JP2010104433A - Oxygen enriching air introduction system - Google Patents

Oxygen enriching air introduction system Download PDF

Info

Publication number
JP2010104433A
JP2010104433A JP2008277259A JP2008277259A JP2010104433A JP 2010104433 A JP2010104433 A JP 2010104433A JP 2008277259 A JP2008277259 A JP 2008277259A JP 2008277259 A JP2008277259 A JP 2008277259A JP 2010104433 A JP2010104433 A JP 2010104433A
Authority
JP
Japan
Prior art keywords
oxygen
flow rate
pipe
enriched
enriched air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008277259A
Other languages
Japanese (ja)
Other versions
JP5266015B2 (en
Inventor
Yoshiyasu Ito
良泰 伊藤
Yasunari Maeda
康成 前田
Kenji Adachi
研治 安達
So Yamamoto
壮 山本
Shigeyuki Yamaguchi
重行 山口
Kyoko Tsutsumi
恭子 堤
Hitoshi Kitamura
仁史 北村
Hisanori Shibata
尚紀 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008277259A priority Critical patent/JP5266015B2/en
Publication of JP2010104433A publication Critical patent/JP2010104433A/en
Application granted granted Critical
Publication of JP5266015B2 publication Critical patent/JP5266015B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control For Baths (AREA)
  • Devices For Medical Bathing And Washing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen enriching air introduction system, where the flow rate of oxygen enriching air is adjustable. <P>SOLUTION: In the oxygen enriching air introduction system, oxygen enriching air is produced by an oxygen enriching means 2 by causing negative pressures to be generated in the water flow of a pipe 6 and making it act on the oxygen enriching means 2 through an introduction pipe 1. Then, the produced oxygen enriching air is introduced into the pipe 6 from the introduction pipe 1. The system includes a flow rate adjustment means 3 to adjust the flow rate of water in the pipe 6 and at least either a sensor 4 to detect the pressure or flow rate of oxygen enriching air in the introduction pipe 1 or a sensor 5 to detect the temperature of oxygen enriching membrane 21 of oxygen enriching means 2 or its ambient temperature. The flow rate of oxygen enriching air made to enter the pipe 6 from the introduction pipe 1 is adjusted as the flow rate adjustment means 3 adjusts the flow rate of pipe 6 and changes the negative pressures taking place in the flow of pipe 6, in accordance with the pressure or flow rate of oxygen enriching air in the introduction pipe 1, or the temperature of oxygen enriching membrane 21, detected by the sensor 4, 5. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、酸素富化空気導入装置に関するものである。   The present invention relates to an oxygen-enriched air introduction device.

従来より、酸素富化装置で生成した酸素富化空気を浴槽の浴槽水をポンプで循環させる管路に導入して浴槽水に酸素富化空気を混入し、これを再び浴槽内に吐出する酸素富化給湯装置が知られている(例えば、特許文献1参照)。   Conventionally, oxygen-enriched air generated by an oxygen-enriching device is introduced into a pipe that circulates bathtub water in the bathtub with a pump, oxygen-enriched air is mixed into the bathtub water, and oxygen is discharged into the bathtub again. An enriched hot water supply apparatus is known (see, for example, Patent Document 1).

この酸素富化給湯装置は、管路に絞り部を設けてこの絞り部で生ずる負圧により酸素富化装置で生成した酸素富化空気を管路に導入している。酸素富化装置では酸素富化膜が使用されており、この酸素富化膜において酸素を選択的に透過させて酸素富化空気を生成している。酸素富化膜の特性上、環境温度によって透過流量が変動するため、上記酸素富化給湯装置では、管路に導入される酸素富化空気の流量にバラツキが生じ、このバラツキが管路のポンプ内部での気液混合比を変動させ、気体の比率が高い場合にはポンプがエアロックしてしまう等の問題が生じるおそれがあった。そこで、所望の気体流量を確保するために、真空ポンプを設け、酸素富化膜に真空ポンプによる真空圧を作用させて酸素富化空気を過剰に吸引し、全部もしくはその一部を管路に導入することが考えられる。すなわち、想定される最悪温度条件(低温条件)下でも所望の流量が得られるように流量設定しておき、高温条件下において空気が多すぎる場合には余剰空気を他へ排出することが考えられるが、真空ポンプおよび別経路が必要になる等のコスト高になるという問題があった。
特開2004−350932号公報
In this oxygen-enriched hot water supply apparatus, a throttle portion is provided in a pipe, and oxygen-enriched air generated by the oxygen enricher is introduced into the pipe by a negative pressure generated in the throttle. In the oxygen enrichment apparatus, an oxygen enriched film is used, and oxygen is selectively permeated through the oxygen enriched film to generate oxygen enriched air. Due to the characteristics of the oxygen-enriched membrane, the permeation flow rate varies depending on the environmental temperature. Therefore, in the oxygen-enriched hot water supply apparatus, the flow rate of oxygen-enriched air introduced into the pipe line varies, and this variation is the pump of the pipe line. When the gas-liquid mixing ratio in the interior is changed and the gas ratio is high, there is a possibility that a problem such as air lock of the pump may occur. Therefore, in order to secure a desired gas flow rate, a vacuum pump is provided, the vacuum pressure by the vacuum pump is applied to the oxygen-enriched membrane, and oxygen-enriched air is excessively sucked, and all or part of it is placed in the pipe line. It is possible to introduce. That is, it is conceivable that the flow rate is set so that a desired flow rate is obtained even under the assumed worst temperature condition (low temperature condition), and excess air is discharged to others when there is too much air under high temperature conditions. However, there is a problem that the cost becomes high, for example, a vacuum pump and another path are required.
JP 2004-350932 A

