JP2010102972A - Flat panel display, display apparatus using it, and phosphor film forming method - Google Patents

Flat panel display, display apparatus using it, and phosphor film forming method Download PDF

Info

Publication number
JP2010102972A
JP2010102972A JP2008273723A JP2008273723A JP2010102972A JP 2010102972 A JP2010102972 A JP 2010102972A JP 2008273723 A JP2008273723 A JP 2008273723A JP 2008273723 A JP2008273723 A JP 2008273723A JP 2010102972 A JP2010102972 A JP 2010102972A
Authority
JP
Japan
Prior art keywords
phosphor
surfactant
flat panel
density
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008273723A
Other languages
Japanese (ja)
Inventor
Choichiro Okazaki
暢一郎 岡崎
Yoshinori Aono
義則 青野
Hitotsugu Oaku
仁嗣 大阿久
Masaaki Komatsu
正明 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plasma Display Ltd
Original Assignee
Hitachi Plasma Display Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plasma Display Ltd filed Critical Hitachi Plasma Display Ltd
Priority to JP2008273723A priority Critical patent/JP2010102972A/en
Publication of JP2010102972A publication Critical patent/JP2010102972A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve high luminance and high efficiency of a display by attaining high density of a fluorescent film in a flat panel display. <P>SOLUTION: By coating the phosphor powder surface with a surfactant, the phosphor surface friction is reduced and adhesion force between particles is reduced, and thereby, fluorescent film density is improved. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、プラズマディスプレイパネル(以下PDPとも称す)等の平面型テレビ等に用いられるフラットパネルディスプレイ及びそれを使用したディスプレイ装置に関し、高効率化実現の為の蛍光膜改良に関する。   The present invention relates to a flat panel display used in a flat television such as a plasma display panel (hereinafter also referred to as PDP) and a display device using the flat panel display, and relates to improvement of a fluorescent film for realizing high efficiency.

プラズマディスプレイパネルは、大画面、薄型,平面テレビに用いられており、高性能化が進んでおり、より一層の効率向上が望まれている。また、高精細化によりセルサイズの微小化も進行している。   Plasma display panels are used in large-screen, thin, and flat-screen televisions, and their performance is increasing. Further improvement in efficiency is desired. In addition, miniaturization of cell size is also progressing due to high definition.

図2は、典型的プラズマディスプレイパネルの一例の構造の一部を示す分解斜視図である。プラズマディスプレイパネルは、前面基板と背面基板を貼り合わせた構造を有し、両基板間には放電ガスが封入されている。   FIG. 2 is an exploded perspective view showing a part of the structure of an example of a typical plasma display panel. The plasma display panel has a structure in which a front substrate and a rear substrate are bonded together, and a discharge gas is sealed between the substrates.

前面基板は、前面板ガラス1上に、維持放電(表示放電とも称す)のための、それぞれが透明電極2とバス電極3からなる複数の電極対(通常、電極対の一方をX電極と称し、他方をY電極と称す。図2には一対のみを示す)を有し、それら電極対は誘電体4と保護膜5により覆われている。背面基板は、背面板ガラス6上にアドレス電極9を有し、アドレス電極9は誘電体8で覆われている。さらに誘電体8上には隔壁7が構成され、隔壁7間には赤、青,緑色蛍光膜10が形成されている。   The front substrate has a plurality of electrode pairs each composed of a transparent electrode 2 and a bus electrode 3 (usually one of the electrode pairs is called an X electrode) for sustain discharge (also called display discharge) on the front plate glass 1. The other is referred to as a Y electrode (only one pair is shown in FIG. 2), and these electrode pairs are covered with a dielectric 4 and a protective film 5. The back substrate has address electrodes 9 on a back plate glass 6, and the address electrodes 9 are covered with a dielectric 8. Further, partition walls 7 are formed on the dielectric 8, and red, blue and green phosphor films 10 are formed between the partition walls 7.

前面基板側の電極と背面基板側の電極とが互いに概略直交するように(場合によっては、単に互いに交叉するように)、前面基板と背面基板の向きを合わせて、前面基板と背面基板とが封着され、両基板間の空隙部分には放電ガスが封入され、両基板間に複数のセルが形成されている。前面基板側の維持電極対と背面基板側のアドレス電極に電圧を選択的に印加することで、前記複数のセルのうち、所望のセルに放電を起こす。本放電により真空紫外線が発生し、発生した真空紫外線が各色蛍光膜10を励起することで赤、青、緑の発光がおこり、フルカラー表示を行う。背面基板は、図3の構造を有する場合もある。
また、パネル最前面には光学フィルタ11が設置され、製品セットとなる。
The front substrate and the back substrate are aligned so that the electrodes on the front substrate side and the electrodes on the back substrate side are substantially orthogonal to each other (in some cases, simply crossing each other). Sealing is performed, and a discharge gas is sealed in a gap between the two substrates, and a plurality of cells are formed between the two substrates. By selectively applying a voltage to the sustain electrode pair on the front substrate side and the address electrode on the rear substrate side, a discharge is generated in a desired cell among the plurality of cells. Vacuum ultraviolet rays are generated by the main discharge, and the generated vacuum ultraviolet rays excite each color phosphor film 10 to emit red, blue, and green light, thereby performing full color display. The back substrate may have the structure of FIG.
In addition, an optical filter 11 is installed on the forefront of the panel to form a product set.

