays is preferably about 0.5 to 10 minutes, and preferably about 1 to 5 minutes. More preferred. As a result, the bonding strength of the bonding film 3 of the bonded body 1 obtained in the step [4] can be reliably increased.

以上のように、接合膜3の接合強度は、紫外線の波長を一定としたとき、紫外線の照度および紫外線を照射する照射時間に依存するが、紫外線の照度と照射時間との積が積算光量であるため、この積算光量によっても、照射する紫外線の条件を設定することができる。具体的には、紫外線の積算光量は、0.2〜4.0J/cm程度であるのが好ましく、0.4〜2.0J/cm程度であるのがより好ましい。 As described above, the bonding strength of the bonding film 3 depends on the illuminance of the ultraviolet ray and the irradiation time of irradiating the ultraviolet ray when the wavelength of the ultraviolet ray is constant, but the product of the illuminance of the ultraviolet ray and the irradiation time is the integrated light quantity. Therefore, the conditions of the ultraviolet rays to be irradiated can be set also by this integrated light quantity. Specifically, the integrated quantity of ultraviolet light is preferably in the range of about 0.2~4.0J / cm 2, more preferably about 0.4~2.0J / cm 2.

また、紫外線を照射する際の雰囲気は、特に限定されないが、好ましくは窒素ガス、アルゴンガス等の不活性ガス雰囲気とされ、より好ましくは水蒸気含有率の少ない乾燥した不活性ガス雰囲気とされる。かかる雰囲気であれば、接合膜3の酸化による変質・劣化を防止しつつ、接合膜3の表面32をより確実に活性化させることができる。
なお、本実施形態では、第2の基材22のみが紫外線透過性を有するものであるが、第1の基材21も紫外線に対して透過性を有するものである場合には、接合体1の両面側から紫外線を照射するようにしてもよい。この場合、各面に照射する紫外線の照射条件(波長、照射時間等)は、同一でもよく、異なっていてもよい。
Moreover, the atmosphere when irradiating with ultraviolet rays is not particularly limited, but is preferably an inert gas atmosphere such as nitrogen gas or argon gas, and more preferably a dry inert gas atmosphere having a low water vapor content. In such an atmosphere, the surface 32 of the bonding film 3 can be more reliably activated while preventing deterioration and deterioration due to oxidation of the bonding film 3.
In the present embodiment, only the second base material 22 is ultraviolet transmissive, but when the first base material 21 is also permeable to ultraviolet light, the bonded body 1 You may make it irradiate an ultraviolet-ray from the both surfaces side. In this case, the irradiation conditions (wavelength, irradiation time, etc.) of the ultraviolet rays applied to each surface may be the same or different.

以上のようにして、接合強度が向上した接合体(本発明の接合体)1を得ることができる。
このようにして得られた接合体1は、第1の基材21と第2の基材22との間の接合強度が1MPa(10kgf/cm)以上であるのが好ましく、2MPa(20kgf/cm)以上であるのがより好ましい。このような接合強度を有する接合体1は、その剥離を十分に防止し得るものとなる。また、本発明の接合方法によれば、第1の基材21と第2の基材22とが上記のような大きな接合強度で接合された接合体1を効率よく作製することができる。
なお、接合体1を得る際、または、接合体1を得た後に、この接合体1に対して、必要に応じ、以下の2つの工程([6A]および[6B])のうちの少なくとも1つの工程(接合体1の接合強度を高める工程)を行うようにしてもよい。これにより、接合体1の接合強度のさらなる向上を容易に図ることができる。
As described above, a bonded body (bonded body of the present invention) 1 with improved bonding strength can be obtained.
The joined body 1 thus obtained preferably has a joining strength between the first substrate 21 and the second substrate 22 of 1 MPa (10 kgf / cm 2 ) or more, preferably 2 MPa (20 kgf / cm 2 ). cm 2 ) or more is more preferable. The bonded body 1 having such bonding strength can sufficiently prevent the peeling. Moreover, according to the joining method of the present invention, it is possible to efficiently produce the joined body 1 in which the first base material 21 and the second base material 22 are joined with the above-described great joint strength.
In addition, when obtaining the joined body 1 or after obtaining the joined body 1, at least one of the following two steps ([6A] and [6B]) is performed on the joined body 1 as necessary. One step (step of increasing the bonding strength of the bonded body 1) may be performed. Thereby, the joint strength of the joined body 1 can be further improved easily.

[6A] 得られた接合体1を、第1の基材21と第2の基材22とが互いに近づく方向に加圧する。
これにより、第1の基材21の表面および第2の基材22の表面に、それぞれ接合膜3の表面がより近接し、接合体1における接合強度をより高めることができる。
また、接合体1を加圧することにより、接合体1中の接合界面に残存していた隙間を押し潰して、接合面積をさらに広げることができる。これにより、接合体1における接合強度をさらに高めることができる。
[6A] The obtained bonded body 1 is pressurized in a direction in which the first base material 21 and the second base material 22 approach each other.
Thereby, the surface of the bonding film 3 is closer to the surface of the first substrate 21 and the surface of the second substrate 22, respectively, and the bonding strength in the bonded body 1 can be further increased.
Further, by pressurizing the bonded body 1, the gap remaining at the bonded interface in the bonded body 1 can be crushed and the bonded area can be further expanded. Thereby, the joint strength in the joined body 1 can be further increased.

なお、この圧力は、第1の基材21および第2の基材22の各構成材料や各厚さ、接合装置等の条件に応じて、適宜調整すればよい。具体的には、第1の基材21および第2の基材22の各構成材料や各厚さ等に応じて若干異なるものの、0.2〜10MPa程度であるのが好ましく、1〜5MPa程度であるのがより好ましい。これにより、接合体1の接合強度を確実に高めることができる。なお、この圧力が前記上限値を上回っても構わないが、第1の基材21および第2の基材22の各構成材料によっては、各基材21、22に損傷等が生じるおそれがある。
また、加圧する時間は、特に限定されないが、10秒〜30分程度であるのが好ましい。なお、加圧する時間は、加圧する際の圧力に応じて適宜変更すればよい。具体的には、接合体1を加圧する際の圧力が高いほど、加圧する時間を短くしても、接合強度の向上を図ることができる。
In addition, what is necessary is just to adjust this pressure suitably according to conditions, such as each constituent material of each of the 1st base material 21 and the 2nd base material 22, each thickness, and a joining apparatus. Specifically, it is preferably about 0.2 to 10 MPa, preferably about 1 to 5 MPa, although it varies slightly depending on the constituent materials and thicknesses of the first base material 21 and the second base material 22. It is more preferable that Thereby, the joining strength of the joined body 1 can be reliably increased. In addition, although this pressure may exceed the said upper limit, depending on each constituent material of the 1st base material 21 and the 2nd base material 22, there exists a possibility that damage etc. may arise in each base material 21 and 22. .
The time for pressurization is not particularly limited, but is preferably about 10 seconds to 30 minutes. In addition, what is necessary is just to change suitably the time to pressurize according to the pressure at the time of pressurizing. Specifically, the higher the pressure at which the bonded body 1 is pressed, the more the bonding strength can be improved even if the pressing time is shortened.

[6B] 得られた接合体1を加熱する。
これにより、接合体1における接合強度をより高めることができる。
このとき、接合体1を加熱する際の温度は、室温より高く、接合体1の耐熱温度未満であれば、特に限定されないが、好ましくは25〜200℃程度とされ、より好ましくは50〜150℃程度とされる。かかる範囲の温度で加熱すれば、接合体1が熱によって変質・劣化するのを確実に防止しつつ、接合強度を確実に高めることができる。
また、加熱時間は、特に限定されないが、1〜30分程度であるのが好ましい。
[6B] The obtained bonded body 1 is heated.
Thereby, the joint strength in the joined body 1 can be further increased.
At this time, the temperature at the time of heating the bonded body 1 is not particularly limited as long as it is higher than room temperature and lower than the heat resistance temperature of the bonded body 1, but is preferably about 25 to 200 ° C., more preferably 50 to 150. About ℃. By heating at a temperature in such a range, it is possible to reliably increase the bonding strength while reliably preventing the bonded body 1 from being altered or deteriorated by heat.
The heating time is not particularly limited, but is preferably about 1 to 30 minutes.

また、前記工程[6A]および[6B]の双方を行う場合、これらを同時に行うのが好ましい。すなわち、接合体1を加圧しつつ、加熱するのが好ましい。これにより、加圧による効果と、加熱による効果とが相乗的に発揮され、接合体1の接合強度を特に高めることができる。
以上のような工程を行うことにより、接合体1における接合強度のさらなる向上を容易に図ることができる。
Moreover, when performing both said process [6A] and [6B], it is preferable to perform these simultaneously. That is, it is preferable to heat the bonded body 1 while applying pressure. Thereby, the effect by pressurization and the effect by heating are exhibited synergistically, and the joint strength of the joined body 1 can be particularly increased.
By performing the steps as described above, it is possible to easily further improve the bonding strength in the bonded body 1.