本発明は、以上のとおりの事情に鑑みてなされたものであり、酸素富化空気の流量を調整することができる酸素富化空気導入装置を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and an object thereof is to provide an oxygen-enriched air introducing device capable of adjusting the flow rate of oxygen-enriched air.

本発明は、上記の課題を解決するために、以下のことを特徴としている。   The present invention is characterized by the following in order to solve the above problems.

第1には、酸素富化膜を有し酸素富化空気を生成する酸素富化手段と、この酸素富化手段で生成された酸素富化空気を通水管に導入する導入配管を備え、通水管の水流で発生する負圧を導入配管から酸素富化手段に作用させて酸素富化手段で生成された酸素富化空気を導入配管から通水管に導入する酸素富化空気導入装置において、通水管の水流で発生する負圧を可変させる、通水管の流量を調整する流量調整手段と、導入配管内の圧力または酸素富化空気の流量を検知するセンサ、および酸素富化手段の酸素富化膜の温度またはその近傍の雰囲気温度を検知するセンサのうち少なくともいずれか一方のセンサが設けられており、前記センサで検知した導入配管内の圧力もしくは酸素富化空気の流量または酸素富化膜の温度もしくはその近傍の雰囲気温度に応じて、通水管の流量を流量調整手段で調整することにより通水管の水流で発生する負圧を変化させて導入配管から通水管に導入される酸素富化空気の流量を調整する。   First, an oxygen-enriching means that has an oxygen-enriched membrane and generates oxygen-enriched air, and an introduction pipe that introduces oxygen-enriched air generated by the oxygen-enriched means into the water pipe are provided. In an oxygen-enriched air introduction device that introduces oxygen-enriched air generated by the oxygen enrichment means from the introduction pipe into the water conduit by causing negative pressure generated in the water flow of the water pipe to act on the oxygen enrichment means from the introduction pipe. A flow rate adjusting means for adjusting the flow rate of the water pipe, which varies the negative pressure generated in the water flow of the water pipe, a sensor for detecting the pressure in the introduction pipe or the flow rate of the oxygen-enriched air, and the oxygen enrichment of the oxygen enrichment means At least one of sensors for detecting the temperature of the membrane or the ambient temperature in the vicinity thereof is provided, and the pressure in the introduction pipe detected by the sensor, the flow rate of oxygen-enriched air, or the oxygen-enriched membrane At or near temperature Adjusting the flow rate of oxygen-enriched air introduced from the inlet pipe to the water pipe by changing the negative pressure generated in the water flow of the water pipe by adjusting the flow rate of the water pipe with the flow rate adjusting means according to the ambient temperature. .

第2には、上記第1の発明において、流量調整手段が、液送ポンプである。   Second, in the first invention, the flow rate adjusting means is a liquid feed pump.

第1の発明によれば、導入配管内の圧力もしくは酸素富化空気の流量または酸素富化膜の温度もしくはその近傍の雰囲気温度に応じて通水管の水流で発生する負圧を流量調整手段で調整し、導入配管から通水管に導入される酸素富化空気の流量が大きく変動しないように予め設定した範囲内に調整することができる。したがって、環境温度の変動による酸素富化空気の流量のバラツキが抑制され、通水管に酸素富化空気を安定した流量で導入することができる。また、真空ポンプおよび余剰空気を排出する別経路を設置せずに酸素富化空気の流量のバラツキを抑制することができるためコスト安になるほか、真空ポンプと別経路の設置空間を確保することが不要になり、装置としての小型化設計が可能になる。   According to the first aspect of the present invention, the flow rate adjusting means generates the negative pressure generated in the water flow in the water pipe according to the pressure in the introduction pipe or the flow rate of the oxygen-enriched air or the temperature of the oxygen-enriched membrane or the ambient temperature in the vicinity thereof. It can be adjusted and adjusted within a preset range so that the flow rate of the oxygen-enriched air introduced from the introduction pipe into the water pipe does not fluctuate greatly. Therefore, variation in the flow rate of the oxygen-enriched air due to fluctuations in the environmental temperature is suppressed, and the oxygen-enriched air can be introduced into the water pipe at a stable flow rate. In addition, it is possible to suppress the variation in the flow rate of oxygen-enriched air without installing a vacuum pump and a separate path for discharging excess air. Is no longer necessary, and the device can be miniaturized.