図4にプラズマディスプレイパネルの断面図の一例を示す。プラズマディスプレイの発光効率向上の方法として蛍光体膜厚を増加する方法が考えられる。しかし、蛍光体膜厚を増していくにつれて放電空間が減少するため放電の効率は低下してしまい、セル全体としての効率は低下していく。   FIG. 4 shows an example of a cross-sectional view of the plasma display panel. As a method for improving the luminous efficiency of the plasma display, a method of increasing the phosphor film thickness can be considered. However, as the phosphor film thickness is increased, the discharge space is reduced, so that the discharge efficiency is lowered, and the efficiency of the entire cell is lowered.

蛍光膜の膜密度を向上することができれば、蛍光体使用量が一定で、膜厚を低減することができ、放電空間の増加による放電効率の向上が実現でき、プラズマディスプレイの高効率化が実現できる。   If the film density of the phosphor film can be improved, the amount of phosphor used is constant, the film thickness can be reduced, the discharge efficiency can be improved by increasing the discharge space, and the plasma display can be made more efficient. it can.

プラズマディスプレイ用に用いられる蛍光体粒子は小粒子化の傾向が進んでおり、現状の粒子径2〜5μmに対して、0.05〜0.3μmの小粒子化も提案されている(たとえば特許文献1参照)。   Phosphor particles used for plasma displays are becoming smaller particles, and a particle size of 0.05 to 0.3 μm is proposed for the current particle size of 2 to 5 μm (for example, patents). Reference 1).

粒子の積層物である粉体層における粒子間空間体積比率は空間率と呼ばれる。この空間率は粒子形状や粒子粒度分布によっても変化するが、粉体粒子の自重と粒子間付着力の関係から粒子径によっても変化する。
ローラーは、粒子径と空間率の関係を求めており、約10μm以下の限界粒子径以下の粒子径では、粒子間付着力の影響により粒子径が小さくなるにつれて空間率が急激に大きくなることを示している(非特許文献1)。
The inter-particle space volume ratio in the powder layer which is a laminate of particles is called a void ratio. This space ratio also changes depending on the particle shape and particle size distribution, but also changes depending on the particle diameter due to the relationship between the weight of the powder particles and the interparticle adhesion force.
The roller seeks the relationship between the particle diameter and the space ratio. When the particle diameter is less than the limit particle diameter of about 10 μm or less, the space ratio increases rapidly as the particle diameter decreases due to the interparticle adhesion force. (Non-Patent Document 1).

プラズマディスプレイ用蛍光体の粒子径は限界粒子径以下となっており、粉体層での充填率は粒子間付着力に影響される。従って粒子間付着力を低減することで蛍光粉体膜密度を向上させることが可能となる。   The particle size of the phosphor for plasma display is below the critical particle size, and the filling rate in the powder layer is affected by the adhesion between particles. Therefore, the density of the fluorescent powder film can be improved by reducing the adhesion between particles.

以上、いわゆる3電極・面放電構造のac型PDPについて説明したが、本特許はPDP全般に適用可能であることは言うまでもない。たとえば、dc型のPDP(例えば、非特許文献2参照)や対向放電型のPDP(例えば、非特許文献3参照)にも適用可能である。   The ac type PDP having a so-called three-electrode / surface discharge structure has been described above, but it goes without saying that this patent is applicable to all PDPs. For example, the present invention can be applied to a dc type PDP (for example, see Non-Patent Document 2) and a counter discharge type PDP (for example, see Non-Patent Document 3).

上記説明した構造のPDPでは、「本放電により真空紫外線が発生し、発生した真空紫外線が各色蛍光体を励起することで赤、青、緑の発光がおこり、フルカラー表示を行う」としているが、必ずしも真空紫外線で蛍光体を励起する場合だけでなく、通常の紫外線で蛍光体を励起する場合にも本発明を適用できることは言うまでもない。さらに、上記構造のPDPでは蛍光体により赤、青、緑の可視光を発生されるが、必ずしもこのような構造だけでなく、放電により直接可視光を発生させる構造にも本発明を適用できることは言うまでもない。 さらに、上記可視光は赤、青、緑の光に限定される事なく、他の色の可視光を発生させる場合、さらに単色の可視光を発生させる場合にも本発明を適用できることは言うまでもない
また、PDPだけで無く、蛍光体の励起源が電子線であるFED(Field Emission Display)等のフラットパネルディスプレイ全般に適用可能である。
In the PDP having the above-described structure, “ultraviolet rays are generated by the main discharge, and the generated vacuum ultraviolet rays excite each color phosphor to emit red, blue, and green, and perform full color display”. It goes without saying that the present invention can be applied not only to the case where the phosphor is excited with vacuum ultraviolet rays but also to the case where the phosphors are excited with normal ultraviolet rays. Further, in the PDP having the above structure, visible light of red, blue, and green is generated by the phosphor. However, the present invention can be applied not only to such a structure but also to a structure that directly generates visible light by discharge. Needless to say. Furthermore, the visible light is not limited to red, blue, and green light, and it goes without saying that the present invention can be applied to the case of generating visible light of other colors, and further to generating monochromatic visible light. In addition to the PDP, the present invention can be applied to all flat panel displays such as an FED (Field Emission Display) in which the excitation source of the phosphor is an electron beam.