<<第2実施形態>>
次に、本発明の接合方法の第2実施形態について説明する。
図5は、本発明の接合方法の第2実施形態を説明するための図(縦断面図)である。なお、以下の説明では、図5中の上側を「上」、下側を「下」と言う。
以下、接合方法の第2実施形態について説明するが、前記第1実施形態にかかる接合方法との相違点を中心に説明し、同様の事項については、その説明を省略する。
<< Second Embodiment >>
Next, a second embodiment of the joining method of the present invention will be described.
FIG. 5 is a diagram (longitudinal sectional view) for explaining a second embodiment of the joining method of the present invention. In the following description, the upper side in FIG. 5 is referred to as “upper” and the lower side is referred to as “lower”.
Hereinafter, although 2nd Embodiment of the joining method is described, it demonstrates centering around difference with the joining method concerning the said 1st Embodiment, and the description is abbreviate | omitted about the same matter.

本実施形態にかかる接合方法は、第1の基材21の接合面(表面)23に接合膜3が形成されている他に、さらに第2の基材22の接合面(表面)24にも接合膜3が形成されている。そして、それぞれの基材21、22が備える接合膜3の表面32付近に接着性を発現させ、これら接合膜3同士を接触させることにより、第1の基材21と第2の基材22とを接合させて、接合体1を得た以外は前記第1実施形態と同様である。
すなわち、本実施形態の接合方法は、第1の基材21上および第2の基材22上の双方に接合膜3を形成して、これら接合膜3同士を一体化させることにより、第1の基材21と第2の基材22とを接合する接合方法である。
In the bonding method according to the present embodiment, the bonding film 3 is formed on the bonding surface (surface) 23 of the first base material 21, and the bonding surface (surface) 24 of the second base material 22 is also formed. A bonding film 3 is formed. And by making adhesiveness express in the surface 32 vicinity of the bonding film 3 with which each base material 21 and 22 is provided, and making these bonding films 3 contact each other, the 1st base material 21 and the 2nd base material 22 and These are the same as those in the first embodiment except that the joined body 1 is obtained by joining.
That is, in the bonding method of the present embodiment, the bonding film 3 is formed on both the first base material 21 and the second base material 22, and the bonding films 3 are integrated with each other. This is a joining method for joining the base material 21 and the second base material 22.

[1’]まず、前記工程[1−1]と同様の第1の基材21と第2の基材22とを用意し、前記工程[1−2]で説明したのと同様にして、第1の基材21の接合面23に液状被膜30を形成するとともに、第2の基材22の接合面24にも液状被膜30を形成する。
[2’]次に、前記工程[2]で説明したのと同様にして、液状被膜30を乾燥して接合膜3とすることにより、第1の基材21の接合面23と第2の基材22の接合面24との双方に接合膜3を形成する。
[1 ′] First, a first base material 21 and a second base material 22 similar to those in the step [1-1] are prepared, and as described in the step [1-2], The liquid coating 30 is formed on the bonding surface 23 of the first substrate 21, and the liquid coating 30 is also formed on the bonding surface 24 of the second substrate 22.
[2 ′] Next, the liquid coating 30 is dried to form the bonding film 3 in the same manner as described in the above step [2], whereby the bonding surface 23 of the first base material 21 and the second film The bonding film 3 is formed on both the bonding surface 24 of the base material 22.

[3’]次に、前記工程[3]で説明したのと同様にして、第1の基材21に形成された接合膜3と、第2の基材22に形成された接合膜3の双方にプラズマを接触させることにより、各接合膜3の表面32付近に接着性を発現させる。
[4’]次に、図5(a)に示すように、各基材21、22が備える接着性が発現した接合膜3同士を、それぞれが密着するように、各基材21、22同士を重ね合わせる。これにより、双方の基材21、22に形成された接合膜3により、基材21、22同士が接合され、図5(b)に示すような接合体1が得られる。
[3 ′] Next, in the same manner as described in the step [3], the bonding film 3 formed on the first base material 21 and the bonding film 3 formed on the second base material 22 By bringing the plasma into contact with both, adhesiveness is developed near the surface 32 of each bonding film 3.
[4 ′] Next, as shown in FIG. 5A, the base materials 21 and 22 are bonded to each other so that the bonding films 3 exhibiting the adhesiveness of the base materials 21 and 22 are in close contact with each other. Are superimposed. Thereby, the base materials 21 and 22 are joined by the joining film | membrane 3 formed in both the base materials 21 and 22, and the conjugate | zygote 1 as shown in FIG.5 (b) is obtained.

[5’]次に、前記工程[5]で説明したのと同様にして、接合体1に対して、紫外線透過性を有する第2の基材22側から紫外線を所定の条件で照射することにより、接合膜3の接合強度を、プラズマの接触により発現した接着性により接合している接合強度よりも高い強度に調整する(図5(c)参照。)
以上のようにして接合体1を得ることができる。
[5 ′] Next, in the same manner as described in the above step [5], the bonded body 1 is irradiated with ultraviolet rays from the second substrate 22 side having ultraviolet transparency under predetermined conditions. Thus, the bonding strength of the bonding film 3 is adjusted to a strength higher than the bonding strength bonded by the adhesiveness expressed by the plasma contact (see FIG. 5C).
The bonded body 1 can be obtained as described above.

なお、接合体1を得た後、この接合体1に対して、必要に応じ、前記第1実施形態の工程[6A]および[6B]のうちの少なくとも1つの工程を行うようにしてもよい。
例えば、接合体1を加圧しつつ、加熱することにより、接合体1の各基材21、22同士がより近接する。これにより、各接合膜3の界面における水酸基の脱水縮合や未結合手同士の再結合が促進される。その結果、接合膜3の一体化がより進行し、最終的には、ほぼ完全に一体化される。
In addition, after obtaining the joined body 1, at least one of the steps [6A] and [6B] of the first embodiment may be performed on the joined body 1 as necessary. .
For example, the base materials 21 and 22 of the joined body 1 are brought closer to each other by heating the joined body 1 while applying pressure. Thereby, dehydration condensation of hydroxyl groups and recombination of unbonded hands at the interface of each bonding film 3 are promoted. As a result, the bonding film 3 is further integrated, and finally, the bonding film 3 is almost completely integrated.

なお、前記第1および第2実施形態では、接合膜3を第1の基材21および第2の基材22の一方または双方の全面に形成する場合について説明したが、本発明では、接合膜3は、第1の基材21および第2の基材22の一方または双方の表面の一部の領域に選択的に形成するようにしてもよい。
この場合、接合膜3を形成する領域の大きさを適宜設定することのみで、第1の基材21と第2の基材22とが接合される領域を簡単に選択することができる。これにより、例えば、第1の基材21と第2の基材22とが接合する接合膜3の面積や形状を制御して、接合体1の接合強度を容易に調整することができる。その結果、例えば、接合膜3を容易に剥離可能な接合体1が得られる。
すなわち、接合体1の接合強度を調整可能であると同時に、接合体1を分離する際の強度(割裂強度)を調整可能である。
In the first and second embodiments, the case where the bonding film 3 is formed on the entire surface of one or both of the first base material 21 and the second base material 22 has been described. 3 may be selectively formed in a partial region of the surface of one or both of the first base material 21 and the second base material 22.
In this case, the region where the first base material 21 and the second base material 22 are bonded can be easily selected only by appropriately setting the size of the region where the bonding film 3 is formed. Thereby, for example, the bonding strength of the bonded body 1 can be easily adjusted by controlling the area and shape of the bonding film 3 to which the first base material 21 and the second base material 22 are bonded. As a result, for example, the bonded body 1 from which the bonding film 3 can be easily peeled is obtained.
That is, the bonding strength of the bonded body 1 can be adjusted, and at the same time, the strength (split strength) when separating the bonded body 1 can be adjusted.

かかる観点から、容易に分離可能な接合体1を作製する場合には、接合体1の接合強度は、人の手で容易に分離可能な程度の大きさであるのが好ましい。これにより、接合体1を分離する際、装置等を用いることなく、簡単に行うことができる。
また、第1の基材21と第2の基材22とが接合する接合膜3の面積や形状を適宜設定することにより、接合膜3に生じる応力の局所集中を緩和することができる。これにより、例えば、第1の基材21と第2の基材22との間で熱膨張率差が大きい場合でも、各基材21、22を確実に接合することができる。
From this point of view, when the bonded body 1 that can be easily separated is manufactured, the bonding strength of the bonded body 1 is preferably large enough to be easily separated by a human hand. Thereby, when isolate | separating the conjugate | zygote 1 can be performed easily, without using an apparatus etc.
Further, by appropriately setting the area and shape of the bonding film 3 to which the first base material 21 and the second base material 22 are bonded, local concentration of stress generated in the bonding film 3 can be reduced. Thereby, for example, even when the difference in thermal expansion coefficient between the first base material 21 and the second base material 22 is large, the base materials 21 and 22 can be reliably bonded.