流量調整手段が液送ポンプである第2の発明によれば、高圧水流を発生させることができ、酸素富化空気を通水管に容易に導入することができる。また、通水管に導入される酸素富化空気の流量のバラツキが抑制されるため、液送ポンプ内部での気液混合比の変動が抑制されて液送ポンプにエアロックが生じる問題が解消し、酸素富化空気導入装置を快適に駆動させることができる。   According to the second invention in which the flow rate adjusting means is a liquid feed pump, a high-pressure water flow can be generated, and oxygen-enriched air can be easily introduced into the water pipe. In addition, since fluctuations in the flow rate of oxygen-enriched air introduced into the water pipe are suppressed, fluctuations in the gas-liquid mixing ratio inside the liquid feed pump are suppressed, and the problem of air lock in the liquid feed pump is solved. The oxygen-enriched air introducing device can be driven comfortably.

本発明は前記のとおりの特徴をもつものであるが、以下に、本発明を実施するための最良の形態を説明する。   The present invention has the features as described above. The best mode for carrying out the present invention will be described below.

図1は、本発明の一実施形態である浴槽用の酸素富化空気導入装置の概略構成図である。   FIG. 1 is a schematic configuration diagram of an oxygen-enriched air introducing device for bathtubs according to an embodiment of the present invention.

浴槽20の側壁には、吸入口8と吐出口9が設けられており、吸入口8において浴槽20内の浴槽水Wを吸入し、吐出口9においてその浴槽水Wに酸素富化空気を溶解させた気体溶解水を吐出するようになっている。   A suction port 8 and a discharge port 9 are provided on the side wall of the bathtub 20, and the bathtub water W in the bathtub 20 is sucked into the suction port 8, and oxygen-enriched air is dissolved in the bathtub water W at the discharge port 9. The dissolved gas dissolved water is discharged.

吸入口8と吐出口9は浴槽20の外部に配設された浴槽水循環用の通水管6で連通されており、その通水管6の途中には流量調整手段3を構成する液送ポンプ31が配設され、液送ポンプ31の駆動により浴槽20内の浴槽水Wを吸入口8から吸入し、通水管6を経由して吐出口9から浴槽20内に吐出するようになっている。   The suction port 8 and the discharge port 9 are communicated with a water pipe 6 for circulating bath water disposed outside the bathtub 20, and a liquid feed pump 31 constituting the flow rate adjusting means 3 is provided in the middle of the water pipe 6. The bath water W in the bathtub 20 is sucked from the suction port 8 by driving the liquid feed pump 31 and discharged from the discharge port 9 into the bathtub 20 through the water pipe 6.

液送ポンプ31の上流側の通水管6には気体導入部10が設けられ、この気体導入部10に導入配管1が接続されている。さらに、この導入配管1の上流側には酸素富化手段2が配設されており、酸素富化手段2で作り出された酸素富化空気が導入配管1を経由して気体導入部10から通水管6に導入されるようになっている。   A gas introduction part 10 is provided in the water flow pipe 6 on the upstream side of the liquid feed pump 31, and the introduction pipe 1 is connected to the gas introduction part 10. Furthermore, an oxygen enrichment means 2 is disposed upstream of the introduction pipe 1, and oxygen-enriched air produced by the oxygen enrichment means 2 passes through the introduction pipe 1 from the gas introduction section 10. The water pipe 6 is introduced.

通水管6の気体導入部10はエジェクタ構造となっており、液送ポンプ31の駆動により発生した水流が通過すると負圧が発生し、この負圧を導入配管1から酸素富化手段2の酸素富化膜21に作用させることで、酸素富化手段2で生成された酸素富化空気を導入配管1から通水管6に導入するようにしている。この気体導入部10で発生する負圧は通水管6の水流の強さによって変動し、水流が強いほどより負圧の圧力が発生する。   The gas introduction part 10 of the water flow pipe 6 has an ejector structure, and a negative pressure is generated when the water flow generated by driving the liquid feed pump 31 passes, and this negative pressure is supplied from the introduction pipe 1 to the oxygen of the oxygen enrichment means 2. By acting on the enrichment film 21, the oxygen-enriched air generated by the oxygen enrichment means 2 is introduced from the introduction pipe 1 into the water pipe 6. The negative pressure generated in the gas introduction unit 10 varies depending on the strength of the water flow in the water pipe 6, and the stronger the water flow, the more negative pressure is generated.