特開2002−88355JP 2002-88355 A 粒子・粉体光学(日刊工業新聞社刊 2002年) P.40Particle / Powder Optics (Nikkan Kogyo Shimbun, 2002) 40 「プラズマディスプレイ最新技術」(EDリサーチ社、1996)P.121“Latest Plasma Display Technology” (ED Research, 1996) P.121 SID 93 digest P.173SID 93 digest P.I. 173

本発明が解決しようとする問題点は、フラットパネルディスプレイにおける発光効率向上であり、蛍光膜の膜密度向上実現により発光強度を向上させることである。   The problem to be solved by the present invention is to improve the light emission efficiency in the flat panel display, and to improve the light emission intensity by realizing the improvement of the film density of the fluorescent film.

本書において開示される発明のうち、代表的なものの概要を説明すれば、下記の通りである。
(1)界面活性剤が表面に付着した蛍光体を用いて成膜した蛍光膜を有するフラットパネルディスプレイ
(2)高級アルコールが表面に付着した蛍光体を用いて成膜した蛍光膜を有するフラットパネルディスプレイ
(3)高級脂肪酸が表面に付着した蛍光体を用いて成膜した蛍光膜を有するフラットパネルディスプレイ
(4)非イオン系分散剤が表面に付着した蛍光体を用いて成膜した蛍光膜を有するフラットパネルディスプレイ
(5)高分子系分散剤が表面に付着した蛍光体を用いて成膜した蛍光膜を有するフラットパネルディスプレイ
(6)蛍光膜密度が2.0 g/cm3以上であることを特徴とするフラットパネルディスプレイ
(7)上記(1)乃至(6)に記載のフラットパネルディスプレイを使用したディスプレイ装置
(8)蛍光体粉体表面に界面活性剤を付着させる工程と、成膜工程後の蛍光膜密度が2.0 g/cm3以上となる蛍光体形成工程を含むことを特徴とする蛍光体膜の形成方法。
The outline of typical inventions among inventions disclosed in this document will be described as follows.
(1) A flat panel display having a fluorescent film formed using a phosphor having a surfactant attached to the surface. (2) A flat panel having a fluorescent film formed using a phosphor having a higher alcohol attached to the surface. Display (3) A flat panel display having a fluorescent film formed using a phosphor with higher fatty acid attached to the surface. (4) A fluorescent film formed using a phosphor with a nonionic dispersant attached to the surface. Flat panel display (5) Flat panel display (6) having a fluorescent film formed using a phosphor with a polymeric dispersant adhering to the surface (6) The fluorescent film density is 2.0 g / cm 3 or more (7) Display device using the flat panel display described in (1) to (6) above (8) Phosphor powder surface A method for forming a phosphor film, comprising: a step of attaching a surfactant to the substrate; and a phosphor forming step in which the phosphor film density after the film forming step is 2.0 g / cm 3 or more.

本発明により、高密度蛍光膜を実現することができ、高効率フラットパネルディスプレイ及びそれを使用したディスプレイ装置が実現可能となる。   According to the present invention, a high-density fluorescent film can be realized, and a high-efficiency flat panel display and a display device using the same can be realized.

以下、図5乃至10を参照して本発明の一実施の形態を詳細に説明する。なお、本件発明を説明するための全図において、同一機能を有するものは同一符号を付け、その説明の繰り返しは省略する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. In all the drawings for explaining the present invention, the same reference numerals are given to those having the same function, and the description thereof will not be repeated.

図5にPDPの典型的な断面図を示す。また、図6には蛍光膜中の蛍光体粒子の様子を示す。現状の蛍光体粒子では蛍光体粒子表面の粒子間付着力が大きいため蛍光膜における空隙率が大きく膜密度は低い。   FIG. 5 shows a typical cross-sectional view of a PDP. FIG. 6 shows the state of the phosphor particles in the phosphor film. In the current phosphor particles, the interparticle adhesion force on the phosphor particle surface is large, so the porosity in the phosphor film is large and the film density is low.

これに対し本発明では、図7または図8に示すように蛍光体粒子12の表面の一部または全体を、界面活性剤13で被覆することを特徴とする。図9に示すように、界面活性剤被覆により蛍光体表面の粒子間付着力が低減するため粒子の充填率が向上し蛍光膜密度の向上、膜厚低減が可能となる。これにともない図10に示したように放電空間を広げることが可能となり放電効率の向上が可能となる。図10は本発明の一例を示したものであり。蛍光膜は蛍光体1層から成るものに限定されるものではない。なお界面活性剤は成膜工程中またはその後に、熱分解させ蛍光体粒子表面での残渣量は少ないことが望ましい。   On the other hand, the present invention is characterized in that a part or the whole of the surface of the phosphor particles 12 is coated with the surfactant 13 as shown in FIG. 7 or FIG. As shown in FIG. 9, since the adhesion between particles on the phosphor surface is reduced by the coating of the surfactant, the filling rate of the particles is improved, and the density of the fluorescent film can be improved and the film thickness can be reduced. Accordingly, the discharge space can be widened as shown in FIG. 10, and the discharge efficiency can be improved. FIG. 10 shows an example of the present invention. The fluorescent film is not limited to one composed of one phosphor layer. It is desirable that the surfactant is thermally decomposed during or after the film forming process so that the amount of residue on the phosphor particle surface is small.