さらに、この場合、接合膜3を形成しない領域(非膜形成領域)42では、第1の基材21と第2の基材22との間に、接合膜3の厚さに相当する距離(高さ)の空間が形成される。この空間を活かすため、接合膜3を形成する領域(膜形成領域)の形状を適宜調整することにより、第1の基材21と第2の基材22との間に、閉空間や流路を形成したりすることができる。   Further, in this case, in a region 42 where the bonding film 3 is not formed (non-film forming region) 42, a distance (corresponding to the thickness of the bonding film 3) between the first base material 21 and the second base material 22. A height) space is formed. In order to make use of this space, by appropriately adjusting the shape of the region (film formation region) in which the bonding film 3 is formed, a closed space or a flow path is formed between the first base material 21 and the second base material 22. Can be formed.

また、接合膜3にプラズマを接触させるのに先立って、接合膜3を構成するシリコーン材料同士を架橋する架橋処理を、接合膜3に対して行うようにしてもよい。この場合、接合膜3の耐薬品性(耐溶剤性)を向上させることができる。
かかる接合膜3は、有機溶剤を含む組成物を収納する製品を構成する部材同士を接合する場合に好適に使用することができる。このような製品としては、以下に説明するようなインクジェット式記録ヘッド(液滴吐出ヘッド)や、ディスペンサ装置等が挙げられる。
In addition, before the plasma is brought into contact with the bonding film 3, a crosslinking process for crosslinking the silicone materials constituting the bonding film 3 may be performed on the bonding film 3. In this case, the chemical resistance (solvent resistance) of the bonding film 3 can be improved.
Such a bonding film 3 can be suitably used for bonding members constituting a product containing a composition containing an organic solvent. Examples of such products include ink jet recording heads (droplet discharge heads) and dispenser devices as described below.

また、架橋処理には、例えば、加熱処理、電子線処理、化学処理等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
なお、前記工程[6B]すなわち接合体1の加熱により、接合体1における接合高度のさらなる向上を図る場合には、この工程[6B]により、架橋処理を担わせることができる。
Examples of the crosslinking treatment include heat treatment, electron beam treatment, chemical treatment, and the like, and one or more of these can be used in combination.
In addition, when aiming at the further improvement of the joining height in the joined_body | zygote 1 by heating the said process [6B], ie, the joined_body | zygote 1, a bridge | crosslinking process can be carried out by this process [6B].

<液滴吐出ヘッド>
次に、本発明の接合体をインクジェット式記録ヘッドに適用した場合の実施形態について説明する。
図6は、本発明の接合体を適用して得られたインクジェット式記録ヘッド(液滴吐出ヘッド)を示す分解斜視図、図7は、図6に示すインクジェット式記録ヘッドの主要部の構成を示す断面図、図8は、図6に示すインクジェット式記録ヘッドを備えるインクジェットプリンタの実施形態を示す概略図である。なお、図6は、通常使用される状態とは、上下逆に示されている。
図6に示すインクジェット式記録ヘッド10は、図8に示すようなインクジェットプリンタ9に搭載されている。
<Droplet ejection head>
Next, an embodiment in which the joined body of the present invention is applied to an ink jet recording head will be described.
FIG. 6 is an exploded perspective view showing an ink jet recording head (droplet discharge head) obtained by applying the joined body of the present invention, and FIG. 7 shows the configuration of the main part of the ink jet recording head shown in FIG. FIG. 8 is a schematic view showing an embodiment of an ink jet printer including the ink jet recording head shown in FIG. Note that FIG. 6 is shown upside down from the state of normal use.
An ink jet recording head 10 shown in FIG. 6 is mounted on an ink jet printer 9 as shown in FIG.

図8に示すインクジェットプリンタ9は、装置本体92を備えており、上部後方に記録用紙pを設置するトレイ921と、下部前方に記録用紙pを排出する排紙口922と、上部面に操作パネル97とが設けられている。
操作パネル97は、例えば、液晶ディスプレイ、有機ELディスプレイ、LEDランプ等で構成され、エラーメッセージ等を表示する表示部(図示せず)と、各種スイッチ等で構成される操作部(図示せず)とを備えている。
また、装置本体92の内部には、主に、往復動するヘッドユニット93を備える印刷装置(印刷手段)94と、記録用紙pを1枚ずつ印刷装置94に送り込む給紙装置(給紙手段)95と、印刷装置94および給紙装置95を制御する制御部(制御手段)96とを有している。
The ink jet printer 9 shown in FIG. 8 includes an apparatus main body 92, a tray 921 for installing the recording paper p in the upper rear, a paper discharge port 922 for discharging the recording paper p in the lower front, and an operation panel on the upper surface. 97.
The operation panel 97 includes, for example, a liquid crystal display, an organic EL display, an LED lamp, and the like, and a display unit (not shown) for displaying an error message and the like, and an operation unit (not shown) configured with various switches and the like. And.
Further, inside the apparatus main body 92, mainly, a printing apparatus (printing means) 94 including a head unit 93 that reciprocates, and a paper feeding apparatus (paper feeding means) that feeds recording paper p to the printing apparatus 94 one by one. 95 and a control unit (control means) 96 for controlling the printing device 94 and the paper feeding device 95.

制御部96の制御により、給紙装置95は、記録用紙pを一枚ずつ間欠送りする。この記録用紙pは、ヘッドユニット93の下部近傍を通過する。このとき、ヘッドユニット93が記録用紙pの送り方向とほぼ直交する方向に往復移動して、記録用紙pへの印刷が行なわれる。すなわち、ヘッドユニット93の往復動と記録用紙pの間欠送りとが、印刷における主走査および副走査となって、インクジェット方式の印刷が行なわれる。   Under the control of the control unit 96, the paper feeding device 95 intermittently feeds the recording paper p one by one. The recording paper p passes near the lower part of the head unit 93. At this time, the head unit 93 reciprocates in a direction substantially perpendicular to the feeding direction of the recording paper p, and printing on the recording paper p is performed. That is, the reciprocating motion of the head unit 93 and the intermittent feeding of the recording paper p are the main scanning and sub-scanning in printing, and ink jet printing is performed.

印刷装置94は、ヘッドユニット93と、ヘッドユニット93の駆動源となるキャリッジモータ941と、キャリッジモータ941の回転を受けて、ヘッドユニット93を往復動させる往復動機構942とを備えている。
ヘッドユニット93は、その下部に、多数のノズル孔111を備えるインクジェット式記録ヘッド10(以下、単に「ヘッド10」と言う。)と、ヘッド10にインクを供給するインクカートリッジ931と、ヘッド10およびインクカートリッジ931を搭載したキャリッジ932とを有している。
なお、インクカートリッジ931として、イエロー、シアン、マゼンタ、ブラック(黒)の4色のインクを充填したものを用いることにより、フルカラー印刷が可能となる。
The printing apparatus 94 includes a head unit 93, a carriage motor 941 that is a drive source of the head unit 93, and a reciprocating mechanism 942 that reciprocates the head unit 93 in response to the rotation of the carriage motor 941.
The head unit 93 includes an ink jet recording head 10 (hereinafter simply referred to as “head 10”) having a large number of nozzle holes 111 at a lower portion thereof, an ink cartridge 931 that supplies ink to the head 10, the head 10 and And a carriage 932 on which the ink cartridge 931 is mounted.
Ink cartridge 931 is filled with four color inks of yellow, cyan, magenta, and black (black), thereby enabling full color printing.

往復動機構942は、その両端をフレーム(図示せず)に支持されたキャリッジガイド軸944と、キャリッジガイド軸944と平行に延在するタイミングベルト943とを有している。
キャリッジ932は、キャリッジガイド軸944に往復動自在に支持されるとともに、タイミングベルト943の一部に固定されている。
キャリッジモータ941の作動により、プーリを介してタイミングベルト943を正逆走行させると、キャリッジガイド軸944に案内されて、ヘッドユニット93が往復動する。そして、この往復動の際に、ヘッド10から適宜インクが吐出され、記録用紙pへの印刷が行われる。
The reciprocating mechanism 942 has a carriage guide shaft 944 supported at both ends by a frame (not shown), and a timing belt 943 extending in parallel with the carriage guide shaft 944.
The carriage 932 is supported by the carriage guide shaft 944 so as to reciprocate and is fixed to a part of the timing belt 943.
When the timing belt 943 travels forward and backward via the pulley by the operation of the carriage motor 941, the head unit 93 reciprocates as guided by the carriage guide shaft 944. During this reciprocation, ink is appropriately discharged from the head 10 and printing on the recording paper p is performed.