酸素富化手段2は、窒素と酸素を分離して酸素を選択的に透過させる酸素富化膜21で構成されており、大気圧よりも低い負圧をこの酸素富化膜21の酸素が透過する側(酸素富化膜21の下流側)に作用させることにより酸素富化膜21の上流側の空気から酸素が選択的に多く取り込まれて相対的に酸素濃度の高い空気(酸素富化空気)が生成されるようになっている。酸素富化膜21の近傍には透過しにくい窒素が富化された空気が滞留する。このため本実施形態では酸素富化膜21の表面を換気する換気ファン22が設けられている。   The oxygen-enriching means 2 is composed of an oxygen-enriched film 21 that separates nitrogen and oxygen and selectively permeates oxygen, and oxygen in the oxygen-enriched film 21 permeates a negative pressure lower than atmospheric pressure. By acting on the side (downstream of the oxygen-enriched film 21), oxygen is selectively taken in from the air upstream of the oxygen-enriched film 21 and air having a relatively high oxygen concentration (oxygen-enriched air) ) Is generated. In the vicinity of the oxygen-enriched film 21, air enriched with nitrogen that is difficult to permeate stays. For this reason, in this embodiment, the ventilation fan 22 which ventilates the surface of the oxygen enrichment film | membrane 21 is provided.

この酸素富化膜21は一般に次のような特性を有している。すなわち、酸素富化膜21に作用させる負圧を一定とした場合、酸素富化膜21の温度が高くなればその透過流量は増大し、酸素富化膜21透過後の空気の酸素濃度は低下する。逆に温度が低くなれば透過流量が低下し、酸素富化膜21透過後の空気の酸素濃度は高くなる。そして酸素富化膜21透過後の空気の酸素濃度と透過流量との積で決定される酸素富化空気の供給量は、一般的に温度が高いほど増大する傾向にある。また、より負圧の圧力を酸素富化膜21に作用させると、透過流量が増大し、酸素富化膜21透過後の空気の酸素濃度が高くなり、酸素富化空気の供給量は一般的に増大する傾向にある。   This oxygen-enriched film 21 generally has the following characteristics. That is, when the negative pressure applied to the oxygen-enriched film 21 is constant, the permeate flow rate increases as the temperature of the oxygen-enriched film 21 increases, and the oxygen concentration of the air after permeating the oxygen-enriched film 21 decreases. To do. On the contrary, if the temperature is lowered, the permeation flow rate is lowered, and the oxygen concentration of the air after permeating the oxygen-enriched film 21 is increased. The supply amount of oxygen-enriched air determined by the product of the oxygen concentration of the air after permeating the oxygen-enriched membrane 21 and the permeation flow rate generally tends to increase as the temperature increases. Further, when a more negative pressure is applied to the oxygen-enriched membrane 21, the permeate flow rate is increased, the oxygen concentration of the air after permeating the oxygen-enriched membrane 21 is increased, and the supply amount of oxygen-enriched air is general. It tends to increase.

本実施形態では、このような酸素富化膜21の特性に基づき、通水管6に導入する酸素富化空気の流量を予め設定した範囲内に調整するようにしている。具体的には、導入配管1内の圧力や酸素富化空気の流量を検知するセンサ4、もしくは酸素富化手段の酸素富化膜の温度やその近傍の雰囲気温度を検知するセンサ5、またはそれら両方のセンサ4,5を設け、前記センサ4,5で検知した導入配管1内の圧力、酸素富化空気の流量、酸素富化膜21の温度やその近傍の雰囲気温度等の情報に基づいて液送ポンプ31の出力電圧(ポンプ能力)を変化させて通水管6内を流れる浴槽水Wの流量を調整する。通水管6内を流れる浴槽水Wの流量が変わると水流の強さも変わり、上述したように気体導入部10で発生する負圧も変わる。負圧が変われば、酸素富化膜21の特性上、酸素富化空気の流量が変わるため、液送ポンプ31のポンプ能力を変化させることで通水管6に導入する酸素富化空気の流量を予め設定した範囲内に調整することができる。   In the present embodiment, based on such characteristics of the oxygen-enriched membrane 21, the flow rate of oxygen-enriched air introduced into the water pipe 6 is adjusted within a preset range. Specifically, the sensor 4 for detecting the pressure in the introduction pipe 1 and the flow rate of the oxygen-enriched air, the sensor 5 for detecting the temperature of the oxygen-enriched film of the oxygen-enriching means and the ambient temperature in the vicinity thereof, or those Both sensors 4 and 5 are provided, and based on information such as the pressure in the introduction pipe 1 detected by the sensors 4 and 5, the flow rate of oxygen-enriched air, the temperature of the oxygen-enriched film 21, and the ambient temperature in the vicinity thereof. The flow rate of the bath water W flowing through the water pipe 6 is adjusted by changing the output voltage (pump capacity) of the liquid feed pump 31. When the flow rate of the bathtub water W flowing in the water pipe 6 is changed, the strength of the water flow is changed, and the negative pressure generated in the gas introduction unit 10 is changed as described above. If the negative pressure changes, the flow rate of the oxygen-enriched air changes due to the characteristics of the oxygen-enriched membrane 21. Therefore, the flow rate of the oxygen-enriched air introduced into the water pipe 6 is changed by changing the pumping capacity of the liquid feed pump 31. Adjustment can be made within a preset range.