本発明に用いる界面活性剤としては、オクシルアルコール、デシルアルコール、ラウリルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール、ベヘニルアルコール、2オクチルドデカノール等の高級アルコール類をはじめ、カブリル酸、カブリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸などの高級脂肪酸や、アルキルフェニルエーテル、アルキルアミン、ソルビタン脂肪酸エステルなどの非イオン系分散剤のほか、
ポリアクリル酸塩、ポリカルボン酸塩、ポリオキシアルキレン等の高分子系分散剤を利用することもできる。
Surfactants used in the present invention include higher alcohols such as octyl alcohol, decyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, behenyl alcohol, 2 octyldodecanol, cabrylic acid, cabric acid, laurin In addition to higher fatty acids such as acid, myristic acid, palmitic acid, stearic acid, and nonionic dispersants such as alkylphenyl ether, alkylamine, sorbitan fatty acid ester,
Polymeric dispersants such as polyacrylates, polycarboxylates, and polyoxyalkylenes can also be used.

以上の界面活性剤は、必要に応じてヘキサン、エチルアルコール、メチルアルコール、クロロホルム、エーテル等の有機溶剤に溶かして使用する。また、
これらの界面活性剤は、単体もしくは混合物として用いることが可能である。
The above surfactants are used by dissolving in an organic solvent such as hexane, ethyl alcohol, methyl alcohol, chloroform, ether or the like as necessary. Also,
These surfactants can be used alone or as a mixture.

本発明は、多くの蛍光体に適用可能であり、例えば赤蛍光体としては、(Y、Gd)BO:EuやY:Eu,(Y、Gd):Eu、YS:Eu,YVO:Eu、Y(P,V)O:Eu,(Y,Gd)(P,V)O:Euなどが、緑蛍光体としてはZnSiO:MnやYBO:Tb、(Y,Gd)BO:Tb、ZnS:Cu,Al、YSiO:Tbなどが、また青蛍光体としてはBaMgAl1017:EuやCaMgSi:Eu、SrMgSi:Eu,(Ca,Sr)MgSi:Eu,ZnS:Ag,ZnS:Ag,Alなど各種酸化物、あるいは硫化物蛍光体などを用いることが可能であり、複数の蛍光体を混合して用いることも可能である。また、3色蛍光体すべてに適用可能であるが、必要な色の蛍光体のみに対して適用してもよい。 The present invention can be applied to many phosphors. For example, as a red phosphor, (Y, Gd) BO 3 : Eu, Y 2 O 3 : Eu, (Y, Gd) 2 O 3 : Eu, Y 2 O 2 S: Eu, YVO 4 : Eu, Y (P, V) O 4 : Eu, (Y, Gd) (P, V) O 4 : Eu, and the like, as a green phosphor, Zn 2 SiO 4 : Mn, YBO 3 : Tb, (Y, Gd) BO 3 : Tb, ZnS: Cu, Al, Y 2 SiO 5 : Tb, etc., and blue phosphors include BaMgAl 10 O 17 : Eu and CaMgSi 2 O 6 : Eu, Sr 3 MgSi 2 O 8 : Eu, (Ca, Sr) 3 MgSi 2 O 8 : Eu, ZnS: Ag, ZnS: Ag, Al, various oxides such as Al, sulfide phosphors, etc. can be used. Yes, multiple phosphors can be mixed Noh. Further, although it can be applied to all three-color phosphors, it may be applied only to phosphors of a necessary color.

これらの蛍光体粒子表面を前記界面活性剤で被覆する。被覆する方法としては、蛍光体粒子と界面活性剤を同一容器内で脱泡攪拌機やボールミル、三本ロール、自動乳鉢、らいかい機等をもちいて攪拌する方法、蛍光体粒子を界面活性剤溶液内で攪拌、乾燥する方法などを用いることができる。また成膜時に用いる蛍光体ペースト作成時に、ビヒクル中に界面活性剤と蛍光体を混合しても同様の効果が得られる。
The surface of these phosphor particles is coated with the surfactant. As a coating method, the phosphor particles and the surfactant are stirred in the same container by using a defoaming stirrer, a ball mill, a three roll, an automatic mortar, a raking machine, etc., and the phosphor particles in the surfactant solution. The method of stirring and drying in the inside can be used. Further, the same effect can be obtained by mixing a surfactant and a phosphor in the vehicle at the time of preparing the phosphor paste used at the time of film formation.

以下に比較例を記す。   A comparative example is described below.

PDP用蛍光体として一般的に用いられているものとして、(Y、Gd)BO:Eu(赤色蛍光体)、ZnSiO:Mn(緑色蛍光体)、BaMgAl1017:Eu(青色蛍光体)を用い、蛍光体粉体のタッピング密度を測定した。 Commonly used phosphors for PDP include (Y, Gd) BO 3 : Eu (red phosphor), Zn 2 SiO 4 : Mn (green phosphor), BaMgAl 10 O 17 : Eu (blue) The tapping density of the phosphor powder was measured using a phosphor.