給紙装置95は、その駆動源となる給紙モータ951と、給紙モータ951の作動により回転する給紙ローラ952とを有している。
給紙ローラ952は、記録用紙pの送り経路(記録用紙p)を挟んで上下に対向する従動ローラ952aと駆動ローラ952bとで構成され、駆動ローラ952bは給紙モータ951に連結されている。これにより、給紙ローラ952は、トレイ921に設置した多数枚の記録用紙pを、印刷装置94に向かって1枚ずつ送り込めるようになっている。なお、トレイ921に代えて、記録用紙pを収容する給紙カセットを着脱自在に装着し得るような構成であってもよい。
The sheet feeding device 95 includes a sheet feeding motor 951 serving as a driving source thereof, and a sheet feeding roller 952 that is rotated by the operation of the sheet feeding motor 951.
The paper feed roller 952 includes a driven roller 952a and a drive roller 952b that are vertically opposed to each other with a feeding path (recording paper p) of the recording paper p interposed therebetween. The drive roller 952b is connected to the paper feed motor 951. Thus, the paper feed roller 952 can feed a large number of recording papers p set on the tray 921 one by one toward the printing device 94. In addition, instead of the tray 921, a configuration in which a paper feed cassette that stores the recording paper p can be detachably mounted may be employed.

制御部96は、例えばパーソナルコンピュータやディジタルカメラ等のホストコンピュータから入力された印刷データに基づいて、印刷装置94や給紙装置95等を制御することにより印刷を行うものである。
制御部96は、いずれも図示しないが、主に、各部を制御する制御プログラム等を記憶するメモリ、圧電素子(振動源)14を駆動して、インクの吐出タイミングを制御する圧電素子駆動回路、印刷装置94(キャリッジモータ941)を駆動する駆動回路、給紙装置95(給紙モータ951)を駆動する駆動回路、および、ホストコンピュータからの印刷データを入手する通信回路と、これらに電気的に接続され、各部での各種制御を行うCPUとを備えている。
また、CPUには、例えば、インクカートリッジ931のインク残量、ヘッドユニット93の位置等を検出可能な各種センサ等が、それぞれ電気的に接続されている。
The control unit 96 performs printing by controlling the printing device 94, the paper feeding device 95, and the like based on print data input from a host computer such as a personal computer or a digital camera.
Although not shown, the control unit 96 mainly includes a memory that stores a control program for controlling each unit, a piezoelectric element driving circuit that drives the piezoelectric element (vibration source) 14 to control the ink ejection timing, A driving circuit for driving the printing device 94 (carriage motor 941), a driving circuit for driving the paper feeding device 95 (paper feeding motor 951), a communication circuit for obtaining print data from the host computer, and these electrically And a CPU that is connected and performs various controls in each unit.
Further, for example, various sensors that can detect the remaining ink amount of the ink cartridge 931, the position of the head unit 93, and the like are electrically connected to the CPU.

制御部96は、通信回路を介して、印刷データを入手してメモリに格納する。CPUは、この印刷データを処理して、この処理データおよび各種センサからの入力データに基づいて、各駆動回路に駆動信号を出力する。この駆動信号により圧電素子14、印刷装置94および給紙装置95は、それぞれ作動する。これにより、記録用紙pに印刷が行われる。   The control unit 96 obtains print data via the communication circuit and stores it in the memory. The CPU processes the print data and outputs a drive signal to each drive circuit based on the process data and input data from various sensors. The piezoelectric element 14, the printing device 94, and the paper feeding device 95 are each activated by this drive signal. As a result, printing is performed on the recording paper p.

以下、ヘッド10について、図6および図7を参照しつつ詳述する。
ヘッド10は、ノズル板11と、インク室基板12と、振動板13と、振動板13に接合された圧電素子(振動源)14とを備えるヘッド本体17と、このヘッド本体17を収納する基体16とを有している。なお、このヘッド10は、オンデマンド形のピエゾジェット式ヘッドを構成する。
Hereinafter, the head 10 will be described in detail with reference to FIGS. 6 and 7.
The head 10 includes a head main body 17 including a nozzle plate 11, an ink chamber substrate 12, a vibration plate 13, and a piezoelectric element (vibration source) 14 bonded to the vibration plate 13, and a base body that houses the head main body 17. 16. The head 10 constitutes an on-demand piezo jet head.

ノズル板11は、例えば、SiO、SiN、石英ガラスのようなシリコン系材料、Al、Fe、Ni、Cuまたはこれらを含む合金のような金属系材料、アルミナ、酸化鉄のような酸化物系材料、カーボンブラック、グラファイトのような炭素系材料等で構成されている。
このノズル板11には、インク滴を吐出するための多数のノズル孔111が形成されている。これらのノズル孔111間のピッチは、印刷精度に応じて適宜設定される。
The nozzle plate 11 is made of, for example, a silicon-based material such as SiO 2 , SiN, or quartz glass, a metal-based material such as Al, Fe, Ni, Cu, or an alloy containing these, or an oxide-based material such as alumina or iron oxide. The material is composed of carbon-based materials such as carbon black and graphite.
A number of nozzle holes 111 for discharging ink droplets are formed in the nozzle plate 11. The pitch between these nozzle holes 111 is appropriately set according to the printing accuracy.

ノズル板11には、インク室基板12が固着(固定)されている。
このインク室基板12は、ノズル板11、側壁(隔壁)122および後述する振動板13により、複数のインク室(キャビティ、圧力室)121と、インクカートリッジ931から供給されるインクを貯留するリザーバ室123と、リザーバ室123から各インク室121に、それぞれインクを供給する供給口124とが区画形成されている。
An ink chamber substrate 12 is fixed (fixed) to the nozzle plate 11.
The ink chamber substrate 12 includes a plurality of ink chambers (cavities, pressure chambers) 121 and a reservoir chamber that stores ink supplied from the ink cartridge 931 by the nozzle plate 11, side walls (partition walls) 122, and a vibration plate 13 described later. 123 and a supply port 124 for supplying ink from the reservoir chamber 123 to each ink chamber 121 are partitioned.

各インク室121は、それぞれ短冊状(直方体状)に形成され、各ノズル孔111に対応して配設されている。各インク室121は、後述する振動板13の振動により容積可変であり、この容積変化により、インクを吐出するよう構成されている。
インク室基板12を得るための母材としては、例えば、シリコン単結晶基板、各種ガラス基板、各種樹脂基板等を用いることができる。これらの基板は、いずれも汎用的な基板であるので、これらの基板を用いることにより、ヘッド10の製造コストを低減することができる。
Each ink chamber 121 is formed in a strip shape (cuboid shape), and is disposed corresponding to each nozzle hole 111. Each ink chamber 121 has a variable volume due to vibration of a diaphragm 13 described later, and is configured to eject ink by this volume change.
As a base material for obtaining the ink chamber substrate 12, for example, a silicon single crystal substrate, various glass substrates, various resin substrates and the like can be used. Since these substrates are general-purpose substrates, the manufacturing cost of the head 10 can be reduced by using these substrates.

一方、インク室基板12のノズル板11と反対側には、振動板13が接合され、さらに振動板13のインク室基板12と反対側には、複数の圧電素子14が設けられている。
また、振動板13の所定位置には、振動板13の厚さ方向に貫通して連通孔131が形成されている。この連通孔131を介して、前述したインクカートリッジ931からリザーバ室123に、インクが供給可能となっている。
On the other hand, a vibration plate 13 is bonded to the ink chamber substrate 12 on the side opposite to the nozzle plate 11, and a plurality of piezoelectric elements 14 are provided on the vibration plate 13 on the side opposite to the ink chamber substrate 12.
A communication hole 131 is formed at a predetermined position of the diaphragm 13 so as to penetrate in the thickness direction of the diaphragm 13. Ink can be supplied from the ink cartridge 931 to the reservoir chamber 123 through the communication hole 131.

各圧電素子14は、それぞれ、下部電極142と上部電極141との間に圧電体層143を介挿してなり、各インク室121のほぼ中央部に対応して配設されている。各圧電素子14は、圧電素子駆動回路に電気的に接続され、圧電素子駆動回路の信号に基づいて作動(振動、変形)するよう構成されている。
各圧電素子14は、それぞれ、振動源として機能し、振動板13は、圧電素子14の振動により振動し、インク室121の内部圧力を瞬間的に高めるよう機能する。
基体16は、例えば各種樹脂材料、各種金属材料等で構成されており、この基体16にノズル板11が固定、支持されている。すなわち、基体16が備える凹部161に、ヘッド本体17を収納した状態で、凹部161の外周部に形成された段差162によりノズル板11の縁部を支持する。
Each piezoelectric element 14 has a piezoelectric layer 143 interposed between the lower electrode 142 and the upper electrode 141, and is disposed corresponding to the substantially central portion of each ink chamber 121. Each piezoelectric element 14 is electrically connected to a piezoelectric element drive circuit and is configured to operate (vibrate, deform) based on a signal from the piezoelectric element drive circuit.
Each piezoelectric element 14 functions as a vibration source, and the diaphragm 13 vibrates due to vibration of the piezoelectric element 14 and functions to instantaneously increase the internal pressure of the ink chamber 121.
The base body 16 is made of, for example, various resin materials, various metal materials, and the like, and the nozzle plate 11 is fixed and supported on the base body 16. That is, the edge of the nozzle plate 11 is supported by the step 162 formed on the outer periphery of the recess 161 in a state where the head body 17 is housed in the recess 161 provided in the base body 16.

以上のような、ノズル板11とインク室基板12との接合、インク室基板12と振動板13との接合、およびノズル板11と基体16との接合のうち、少なくとも1箇所を接合する際に本発明の接合方法が用いられる。
換言すれば、ノズル板11とインク室基板12との接合体、インク室基板12と振動板13との接合体、およびノズル板11と基体16との接合体のうち、少なくとも1箇所に本発明の接合体が適用されている。
When joining at least one of the above-described joining of the nozzle plate 11 and the ink chamber substrate 12, joining of the ink chamber substrate 12 and the vibration plate 13, and joining of the nozzle plate 11 and the substrate 16. The joining method of the present invention is used.
In other words, the present invention is provided in at least one place among the joined body of the nozzle plate 11 and the ink chamber substrate 12, the joined body of the ink chamber substrate 12 and the vibration plate 13, and the joined body of the nozzle plate 11 and the substrate 16. The joined body is applied.

このようなヘッド10は、上記の接合界面に前述したような接合膜3が介挿されて接合されている。このため、接合界面の接合強度および耐薬品性が高くなっており、これにより、各インク室121に貯留されたインクに対する耐久性および液密性が高くなっている。その結果、ヘッド10は、信頼性の高いものとなる。
また、非常に低温で信頼性の高い接合ができるため、線膨張係数の異なる材料でも大面積のヘッドができる点でも有利である。
また、ヘッド10の一部に本発明の接合体が適用されていると、寸法精度の高いヘッド10を構築することができる。このため、ヘッド10から吐出されたインク滴の吐出方向や、ヘッド10と記録用紙pとの離間距離を高度に制御することができ、インクジェットプリンタ9による印字結果の品位を高めることができる。
Such a head 10 is bonded to the bonding interface by inserting the bonding film 3 as described above. For this reason, the bonding strength and chemical resistance of the bonding interface are increased, and thereby the durability and liquid tightness with respect to the ink stored in each ink chamber 121 are increased. As a result, the head 10 becomes highly reliable.
In addition, since highly reliable bonding can be performed at a very low temperature, it is advantageous in that a large-area head can be formed even with materials having different linear expansion coefficients.
Further, when the joined body of the present invention is applied to a part of the head 10, the head 10 with high dimensional accuracy can be constructed. Therefore, it is possible to highly control the ejection direction of the ink droplets ejected from the head 10 and the separation distance between the head 10 and the recording paper p, and the quality of the printing result by the ink jet printer 9 can be improved.

また、液滴吐出法を用いて液状材料を供給する位置を任意に設定し得ることから、各接合体における接合部の面積や、その配置を適宜制御して、各接合体の接合界面に生じる応力の局所集中を緩和できる。これにより、例えば、ノズル板11とインク室基板12との間、インク室基板12と振動板13との間、および、ノズル板11と基体16との間で、それぞれ両者の熱膨張率差が大きい場合でも、両者の部材を確実に接合することができる。
さらに、接合界面に生じる応力の局所集中を緩和することにより、接合体の剥離や変形(反り)等を確実に防止することができる。これにより、信頼性の高いヘッド10およびインクジェットプリンタ9が得られる。
In addition, since the position where the liquid material is supplied using the droplet discharge method can be arbitrarily set, the area of the bonded portion in each bonded body and the arrangement thereof are appropriately controlled to be generated at the bonded interface of each bonded body. The local concentration of stress can be reduced. Thereby, for example, the difference in thermal expansion coefficient between the nozzle plate 11 and the ink chamber substrate 12, between the ink chamber substrate 12 and the vibration plate 13, and between the nozzle plate 11 and the substrate 16, respectively. Even when it is large, both members can be reliably bonded.
Furthermore, by relaxing the local concentration of stress generated at the joint interface, it is possible to reliably prevent peeling and deformation (warping) of the joined body. Thereby, the highly reliable head 10 and the inkjet printer 9 are obtained.

このようなヘッド10は、圧電素子駆動回路を介して所定の吐出信号が入力されていない状態、すなわち、圧電素子14の下部電極142と上部電極141との間に電圧が印加されていない状態では、圧電体層143に変形が生じない。このため、振動板13にも変形が生じず、インク室121には容積変化が生じない。したがって、ノズル孔111からインク滴は吐出されない。   Such a head 10 is in a state where a predetermined ejection signal is not input via the piezoelectric element driving circuit, that is, in a state where no voltage is applied between the lower electrode 142 and the upper electrode 141 of the piezoelectric element 14. The piezoelectric layer 143 is not deformed. For this reason, the vibration plate 13 is not deformed, and the volume of the ink chamber 121 is not changed. Therefore, no ink droplet is ejected from the nozzle hole 111.

一方、圧電素子駆動回路を介して所定の吐出信号が入力された状態、すなわち、圧電素子14の下部電極142と上部電極141との間に一定電圧が印加された状態では、圧電体層143に変形が生じる。これにより、振動板13が大きくたわみ、インク室121の容積変化が生じる。このとき、インク室121内の圧力が瞬間的に高まり、ノズル孔111からインク滴が吐出される。   On the other hand, in a state where a predetermined ejection signal is input via the piezoelectric element driving circuit, that is, in a state where a constant voltage is applied between the lower electrode 142 and the upper electrode 141 of the piezoelectric element 14, the piezoelectric layer 143 is applied. Deformation occurs. As a result, the diaphragm 13 is greatly deflected, and the volume of the ink chamber 121 is changed. At this time, the pressure in the ink chamber 121 increases instantaneously, and ink droplets are ejected from the nozzle holes 111.

1回のインクの吐出が終了すると、圧電素子駆動回路は、下部電極142と上部電極141との間への電圧の印加を停止する。これにより、圧電素子14は、ほぼ元の形状に戻り、インク室121の容積が増大する。なお、このとき、インクには、インクカートリッジ931からノズル孔111へ向かう圧力(正方向への圧力)が作用している。このため、空気がノズル孔111からインク室121へ入り込むことが防止され、インクの吐出量に見合った量のインクがインクカートリッジ931(リザーバ室123)からインク室121へ供給される。   When the ejection of one ink is completed, the piezoelectric element driving circuit stops applying the voltage between the lower electrode 142 and the upper electrode 141. As a result, the piezoelectric element 14 returns almost to its original shape, and the volume of the ink chamber 121 increases. At this time, a pressure (pressure in the positive direction) from the ink cartridge 931 toward the nozzle hole 111 acts on the ink. Therefore, air is prevented from entering the ink chamber 121 from the nozzle hole 111, and an amount of ink corresponding to the amount of ink discharged is supplied from the ink cartridge 931 (reservoir chamber 123) to the ink chamber 121.

このようにして、ヘッド10において、印刷させたい位置の圧電素子14に、圧電素子駆動回路を介して吐出信号を順次入力することにより、任意の(所望の)文字や図形等を印刷することができる。
なお、ヘッド10は、圧電素子14の代わりに電気熱変換素子を有していてもよい。つまり、ヘッド10は、電気熱変換素子による材料の熱膨張を利用してインクを吐出するバブルジェット方式(「バブルジェット」は登録商標))のものであってもよい。
In this manner, in the head 10, arbitrary (desired) characters and figures can be printed by sequentially inputting ejection signals to the piezoelectric elements 14 at the positions to be printed via the piezoelectric element driving circuit. it can.
The head 10 may have an electrothermal conversion element instead of the piezoelectric element 14. That is, the head 10 may be of a bubble jet type (“Bubble Jet” is a registered trademark) that discharges ink by utilizing thermal expansion of a material by an electrothermal transducer.

なお、かかる構成のヘッド10において、ノズル板11には、撥液性を付与することを目的に形成された被膜114が設けられている。これにより、ノズル孔111からインク滴が吐出される際に、このノズル孔111の周辺にインク滴が残存するのを確実に防止することができる。その結果、ノズル孔111から吐出されたインク滴を目的とする領域に確実に着弾させることができる。   In the head 10 having such a configuration, the nozzle plate 11 is provided with a coating 114 formed for the purpose of imparting liquid repellency. Thus, when ink droplets are ejected from the nozzle holes 111, it is possible to reliably prevent ink droplets from remaining around the nozzle holes 111. As a result, the ink droplets ejected from the nozzle hole 111 can be reliably landed on the target area.

以上、本発明の接合方法および接合体を、図示の実施形態に基づいて説明したが、本発明はこれらに限定されるものではない。
例えば、本発明の接合方法では、必要に応じて、1以上の任意の目的の工程を追加してもよい。
また、本発明の接合体は、液滴吐出ヘッド以外のものに適用可能であることは言うまでもない。具体的には、本発明の接合体は、例えば、光学装置が備えるレンズ、半導体装置、マイクロリアクタ等に適用することができる。
As mentioned above, although the joining method and joined body of this invention were demonstrated based on embodiment of illustration, this invention is not limited to these.
For example, in the bonding method of the present invention, one or more optional steps may be added as necessary.
Needless to say, the joined body of the present invention is applicable to other than the droplet discharge head. Specifically, the joined body of the present invention can be applied to, for example, a lens, a semiconductor device, a microreactor, and the like included in an optical device.

次に、本発明の具体的実施例について説明する。
1.接合膜に照射する光の波長の検討
まず、縦20mm×横20mm×平均厚さ1mmの石英ガラス基板を用意し、この石英ガラス基板を、酸素とヘリウムの混合ガスによるプラズマを接触させて下地処理を行った。
Next, specific examples of the present invention will be described.
1. Examination of the wavelength of light irradiated to the bonding film First, a quartz glass substrate having a length of 20 mm, a width of 20 mm, and an average thickness of 1 mm is prepared, and this quartz glass substrate is contacted with a plasma of a mixed gas of oxygen and helium to perform a base treatment. Went.

次に、シリコーン材料として分枝状のポリジメチルシロキサン骨格を有するものを含有し、溶媒としてトルエンおよびイソブタノールを含有する液状材料(信越化学工業社製、「KR−251」:粘度(25℃)18.0mPa・s)を用意し、スピンコート法により石英ガラス基板上に、この液状材料を供給して液状被膜を形成した。
次に、この液状被膜を、常温(25℃)で、24時間乾燥させることにより、石英ガラス基板上に、接合膜(平均厚さ:約3.0μm)を形成した。
この接合膜に対して、赤外分光装置を用いて、光の波長を変化させつつ光を照射することにより、接合膜の吸収係数を求め、その測定結果を図9に示した。
Next, a liquid material containing a branched polydimethylsiloxane skeleton as a silicone material and containing toluene and isobutanol as a solvent (manufactured by Shin-Etsu Chemical Co., Ltd., “KR-251”: viscosity (25 ° C.) 18.0 mPa · s) was prepared, and this liquid material was supplied onto the quartz glass substrate by spin coating to form a liquid film.
Next, this liquid film was dried at room temperature (25 ° C.) for 24 hours to form a bonding film (average thickness: about 3.0 μm) on the quartz glass substrate.
By irradiating the bonding film with light using an infrared spectrometer while changing the wavelength of the light, the absorption coefficient of the bonding film was obtained, and the measurement result is shown in FIG.

図9から明らかなように、波長300nm以上の光では、吸収係数が低過ぎ、その殆どが透過され、接合膜の活性化のために、そのエネルギーが利用されていないことが判った。
これに対して、波長300nm未満の光(紫外線)を照射した場合では、吸収係数が高くなる傾向を示すとともに、その上昇の程度は接合膜を透過するのに十分な大きさであった。したがって、紫外線の波長を300nm以下に設定することにより、接合膜の厚さ方向に対して、ほぼ均一な強度で紫外線を照射することができるため、接合膜の全体をほぼ均一に活性化し得ることが判った。
As is apparent from FIG. 9, it was found that the light having a wavelength of 300 nm or more has an absorption coefficient that is too low, and most of the light is transmitted, and that energy is not used to activate the bonding film.
On the other hand, when light (ultraviolet rays) having a wavelength of less than 300 nm is irradiated, the absorption coefficient tends to increase, and the degree of the increase is large enough to pass through the bonding film. Therefore, by setting the wavelength of the ultraviolet light to 300 nm or less, it is possible to irradiate the ultraviolet light with a substantially uniform intensity in the thickness direction of the bonding film, so that the entire bonding film can be activated almost uniformly. I understood.

2.紫外線照射による接合強度の調整
(サンプルNo.1:本発明)
まず、第1の基材および第2の基材として、縦20mm×横20mm×平均厚さ1mmの石英ガラス基板を2つ用意し、これら2つの石英ガラス基板を、酸素とヘリウムの混合ガスによるプラズマを接触させて下地処理を行った。
2. Adjustment of bonding strength by ultraviolet irradiation (Sample No. 1: present invention)
First, as a first base material and a second base material, two quartz glass substrates having a length of 20 mm, a width of 20 mm, and an average thickness of 1 mm are prepared, and these two quartz glass substrates are mixed with a mixed gas of oxygen and helium. The substrate treatment was performed by contacting with plasma.

次に、シリコーン材料として分枝状のポリジメチルシロキサン骨格を有するものを含有し、溶媒としてトルエンおよびイソブタノールを含有する液状材料(信越化学工業社製、「KR−251」:粘度(25℃)18.0mPa・s)を用意し、スピンコート法により石英ガラス基板上に、この液状材料を供給して液状被膜を形成した。
次に、この液状被膜を、常温(25℃)で、24時間乾燥させることにより、石英ガラス基板上に、接合膜(平均厚さ:約3.0μm)を形成した。
次に、石英ガラス上に形成された接合膜を、150℃で、1時間加熱処理した後、この接合膜に、図3に示す大気圧プラズマ装置を用いて、以下に示す条件でプラズマを接触させた。これにより、接合膜を活性化させて、その表面に接着性を発現させた。
Next, a liquid material containing a branched polydimethylsiloxane skeleton as a silicone material and containing toluene and isobutanol as a solvent (manufactured by Shin-Etsu Chemical Co., Ltd., “KR-251”: viscosity (25 ° C.) 18.0 mPa · s) was prepared, and this liquid material was supplied onto the quartz glass substrate by spin coating to form a liquid film.
Next, this liquid film was dried at room temperature (25 ° C.) for 24 hours to form a bonding film (average thickness: about 3.0 μm) on the quartz glass substrate.
Next, the bonding film formed on the quartz glass is heated at 150 ° C. for 1 hour, and then the bonding film is contacted with plasma under the following conditions using the atmospheric pressure plasma apparatus shown in FIG. I let you. As a result, the bonding film was activated to develop adhesiveness on the surface.

<プラズマ処理条件>
・処理ガス :ヘリウムガス
・ガス供給速度:10000sccm
・電極間距離:0.5mm
・高周波出力:500W
・電圧周波数:30MHz
・移動速度 :2mm/秒
<Plasma treatment conditions>
・ Processing gas: Helium gas ・ Gas supply speed: 10,000 sccm
・ Distance between electrodes: 0.5mm
・ High frequency output: 500W
-Voltage frequency: 30 MHz
・ Movement speed: 2mm / sec

次に、接合膜のプラズマを接触させた面と、もう1つの石英ガラス基板の表面とが接触するように、2つの石英ガラス同士を重ね合わせた。
そして、2つの石英ガラス基板同士を5kNで加圧しつつ、60秒間維持した。これにより、石英ガラス基板同士が接合膜を介して接合された接合体を得た。
次に、得られた接合体の一方の石英ガラス基板側から、以下に示す条件で紫外線を接合膜に照射した後、接合体を150℃で、1時間加熱処理した。
Next, the two quartz glasses were overlapped so that the surface of the bonding film in contact with the plasma was in contact with the surface of the other quartz glass substrate.
Then, the two quartz glass substrates were maintained for 60 seconds while being pressurized with 5 kN. As a result, a bonded body in which the quartz glass substrates were bonded to each other through the bonding film was obtained.
Next, after irradiating the bonding film with ultraviolet rays under the following conditions from one quartz glass substrate side of the obtained bonded body, the bonded body was heat-treated at 150 ° C. for 1 hour.

<紫外線照射条件>
・雰囲気の組成 :窒素雰囲気
・雰囲気の温度 :20℃
・雰囲気の圧力 :大気圧(100kPa)
・紫外線の波長 :172nm
・紫外線の照射時間 :30秒
・紫外線の積算光量 :0.2J/cm
<Ultraviolet irradiation conditions>
-Atmospheric composition: Nitrogen atmosphere-Atmospheric temperature: 20 ° C
・ Atmospheric pressure: Atmospheric pressure (100 kPa)
UV wavelength: 172 nm
・ UV irradiation time: 30 seconds ・ Integrated amount of UV light: 0.2 J / cm 2

(サンプルNo.2:本発明)
接合体の一方の石英ガラス基板側から照射する紫外線の照射時間を2分とし、紫外線の積算光量を0.8J/cmとしたこと以外は、前記サンプルNo.1と同様にして接合体を得た。
(サンプルNo.3:本発明)
接合体の一方の石英ガラス基板側から照射する紫外線の照射時間を5分とし、紫外線の積算光量を2.0J/cmとしたこと以外は、前記サンプルNo.1と同様にして接合体を得た。
(Sample No. 2: present invention)
Except that the irradiation time of ultraviolet rays irradiated from one quartz glass substrate side of the joined body was 2 minutes and the integrated light quantity of ultraviolet rays was 0.8 J / cm 2 , the sample No. 1 was obtained in the same manner.
(Sample No. 3: present invention)
Except that the irradiation time of ultraviolet rays irradiated from one quartz glass substrate side of the joined body was 5 minutes and the integrated light amount of ultraviolet rays was 2.0 J / cm 2 , the sample No. 1 was obtained in the same manner.

(サンプルNo.4:本発明)
接合体の一方の石英ガラス基板側から照射する紫外線の照射時間を20分とし、紫外線の積算光量を8.0J/cmとしたこと以外は、前記サンプルNo.1と同様にして接合体を得た。
(サンプルNo.5:参考例)
接合体の一方の石英ガラス基板側から照射する紫外線の照射時間を25分とし、紫外線の積算光量を10.0J/cmとしたこと以外は、前記サンプルNo.1と同様にして接合体を得た。
(サンプルNo.6:比較例)
接合体の一方の石英ガラス基板側からの紫外線の照射を省略したこと以外は、前記サンプルNo.1と同様にして接合体を得た。
(Sample No. 4: present invention)
Except that the irradiation time of ultraviolet rays irradiated from one quartz glass substrate side of the joined body was 20 minutes and the integrated light amount of ultraviolet rays was 8.0 J / cm 2 , the sample No. 1 was obtained in the same manner.
(Sample No. 5: Reference example)
Except that the irradiation time of ultraviolet rays irradiated from one quartz glass substrate side of the joined body was 25 minutes and the integrated light quantity of ultraviolet rays was 10.0 J / cm 2 , the sample No. 1 was obtained in the same manner.
(Sample No. 6: Comparative example)
Except that the irradiation of ultraviolet rays from one quartz glass substrate side of the joined body was omitted, the sample No. 1 was obtained in the same manner.

以上のようにして得られたサンプルNo.1〜サンプルNo.6の接合体について、石英ガラス基板同士間の接合強度を、薄膜密着強度測定装置(QUAD GROUP社製「ロミュラス」)を用いて測定した。
各サンプルNo.の接合体で測定された接合強度を表1に示す。
Sample No. obtained as described above was obtained. 1 to sample no. With respect to the joined body of No. 6, the bonding strength between the quartz glass substrates was measured using a thin film adhesion strength measuring apparatus (“Romulus” manufactured by QUAD GROUP).
Each sample No. Table 1 shows the bonding strength measured for the bonded body.

Figure 2010106079
Figure 2010106079

表1から明らかなように、サンプルNo.1〜4の接合体では、接合膜の接合強度が1.0MPa以上となっており、紫外線の照射が省略されたサンプルNo.6(比較例)の接合体における接合膜の接合強度(0.9MPa)と比較して、その接合強度が高くなる結果が得られた。
これに対して、サンプルNo.5の接合体では、接合膜の接合強度が0.8MPaとなっており、サンプルNo.6の接合体における接合膜の接合強度と比較して、その接合強度が低くなる結果が得られた。
以上のことから、接合膜に照射する紫外線の条件を適宜設定することにより、紫外線照射前の接合膜の接合強度よりも、紫外線照射後の接合膜の接合強度を高くし得ることが明らかとなった。
As is clear from Table 1, sample no. In the bonded bodies 1 to 4, the bonding strength of the bonding film was 1.0 MPa or more, and sample No. Compared with the bonding strength (0.9 MPa) of the bonding film in the bonded body of No. 6 (Comparative Example), a result of increasing the bonding strength was obtained.
In contrast, sample no. In the joined body of No. 5, the joining strength of the joining film is 0.8 MPa. Compared with the bonding strength of the bonding film in the bonded body of No. 6, the bonding strength was reduced.
From the above, it is clear that the bonding strength of the bonding film after the ultraviolet irradiation can be made higher than the bonding strength of the bonding film before the ultraviolet irradiation by appropriately setting the conditions of the ultraviolet rays irradiated to the bonding film. It was.

本発明の接合方法の第1実施形態を説明するための図(縦断面図)である。It is a figure (longitudinal sectional view) for demonstrating 1st Embodiment of the joining method of this invention. 本発明の接合方法の第1実施形態を説明するための図(縦断面図)である。It is a figure (longitudinal sectional view) for demonstrating 1st Embodiment of the joining method of this invention. 大気圧プラズマ装置の構成を示す概略図である。It is the schematic which shows the structure of an atmospheric pressure plasma apparatus. 接合膜に対する紫外線の照射時間と、接合膜の接合強度の関係を示す図である。It is a figure which shows the relationship between the irradiation time of the ultraviolet-ray with respect to a joining film | membrane, and the joining strength of a joining film | membrane. 本発明の接合方法の第2実施形態を説明するための図(縦断面図)である。It is a figure (longitudinal sectional view) for demonstrating 2nd Embodiment of the joining method of this invention. 本発明の接合体を適用して得られたインクジェット式記録ヘッド(液滴吐出ヘッド)を示す分解斜視図である。It is a disassembled perspective view which shows the inkjet recording head (droplet discharge head) obtained by applying the conjugate | zygote of this invention. 図6に示すインクジェット式記録ヘッドの主要部の構成を示す断面図である。It is sectional drawing which shows the structure of the principal part of the inkjet recording head shown in FIG. 図6に示すインクジェット式記録ヘッドを備えるインクジェットプリンタの実施形態を示す概略図である。It is the schematic which shows embodiment of an inkjet printer provided with the inkjet recording head shown in FIG. 接合膜に照射する光の波長と、接合膜の吸光係数の関係を示す図である。It is a figure which shows the relationship between the wavelength of the light irradiated to a bonding film, and the light absorption coefficient of a bonding film.

符号の説明Explanation of symbols

1……接合体 21……第1の基材 22……第2の基材 23、24……接合面 3……接合膜 30……液状被膜 32……表面 35……液状材料 10……インクジェット式記録ヘッド 11……ノズル板 111……ノズル孔 114……被膜 12……インク室基板 121……インク室 122……側壁 123……リザーバ室 124……供給口 13……振動板 131……連通孔 14……圧電素子 141……上部電極 142……下部電極 143……圧電体層 16……基体 161……凹部 162……段差 17……ヘッド本体 9……インクジェットプリンタ 92……装置本体 921……トレイ 922……排紙口 93……ヘッドユニット 931……インクカートリッジ 932……キャリッジ 94……印刷装置 941……キャリッジモータ 942……往復動機構 943……タイミングベルト 944……キャリッジガイド軸 95……給紙装置 951……給紙モータ 952……給紙ローラ 952a……従動ローラ 952b……駆動ローラ 96……制御部 97……操作パネル P……記録用紙 1000……プラズマ処理装置 1002……搬送装置 1010……ヘッド 1101……ヘッド本体 1102、1104……間隙 1103……下面 1015……印加電極 1017……高周波電源 1018……ガス供給流路 1019……対向電極 1181……開口部 1020……移動ステージ E……電界 G……処理ガス P……プラズマ発生領域 W……被処理基板   DESCRIPTION OF SYMBOLS 1 ... Bonded body 21 ... 1st base material 22 ... 2nd base material 23, 24 ... Bonding surface 3 ... Bonding film 30 ... Liquid film 32 ... Surface 35 ... Liquid material 10 ... Inkjet recording head 11 ... Nozzle plate 111 ... Nozzle hole 114 ... Coating 12 ... Ink chamber substrate 121 ... Ink chamber 122 ... Side wall 123 ... Reservoir chamber 124 ... Supply port 13 ... Vibration plate 131 ... ... Communication hole 14 ... Piezoelectric element 141 ... Upper electrode 142 ... Lower electrode 143 ... Piezoelectric layer 16 ... Base 161 ... Recess 162 ... Step 17 ... Head body 9 ... Inkjet printer 92 ... Apparatus Main body 921 …… Tray 922 …… Discharge port 93 …… Head unit 931 …… Ink cartridge 932 …… Carriage 94 …… Printer 941 ... Carriage motor 942 ... Reciprocating mechanism 943 ... Timing belt 944 ... Carriage guide shaft 95 ... Paper feed device 951 ... Paper feed motor 952 ... Paper feed roller 952a ... Driven roller 952b ... Drive roller 96 Control unit 97 Control panel P Recording sheet 1000 Plasma processing apparatus 1002 Transport apparatus 1010 Head 1101 Head body 1102, 1104 Gaps 1103 Bottom surface 1015 Application electrode 1017 ...... High-frequency power supply 1018 ...... Gas supply flow path 1019 ...... Counter electrode 1181 ...... Opening portion 1020 ...... Moving stage E ...... Electric field G ...... Processing gas P ...... Plasma generation region W ...... Substrate to be processed

Claims (15)

少なくとも一方が紫外線透過性を有する第1の基材と第2の基材とを用意し、前記第1の基材および前記第2の基材の少なくとも一方に、シリコーン材料を含有する液状材料を供給して液状被膜を形成する工程と、
前記液状被膜を乾燥して接合膜とする工程と、
前記接合膜にプラズマを接触させることにより、前記接合膜の表面付近に接着性を発現させる工程と、
当該接着性が発現した接合膜を介して前記第1の基材と前記第2の基材とを重ね合わせ、前記第1の基材と前記第2の基材とが前記接合膜を介して接合された接合体を得る工程と、
前記接合体に対して、前記第1の基材および前記第2の基材のうち前記紫外線透過性を有する基材側から紫外線を所定の条件で照射することにより、前記接合膜の接合強度を、前記プラズマの接触により発現した接着性により接合している接合強度よりも高い強度に調整する工程とを有することを特徴とする接合方法。
A first base material and a second base material, at least one of which is UV transmissive, are prepared, and a liquid material containing a silicone material is provided on at least one of the first base material and the second base material. Supplying and forming a liquid film;
Drying the liquid film to form a bonding film;
A step of expressing adhesiveness in the vicinity of the surface of the bonding film by bringing plasma into contact with the bonding film;
The first base material and the second base material are overlapped with each other through the bonding film expressing the adhesiveness, and the first base material and the second base material are interposed through the bonding film. Obtaining a joined assembly; and
By irradiating the bonded body with ultraviolet rays under a predetermined condition from the side of the first substrate and the second substrate having the ultraviolet transparency, the bonding strength of the bonding film is increased. And a step of adjusting the bonding strength to be higher than the bonding strength bonded by the adhesiveness developed by the contact of the plasma.
前記紫外線の波長は、120〜365μmである請求項1に記載の接合方法。   The bonding method according to claim 1, wherein the wavelength of the ultraviolet light is 120 to 365 μm. 前記紫外線を照射する時間は、0.5〜20分である請求項1または2に記載の接合方法。   The joining method according to claim 1 or 2, wherein the time for irradiating the ultraviolet rays is 0.5 to 20 minutes. 前記接合体に照射する前記紫外線の積算光量は、0.2〜8.0J/cmである請求項1ないし3のいずれかに記載の接合方法。 The integrated quantity of ultraviolet light, the bonding method according to any one of claims 1 to 3 is 0.2~8.0J / cm 2 irradiated to the bonding member. 前記プラズマの接触を、大気圧下で行う請求項1ないし4のいずれかに記載の接合方法。   The bonding method according to claim 1, wherein the plasma contact is performed under atmospheric pressure. 前記プラズマの接触は、互いに対向する電極間に電圧を印加した状態で、これらの間にガスを導入することにより前記ガスをプラズマ化した後、当該プラズマ化された前記ガスを前記接合膜に供給することによりなされる請求項1ないし5のいずれかに記載の接合方法。   In the plasma contact, in a state where a voltage is applied between electrodes facing each other, gas is introduced between them, and then the gas is converted into plasma, and then the plasmaized gas is supplied to the bonding film. The joining method according to claim 1, wherein the joining method is performed. 前記プラズマは、ヘリウムガスを主成分とするガスをプラズマ化したものである請求項1ないし6のいずれかに記載の接合方法。   The joining method according to claim 1, wherein the plasma is obtained by converting a gas containing helium gas as a main component into plasma. 前記プラズマは、ヘリウムガスを主成分とするガスをプラズマ化したものであり、当該ガスの前記電極間への供給速度は、1000〜20000sccmである請求項6に記載の接合方法。   The bonding method according to claim 6, wherein the plasma is obtained by converting a gas containing helium gas as a main component into a plasma, and a supply rate of the gas between the electrodes is 1000 to 20000 sccm. 前記ガス中の前記ヘリウムガスの含有量は、85vol%以上である請求項7または8に記載の接合方法。   The joining method according to claim 7 or 8, wherein a content of the helium gas in the gas is 85 vol% or more. 前記シリコーン材料は、その主骨格がポリジメチルシロキサンで構成される請求項1ないし9のいずれかに記載の接合方法。   The bonding method according to claim 1, wherein the silicone material has a main skeleton made of polydimethylsiloxane. 前記シリコーン材料は、シラノール基を有する請求項1ないし10のいずれかに記載の接合方法。   The bonding method according to claim 1, wherein the silicone material has a silanol group. 前記接合膜の平均厚さは、10〜10000nmである請求項1ないし11のいずれかに記載の接合方法。   The bonding method according to claim 1, wherein an average thickness of the bonding film is 10 to 10,000 nm. 前記第1の基材および前記第2の基材の前記接合膜と接触する面には、あらかじめ、前記接合膜との密着性を高める表面処理が施されている請求項1ないし12のいずれかに記載の接合方法。   The surface treatment which raises the adhesiveness with the said bonding film in advance is given to the surface which contacts the said bonding film of the said 1st base material and the said 2nd base material. The joining method described in 1. 前記表面処理は、プラズマ処理または紫外線照射処理である請求項13に記載の接合方法。   The bonding method according to claim 13, wherein the surface treatment is a plasma treatment or an ultraviolet irradiation treatment. 請求項1ないし14のいずれかに記載の接合方法により、前記第1の基材と前記第2の基材とを、前記接合膜を介して接合してなることを特徴とする接合体。   A joined body obtained by joining the first base material and the second base material through the joining film by the joining method according to claim 1.
JP2008277463A 2008-10-28 2008-10-28 Joining method and joined body Pending JP2010106079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008277463A JP2010106079A (en) 2008-10-28 2008-10-28 Joining method and joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008277463A JP2010106079A (en) 2008-10-28 2008-10-28 Joining method and joined body

Publications (1)

Publication Number Publication Date
JP2010106079A true JP2010106079A (en) 2010-05-13

Family

ID=42295859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008277463A Pending JP2010106079A (en) 2008-10-28 2008-10-28 Joining method and joined body

Country Status (1)

Country Link
JP (1) JP2010106079A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507607A (en) * 2008-10-29 2012-03-29 スリーエム イノベイティブ プロパティズ カンパニー Electron beam cured non-functionalized silicone pressure sensitive adhesive
JP2013072933A (en) * 2011-09-27 2013-04-22 Seiko Epson Corp Method for manufacturing interference filter
JP2013103456A (en) * 2011-11-16 2013-05-30 Kyoto Univ Composite material and method of manufacturing the same
KR101362967B1 (en) 2012-01-11 2014-02-13 정상희 Silicone adhesion sheet for optical bonding with plasmatreatment and manufacture method thereof
US9017771B2 (en) 2008-10-29 2015-04-28 3M Innovative Properties Company Gentle to skin adhesive
US9359529B2 (en) 2008-10-29 2016-06-07 3M Innovative Properties Company Electron beam cured silicone materials

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507607A (en) * 2008-10-29 2012-03-29 スリーエム イノベイティブ プロパティズ カンパニー Electron beam cured non-functionalized silicone pressure sensitive adhesive
US9017771B2 (en) 2008-10-29 2015-04-28 3M Innovative Properties Company Gentle to skin adhesive
US9359529B2 (en) 2008-10-29 2016-06-07 3M Innovative Properties Company Electron beam cured silicone materials
JP2013072933A (en) * 2011-09-27 2013-04-22 Seiko Epson Corp Method for manufacturing interference filter
JP2013103456A (en) * 2011-11-16 2013-05-30 Kyoto Univ Composite material and method of manufacturing the same
KR101362967B1 (en) 2012-01-11 2014-02-13 정상희 Silicone adhesion sheet for optical bonding with plasmatreatment and manufacture method thereof

Similar Documents

Publication Publication Date Title
JP4710897B2 (en) Separation method of joined body
JP4337935B2 (en) Bonded body and bonding method
JP2010275423A (en) Bonding method and bonded body
JP2010095595A (en) Bonding method and bonded body
JP4674619B2 (en) Nozzle plate, nozzle plate manufacturing method, droplet discharge head, and droplet discharge apparatus
JP4697253B2 (en) Bonding method, droplet discharge head, bonded body, and droplet discharge apparatus
JP4497218B2 (en) Joining method and joined body
JP4865688B2 (en) Droplet discharge head and droplet discharge apparatus
JP4608629B2 (en) Nozzle plate, nozzle plate manufacturing method, droplet discharge head, droplet discharge head manufacturing method, and droplet discharge apparatus
JP2011235533A (en) Liquid droplet ejection head and liquid droplet ejection apparatus
JP2010274523A (en) Head and device for discharging liquid droplet
JP2010106079A (en) Joining method and joined body
JP2009132749A (en) Bonding method and bonded body
JP2010275421A (en) Bonding method and bonded body
JP2010189518A (en) Bonding method and bonded article
JP2010275422A (en) Bonding method and bonded body
JP2010095594A (en) Bonding method and bonded body
JP4670905B2 (en) Bonding method, bonded body, droplet discharge head, and droplet discharge apparatus
JP2009292917A (en) Bonding method and bonded material
JP2009143992A (en) Joining method and joined body
JP5499514B2 (en) Joining method and joined body
JP2009248368A (en) Joined article and method for peeling joined article
JP2010106080A (en) Joining method and joined body
JP5434772B2 (en) Joining method
JP4947133B2 (en) Method for manufacturing droplet discharge head