次に酸素富化空気の流量が具体的にどのように変化するのか、図2を参照して説明する。図2は、酸素富化空気の流量−負圧特性を示す図であり、(a)は液送ポンプのポンプ能力が一定の場合、(b)は本実施形態を想定したものであり、液送ポンプのポンプ能力が可変する場合を示している。縦軸は酸素富化空気の流量を示し、横軸は負圧を示している。横軸に示す負圧はグラフの右側にいくほどより大きな負圧の圧力になっている。酸素富化膜のP−Q特性は膜の材料ロットや環境温度の変化によって変わり、直線AおよびBはそれぞれ想定される酸素富化膜のP−Q特性のバラツキの上限値と下限値を示している。酸素富化空気の流量は、酸素富化膜のP−Q特性と液送ポンプのP−Q特性とのつりあうポイントで決まる。例えば、図2(a)では液送ポンプのP−Q特性を示す直線Cと酸素富化膜のP−Q特性を示す直線Aとが交差するポイントaの横軸から読み取れる負圧が酸素富化膜に作用する圧力であり、そのときの酸素富化空気の流量が縦軸から読み取れるようにQU1となる。同様に、液送ポンプのP−Q特性を示す直線Cと酸素富化膜のP−Q特性を示す直線Bとが交差するポイントbの横軸から読み取れる負圧が酸素富化膜に作用する圧力であり、そのときの酸素富化空気の流量が縦軸から読み取れるようにQL1となる。したがって酸素富化膜のP−Q特性のバラツキを考慮した場合の酸素富化空気の流量変化はQL1〜QU1の範囲となる。 Next, how the flow rate of oxygen-enriched air specifically changes will be described with reference to FIG. FIG. 2 is a diagram showing the flow rate-negative pressure characteristics of oxygen-enriched air, where (a) shows the case where the pumping capacity of the liquid feed pump is constant, and (b) shows this embodiment. The case where the pumping capacity of the feed pump is variable is shown. The vertical axis represents the flow rate of oxygen-enriched air, and the horizontal axis represents negative pressure. The negative pressure shown on the horizontal axis is a larger negative pressure as it goes to the right side of the graph. The PQ characteristics of the oxygen-enriched film vary with changes in the material lot of the film and the environmental temperature, and the straight lines A and B indicate the upper and lower limits of the variation in the PQ characteristics of the oxygen-enriched film, respectively. ing. The flow rate of the oxygen-enriched air is determined by a balance point between the PQ characteristic of the oxygen-enriched film and the PQ characteristic of the liquid feed pump. For example, in FIG. 2A, the negative pressure that can be read from the horizontal axis at the point a where the straight line C indicating the PQ characteristic of the liquid feed pump intersects with the straight line A indicating the PQ characteristic of the oxygen-enriched film is oxygen-rich. The pressure acting on the chemical film is Q U1 so that the flow rate of oxygen-enriched air at that time can be read from the vertical axis. Similarly, a negative pressure that can be read from the horizontal axis at point b where the straight line C indicating the PQ characteristic of the liquid feed pump and the straight line B indicating the PQ characteristic of the oxygen-enriched film intersect acts on the oxygen-enriched film. The pressure is Q L1 so that the flow rate of the oxygen-enriched air at that time can be read from the vertical axis. Therefore, the change in the flow rate of the oxygen-enriched air when the variation in the PQ characteristic of the oxygen-enriched film is taken into consideration is in the range of Q L1 to Q U1 .

図2(b)の直線Dおよび直線Eは、それぞれ想定される液送ポンプのP−Q特性の上限値と下限値を示している。液送ポンプの出力電圧を変化させてポンプ能力を変化させたときのP−Q特性は、その上限値と下限値の間において直線Dまたは直線Eを平行移動させた直線で決定される。液送ポンプのポンプ能力を変化させると、(a)における酸素富化空気の流量変化であるQL1〜QU1の範囲よりもさらにその流量変化を小さくすることができる。例えば、液送ポンプのP−Q特性を示す直線Eと酸素富化膜のP−Q特性を示す直線Aとが交差するポイントcでは酸素富化空気の流量がQU2となり、液送ポンプのP−Q特性を示す直線Dと酸素富化膜のP−Q特性を示す直線Bとが交差するポイントdでは酸素富化空気の流量がQL2となる。すなわち、酸素富化膜のP−Q特性のバラツキを考慮した場合でも酸素富化空気の流量変化を、QL1〜QU1の範囲よりも小さいQL2〜QU2の範囲にすることができる。 A straight line D and a straight line E in FIG. 2B indicate an upper limit value and a lower limit value of the PQ characteristics of the assumed liquid feed pump, respectively. The PQ characteristic when the pump capacity is changed by changing the output voltage of the liquid feed pump is determined by a straight line obtained by translating the straight line D or the straight line E between the upper limit value and the lower limit value. When the pumping capacity of the liquid feed pump is changed, the flow rate change can be made smaller than the range of Q L1 to Q U1 , which is the flow rate change of the oxygen-enriched air in (a). For example, at a point c where the straight line E indicating the PQ characteristic of the liquid feed pump and the straight line A indicating the PQ characteristic of the oxygen-enriched membrane intersect, the flow rate of the oxygen-enriched air becomes Q U2 , At a point d where the straight line D indicating the PQ characteristic and the straight line B indicating the PQ characteristic of the oxygen-enriched film intersect, the flow rate of the oxygen-enriched air becomes QL2 . That is, even when the variation in the PQ characteristics of the oxygen-enriched film is taken into account, the change in the flow rate of the oxygen-enriched air can be in the range of Q L2 to Q U2 that is smaller than the range of Q L1 to Q U1 .