円筒系容器に一定重量の蛍光体粉体を投入した後、容器を高さ20cmより200回落下させて蛍光体粉体を充填し、投入重量と蛍光体粉体の示す体積との比を計算し、かさ密度を求めた。表1に示すように、赤、緑、青蛍光体のかさ密度はそれぞれ1.16、1.03、0.83(g/cc)であった。
つぎにこれらの蛍光体を用い、図2に示したPDPを作製した。
After putting a certain weight of phosphor powder into a cylindrical container, drop the container 200 times from a height of 20 cm to fill the phosphor powder, and calculate the ratio between the input weight and the volume indicated by the phosphor powder. The bulk density was determined. As shown in Table 1, the bulk densities of the red, green, and blue phosphors were 1.16, 1.03, and 0.83 (g / cc), respectively.
Next, using these phosphors, the PDP shown in FIG. 2 was produced.

この際、以下の手順で、隔壁7間に赤、青、緑色蛍光膜10を形成した。すわち、蛍光体40重量部とビヒクル60重量部を混ぜて蛍光体ペーストとし、スクリーン印刷により塗布し、乾燥、焼成工程によりペースト内の揮発成分の除去と有機物の燃焼除去を行い、蛍光体層を形成した。   At this time, red, blue, and green phosphor films 10 were formed between the barrier ribs 7 in the following procedure. In other words, 40 parts by weight of the phosphor and 60 parts by weight of the vehicle are mixed to form a phosphor paste, which is applied by screen printing, volatile components in the paste are removed, and organic substances are burned and removed by a drying and firing process. Formed.

作製したPDPにおける各色の蛍光膜の厚さを測定し、蛍光膜密度を計算したところ、各色の蛍光膜密度は、表2に示すように、それぞれ1.7、1.4、1.3(g/cc)であった。   When the thickness of the fluorescent film of each color in the manufactured PDP was measured and the fluorescent film density was calculated, the fluorescent film density of each color was 1.7, 1.4, 1.3 (see Table 2). g / cc).

蛍光体層を形成した背面基板を前面基板と貼りあわせて放電ガスを封入したプラズマディスプレイパネルを作製し、駆動回路を接続して輝度評価を行ったところ輝度は、500cd/m であった。以下この値を輝度の標準(100)とする。

Figure 2010102972
A plasma display panel in which a discharge gas was sealed by bonding the back substrate on which the phosphor layer was formed to the front substrate was manufactured, and the luminance was evaluated by connecting a drive circuit. As a result, the luminance was 500 cd / m 2 . This value is hereinafter referred to as the luminance standard (100).

Figure 2010102972


Figure 2010102972

Figure 2010102972

比較例1と同様の赤、緑、青色蛍光体を用いたが、本実施例では蛍光体を界面活性剤で被覆をした点が比較例とは異なる。界面活性剤としてソルビタン脂肪酸エステルを用いて蛍光体表面を修飾した。   The same red, green, and blue phosphors as in Comparative Example 1 were used, but in this example, the phosphor was coated with a surfactant, which was different from the comparative example. The phosphor surface was modified using sorbitan fatty acid ester as a surfactant.

蛍光体粉体とソルビタン脂肪酸エステルとを脱泡攪拌機にて2000rpm、4分間攪拌し界面活性剤で表面被覆された蛍光体粉体を作製した。この際、界面活性剤の添加濃度の異なるものを作製し、かさ密度を測定した。一例として緑蛍光体(ZnSiO:Mn)での結果を図11に示した。界面活性剤添加によりかさ密度は向上しており、蛍光体表面被覆によりかさ密度の向上が実現できた。また赤、青色蛍光体についても同様の効果が示された。以下に一例として界面活性剤添加濃度0.1g/ccで表面修飾した赤、緑、青蛍光体を用いた場合の特性結果を示す。表1に示すように表面修飾した蛍光体のかさ密度は比較例に対して三色とも向上した。また、本蛍光体を用いて作製したPDPにおける蛍光膜厚さは、比較例に対して三色とも減少しており、表2に示すように各色の蛍光膜密度はいずれも2g/cc以上となり比較例に対して高密度な蛍光膜が実現できた。PDPの発光輝度は比較例(100)に対して、110となり向上した。蛍光膜密度向上による蛍光膜発光効率の向上および放電空間が広がったことによる放電効率向上により輝度向上が実現できた。 The phosphor powder and sorbitan fatty acid ester were stirred with a defoaming stirrer at 2000 rpm for 4 minutes to prepare a phosphor powder whose surface was coated with a surfactant. At this time, products having different surfactant addition concentrations were prepared, and the bulk density was measured. As an example, the results with a green phosphor (Zn 2 SiO 4 : Mn) are shown in FIG. The bulk density was improved by the addition of the surfactant, and the bulk density was improved by the phosphor surface coating. Similar effects were shown for red and blue phosphors. As an example, characteristic results when using red, green, and blue phosphors surface-modified with a surfactant addition concentration of 0.1 g / cc are shown below. As shown in Table 1, the bulk density of the surface-modified phosphor was improved in all three colors with respect to the comparative example. In addition, the fluorescent film thickness of the PDP produced using this phosphor is reduced for all three colors compared to the comparative example, and as shown in Table 2, the density of each color fluorescent film is 2 g / cc or more. Compared with the comparative example, a high-density fluorescent film was realized. The light emission luminance of the PDP was improved to 110 compared to the comparative example (100). Brightness can be improved by improving the luminous efficiency of the fluorescent film by increasing the density of the fluorescent film and by improving the discharge efficiency by expanding the discharge space.