本実施形態では、図1に示すように、導入配管1内の圧力や酸素富化空気の流量を検知するセンサ4として導入配管にダイヤフラム型の圧力センサ41を設けている。この圧力センサ41は導入配管1内の圧力を検知するものであるが、導入配管1の内径が分かれば導入配管1内の酸素富化空気の流量も容易に算出することができる。なお、圧力センサ41の代わりに酸素富化空気の流量を検知するセンサを設けてもよい。また、酸素富化手段2の酸素富化膜21の温度やその近傍の雰囲気温度を検知するセンサ5として酸素富化膜21および換気ファン22を収納するケース23の内部にサーミスタ51を設置し、酸素富化膜21近傍の雰囲気温度を常時検知するようにしている。圧力センサ41、サーミスタ51および液送ポンプ31はそれぞれ制御ユニット30に接続されており、制御ユニット30では圧力センサ41やサーミスタ51で検知した情報に基づき、図2(b)に示したような酸素富化空気の流量範囲QL2〜QU2になるように液送ポンプ31の出力電圧を変化させて、通水管6内を流れる浴槽水Wの流量を調整するようにしている。酸素富化膜21の温度を検知する場合には、例えば酸素富化膜21にサーミスタ51を接触させて設ける。これら導入配管1内の圧力または酸素富化空気の流量を検知するセンサ4と、酸素富化手段2の酸素富化膜21の温度またはその近傍の雰囲気温度を検知するセンサ5は、少なくともいずれか一方が設けられていればよい。 In this embodiment, as shown in FIG. 1, a diaphragm type pressure sensor 41 is provided in the introduction pipe as a sensor 4 for detecting the pressure in the introduction pipe 1 and the flow rate of oxygen-enriched air. The pressure sensor 41 detects the pressure in the introduction pipe 1. If the inner diameter of the introduction pipe 1 is known, the flow rate of oxygen-enriched air in the introduction pipe 1 can be easily calculated. Instead of the pressure sensor 41, a sensor that detects the flow rate of oxygen-enriched air may be provided. Further, a thermistor 51 is installed inside the case 23 that houses the oxygen-enriched film 21 and the ventilation fan 22 as a sensor 5 that detects the temperature of the oxygen-enriched film 21 of the oxygen-enriching means 2 and the ambient temperature in the vicinity thereof. The ambient temperature in the vicinity of the oxygen-enriched film 21 is always detected. The pressure sensor 41, the thermistor 51, and the liquid feed pump 31 are connected to the control unit 30, respectively. Based on the information detected by the pressure sensor 41 and the thermistor 51 in the control unit 30, the oxygen as shown in FIG. The output voltage of the liquid feed pump 31 is changed so that the flow rate range Q L2 to Q U2 of the enriched air is adjusted, and the flow rate of the bathtub water W flowing in the water pipe 6 is adjusted. When detecting the temperature of the oxygen-enriched film 21, for example, the thermistor 51 is provided in contact with the oxygen-enriched film 21. At least one of the sensor 4 that detects the pressure in the introduction pipe 1 or the flow rate of the oxygen-enriched air and the sensor 5 that detects the temperature of the oxygen-enriched film 21 of the oxygen-enriching means 2 or the ambient temperature in the vicinity thereof. One side should just be provided.

そして通水管6に酸素富化空気が導入されると、通水管6内を流れる浴槽水Wに酸素富化空気が混入して気液混合水が生成する。この気液混合水は予め設定した範囲内の流量の酸素富化空気が導入されるため、液送ポンプ31にエアロックが生じるような高い気体比率とはならない。   When oxygen-enriched air is introduced into the water pipe 6, the oxygen-enriched air is mixed into the bathtub water W flowing through the water pipe 6 to generate gas-liquid mixed water. Since the gas-liquid mixed water is introduced with oxygen-enriched air at a flow rate within a preset range, the gas ratio does not become so high that an air lock occurs in the liquid feed pump 31.

液送ポンプ31と吐出口9の間の通水管6には溶解タンク7が配設されており、溶解タンク7内において蛇行した経路に気液混合水を通過させたり、気液混合水を攪拌したりすることで浴槽水Wに酸素富化空気を溶解させて気体溶解水を生成している。   A dissolution tank 7 is disposed in the water pipe 6 between the liquid feed pump 31 and the discharge port 9, and the gas-liquid mixed water is passed through a meandering path in the dissolution tank 7 or the gas-liquid mixed water is stirred. By doing so, the oxygen-enriched air is dissolved in the bath water W to generate gas-dissolved water.

溶解タンク7で生成された気体溶解水は、吐出口9から浴槽20内に吐出される。   The dissolved gas generated in the dissolution tank 7 is discharged into the bathtub 20 from the discharge port 9.

以上の構成の酸素富化空気導入装置は、環境温度の変動による酸素富化空気の流量のバラツキを抑制しつつ、酸素富化空気を安定した流量で通水管6に導入することができる。また、酸素富化空気の流量のバラツキの抑制にあたり、真空ポンプおよび余剰空気を排出する別経路を設置する必要がなくコスト安になるほか、真空ポンプおよび別経路の設置空間を確保することも不要になり、装置としての小型化設計が可能になる。   The oxygen-enriched air introduction device having the above configuration can introduce the oxygen-enriched air into the water pipe 6 at a stable flow rate while suppressing variations in the flow rate of the oxygen-enriched air due to changes in the environmental temperature. In addition, it is not necessary to install a vacuum pump and a separate path for exhausting excess air to reduce the variation in the flow rate of oxygen-enriched air, and it is not necessary to secure a space for installing the vacuum pump and another path. Therefore, it is possible to design the device as a small size.

以上、実施形態に基づき本発明を説明したが、本発明は上記の実施形態に何ら限定されるものではなく、その要旨を逸脱しない範囲内において各種の変更が可能である。例えば、本発明の酸素富化空気導入装置を浴槽に適用した場合を説明したが、シャワー装置等に適用してもよい。シャワー装置に適用する場合には、例えば、通水管を水道管に連結して水道管からの水道水に酸素富化空気を導入し、溶解タンクを経てシャワーヘッドから気体溶解水を吐出するようにしてもよい。   While the present invention has been described based on the embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. For example, although the case where the oxygen-enriched air introducing device of the present invention is applied to a bathtub has been described, it may be applied to a shower device or the like. When applied to a shower device, for example, a water pipe is connected to a water pipe, oxygen-enriched air is introduced into the tap water from the water pipe, and gas dissolved water is discharged from the shower head through the dissolution tank. May be.

本発明の一実施形態である浴槽用の酸素富化空気導入装置の概略構成図である。It is a schematic block diagram of the oxygen enriched air introduction apparatus for bathtubs which is one Embodiment of this invention. 酸素富化空気の流量−負圧特性を示す図であり、(a)は液送ポンプのポンプ能力が一定の場合、(b)は液送ポンプのポンプ能力が可変する場合を示している。It is a figure which shows the flow volume-negative pressure characteristic of oxygen-enriched air, (a) shows the case where the pump capacity of a liquid feed pump is constant, (b) shows the case where the pump capacity of a liquid feed pump varies.

符号の説明Explanation of symbols

1 導入配管
2 酸素富化手段
21 酸素富化膜
22 換気ファン
23 ケース
3 流量調整手段
31 液送ポンプ
4,5 センサ
6 通水管
W 浴槽水
DESCRIPTION OF SYMBOLS 1 Introduction piping 2 Oxygen enrichment means 21 Oxygen enrichment film 22 Ventilation fan 23 Case 3 Flow rate adjustment means 31 Liquid feed pump 4,5 Sensor 6 Water pipe W Bath water

Claims (2)

酸素富化膜を有し酸素富化空気を生成する酸素富化手段と、この酸素富化手段で生成された酸素富化空気を通水管に導入する導入配管を備え、通水管の水流で発生する負圧を導入配管から酸素富化手段に作用させて酸素富化手段で生成された酸素富化空気を導入配管から通水管に導入する酸素富化空気導入装置において、通水管の水流で発生する負圧を可変させる、通水管の流量を調整する流量調整手段と、導入配管内の圧力または酸素富化空気の流量を検知するセンサ、および酸素富化手段の酸素富化膜の温度またはその近傍の雰囲気温度を検知するセンサのうち少なくともいずれか一方のセンサが設けられており、前記センサで検知した導入配管内の圧力もしくは酸素富化空気の流量または酸素富化膜の温度もしくはその近傍の雰囲気温度に応じて、通水管の流量を流量調整手段で調整することにより通水管の水流で発生する負圧を変化させて導入配管から通水管に導入される酸素富化空気の流量を調整することを特徴とする酸素富化空気導入装置。   Oxygen-enriching means that has an oxygen-enriched membrane and generates oxygen-enriched air, and an introduction pipe that introduces oxygen-enriched air generated by this oxygen-enriched means into the water pipe, and is generated by the water flow in the water pipe Oxygen-enriched air introduction device that introduces oxygen-enriched air generated by the oxygen-enriching means from the introducing pipe into the water pipe by causing negative pressure to act on the oxygen-enriching means from the inlet pipe The flow rate adjusting means for adjusting the flow rate of the water pipe, the sensor for detecting the pressure in the introduction pipe or the flow rate of the oxygen-enriched air, and the temperature of the oxygen-enriched membrane of the oxygen-enriching means or its At least one of the sensors for detecting the ambient temperature in the vicinity is provided, and the pressure in the introduction pipe or the flow rate of the oxygen-enriched air detected by the sensor or the temperature of the oxygen-enriched film or the vicinity thereof is provided. Atmosphere temperature Accordingly, the flow rate of the oxygen-enriched air introduced from the introduction pipe to the flow pipe is adjusted by changing the negative pressure generated in the flow of the water pipe by adjusting the flow rate of the water pipe with the flow rate adjusting means. A featured oxygen-enriched air introduction device. 流量調整手段が、液送ポンプであることを特徴とする請求項1に記載の酸素富化空気導入装置。   2. The oxygen-enriched air introducing device according to claim 1, wherein the flow rate adjusting means is a liquid feed pump.
JP2008277259A 2008-10-28 2008-10-28 Oxygen-enriched air introduction device Expired - Fee Related JP5266015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008277259A JP5266015B2 (en) 2008-10-28 2008-10-28 Oxygen-enriched air introduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008277259A JP5266015B2 (en) 2008-10-28 2008-10-28 Oxygen-enriched air introduction device