界面活性剤としてポリオキシアルキレン誘導体を用いた他は実施例1と同様の方法で試料を作製、評価を行った。一例として緑蛍光体(ZnSiO:Mn)を表面被覆した場合の、界面活性剤添加濃度―かさ密度変化を図12に示した。 A sample was prepared and evaluated in the same manner as in Example 1 except that a polyoxyalkylene derivative was used as the surfactant. As an example, FIG. 12 shows the surfactant addition concentration-bulk density change when the surface of a green phosphor (Zn 2 SiO 4 : Mn) is coated.

界面活性剤添加によりかさ密度は向上しており、蛍光体表面被覆によりかさ密度の向上が実現できた。また赤、青色蛍光体についても同様の効果が示された。以下に一例として界面活性剤添加濃度0.1g/ccで表面修飾した赤、緑、青蛍光体を用いた場合の特性結果を示す。表1に示すように表面修飾した蛍光体のかさ密度は比較例に対して三色とも向上した。また、本蛍光体を用いて作製したPDPにおける蛍光膜厚さは比較例に対して三色とも減少しており、表2に示すように各色の蛍光膜密度はいずれも2g/cc以上となり比較例に対して高密度な蛍光膜が実現できた。PDPの発光輝度は比較例(100)に対して107となり向上した。蛍光膜密度向上による蛍光膜発光効率の向上および放電空間が広がったことによる放電効率向上により輝度向上が実現できた。   The bulk density was improved by the addition of the surfactant, and the bulk density was improved by the phosphor surface coating. Similar effects were shown for red and blue phosphors. As an example, characteristic results when using red, green, and blue phosphors surface-modified with a surfactant addition concentration of 0.1 g / cc are shown below. As shown in Table 1, the bulk density of the surface-modified phosphor was improved in all three colors with respect to the comparative example. In addition, the phosphor film thickness of the PDP produced using this phosphor is reduced for all three colors compared to the comparative example, and as shown in Table 2, the density of each phosphor film is 2 g / cc or more. For example, a high-density fluorescent film was realized. The light emission luminance of the PDP was improved to 107 with respect to the comparative example (100). Brightness can be improved by improving the luminous efficiency of the fluorescent film by increasing the density of the fluorescent film and by improving the discharge efficiency by expanding the discharge space.

界面活性剤としてポリカルボン酸塩(トルエン中20%溶液)を用いた他は実施例1と同様の方法で試料を作製、評価を行った。一例として緑蛍光体(ZnSiO:Mn)を表面被覆した場合の、界面活性剤添加濃度―かさ密度変化を図13に示した。 A sample was prepared and evaluated in the same manner as in Example 1 except that polycarboxylate (20% solution in toluene) was used as the surfactant. As an example, FIG. 13 shows the surfactant addition concentration-bulk density change when the surface of a green phosphor (Zn 2 SiO 4 : Mn) is coated.

界面活性剤添加によりかさ密度は向上しており、蛍光体表面被覆によりかさ密度の向上が実現できた。また赤、青色蛍光体についても同様の効果が示された。以下に一例として界面活性剤添加濃度0.1g/ccで表面修飾した赤緑青蛍光体を用いた場合の特性結果を示す。表1に示すように表面修飾した蛍光体のかさ密度は比較例に対して三色とも向上した。また、本蛍光体を用いて作製したPDPにおける蛍光膜厚さは、比較例に対して三色とも減少しており、表2に示すように各色の蛍光膜密度はいずれも2g/cc以上の高密度な蛍光膜が実現できた。PDPの発光輝度は比較例(100)に対して105となり向上した。蛍光膜密度向上による蛍光膜発光効率の向上および放電空間が広がったことによる放電効率向上により輝度向上が実現できた。   The bulk density was improved by the addition of the surfactant, and the bulk density was improved by the phosphor surface coating. Similar effects were shown for red and blue phosphors. As an example, the characteristic results when using a red, green and blue phosphor surface-modified with a surfactant addition concentration of 0.1 g / cc are shown below. As shown in Table 1, the bulk density of the surface-modified phosphor was improved in all three colors with respect to the comparative example. In addition, the fluorescent film thickness in the PDP produced using this phosphor is reduced in all three colors compared to the comparative example, and as shown in Table 2, the density of the fluorescent film of each color is 2 g / cc or more. A high-density fluorescent film was realized. The light emission luminance of the PDP was improved to 105 with respect to the comparative example (100). Brightness can be improved by improving the luminous efficiency of the fluorescent film by increasing the density of the fluorescent film and by improving the discharge efficiency by expanding the discharge space.

界面活性剤としてセチルアルコール(ヘキサン中20%溶液)を用いた他は実施例1と同様の方法で試料を作製、評価を行った。   A sample was prepared and evaluated in the same manner as in Example 1 except that cetyl alcohol (20% solution in hexane) was used as the surfactant.

以下に一例として界面活性剤添加濃度0.1g/ccで表面修飾した赤緑青蛍光体を用いた場合の特性結果を示す。表1に示すように表面修飾した蛍光体のかさ密度は比較例に対して三色とも向上した。また、本蛍光体を用いて作製したPDPにおける蛍光膜厚さは比較例に対して三色とも減少しており、表2に示すように各色の蛍光膜密度はいずれも2g/cc以上となり比較例に対して高密度な蛍光膜が実現できた。PDPの発光輝度は比較例(100)に対して105となり向上した。蛍光膜密度向上による蛍光膜発光効率の向上および放電空間が広がったことによる放電効率向上により輝度向上が実現できた。   As an example, the characteristic results when using a red, green and blue phosphor surface-modified with a surfactant addition concentration of 0.1 g / cc are shown below. As shown in Table 1, the bulk density of the surface-modified phosphor was improved in all three colors with respect to the comparative example. In addition, the phosphor film thickness of the PDP produced using this phosphor is reduced for all three colors compared to the comparative example, and as shown in Table 2, the density of each phosphor film is 2 g / cc or more. For example, a high-density fluorescent film was realized. The light emission luminance of the PDP was improved to 105 with respect to the comparative example (100). Brightness can be improved by improving the luminous efficiency of the fluorescent film by increasing the density of the fluorescent film and by improving the discharge efficiency by expanding the discharge space.

界面活性剤としてステアリン酸(クロロホルム中20%溶液)を用いた他は実施例1と同様の方法で試料を作製、評価を行った。   A sample was prepared and evaluated in the same manner as in Example 1 except that stearic acid (20% solution in chloroform) was used as the surfactant.

以下に一例として界面活性剤添加濃度0.1g/ccで表面修飾した赤緑青蛍光体を用いた場合の特性結果を示す。表1に示すように表面修飾した蛍光体のかさ密度は比較例に対して三色とも向上した。また、本蛍光体を用いて作製したPDPにおける蛍光膜厚さは比較例に対して三色とも減少しており、表2に示すように各色の蛍光膜密度はいずれも2g/cc以上となり比較例に対して高密度な蛍光膜が実現できた。PDPの発光輝度は比較例(100)に対して107となり向上した。蛍光膜密度向上による蛍光膜発光効率の向上および放電空間が広がったことによる放電効率向上により輝度向上が実現できた。   As an example, the characteristic results when using a red, green and blue phosphor surface-modified with a surfactant addition concentration of 0.1 g / cc are shown below. As shown in Table 1, the bulk density of the surface-modified phosphor was improved in all three colors with respect to the comparative example. In addition, the phosphor film thickness of the PDP produced using this phosphor is reduced for all three colors compared to the comparative example, and as shown in Table 2, the density of each phosphor film is 2 g / cc or more. For example, a high-density fluorescent film was realized. The light emission luminance of the PDP was improved to 107 with respect to the comparative example (100). Brightness can be improved by improving the luminous efficiency of the fluorescent film by increasing the density of the fluorescent film and by improving the discharge efficiency by expanding the discharge space.

本発明のフラットパネルディスプレイの概略を示す図。The figure which shows the outline of the flat panel display of this invention. プラズマディスプレイパネルの構造を示す斜視図。The perspective view which shows the structure of a plasma display panel. プラズマディスプレイの背面基板の一例を示す斜視図である。It is a perspective view which shows an example of the back substrate of a plasma display. プラズマディスプレイパネルの断面図。Sectional drawing of a plasma display panel. プラズマディスプレイパネルの断面図。Sectional drawing of a plasma display panel. 蛍光膜中の蛍光体粒子の様子を説明する図。The figure explaining the mode of the fluorescent substance particle in a fluorescent film. 本発明の一例における表面被覆された蛍光体粒子を示す図。The figure which shows the surface-coated fluorescent substance particle in an example of this invention. 本発明の一例における表面被覆された蛍光体粒子を示す図。The figure which shows the surface-coated fluorescent substance particle in an example of this invention. 本発明の一例における蛍光膜中の蛍光体粒子の様子を示す図。The figure which shows the mode of the fluorescent substance particle in the fluorescent film in an example of this invention. 蛍光膜の膜厚を説明する図。The figure explaining the film thickness of a fluorescent film. 界面活性剤添加濃度―かさ密度変化を説明する図。The figure explaining surfactant addition concentration-bulk density change. 界面活性剤添加濃度―かさ密度変化を説明する図。The figure explaining surfactant addition concentration-bulk density change. 界面活性剤添加濃度―かさ密度変化を説明する図。The figure explaining surfactant addition concentration-bulk density change.

符号の説明Explanation of symbols

1…前面板ガラス、2…透明電極、3…バス電極、4…誘電体、
5…保護膜、6…背面板ガラス、7…隔壁、8…誘電体、
9…アドレス電極、10…蛍光膜、11…光学フィルタ、
12…蛍光体粒子、13…界面活性剤。
DESCRIPTION OF SYMBOLS 1 ... Front plate glass, 2 ... Transparent electrode, 3 ... Bus electrode, 4 ... Dielectric,
5 ... Protective film, 6 ... Back plate glass, 7 ... Partition, 8 ... Dielectric,
9 ... Address electrode, 10 ... Fluorescent film, 11 ... Optical filter,
12 ... phosphor particles, 13 ... surfactant.

Claims (8)

界面活性剤が表面に付着した蛍光体を用いて成膜した蛍光膜を有するフラットパネルディスプレイ   Flat panel display having a phosphor film formed using a phosphor with a surfactant attached to the surface 前記界面活性剤が高級アルコールであることを特徴とする請求項1に記載のフラットパネルディスプレイ   The flat panel display according to claim 1, wherein the surfactant is a higher alcohol. 前記界面活性剤が高級脂肪酸であることを特徴とする請求項1に記載のフラットパネルディスプレイ   The flat panel display according to claim 1, wherein the surfactant is a higher fatty acid. 前記界面活性剤が非イオン系分散剤であることを特徴とする請求項1に記載のフラットパネルディスプレイ   The flat panel display according to claim 1, wherein the surfactant is a nonionic dispersant. 前記界面活性剤が高分子系分散剤であることを特徴とする請求項1に記載のフラットパネルディスプレイ   2. The flat panel display according to claim 1, wherein the surfactant is a polymer dispersant. 前記蛍光膜の密度が2.0 g/cm3以上であることを特徴とする請求項1に記載のフラットパネルディスプレイ   The flat panel display according to claim 1, wherein the density of the fluorescent film is 2.0 g / cm3 or more. 請求項1乃至6に記載のフラットパネルディスプレイを使用したディスプレイ装置。   A display device using the flat panel display according to claim 1. 蛍光体粉体表面に界面活性剤を付着させる工程と、成膜工程後の蛍光膜密度が2.0 g/cm3以上となる蛍光体形成工程を含むことを特徴とする蛍光体膜の形成方法。   A method for forming a phosphor film, comprising: a step of attaching a surfactant to the surface of the phosphor powder; and a phosphor forming step in which the density of the phosphor film after the film forming step is 2.0 g / cm 3 or more.
JP2008273723A 2008-10-24 2008-10-24 Flat panel display, display apparatus using it, and phosphor film forming method Pending JP2010102972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008273723A JP2010102972A (en) 2008-10-24 2008-10-24 Flat panel display, display apparatus using it, and phosphor film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008273723A JP2010102972A (en) 2008-10-24 2008-10-24 Flat panel display, display apparatus using it, and phosphor film forming method

Publications (1)

Publication Number Publication Date
JP2010102972A true JP2010102972A (en) 2010-05-06

Family

ID=42293453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008273723A Pending JP2010102972A (en) 2008-10-24 2008-10-24 Flat panel display, display apparatus using it, and phosphor film forming method

Country Status (1)

Country Link
JP (1) JP2010102972A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117561A1 (en) * 2015-01-20 2016-07-28 デンカ株式会社 Phosphor and light-emitting device
JP2017525801A (en) * 2014-08-04 2017-09-07 ローディア オペレーションズ Modified phosphor and composition thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213253A (en) * 2001-12-13 2003-07-30 Osram Sylvania Inc Phosphor paste composition
JP2003292947A (en) * 2002-01-30 2003-10-15 Sumitomo Chem Co Ltd Fluorescent paste
JP2004071434A (en) * 2002-08-08 2004-03-04 Konica Minolta Holdings Inc Plasma display panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213253A (en) * 2001-12-13 2003-07-30 Osram Sylvania Inc Phosphor paste composition
JP2003292947A (en) * 2002-01-30 2003-10-15 Sumitomo Chem Co Ltd Fluorescent paste
JP2004071434A (en) * 2002-08-08 2004-03-04 Konica Minolta Holdings Inc Plasma display panel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017525801A (en) * 2014-08-04 2017-09-07 ローディア オペレーションズ Modified phosphor and composition thereof
JP2020122147A (en) * 2014-08-04 2020-08-13 ローディア オペレーションズ Modified phosphors and compositions thereof
WO2016117561A1 (en) * 2015-01-20 2016-07-28 デンカ株式会社 Phosphor and light-emitting device
KR20170105592A (en) * 2015-01-20 2017-09-19 덴카 주식회사 Phosphor and light emitting device
JPWO2016117561A1 (en) * 2015-01-20 2017-10-26 デンカ株式会社 Phosphor and light emitting device
KR102639166B1 (en) 2015-01-20 2024-02-22 덴카 주식회사 Phosphors and light-emitting devices

Similar Documents

Publication Publication Date Title
JP2005116363A (en) Plasma display panel
JP2007103052A (en) Plasma display panel
JP2008050523A (en) Plasma display device and light-emitting device
JPH11317170A (en) Plasma display panel
JP2010102972A (en) Flat panel display, display apparatus using it, and phosphor film forming method
JP3251206B2 (en) Plasma display panel
US8410677B2 (en) Blue phosphor, light-emitting device, and plasma display panel
JP3264239B2 (en) Phosphor material, manufacturing method thereof, and phosphor film
Hong et al. Improvement of discharge characteristics of the Zn2SiO4: Mn2+ phosphor layer in plasma display panels
JP2002080837A (en) Method for producing phosphor paste composition, phosphor paste composition and light-emitting device by vacuum ultraviolet radiation excitation
JP2001135239A (en) Plasma display unit and picture image display system using the same
JP3457288B2 (en) Plasma display panel and method of manufacturing the same
JP2004091622A (en) Plasma display panel and fluorophor
US8836206B2 (en) Plasma display panel and phosphor
JP5094246B2 (en) Plasma display device
JP3436260B2 (en) Plasma display panel
JP3939946B2 (en) Phosphors for plasma display panels
JP2008303230A (en) Phosphor and manufacturing method therefor
JPH11172241A (en) Phosphor material, phosphor film, and plasma display panel
JP4860501B2 (en) Green phosphor of plasma display panel
JP2009252531A (en) Plasma display panel
Heo et al. The optimum phosphor thickness to obtain the highest luminance and luminous efficiency in ac PDP
JP2008262927A (en) Plasma display unit and video display system using it
JP5022865B2 (en) Image display device
JP2002083570A (en) Vacuum ultraviolet excitation-emissive element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305