Publications (2)

Publication Number Publication Date
JP2010104433A true JP2010104433A (en) 2010-05-13
JP5266015B2 JP5266015B2 (en) 2013-08-21

Family

ID=42294490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008277259A Expired - Fee Related JP5266015B2 (en) 2008-10-28 2008-10-28 Oxygen-enriched air introduction device

Country Status (1)

Country Link
JP (1) JP5266015B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102716009A (en) * 2012-06-13 2012-10-10 珠海市新依科医疗科技有限公司 Handheld blue oxygen gas-liquid mixing irrigator and blue oxygen irrigating protection system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042347A (en) * 1990-04-14 1992-01-07 Matsushita Electric Works Ltd Apparatus for supplying oxygen into bath tub
JPH04298287A (en) * 1991-03-26 1992-10-22 Matsushita Electric Works Ltd Apparatus for producing fine bubble carbonated spring
JP2006102201A (en) * 2004-10-06 2006-04-20 Matsushita Electric Ind Co Ltd Oxygen enrichment water heater
JP2007190466A (en) * 2006-01-17 2007-08-02 Toshio Miyashita Microbubble generating apparatus and gas-liquid mixing tank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042347A (en) * 1990-04-14 1992-01-07 Matsushita Electric Works Ltd Apparatus for supplying oxygen into bath tub
JPH04298287A (en) * 1991-03-26 1992-10-22 Matsushita Electric Works Ltd Apparatus for producing fine bubble carbonated spring
JP2006102201A (en) * 2004-10-06 2006-04-20 Matsushita Electric Ind Co Ltd Oxygen enrichment water heater
JP2007190466A (en) * 2006-01-17 2007-08-02 Toshio Miyashita Microbubble generating apparatus and gas-liquid mixing tank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102716009A (en) * 2012-06-13 2012-10-10 珠海市新依科医疗科技有限公司 Handheld blue oxygen gas-liquid mixing irrigator and blue oxygen irrigating protection system

Also Published As

Publication number Publication date
JP5266015B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
US9302298B2 (en) Device for supplying water containing dissolved gas and process for producing water containing dissolved gas
KR960029247A (en) Method and apparatus for producing ozone water
JP2009285651A (en) Apparatus for manufacturing liquid containing gas dissolved therein for carbonate spring
JP4964829B2 (en) Carbonated water production method and carbonated water production equipment
JP5266015B2 (en) Oxygen-enriched air introduction device
CN101135483A (en) An apparatus for adding humidity to gas
TWI736661B (en) Specific resistance value adjusting device and specific resistance value adjusting method
CN110087761A (en) Resistivity value adjuster and resistivity value method of adjustment
US10654014B2 (en) Functional water producing apparatus and functional water producing method
JP2010104873A (en) Oxygen-enriched air introducing apparatus
JP2007185559A (en) Method and device for dissolving gas
JP5215126B2 (en) Gas dissolved water supply device
JP3759461B2 (en) Ozone water production equipment
JP4944074B2 (en) Oxygen enrichment equipment
JP2008136974A (en) Water treatment system
JP2005270793A (en) Apparatus for production of nitrogen-dissolved water
JP2010051842A (en) Oxygen enrichment device
JP5092968B2 (en) Gas dissolved water supply apparatus and gas dissolved water manufacturing method
JP2009106352A (en) Oxygen-enriched air supplying apparatus
JP7328840B2 (en) Gas-dissolved water production device and method
JP7292957B2 (en) Dissolved gas water production device and method
JP2018153727A (en) Ozone water supply system
JP3759462B2 (en) Ozone water production equipment
JP2009254935A (en) Gas dissolving membrane device and method of manufacturing gas-dissolved solution
JP7260348B2 (en) Aeration system and method of operating the aeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100927

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees