JP2010101262A - Exhaust emission control device of engine - Google Patents

Exhaust emission control device of engine Download PDF

Info

Publication number
JP2010101262A
JP2010101262A JP2008274175A JP2008274175A JP2010101262A JP 2010101262 A JP2010101262 A JP 2010101262A JP 2008274175 A JP2008274175 A JP 2008274175A JP 2008274175 A JP2008274175 A JP 2008274175A JP 2010101262 A JP2010101262 A JP 2010101262A
Authority
JP
Japan
Prior art keywords
temperature
electric pump
engine
reducing agent
nox purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008274175A
Other languages
Japanese (ja)
Other versions
JP5195277B2 (en
Inventor
Hiroyuki Nishimura
博幸 西村
Yoshiaki Tomita
吉昭 富田
Masato Katsuta
真斗 勝田
Tamiji Nakamura
民治 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2008274175A priority Critical patent/JP5195277B2/en
Publication of JP2010101262A publication Critical patent/JP2010101262A/en
Application granted granted Critical
Publication of JP5195277B2 publication Critical patent/JP5195277B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1433Pumps
    • F01N2610/144Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1493Purging the reducing agent out of the conduits or nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0422Methods of control or diagnosing measuring the elapsed time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To further improve energy efficiency by restraining useless electric power consumption, by properly controlling driving of an electric pump for supplying a reducing agent added to a selective reduction type NOx reducing catalyst. <P>SOLUTION: This exhaust emission control device of an engine has the selective reduction type NOx reducing catalyst 3, an adding valve 5 for adding the liquid reducing agent in an exhaust passage 1 on the upstream side of this catalyst, an electric pump 7 for supplying the reducing agent to the adding valve 5 via a supply pipe 13 from a storage tank 9 for storing the reducing agent, a control means 21 for controlling operation of the adding valve 5 and the electric pump 7, and a parameter valve detecting means 23 for detecting a parameter value related to the temperature Ts of the NOx reducing catalyst 3. The control means 21 determines its driving starting timing based on the temperature Ts of the NOx reducing catalyst determined from a detection value of the parameter value detecting means 23 when driving the electric pump 7 after starting the engine. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、エンジンの排気通路上に設けられた選択還元型のNOx浄化触媒と、このNOx浄化触媒よりも上流側の排気通路内に液状の還元剤を添加する添加弁と、上記還元剤を貯留する貯留タンクから所定の供給管を通じて上記添加弁に還元剤を供給する電動ポンプと、上記添加弁および電動ポンプの作動を制御する制御手段とを備えたエンジンの排気浄化装置に関する。   The present invention relates to a selective reduction type NOx purification catalyst provided on an exhaust passage of an engine, an addition valve for adding a liquid reducing agent in an exhaust passage upstream of the NOx purification catalyst, and the reducing agent. The present invention relates to an engine exhaust gas purification apparatus that includes an electric pump that supplies a reducing agent from a storage tank to be stored to the addition valve through a predetermined supply pipe, and a control unit that controls the operation of the addition valve and the electric pump.

従来、例えば下記特許文献1に示されるように、エンジンの排気通路上に設けられた選択還元型のNOx浄化触媒(SCR触媒)と、液状の還元剤としての尿素水を貯える尿素水タンクと、該タンク内の尿素水を圧送する電動ポンプ(尿素水ポンプ)と、上記NOx浄化触媒よりも上流側の排気通路に設けられた尿素水添加弁とを備え、上記電動ポンプから尿素水供給管を通じて圧送される尿素水を上記尿素水添加弁により排気通路内に添加供給することで、上記NOx浄化触媒での特定の排気浄化反応を促進させるようにした排気浄化装置が知られている。   Conventionally, for example, as shown in Patent Document 1 below, a selective reduction type NOx purification catalyst (SCR catalyst) provided on an exhaust passage of an engine, a urea water tank for storing urea water as a liquid reducing agent, An electric pump (urea water pump) for pumping urea water in the tank; and a urea water addition valve provided in an exhaust passage upstream of the NOx purification catalyst, from the electric pump through a urea water supply pipe There is known an exhaust gas purification apparatus in which a specific exhaust gas purification reaction is promoted by the NOx purification catalyst by adding and supplying pressurized urea water into the exhaust passage by the urea water addition valve.

特に、この特許文献1の技術では、エンジンが停止すると、上記電動ポンプを逆回転駆動することにより、上記尿素水供給管に残留している尿素水を吸い戻して上記尿素水タンク内に回収するようにしている。このようにすることで、エンジン停止後、尿素水供給管や尿素水添加弁に残留した尿素水が凍結することに起因した上記尿素水供給管等の破損を防止できるという利点が得られる。
特開2008−101564号公報
In particular, in the technique of Patent Document 1, when the engine stops, the electric pump is reversely driven to suck back the urea water remaining in the urea water supply pipe and collect it in the urea water tank. I am doing so. By doing in this way, after an engine stop, the advantage that damage to the said urea water supply pipe | tube etc. resulting from the urea water remaining in a urea water supply pipe | tube or a urea water addition valve freezing is acquired.
JP 2008-101564 A

ところで、上記特許文献1に開示された排気浄化装置において、エンジンが停止して尿素水の吸い戻しが行われた後、再びエンジンが始動した場合には、上記添加弁からNOx浄化触媒に尿素水を添加するための準備として、上記電動ポンプを正回転駆動して尿素水タンクから尿素水を汲み上げることにより、あらかじめ尿素水供給管および尿素水添加弁に尿素水を充填しておく必要がある。しかしながら、上記尿素水の添加は排気温度がある程度高まってから実行されるため、この添加開始時期に対して上記電動ポンプの駆動開始タイミングがあまりにも早いと、上記電動ポンプが長い間無駄に駆動されることになり、エネルギー効率が悪化してしまうという問題がある。   By the way, in the exhaust emission control device disclosed in Patent Document 1, when the engine is stopped and the urea water is sucked back and then restarted, urea water is supplied from the addition valve to the NOx purification catalyst. As a preparation for adding the urea water, it is necessary to fill the urea water supply pipe and the urea water addition valve in advance with the urea water by driving the electric pump to rotate forward and pumping the urea water from the urea water tank. However, since the addition of the urea water is performed after the exhaust temperature has increased to some extent, if the drive start timing of the electric pump is too early with respect to this addition start timing, the electric pump is driven wastefully for a long time. As a result, there is a problem that energy efficiency is deteriorated.

本発明は、上記のような事情に鑑みてなされたものであり、選択還元型のNOx浄化触媒に添加される還元剤を供給する電動ポンプの駆動を適正に制御することにより、無駄な消費電力を抑えてエネルギー効率をより向上させることを目的とする。   The present invention has been made in view of the above circumstances, and wasteful power consumption is achieved by appropriately controlling the driving of an electric pump that supplies a reducing agent added to a selective reduction type NOx purification catalyst. It aims at suppressing energy consumption and improving energy efficiency more.

上記課題を解決するためのものとして、本発明は、エンジンの排気通路上に設けられた選択還元型のNOx浄化触媒と、このNOx浄化触媒よりも上流側の排気通路内に液状の還元剤を添加する添加弁と、上記還元剤を貯留する貯留タンクから所定の供給管を通じて上記添加弁に還元剤を供給する電動ポンプと、上記添加弁および電動ポンプの作動を制御する制御手段とを備えたエンジンの排気浄化装置であって、上記NOx浄化触媒の温度に関連するパラメータ値を検出するパラメータ値検出手段を備え、上記制御手段は、エンジン始動後に上記電動ポンプを駆動する際に、その駆動開始タイミングを、上記パラメータ値検出手段の検出値から求まる上記NOx浄化触媒の温度に基づいて決定することを特徴とするものである(請求項1)。   In order to solve the above problems, the present invention provides a selective reduction type NOx purification catalyst provided on the exhaust passage of an engine, and a liquid reducing agent in the exhaust passage upstream of the NOx purification catalyst. An addition valve for addition; an electric pump for supplying the reducing agent to the addition valve through a predetermined supply pipe from a storage tank for storing the reducing agent; and a control means for controlling the operation of the addition valve and the electric pump. An engine exhaust purification device comprising parameter value detection means for detecting a parameter value related to the temperature of the NOx purification catalyst, wherein the control means starts driving when the electric pump is driven after the engine is started The timing is determined based on the temperature of the NOx purification catalyst obtained from the detected value of the parameter value detecting means (Claim 1).

本発明によれば、添加弁に還元剤を供給する電動ポンプの駆動開始タイミングをNOx浄化触媒の温度に基づいて決定するようにしたため、エンジン始動後に触媒温度がある程度高まってから電動ポンプの駆動を開始することにより、触媒温度が低く還元剤を添加する必要がないときに上記電動ポンプが無駄に駆動されるのを防止でき、電動ポンプの消費電力を効果的に削減してエネルギー効率をより向上させることができるという利点がある。   According to the present invention, since the drive start timing of the electric pump that supplies the reducing agent to the addition valve is determined based on the temperature of the NOx purification catalyst, the drive of the electric pump is performed after the catalyst temperature increases to some extent after the engine is started. By starting, it is possible to prevent the electric pump from being wasted when the catalyst temperature is low and it is not necessary to add a reducing agent, effectively reducing the power consumption of the electric pump and further improving energy efficiency. There is an advantage that can be made.

本発明の好ましい形態として、上記添加弁は、上記NOx浄化触媒の温度が所定温度以上のときに上記還元剤を添加するように制御され、上記制御手段は、上記NOx浄化触媒の温度が上記所定温度よりも低いときに上記NOx浄化触媒の温度上昇率を求め、この温度上昇率が小さいときには大きいときに比べて上記電動ポンプの駆動開始タイミングを遅らせる(請求項2)。   As a preferred embodiment of the present invention, the addition valve is controlled to add the reducing agent when the temperature of the NOx purification catalyst is equal to or higher than a predetermined temperature, and the control means is configured such that the temperature of the NOx purification catalyst is the predetermined temperature. When the temperature rise rate is lower than the temperature, the temperature rise rate of the NOx purification catalyst is obtained, and when the temperature rise rate is small, the drive start timing of the electric pump is delayed compared to when the temperature rise rate is large.

この構成によれば、NOx浄化触媒の温度が所定温度に達するタイミングと連動して上記電動ポンプの駆動開始タイミングが決定されるため、上記触媒温度が所定温度に達する時点に応じた適正なタイミングで還元剤の圧力を所定圧まで高めることができ、電動ポンプの消費電力を効果的に削減しつつ添加弁からの還元剤の添加を適正時期に開始できるという利点がある。   According to this configuration, the drive start timing of the electric pump is determined in conjunction with the timing at which the temperature of the NOx purification catalyst reaches the predetermined temperature, so that the timing at which the catalyst temperature reaches the predetermined temperature is appropriate. There is an advantage that the pressure of the reducing agent can be increased to a predetermined pressure, and the addition of the reducing agent from the addition valve can be started at an appropriate time while effectively reducing the power consumption of the electric pump.

上記構成による場合、より好ましい形態として、上記制御手段は、上記NOx浄化触媒の温度が上記所定温度まで上昇するタイミングと、上記供給管内の還元剤の圧力が所定圧まで達して上記添加弁からの還元剤の添加が可能になるタイミングとが一致するように、上記電動ポンプの駆動開始タイミングを決定する(請求項3)。   In the case of the above configuration, as a more preferable form, the control means includes a timing at which the temperature of the NOx purification catalyst rises to the predetermined temperature, and the pressure of the reducing agent in the supply pipe reaches the predetermined pressure and is supplied from the addition valve. The drive start timing of the electric pump is determined so as to coincide with the timing at which the reducing agent can be added (Claim 3).

この構成によれば、電動ポンプが無駄に駆動される期間を無くして消費電力をより効果的に削減できるとともに、触媒温度が所定温度に達するのと同時に還元剤の添加を開始できるため、エネルギー効率とNOx浄化性能との向上を高次元で両立できるという利点がある。   According to this configuration, it is possible to reduce the power consumption more effectively by eliminating the period in which the electric pump is driven wastefully, and since the addition of the reducing agent can be started at the same time as the catalyst temperature reaches the predetermined temperature, energy efficiency There is an advantage that improvement in NOx purification performance can be achieved at a high level.

さらに好ましい形態として、上記制御手段は、上記NOx浄化触媒の温度が上記所定温度に達するまでの時間を上記温度上昇率に基づいて予測するとともに、この予測時間と、上記電動ポンプが駆動されてから上記供給管内の還元剤の圧力が上記所定圧に達するまでの所要時間とに基づいて、上記電動ポンプの駆動開始タイミングを決定する(請求項4)。   As a more preferred form, the control means predicts a time until the temperature of the NOx purification catalyst reaches the predetermined temperature based on the temperature increase rate, and after the estimated time and the electric pump is driven. The drive start timing of the electric pump is determined based on the time required for the pressure of the reducing agent in the supply pipe to reach the predetermined pressure.

この構成によれば、NOx浄化触媒の温度上昇率を用いた予測等に基づく適正なタイミングで上記電動ポンプを駆動することにより、その消費電力をより効果的に削減できるという利点がある。   According to this configuration, there is an advantage that the power consumption can be more effectively reduced by driving the electric pump at an appropriate timing based on the prediction using the temperature increase rate of the NOx purification catalyst.

本発明の好ましい形態として、上記制御手段は、エンジン停止後に、上記供給管に設けられた切替弁を作動させることにより、上記供給管内に残留する還元剤が上記電動ポンプの吸引力で上記貯留タンク内に戻されるように還元剤の流れを切り替える(請求項5)。   As a preferred mode of the present invention, after the engine is stopped, the control means operates a switching valve provided in the supply pipe, so that the reducing agent remaining in the supply pipe is sucked by the electric pump with the storage tank. The flow of the reducing agent is switched so as to return to the inside (Claim 5).

この構成によれば、エンジン始動後に供給管内に残留した還元剤が凍結することによる供給管の破損等を効果的に防止できるという利点がある。   According to this configuration, there is an advantage that it is possible to effectively prevent breakage of the supply pipe due to freezing of the reducing agent remaining in the supply pipe after the engine is started.

以上説明したように、本発明によれば、選択還元型のNOx浄化触媒に添加される還元剤を供給する電動ポンプの駆動を適正に制御することにより、無駄な消費電力を抑えてエネルギー効率をより向上させることができる。   As described above, according to the present invention, by appropriately controlling the driving of the electric pump that supplies the reducing agent added to the selective reduction type NOx purification catalyst, wasteful power consumption can be suppressed and energy efficiency can be reduced. It can be improved further.

図1は、本発明の一実施形態にかかるエンジンの排気浄化装置を示す概略図である。本図に示される排気浄化装置は、例えばディーゼルエンジン等の図外のエンジンから排出された排気ガスを浄化するものであり、その基本的な構成要素として、上記排気ガスが流通する排気通路1の途中部に設けられたNOx浄化触媒3と、上記排気通路1のうちこのNOx浄化触媒3よりも上流側の配管1a内に、還元剤としての尿素水を添加する添加弁5とを備えている。すなわち、この図1に示される排気浄化装置は、運転状態に応じて上記添加弁5から排気通路1内に尿素水を添加(噴射)し、その下流側のNOx浄化触媒3での還元反応を上記尿素水の作用により促進させることで、排気ガス中のNOxを高い浄化率で浄化し得るようにしたいわゆる尿素SCR(Selective Catalytic Reduction)システム用の浄化装置として設けられている。   FIG. 1 is a schematic view showing an exhaust emission control device for an engine according to an embodiment of the present invention. The exhaust gas purification apparatus shown in this figure purifies exhaust gas discharged from an engine other than the figure such as a diesel engine, for example, and, as its basic component, the exhaust passage 1 through which the exhaust gas flows is provided. A NOx purification catalyst 3 provided in the middle part and an addition valve 5 for adding urea water as a reducing agent into the pipe 1a upstream of the NOx purification catalyst 3 in the exhaust passage 1 are provided. . That is, the exhaust gas purification apparatus shown in FIG. 1 adds (injects) urea water into the exhaust passage 1 from the addition valve 5 in accordance with the operating state, and performs a reduction reaction at the downstream side NOx purification catalyst 3. It is provided as a purifying device for a so-called urea SCR (Selective Catalytic Reduction) system that can purify NOx in exhaust gas with a high purification rate by promoting it by the action of the urea water.

具体的に、上記添加弁5から排気ガス中に尿素水が添加されると、排気ガスの熱により加水分解が行われ、アンモニアが生成される。すると、この生成されたアンモニアが下流側のNOx浄化触媒3に吸着し、この吸着したアンモニアと、排気ガス中のNOxとの間で脱硝反応が起きることにより、NOxの還元が促進されるようになっている。   Specifically, when urea water is added to the exhaust gas from the addition valve 5, hydrolysis is performed by the heat of the exhaust gas to generate ammonia. Then, the produced ammonia is adsorbed to the downstream side NOx purification catalyst 3, and the denitration reaction occurs between the adsorbed ammonia and NOx in the exhaust gas, so that the reduction of NOx is promoted. It has become.

上記添加弁5は、既存の燃料噴射弁(インジェクタ)とほぼ同様の構造を有しており、例えば電磁開閉式のニードル弁によって構成されている。そして、後述するECU21からの制御信号に基づき上記添加弁5が開弁または閉弁されることにより、その先端のノズルを通じて上記排気通路1内に尿素水が噴射され、またはその噴射が停止されるようになっている。   The addition valve 5 has substantially the same structure as an existing fuel injection valve (injector), and is constituted by, for example, an electromagnetic open / close needle valve. Then, when the addition valve 5 is opened or closed based on a control signal from the ECU 21 described later, urea water is injected into the exhaust passage 1 through the nozzle at the tip thereof, or the injection is stopped. It is like that.

次に、上記添加弁5に尿素水を供給する尿素水供給系について説明する。すなわち、添加弁5には、貯留タンク9から供給管13を通じて尿素水が逐次供給されるようになっており、上記供給管13の途中部には、上記貯留タンク9内に貯留された尿素水を汲み上げて上記添加弁5に圧送するための電動ポンプ7が配設されている。この電動ポンプ7は、例えば3相交流モータからなり、後述するECU21からの制御信号に応じてその駆動が制御されるようになっている。   Next, a urea water supply system that supplies urea water to the addition valve 5 will be described. That is, urea water is sequentially supplied from the storage tank 9 to the addition valve 5 through the supply pipe 13, and urea water stored in the storage tank 9 is provided in the middle of the supply pipe 13. An electric pump 7 is disposed for pumping up and pumping the fuel to the addition valve 5. The electric pump 7 is composed of, for example, a three-phase AC motor, and its driving is controlled according to a control signal from the ECU 21 described later.

上記貯留タンク9は、内部に所定濃度の尿素水が収容された密閉容器からなり、その所定部位に設けられた給液キャップ(図示省略)から必要に応じて尿素水を補給できるようになっている。なお、寒冷時に貯留タンク9内の尿素水が凍結するのを防止するための措置として、上記貯留タンク9には、ヒータや断熱材等が必要に応じて付設される。   The storage tank 9 is composed of a sealed container in which a predetermined concentration of urea water is accommodated, and urea water can be replenished as needed from a liquid supply cap (not shown) provided at the predetermined portion. Yes. In addition, as a measure for preventing the urea water in the storage tank 9 from freezing when it is cold, the storage tank 9 is provided with a heater, a heat insulating material, or the like as necessary.

上記貯留タンク9の内部には、尿素水を濾過するためのフィルタ11が尿素水に浸漬された状態で設けられており、このフィルタ11には、上記供給管13の一端部が接続されている。一方、供給管13の他端部は上記添加弁5に接続されており、上記電動ポンプ7が駆動されるのに応じて、上記フィルタ11で濾過された尿素水が上記供給管13を通じて添加弁5に供給されるようになっている。   A filter 11 for filtering urea water is provided in the storage tank 9 so as to be immersed in the urea water. One end of the supply pipe 13 is connected to the filter 11. . On the other hand, the other end of the supply pipe 13 is connected to the addition valve 5, and urea water filtered by the filter 11 is added through the supply pipe 13 in response to the driving of the electric pump 7. 5 is supplied.

上記供給管13の途中部には、その内部の尿素水の圧力を調節するための圧力制御弁17と、供給管13内の尿素水の流れを切り替えるための切替弁19とがそれぞれ配設されている。   A pressure control valve 17 for adjusting the pressure of urea water inside the supply pipe 13 and a switching valve 19 for switching the flow of urea water in the supply pipe 13 are disposed in the middle of the supply pipe 13, respectively. ing.

上記圧力制御弁17は、余剰となった尿素水を上記貯留タンク9に戻して上記供給管13内の圧力を所定圧に維持するものである。すなわち、上記圧力制御弁17には、上記貯留タンク9から延びるリターン配管15が接続されており、上記供給管13内の尿素水の圧力が所定圧を超えると、上記圧力制御弁17が開弁して余剰となった尿素水が上記リターン配管15から貯留タンク9に戻されるとともに、上記供給管13内の圧力が所定圧を下回ると、上記圧力制御弁17が閉弁して上記リターン配管15から貯留タンク9への流れが停止されることにより、上記供給管13内の尿素水の圧力が所定圧に維持されるようになっている。   The pressure control valve 17 returns the excess urea water to the storage tank 9 and maintains the pressure in the supply pipe 13 at a predetermined pressure. That is, a return pipe 15 extending from the storage tank 9 is connected to the pressure control valve 17, and the pressure control valve 17 is opened when the pressure of the urea water in the supply pipe 13 exceeds a predetermined pressure. Then, the excess urea water is returned from the return pipe 15 to the storage tank 9 and, when the pressure in the supply pipe 13 falls below a predetermined pressure, the pressure control valve 17 is closed and the return pipe 15 is closed. By stopping the flow from the storage tank 9 to the storage tank 9, the pressure of the urea water in the supply pipe 13 is maintained at a predetermined pressure.

上記切替弁19は、後述するECU21からの制御信号に応じて作動する電磁開閉式の方向制御弁からなり、上記供給管13を構成する第1〜第4の配管13a〜13d(詳細は後述する)が接続される4つのポートの連通状態を変化させることにより、上記貯留タンク9から添加弁5に向かって尿素水が流れる図1の状態と、これとは逆に添加弁5から貯留タンク9に向かって尿素水が流れる状態(図4参照)との間で流れ方向を切り替え可能に構成されている。   The switching valve 19 is an electromagnetic open / close direction control valve that operates in response to a control signal from the ECU 21 to be described later, and includes first to fourth pipes 13a to 13d that constitute the supply pipe 13 (details will be described later). ) Are connected, the urea water flows from the storage tank 9 toward the addition valve 5 by changing the communication state of the four ports, and conversely, from the addition valve 5 to the storage tank 9. The flow direction can be switched between the state in which the urea water flows toward (see FIG. 4).

上記供給管13は、上記フィルタ11と切替弁19との間に配置された第1配管13aと、上記切替弁19と圧力制御弁17との間に配置され、上記電動ポンプ7が途中部に設けられた第2配管13bと、上記圧力制御弁17と切替弁19との間に配置された第3配管13cと、上記切替弁19と添加弁5との間に配置された第4配管13dとを有している。   The supply pipe 13 is disposed between a first pipe 13a disposed between the filter 11 and the switching valve 19, and between the switching valve 19 and the pressure control valve 17, and the electric pump 7 is disposed in the middle. A second pipe 13b provided, a third pipe 13c disposed between the pressure control valve 17 and the switching valve 19, and a fourth pipe 13d disposed between the switching valve 19 and the addition valve 5. And have.

そして、上記切替弁19が図1の状態にあるときには、上記第1配管13aと第2配管13bとが連通されるとともに、第3配管13cと第4配管13dとが連通されることにより、図1の矢印に示すように、上記電動ポンプ7の吸引力により貯留タンク9から汲み上げられた尿素水が、上記第1配管13a、第2配管13b、第3配管13c、第4配管13dの順に流通して上記添加弁5に供給されるようになっている。一方、この状態から上記切替弁19が作動して図4の状態に変位した場合には、上記第1配管13aと第3配管13cとが連通されるとともに、第2配管13bと第4配管13dとが連通されることにより、図4の矢印に示すように、上記電動ポンプ7の吸引力が逆方向に作用し、上記各配管13a〜13d内に残留した尿素水が貯留タンク9に戻されるようになっている。   When the switching valve 19 is in the state shown in FIG. 1, the first pipe 13a and the second pipe 13b are communicated, and the third pipe 13c and the fourth pipe 13d are communicated. As indicated by the arrow 1, urea water pumped from the storage tank 9 by the suction force of the electric pump 7 flows in the order of the first pipe 13 a, the second pipe 13 b, the third pipe 13 c, and the fourth pipe 13 d. Then, it is supplied to the addition valve 5. On the other hand, when the switching valve 19 operates from this state and is displaced to the state shown in FIG. 4, the first pipe 13a and the third pipe 13c are communicated with each other, and the second pipe 13b and the fourth pipe 13d are connected. As shown in FIG. 4, the suction force of the electric pump 7 acts in the opposite direction, and the urea water remaining in the pipes 13 a to 13 d is returned to the storage tank 9. It is like that.

次に、当実施形態の排気浄化装置の制御系について説明する。上記添加弁5、電動ポンプ7、および切替弁19等の各部の動作は、制御手段としてのECU21により統括的に制御される。このECU21は、従来周知のCPUや各種メモリ等からなり、上記添加弁5、電動ポンプ7、および切替弁19と電気的に接続されている。   Next, the control system of the exhaust emission control device of this embodiment will be described. Operations of the respective parts such as the addition valve 5, the electric pump 7, and the switching valve 19 are comprehensively controlled by an ECU 21 as a control means. The ECU 21 includes a conventionally known CPU, various memories, and the like, and is electrically connected to the addition valve 5, the electric pump 7, and the switching valve 19.

また、上記ECU21には、排気通路1のうちNOx浄化触媒3の直上流部にあたる上流側配管1aの末端部に設けられた温度センサ23(本発明にかかるパラメータ値検出手段に相当)と、この温度センサ23よりも上流側に設けられたNOxセンサ25と、供給管13の途中部(図例ではその第4配管13d)に設けられた液圧センサ27とが電気的に接続されている。そして、上記温度センサ23により検出されたNOx浄化触媒3の直上流部の排気ガス温度(つまりNOx浄化触媒3の温度に同じ)と、上記NOxセンサ25により検出された排気ガス中のNOx濃度と、上記液圧センサ27により検出された供給管13内の尿素水の圧力とが、電気信号としてそれぞれECU21に入力されるようになっている。なお、以下では、上記温度センサ23に検出されるNOx浄化触媒3の温度をTs、上記NOxセンサにより検出されるNOx濃度をDn、上記液圧センサ27により検出される供給管13内の尿素水の圧力をPrで表す。   Further, the ECU 21 includes a temperature sensor 23 (corresponding to a parameter value detecting means according to the present invention) provided at the end of the upstream pipe 1a that is directly upstream of the NOx purification catalyst 3 in the exhaust passage 1. A NOx sensor 25 provided on the upstream side of the temperature sensor 23 and a hydraulic pressure sensor 27 provided in the middle part of the supply pipe 13 (the fourth pipe 13d in the illustrated example) are electrically connected. The exhaust gas temperature immediately upstream of the NOx purification catalyst 3 detected by the temperature sensor 23 (that is, the same as the temperature of the NOx purification catalyst 3), the NOx concentration in the exhaust gas detected by the NOx sensor 25, and The pressure of the urea water in the supply pipe 13 detected by the hydraulic pressure sensor 27 is input to the ECU 21 as an electrical signal. In the following, the temperature of the NOx purification catalyst 3 detected by the temperature sensor 23 is Ts, the NOx concentration detected by the NOx sensor is Dn, and the urea water in the supply pipe 13 detected by the hydraulic pressure sensor 27. Is expressed as Pr.

以上のように構成されたECU21により、当実施形態の排気浄化装置は、例えば以下のように制御される。   By the ECU 21 configured as described above, the exhaust purification device of the present embodiment is controlled as follows, for example.

まず、エンジンが始動した後の制御動作について簡単に説明する。エンジンが始動すると、その後しばらくの間は電動ポンプ7が停止状態に維持される。すなわち、エンジン始動後の初期段階では、排気ガスの温度が低く、尿素水の加水分解によるアンモニアの生成が十分に行われる環境にないので、上記添加弁5から排気通路1内に尿素水を添加することができない。このため、エンジン始動直後に電動ポンプ7を駆動する必要はなく、電動ポンプ7はしばらくの間停止状態に維持される。   First, the control operation after the engine is started will be briefly described. When the engine is started, the electric pump 7 is maintained in a stopped state for a while thereafter. That is, in the initial stage after engine startup, the temperature of the exhaust gas is low and there is no environment in which ammonia is sufficiently generated by hydrolysis of urea water, so urea water is added from the addition valve 5 into the exhaust passage 1. Can not do it. For this reason, it is not necessary to drive the electric pump 7 immediately after starting the engine, and the electric pump 7 is maintained in a stopped state for a while.

上記電動ポンプ7の駆動を開始するタイミングは、上記温度センサ23により検出されるNOx浄化触媒3の温度Tsに基づいて決定される。具体的には、上記触媒温度Tsの変化率に基づいて、尿素水の加水分解が十分に行われる温度(つまりアンモニアが十分な割合で生成される温度)まで上記触媒温度Tsが上昇するタイミングが予想され、これよりもいくぶん早いタイミングで上記電動ポンプ7の駆動が開始される。なお、以下では、上記のように尿素水の加水分解が十分に行われるような温度を所定温度Tsqと称する(図3(e)参照)。   The timing for starting driving the electric pump 7 is determined based on the temperature Ts of the NOx purification catalyst 3 detected by the temperature sensor 23. Specifically, based on the rate of change of the catalyst temperature Ts, the timing at which the catalyst temperature Ts rises to a temperature at which urea water is sufficiently hydrolyzed (that is, a temperature at which ammonia is generated at a sufficient rate). It is expected that the electric pump 7 starts to be driven at a somewhat earlier timing. In the following, a temperature at which the urea water is sufficiently hydrolyzed as described above is referred to as a predetermined temperature Tsq (see FIG. 3 (e)).

このように、触媒温度Tsが所定温度Tsqに達するよりも前に電動ポンプ7を駆動するのは、電動ポンプ7を駆動してから、上記供給管13に尿素水が十分に充填されて添加弁5からの尿素水の添加が可能になるまでの間に、ある程度の時間を要するからである。すなわち、当実施形態では、後述するように、エンジンが停止すると供給管13から尿素水が吸い出されて貯留タンク9に戻される(つまり供給管13が空になる)ため、再びエンジンが始動して上記電動ポンプ7が駆動されると、その時点から、上記供給管13内に尿素水が十分に充填されてその圧力Prが上記圧力制御弁17のリリーフ圧まで上昇し、上記添加弁5からの尿素水の添加が可能になるまでの間には、ある程度の時間を要する。そこで、このような時間を見越して、上記電動ポンプ7を早めに駆動するようにしている。なお、以下では、上記のように尿素水が供給管13に十分に充填されて尿素水の添加が可能になる圧力(圧力制御弁17のリリーフ圧に同じ)を、所定圧Prqと称する(図3(d)参照)。   As described above, the electric pump 7 is driven before the catalyst temperature Ts reaches the predetermined temperature Tsq. After the electric pump 7 is driven, the supply pipe 13 is sufficiently filled with urea water, and the addition valve This is because a certain amount of time is required until the urea water from 5 can be added. That is, in this embodiment, as will be described later, when the engine is stopped, urea water is sucked out from the supply pipe 13 and returned to the storage tank 9 (that is, the supply pipe 13 is emptied), so that the engine is started again. Then, when the electric pump 7 is driven, the supply pipe 13 is sufficiently filled with urea water from that time, and the pressure Pr rises to the relief pressure of the pressure control valve 17. A certain amount of time is required until the urea water can be added. Therefore, the electric pump 7 is driven early in anticipation of such time. Hereinafter, the pressure at which the urea water is sufficiently filled in the supply pipe 13 as described above and the urea water can be added (same as the relief pressure of the pressure control valve 17) is referred to as a predetermined pressure Prq (FIG. 3 (d)).

上記のようにして電動ポンプ7の駆動が開始され、供給管13内に尿素水が十分に充填されると、その後は、必要に応じて添加弁5から排気通路1内に尿素水が添加される。このときの尿素水の添加量は、上記温度センサ23により検出されるNOx浄化触媒3の温度Tsや、NOxセンサ25により検出される排気ガス中のNOx濃度Dn等に基づいて設定される。   When the drive of the electric pump 7 is started as described above and the supply pipe 13 is sufficiently filled with urea water, the urea water is then added from the addition valve 5 into the exhaust passage 1 as necessary. The The amount of urea water added at this time is set based on the temperature Ts of the NOx purification catalyst 3 detected by the temperature sensor 23, the NOx concentration Dn in the exhaust gas detected by the NOx sensor 25, and the like.

次に、エンジンが停止した後の制御動作について説明する。エンジンが停止した場合には、切替弁19が作動して図4の状態に変位するとともに、電動ポンプ7の駆動がしばらく維持されることにより、上記尿素水の流れ方向が逆転し、上記供給管13に残留している尿素水は、上記電動ポンプ7の吸引力によって貯留タンク9内に戻される。これは、供給管13に残留した尿素水が凍結することによる供給管13の破損等を防止するための措置である。すなわち、寒冷時に気温が尿素水の氷点(約−11℃)を下回った場合に、供給管13に尿素水が残留していると、この尿素水が凍結することにより上記供給管13や添加弁5が破損するおそれがあるが、上記のようにエンジン停止後に供給管13内の尿素水を貯留タンク9に回収するようにすれば、上記のような事態を回避して上記供給管13や添加弁5が破損するのを効果的に防止することができる。   Next, the control operation after the engine is stopped will be described. When the engine is stopped, the switching valve 19 is actuated to be displaced to the state shown in FIG. 4 and the electric pump 7 is kept driven for a while, so that the flow direction of the urea water is reversed, and the supply pipe The urea water remaining in 13 is returned to the storage tank 9 by the suction force of the electric pump 7. This is a measure for preventing damage to the supply pipe 13 due to freezing of the urea water remaining in the supply pipe 13. In other words, if the urea water remains in the supply pipe 13 when the temperature falls below the freezing point (about −11 ° C.) of the urea water at the time of cold, the urea water is frozen and the supply pipe 13 and the addition valve are thus frozen. 5 may be damaged, but if the urea water in the supply pipe 13 is recovered in the storage tank 9 after the engine is stopped as described above, the above situation can be avoided and the supply pipe 13 or addition can be avoided. It is possible to effectively prevent the valve 5 from being damaged.

次に、図2のフローチャートおよび図3のタイムチャートを用いて、エンジン始動後にECU21により行われる制御動作のより具体的な内容について説明する。なお、この制御動作がスタートする前提として、図3の時点t0より以前ではエンジンが停止しており、このエンジンが始動した時点t0において、添加弁5は閉(OFF)、電動ポンプ7は停止(OFF)、供給管13内の圧力Prは所定圧Prqより低、触媒温度Tsは所定温度Tsqより低であるものとする。   Next, more specific contents of the control operation performed by the ECU 21 after engine startup will be described using the flowchart of FIG. 2 and the time chart of FIG. As a premise of starting this control operation, the engine is stopped before time t0 in FIG. 3, and at time t0 when the engine is started, the addition valve 5 is closed (OFF) and the electric pump 7 is stopped ( OFF), the pressure Pr in the supply pipe 13 is lower than the predetermined pressure Prq, and the catalyst temperature Ts is lower than the predetermined temperature Tsq.

エンジンが始動して図2のフローチャートがスタートすると、ECU21は、まず、電動ポンプ7の駆動状態を表すポンプ駆動フラグFに、電動ポンプが停止中であることを表す「0」を入力する制御を実行する(ステップS1)。   When the engine is started and the flowchart of FIG. 2 is started, the ECU 21 first performs control to input “0” indicating that the electric pump is stopped to the pump driving flag F indicating the driving state of the electric pump 7. Execute (Step S1).

次いで、ECU21は、上記温度センサ23により検出されたNOx浄化触媒3の温度Tsを取得するとともに(ステップS2)、この触媒温度Tsが所定の閾値α以上であるか否かを判定する制御を実行する(ステップS3)。なお、この閾値αは、図3(e)に示すように、所定温度Tsqよりも低い温度に設定される。   Next, the ECU 21 acquires the temperature Ts of the NOx purification catalyst 3 detected by the temperature sensor 23 (step S2), and executes control for determining whether or not the catalyst temperature Ts is equal to or higher than a predetermined threshold value α. (Step S3). The threshold value α is set to a temperature lower than a predetermined temperature Tsq as shown in FIG.

上記ステップS3でYESと判定されて触媒温度Ts≧閾値αであることが確認された場合、ECU21は、図3(e)に示すように、触媒温度Tsが閾値αに達した時点t1から、所定時間が経過した時点t2までの間における触媒温度Tsの変化率ΔTsを算出する制御を実行する(ステップS4)。この変化率ΔTsは、例えば、時点t2での触媒温度Tsから時点t1での触媒温度Ts(=閾値α)を差し引き、得られた温度差を、上記両時点の間の時間差(t2−t1)で割ることにより、算出することができる。   When it is determined YES in step S3 and it is confirmed that the catalyst temperature Ts ≧ the threshold α, the ECU 21 starts from the time t1 when the catalyst temperature Ts reaches the threshold α, as shown in FIG. Control for calculating the change rate ΔTs of the catalyst temperature Ts until the time point t2 when the predetermined time has elapsed is executed (step S4). For example, the change rate ΔTs is obtained by subtracting the catalyst temperature Ts (= threshold value α) at the time point t1 from the catalyst temperature Ts at the time point t2, and the obtained temperature difference is the time difference (t2−t1) between the two time points. It can be calculated by dividing by.

次いで、ECU21は、上記ステップS4で算出された触媒温度の変化率ΔTsに基づいて、上記所定温度Tsq(つまり尿素水が十分に加水分解されてアンモニアが生成される温度)まで触媒温度Tsが上昇するのに要する時間tt1(図3(e)参照)を予測する制御を実行する(ステップS5)。すなわち、現時点(時点t2)での触媒温度Tsと上記所定温度Tsqとの温度差を求めた上で、この温度差の分だけ上記触媒温度Tsが上昇するのに要する時間を、上記触媒温度の変化率ΔTsに基づいて演算することにより、上記所要時間tt1を予測する。このとき、温度変化率ΔTsが大きいほど上記所定温度Tsqまで早く達するため、上記所要時間tt1は、温度変化率ΔTsが大きいほど短い時間として予測される。   Next, the ECU 21 increases the catalyst temperature Ts up to the predetermined temperature Tsq (that is, the temperature at which urea water is sufficiently hydrolyzed to generate ammonia) based on the catalyst temperature change rate ΔTs calculated in step S4. Control for predicting the time tt1 (see FIG. 3 (e)) required for this is executed (step S5). That is, after obtaining the temperature difference between the catalyst temperature Ts at the present time (time point t2) and the predetermined temperature Tsq, the time required for the catalyst temperature Ts to rise by this temperature difference is determined as the catalyst temperature. The required time tt1 is predicted by calculating based on the change rate ΔTs. At this time, the larger the temperature change rate ΔTs, the faster the predetermined temperature Tsq is reached. Therefore, the required time tt1 is predicted to be shorter as the temperature change rate ΔTs is larger.

このようにして所要時間tt1の予測が完了すると、ECU21は、上記電動ポンプ7が駆動された場合に、供給管13内の尿素水の圧力Prが上記所定圧Prq(つまり圧力制御弁17のリリーフ圧)まで上昇するのに要する時間tt2(図3(d)参照)を取得するとともに(ステップS6)、内蔵されたタイマのカウントを開始する制御を実行する(ステップS7)。なお、上記尿素水の圧力Prが所定圧Prqに達するまでの所要時間tt2は、例えば実験等によってあらかじめ求められ、ECU21の記憶部に格納されている。   When the prediction of the required time tt1 is completed in this way, the ECU 21 determines that the urea water pressure Pr in the supply pipe 13 is the predetermined pressure Prq (that is, the relief of the pressure control valve 17) when the electric pump 7 is driven. The time tt2 (see FIG. 3D) required to rise to (pressure) is acquired (step S6), and control for starting the counting of the built-in timer is executed (step S7). The required time tt2 for the urea water pressure Pr to reach the predetermined pressure Prq is obtained in advance by, for example, experiments and stored in the storage unit of the ECU 21.

次いで、ECU21は、上記タイマのカウント値Cが、上記ステップS5で予測された所要時間tt1と、上記ステップS6で取得された所要時間tt2との時間差(tt1−tt2)に等しくなったか否かを判定する制御を実行する(ステップS8)。そして、ここでYESと判定された場合、つまり、タイマのカウントが開始された時点t2から上記時間差(tt1−tt2)の分だけ時間が経過したことが確認された場合に、その時点t3で、電動ポンプ7の駆動を開始する。具体的には、上記タイマのカウント値Cをリセットするとともに(ステップS9)、上記ポンプ駆動フラグFに、ポンプが駆動中であることを表す「1」を入力した上で(ステップS10)、電動ポンプ7に所定の制御信号を出力して電動ポンプ7の駆動を開始する(ステップS11)。   Next, the ECU 21 determines whether or not the count value C of the timer is equal to a time difference (tt1−tt2) between the required time tt1 predicted in step S5 and the required time tt2 acquired in step S6. Control to determine is executed (step S8). And when it determines with YES here, ie, when it is confirmed that time has passed since the time difference (tt1-tt2) from the time t2 when the timer starts counting, at the time t3, The drive of the electric pump 7 is started. Specifically, the count value C of the timer is reset (step S9), and “1” indicating that the pump is being driven is input to the pump drive flag F (step S10). A predetermined control signal is output to the pump 7 to start driving the electric pump 7 (step S11).

上記のようにして電動ポンプ7が駆動されると、その時点t3で、図3(b)に示すように、添加弁5が一時的に開弁(ON)され、上記供給管13内に溜まっていたエアのエア抜きが行われる。そして、エア抜きが済むと再び添加弁5が閉弁(OFF)され、その後、上記供給管13内の尿素水の圧力Prが所定圧Prqに達した時点t4で、例えば図中の破線に示すように、所定のデューティ比で添加弁5のON−OFFを繰り返す制御が実行されることにより、必要量の尿素水が排気通路1内に添加される。   When the electric pump 7 is driven as described above, at the time t3, as shown in FIG. 3B, the addition valve 5 is temporarily opened (ON) and collected in the supply pipe 13. The air that has been discharged is vented. When the air is exhausted, the addition valve 5 is closed again (OFF). Thereafter, at the time t4 when the pressure Pr of the urea water in the supply pipe 13 reaches the predetermined pressure Prq, for example, as indicated by a broken line in the figure. As described above, by performing control to repeatedly turn on and off the addition valve 5 at a predetermined duty ratio, a necessary amount of urea water is added into the exhaust passage 1.

上述したように、電動ポンプ7の駆動開始タイミングは、触媒温度Tsが所定温度Tsqに達すると予測される時点(時点t2から所要時間tt1経過した時点)よりも、供給管13内の圧力Prが所定圧Prqに達するのに要する時間tt2だけ早い時点t3に設定される。したがって、この時点t3から上記所要時間tt2が経過することにより、上記圧力Prが所定圧Prqに達して添加弁5から尿素水が添加され始めるタイミングは、上記触媒温度Tsが所定温度Tsqに達するタイミングと一致することになる(ともに時点t4になる)。そして、このようなタイミングで添加弁5から排気通路1内に添加された尿素水は、上記所定温度Tsq以上に上昇した排気ガスの温度により十分に加水分解され、その結果生成されたアンモニアが上記NOx浄化触媒3での還元反応を促進することにより、排気ガス中のNOxがより高い浄化率で浄化されることになる。   As described above, the drive start timing of the electric pump 7 is such that the pressure Pr in the supply pipe 13 is higher than the time when the catalyst temperature Ts is predicted to reach the predetermined temperature Tsq (the time when the required time tt1 has elapsed from the time t2). The time t3 is set earlier by the time tt2 required to reach the predetermined pressure Prq. Accordingly, when the required time tt2 elapses from the time point t3, the timing when the pressure Pr reaches the predetermined pressure Prq and the urea water starts to be added from the addition valve 5 is the timing when the catalyst temperature Ts reaches the predetermined temperature Tsq. (Both at time t4). Then, the urea water added into the exhaust passage 1 from the addition valve 5 at such timing is sufficiently hydrolyzed by the temperature of the exhaust gas that has risen above the predetermined temperature Tsq, and the resulting ammonia is converted into the above-described ammonia. By promoting the reduction reaction in the NOx purification catalyst 3, NOx in the exhaust gas is purified with a higher purification rate.

再び図2のフローチャートに戻って、上記ステップS3でNOと判定された場合の制御動作について説明する。このステップS3でNOと判定された場合、つまり、温度センサ23により検出された触媒温度Tsが閾値αよりも小さいことが確認された場合、EUC21は、上記ポンプ駆動フラグF=1であるか、つまり電動ポンプ7が既に駆動されているか否かを判定し(ステップS12)、ここでYESと判定されると、上記ステップS11に移行して引き続き電動ポンプ7の駆動を維持する。すなわち、電動ポンプ7が一旦駆動された後、何らかの原因で触媒温度Tsが一時的に低下し、上記閾値αを下回ることもあり得るが、このような場合は電動ポンプ7の駆動をいちいち中止せず、その駆動を維持する。   Returning to the flowchart of FIG. 2 again, the control operation when NO is determined in step S3 will be described. If NO is determined in step S3, that is, if it is confirmed that the catalyst temperature Ts detected by the temperature sensor 23 is smaller than the threshold value α, the EUC 21 determines whether the pump drive flag F = 1. That is, it is determined whether or not the electric pump 7 has already been driven (step S12). If YES is determined here, the process proceeds to step S11 and the driving of the electric pump 7 is continuously maintained. That is, after the electric pump 7 is once driven, the catalyst temperature Ts may temporarily decrease for some reason and fall below the threshold value α. In such a case, the driving of the electric pump 7 should be stopped one by one. The drive is maintained.

一方、上記ステップS12でNOと判定されてポンプ駆動フラグF=0であることが確認された場合、つまり、エンジンが始動してから未だに電動ポンプ7が駆動されていないことが確認された場合には、電動ポンプ7を停止状態のまま維持し(ステップS13)、リターンする。   On the other hand, when it is determined NO in step S12 and it is confirmed that the pump drive flag F = 0, that is, when it is confirmed that the electric pump 7 has not been driven yet after the engine is started. Maintains the electric pump 7 in a stopped state (step S13) and returns.

以上説明したように、当実施形態の排気浄化装置は、エンジンの排気通路1上に設けられた選択還元型のNOx浄化触媒3と、このNOx浄化触媒3よりも上流側の排気通路1(上流側配管1a)内に還元剤としての尿素水を添加する添加弁5と、上記尿素水を貯留する貯留タンク9から供給管13を通じて上記添加弁5に尿素水を供給する電動ポンプ7と、上記添加弁5および電動ポンプ7の作動を制御する制御手段としてのECU21と、上記NOx浄化触媒3の温度Tsを検出する温度センサ23とを備えている。そして、エンジン始動後に上記電動ポンプ7が駆動される際には、尿素水が十分に加水分解される所定温度Tsqまで上記NOx浄化触媒3の温度Tsが上昇するタイミングと、上記供給管13内の尿素水の圧力Prが所定圧Prqまで達して上記添加弁5からの尿素水の添加が可能になるタイミングとが一致するように、上記電動ポンプ7の駆動開始タイミングが決定されるようになっている。このような構成によれば、電動ポンプ7の無駄な消費電力を抑えてエネルギー効率をより向上させることができるという利点がある。   As described above, the exhaust purification system of this embodiment includes the selective reduction type NOx purification catalyst 3 provided on the exhaust passage 1 of the engine, and the exhaust passage 1 (upstream) upstream of the NOx purification catalyst 3. An addition valve 5 for adding urea water as a reducing agent in the side pipe 1a), an electric pump 7 for supplying urea water to the addition valve 5 through a supply pipe 13 from a storage tank 9 for storing the urea water, An ECU 21 as control means for controlling the operation of the addition valve 5 and the electric pump 7 and a temperature sensor 23 for detecting the temperature Ts of the NOx purification catalyst 3 are provided. When the electric pump 7 is driven after the engine is started, the timing at which the temperature Ts of the NOx purification catalyst 3 rises to a predetermined temperature Tsq at which the urea water is sufficiently hydrolyzed, and the supply pipe 13 The drive start timing of the electric pump 7 is determined so that the pressure Pr of the urea water reaches the predetermined pressure Prq and the timing at which the urea water from the addition valve 5 can be added coincides. Yes. According to such a configuration, there is an advantage that energy efficiency can be further improved by suppressing useless power consumption of the electric pump 7.

すなわち、上記実施形態では、NOx浄化触媒3の温度Tsが所定温度Tsqに達するタイミング(図3の時点t4)が温度センサ23の検出値等に基づき割り出され、これと同じタイミングで、供給管13内の尿素水の圧力Prが所定圧Prqに達するように、電動ポンプ7の駆動開始タイミングが決定されるようになっているため、触媒温度Tsが低く尿素水を添加する必要がないときに電動ポンプ7によって尿素水が無駄に加圧されるといったことが無く、上記電動ポンプ7で消費される電力を効果的に削減してエネルギー効率をより向上させることができるという利点がある。   That is, in the above embodiment, the timing at which the temperature Ts of the NOx purification catalyst 3 reaches the predetermined temperature Tsq (time point t4 in FIG. 3) is determined based on the detection value of the temperature sensor 23, and at the same timing, the supply pipe Since the drive start timing of the electric pump 7 is determined so that the pressure Pr of the urea water in 13 reaches the predetermined pressure Prq, the catalyst temperature Ts is low and it is not necessary to add urea water There is no wasteful pressurization of urea water by the electric pump 7, and there is an advantage that the electric power consumed by the electric pump 7 can be effectively reduced and the energy efficiency can be further improved.

しかも、尿素水が十分に加水分解される上記所定温度Tsqまで触媒温度Tsが達するのと同時に、添加弁5からの尿素水の添加を開始できるため、上記のような電動ポンプ7の駆動制御によりその消費電力の削減を図りつつ、尿素水の添加を適切なタイミングで開始して上記NOx浄化触媒3での還元反応を効果的に促進させることにより、エネルギー効率とNOx浄化性能との向上を高次元で両立できるという利点がある。   Moreover, since the addition of the urea water from the addition valve 5 can be started simultaneously with the catalyst temperature Ts reaching the predetermined temperature Tsq at which the urea water is sufficiently hydrolyzed, the drive control of the electric pump 7 as described above is performed. While reducing the power consumption, the addition of urea water is started at an appropriate timing to effectively promote the reduction reaction in the NOx purification catalyst 3, thereby improving the energy efficiency and the NOx purification performance. There is an advantage that both dimensions can be achieved.

特に、上記実施形態では、NOx浄化触媒3の温度Tsが上記所定温度Tsqよりも低いとき(図2および図3の例では触媒温度Tsが閾値α以上になった後の所定期間)に算出された上記NOx浄化触媒3の温度上昇率ΔTsに基づいて、上記触媒温度Tsが所定温度Tsqに達するまでの時間tt1を予測するとともに、この予測時間tt1と、上記電動ポンプ7が駆動されてから上記供給管13内の尿素水の圧力Prが上記所定圧Prqに達するまでの所要時間tt2とに基づいて、上記電動ポンプ7の駆動開始タイミングを決定するようにしたため、上記NOx浄化触媒3の温度上昇率ΔTsを用いた予測等に基づく適正なタイミングで上記電動ポンプ7を駆動することにより、その消費電力をより効果的に削減できるという利点がある。   In particular, in the above embodiment, it is calculated when the temperature Ts of the NOx purification catalyst 3 is lower than the predetermined temperature Tsq (a predetermined period after the catalyst temperature Ts exceeds the threshold value α in the examples of FIGS. 2 and 3). Based on the temperature increase rate ΔTs of the NOx purification catalyst 3, the time tt1 until the catalyst temperature Ts reaches the predetermined temperature Tsq is predicted, and the predicted time tt1 and the electric pump 7 are driven to Since the drive start timing of the electric pump 7 is determined based on the required time tt2 until the pressure Pr of the urea water in the supply pipe 13 reaches the predetermined pressure Prq, the temperature rise of the NOx purification catalyst 3 is increased. By driving the electric pump 7 at an appropriate timing based on prediction using the rate ΔTs, there is an advantage that the power consumption can be more effectively reduced. .

すなわち、上記実施形態では、触媒温度Tsが所定温度Tsqに達するまでの予測時間tt1から、電動ポンプ7を駆動して尿素水の圧力Prを所定圧Prqまで上昇させるのに必要な所要時間tt2を差し引いた時間をタイマでカウントし、そのカウントが終了した時点(図3の時点t3)で電動ポンプ7を駆動するようにしたため、尿素水の圧力Prが所定圧Prqまで高まるタイミングを、上記触媒温度Tsが所定温度Tsqに達する時点(同図の時点t4)に正確に一致させることができ、電動ポンプ7が無駄に駆動される期間をよりゼロに近づけてその消費電力の削減をより効果的に図ることができる。   That is, in the above embodiment, the required time tt2 required to drive the electric pump 7 and raise the pressure Pr of the urea water to the predetermined pressure Prq from the predicted time tt1 until the catalyst temperature Ts reaches the predetermined temperature Tsq. The subtracted time is counted by a timer, and the electric pump 7 is driven when the count is completed (time t3 in FIG. 3). Therefore, the timing at which the urea water pressure Pr rises to the predetermined pressure Prq is set to the catalyst temperature. The time when Ts reaches the predetermined temperature Tsq (time t4 in the figure) can be accurately matched, and the period during which the electric pump 7 is wasted is brought closer to zero and the power consumption can be reduced more effectively. Can be planned.

なお、上記実施形態では、NOx浄化触媒3の温度Tsが所定温度Tsqに達するタイミングと、供給管13内の尿素水の圧力Prが所定圧Prqに達するタイミングとが一致するように、上記電動ポンプ7の駆動開始タイミングを決定したが、上記所定温度Tsqへの到達タイミングと上記所定圧Prqへの到達タイミングとを必ずしも正確に一致させる必要はなく、上記所定温度Tsqへの到達タイミングから若干前後した所定のタイミングで、上記供給管13内の圧力Prが所定圧Prqに達するように上記電動ポンプ7を駆動してもよい。いずれにせよ、上記NOx浄化触媒3の温度上昇率ΔTsを求め、この上昇率ΔTsが小さいときには大きいときに比べて上記電動ポンプ7の駆動開始タイミングを遅らせる等により、触媒温度Tsが所定温度Tsqに達するタイミングに連動させて上記電動ポンプ7の駆動開始タイミングを決定するようにすれば、上記触媒温度Tsが所定温度Tsqに達する時点に応じた適正なタイミングで尿素水の圧力Prを所定圧Prqまで高めることができ、電動ポンプ7の消費電力を効果的に削減しつつ添加弁5からの尿素水の添加を適正時期に開始できるという利点がある。   In the above embodiment, the electric pump is arranged so that the timing at which the temperature Ts of the NOx purification catalyst 3 reaches the predetermined temperature Tsq coincides with the timing at which the pressure Pr of the urea water in the supply pipe 13 reaches the predetermined pressure Prq. However, it is not always necessary to accurately match the arrival timing to the predetermined temperature Tsq and the arrival timing to the predetermined pressure Prq, and slightly differs from the arrival timing to the predetermined temperature Tsq. The electric pump 7 may be driven so that the pressure Pr in the supply pipe 13 reaches a predetermined pressure Prq at a predetermined timing. In any case, the temperature increase rate ΔTs of the NOx purification catalyst 3 is obtained, and when the increase rate ΔTs is small, the drive start timing of the electric pump 7 is delayed compared to when the increase rate ΔTs is large. If the drive start timing of the electric pump 7 is determined in conjunction with the arrival timing, the urea water pressure Pr is set to the predetermined pressure Prq at an appropriate timing according to the time when the catalyst temperature Ts reaches the predetermined temperature Tsq. There is an advantage that the addition of urea water from the addition valve 5 can be started at an appropriate time while effectively reducing the power consumption of the electric pump 7.

また、さらに別の態様として、NOx浄化触媒3の温度Tsが所定温度Tsqに達したことを温度センサ23の検出値に基づいて確認し、その時点で電動ポンプ7の駆動を開始した後、供給管13内の圧力が所定圧Prqまで達するのを待ってから、添加弁5からの尿素水の添加を開始するようにしてもよい。もちろん、このようにすると、触媒温度Tsが所定温度Tsqに達してから所定のタイムラグ(図3の所要時間tt2)が経過した後でないと添加弁5からの尿素水の添加を開始できないため、NOx浄化性能の面では多少不利になる。しかしながら、図3に示したように、電動ポンプ7が駆動されてから供給管13内の圧力Prが所定圧Prqに達するまでの所要時間tt2は、エンジンが始動してからNOx浄化触媒3の温度Tsが所定温度Tsqに達するまでの時間に比べてかなり短いため、上記のようなタイムラグがあったとしても、それによるNOx浄化性能への影響は小さいものと考えられる。   Further, as another aspect, it is confirmed that the temperature Ts of the NOx purification catalyst 3 has reached the predetermined temperature Tsq based on the detection value of the temperature sensor 23, and the electric pump 7 is started to be driven after that time. After waiting for the pressure in the pipe 13 to reach the predetermined pressure Prq, the addition of urea water from the addition valve 5 may be started. Of course, if this is done, the addition of urea water from the addition valve 5 can only be started after a predetermined time lag (required time tt2 in FIG. 3) has elapsed after the catalyst temperature Ts reaches the predetermined temperature Tsq. It is somewhat disadvantageous in terms of purification performance. However, as shown in FIG. 3, the required time tt2 from when the electric pump 7 is driven until the pressure Pr in the supply pipe 13 reaches the predetermined pressure Prq is the temperature of the NOx purification catalyst 3 after the engine is started. Since Ts is considerably shorter than the time required to reach the predetermined temperature Tsq, even if there is a time lag as described above, it is considered that the effect on the NOx purification performance due to this is small.

また、上記実施形態では、排気通路1のうちNOx浄化触媒3の直上流部にあたる上流側配管1aの末端部に温度センサ23を設け、この温度センサ23によってNOx浄化触媒3の温度Tsを直接的に検出するようにしたが、例えばNOx浄化触媒3から所定距離上流側を流れる排気ガスの温度を検出し、その検出温度に所定の補正係数を掛ける等によって上記NOx浄化触媒3の温度Tsを求めるようにしてもよい。また、エンジン負荷および回転数等から判別されるエンジンの運転状態や、その運転状態での継続時間等に基づいて、上記NOx浄化触媒3の温度Tsを推定するようにしてもよい。いずれにせよ、上記NOx浄化触媒3の温度Tsを調べるには、当該温度Tsに関連する何らかのパラメータ値を検出すればよく、具体的にどのような状態量を検出するかは特に問わない。   In the above embodiment, the temperature sensor 23 is provided at the end of the upstream pipe 1a corresponding to the upstream portion of the NOx purification catalyst 3 in the exhaust passage 1, and the temperature Ts of the NOx purification catalyst 3 is directly measured by the temperature sensor 23. For example, the temperature Ts of the NOx purification catalyst 3 is obtained by detecting the temperature of the exhaust gas flowing upstream from the NOx purification catalyst 3 by a predetermined distance and multiplying the detected temperature by a predetermined correction coefficient. You may do it. Further, the temperature Ts of the NOx purification catalyst 3 may be estimated based on the operating state of the engine determined from the engine load and the rotational speed, the duration in the operating state, and the like. In any case, in order to examine the temperature Ts of the NOx purification catalyst 3, it is only necessary to detect some parameter value related to the temperature Ts, and there is no particular limitation as to what state quantity is specifically detected.

また、上記実施形態では、NOx浄化触媒3での還元反応を促進させるための還元剤として尿素水を用いたが、同様の効果が得られるものであればこれに限らず、例えばNOx浄化触媒3の種類に応じて、アンモニア水やアルコール類等を上記還元剤として用いてもよい。   In the above embodiment, urea water is used as the reducing agent for promoting the reduction reaction in the NOx purification catalyst 3, but the present invention is not limited to this as long as the same effect can be obtained. For example, the NOx purification catalyst 3 Depending on the type, ammonia water or alcohols may be used as the reducing agent.

本発明の一実施形態にかかるエンジンの排気浄化装置を示す概略図である。1 is a schematic view showing an exhaust emission control device for an engine according to an embodiment of the present invention. 上記排気浄化装置の制御動作を説明するためのフローチャートである。It is a flowchart for demonstrating control operation | movement of the said exhaust gas purification apparatus. 上記排気浄化装置の制御動作を説明するためのタイムチャートである。It is a time chart for demonstrating control operation | movement of the said exhaust gas purification apparatus. エンジン停止後に尿素水を回収する際の状況を説明するための図1相当図である。FIG. 2 is a view corresponding to FIG. 1 for explaining a situation when urea water is collected after the engine is stopped.

符号の説明Explanation of symbols

1 排気通路
3 NOx浄化触媒
5 添加弁
7 電動ポンプ
9 貯留タンク
13 供給管
19 切替弁
21 ECU(制御手段)
23 温度センサ(パラメータ値検出手段)
Ts (NOx浄化触媒の)温度
ΔTs 温度上昇率
Tsq 所定温度
Pr (還元剤の)圧力
Prq 所定圧
tt1 (所定温度に達するまでの)予測時間
tt2 (所定圧に達するまでの)所要時間
DESCRIPTION OF SYMBOLS 1 Exhaust passage 3 NOx purification catalyst 5 Addition valve 7 Electric pump 9 Storage tank 13 Supply pipe 19 Switching valve 21 ECU (control means)
23 Temperature sensor (parameter value detection means)
Ts (NOx purification catalyst) temperature ΔTs Temperature increase rate Tsq Predetermined temperature Pr (Reducing agent) pressure Prq Predetermined pressure tt1 Estimated time (until the predetermined temperature is reached) tt2 Required time (until the predetermined pressure is reached)

Claims (5)

エンジンの排気通路上に設けられた選択還元型のNOx浄化触媒と、このNOx浄化触媒よりも上流側の排気通路内に液状の還元剤を添加する添加弁と、上記還元剤を貯留する貯留タンクから所定の供給管を通じて上記添加弁に還元剤を供給する電動ポンプと、上記添加弁および電動ポンプの作動を制御する制御手段とを備えたエンジンの排気浄化装置であって、
上記NOx浄化触媒の温度に関連するパラメータ値を検出するパラメータ値検出手段を備え、
上記制御手段は、エンジン始動後に上記電動ポンプを駆動する際に、その駆動開始タイミングを、上記パラメータ値検出手段の検出値から求まる上記NOx浄化触媒の温度に基づいて決定することを特徴とするエンジンの排気浄化装置。
A selective reduction type NOx purification catalyst provided on the exhaust passage of the engine, an addition valve for adding a liquid reducing agent into the exhaust passage upstream of the NOx purification catalyst, and a storage tank for storing the reducing agent An engine exhaust purification device comprising: an electric pump for supplying a reducing agent to the addition valve through a predetermined supply pipe; and a control means for controlling the operation of the addition valve and the electric pump,
Parameter value detecting means for detecting a parameter value related to the temperature of the NOx purification catalyst,
When the electric pump is driven after the engine is started, the control means determines the drive start timing based on the temperature of the NOx purification catalyst determined from the detection value of the parameter value detection means. Exhaust purification equipment.
請求項1記載のエンジンの排気浄化装置において、
上記添加弁は、上記NOx浄化触媒の温度が所定温度以上のときに上記還元剤を添加するように制御され、
上記制御手段は、上記NOx浄化触媒の温度が上記所定温度よりも低いときに上記NOx浄化触媒の温度上昇率を求め、この温度上昇率が小さいときには大きいときに比べて上記電動ポンプの駆動開始タイミングを遅らせることを特徴とするエンジンの排気浄化装置。
The exhaust emission control device for an engine according to claim 1,
The addition valve is controlled to add the reducing agent when the temperature of the NOx purification catalyst is equal to or higher than a predetermined temperature,
The control means obtains the temperature increase rate of the NOx purification catalyst when the temperature of the NOx purification catalyst is lower than the predetermined temperature, and when the temperature increase rate is small, the drive start timing of the electric pump compared to when it is large. Engine exhaust purification device characterized by delaying the engine.
請求項2記載のエンジンの排気浄化装置において、
上記制御手段は、上記NOx浄化触媒の温度が上記所定温度まで上昇するタイミングと、上記供給管内の還元剤の圧力が所定圧まで達して上記添加弁からの還元剤の添加が可能になるタイミングとが一致するように、上記電動ポンプの駆動開始タイミングを決定することを特徴とするエンジンの排気浄化装置。
The exhaust emission control device for an engine according to claim 2,
The control means includes a timing at which the temperature of the NOx purification catalyst rises to the predetermined temperature, and a timing at which the pressure of the reducing agent in the supply pipe reaches a predetermined pressure so that the reducing agent can be added from the addition valve. The engine exhaust gas purification apparatus determines the drive start timing of the electric pump so as to match.
請求項3記載のエンジンの排気浄化装置において、
上記制御手段は、上記NOx浄化触媒の温度が上記所定温度に達するまでの時間を上記温度上昇率に基づいて予測するとともに、この予測時間と、上記電動ポンプが駆動されてから上記供給管内の還元剤の圧力が上記所定圧に達するまでの所要時間とに基づいて、上記電動ポンプの駆動開始タイミングを決定することを特徴とするエンジンの排気浄化装置。
The engine exhaust gas purification apparatus according to claim 3,
The control means predicts the time until the temperature of the NOx purification catalyst reaches the predetermined temperature based on the rate of temperature increase, and the predicted time and the reduction in the supply pipe after the electric pump is driven. An engine exhaust gas purification apparatus, wherein the drive start timing of the electric pump is determined based on a time required for the pressure of the agent to reach the predetermined pressure.
請求項1〜4のいずれか1項に記載のエンジンの排気浄化装置において、
上記制御手段は、エンジン停止後に、上記供給管に設けられた切替弁を作動させることにより、上記供給管内に残留する還元剤が上記電動ポンプの吸引力で上記貯留タンク内に戻されるように還元剤の流れを切り替えることを特徴とするエンジンの排気浄化装置。
The engine exhaust gas purification apparatus according to any one of claims 1 to 4,
The control means operates the switching valve provided in the supply pipe after the engine is stopped so that the reducing agent remaining in the supply pipe is returned to the storage tank by the suction force of the electric pump. An exhaust emission control device for an engine, wherein the flow of the agent is switched.
JP2008274175A 2008-10-24 2008-10-24 Engine exhaust purification system Expired - Fee Related JP5195277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008274175A JP5195277B2 (en) 2008-10-24 2008-10-24 Engine exhaust purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008274175A JP5195277B2 (en) 2008-10-24 2008-10-24 Engine exhaust purification system

Publications (2)

Publication Number Publication Date
JP2010101262A true JP2010101262A (en) 2010-05-06
JP5195277B2 JP5195277B2 (en) 2013-05-08

Family

ID=42292119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008274175A Expired - Fee Related JP5195277B2 (en) 2008-10-24 2008-10-24 Engine exhaust purification system

Country Status (1)

Country Link
JP (1) JP5195277B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163121A (en) * 2010-02-04 2011-08-25 Mitsubishi Motors Corp Exhaust emission control device
WO2011145568A1 (en) * 2010-05-17 2011-11-24 いすゞ自動車株式会社 Exhaust gas purification system
JP2011247135A (en) * 2010-05-25 2011-12-08 Isuzu Motors Ltd Scr system
JP2012026375A (en) * 2010-07-23 2012-02-09 Honda Motor Co Ltd Exhaust emission control system for internal combustion engine
WO2015011532A1 (en) * 2013-07-26 2015-01-29 Toyota Jidosha Kabushiki Kaisha Scr exhaust emission control system and method therefore, for filling the urea reducing agent after returning to the tank
EP2835510A1 (en) 2013-08-08 2015-02-11 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
EP2896799A4 (en) * 2012-09-13 2016-05-25 Toyota Motor Co Ltd Additive supply device
EP3064728A1 (en) 2015-03-02 2016-09-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus
JP2017014912A (en) * 2015-06-26 2017-01-19 トヨタ自動車株式会社 Exhaust emission control device
JP2017089198A (en) * 2015-11-09 2017-05-25 日立建機株式会社 Work machine
CN107524505A (en) * 2016-06-15 2017-12-29 罗伯特·博世有限公司 Method and apparatus for implementing the method for diagnostic reagent allocating system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016215718A1 (en) * 2016-08-22 2018-02-22 Robert Bosch Gmbh Method and device for sequence control of an exhaust gas purification system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166847A (en) * 1993-12-15 1995-06-27 Hino Motors Ltd Exhaust emission control device for internal combustion engine
JP2000229221A (en) * 1999-02-10 2000-08-22 Meidensha Corp Denitrification device and its controlling method
JP2008101564A (en) * 2006-10-20 2008-05-01 Denso Corp Exhaust emission control device for engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166847A (en) * 1993-12-15 1995-06-27 Hino Motors Ltd Exhaust emission control device for internal combustion engine
JP2000229221A (en) * 1999-02-10 2000-08-22 Meidensha Corp Denitrification device and its controlling method
JP2008101564A (en) * 2006-10-20 2008-05-01 Denso Corp Exhaust emission control device for engine

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163121A (en) * 2010-02-04 2011-08-25 Mitsubishi Motors Corp Exhaust emission control device
WO2011145568A1 (en) * 2010-05-17 2011-11-24 いすゞ自動車株式会社 Exhaust gas purification system
JP2011241738A (en) * 2010-05-17 2011-12-01 Isuzu Motors Ltd Exhaust emission control system
CN102906384A (en) * 2010-05-17 2013-01-30 五十铃自动车株式会社 Exhaust gas purification system
US9217352B2 (en) 2010-05-17 2015-12-22 Isuzu Motors Limited Exhaust gas purification system
JP2011247135A (en) * 2010-05-25 2011-12-08 Isuzu Motors Ltd Scr system
JP2012026375A (en) * 2010-07-23 2012-02-09 Honda Motor Co Ltd Exhaust emission control system for internal combustion engine
EP2896799A4 (en) * 2012-09-13 2016-05-25 Toyota Motor Co Ltd Additive supply device
WO2015011532A1 (en) * 2013-07-26 2015-01-29 Toyota Jidosha Kabushiki Kaisha Scr exhaust emission control system and method therefore, for filling the urea reducing agent after returning to the tank
JP2015025419A (en) * 2013-07-26 2015-02-05 トヨタ自動車株式会社 Exhaust emission control device of internal combustion engine
EP2835510A1 (en) 2013-08-08 2015-02-11 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
EP3064728A1 (en) 2015-03-02 2016-09-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus
KR20160106509A (en) 2015-03-02 2016-09-12 도요타 지도샤(주) Exhaust gas control apparatus
US9683473B2 (en) 2015-03-02 2017-06-20 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus
RU2642013C2 (en) * 2015-03-02 2018-01-23 Тойота Дзидося Кабусики Кайся Exhaust gas control apparatus
JP2017014912A (en) * 2015-06-26 2017-01-19 トヨタ自動車株式会社 Exhaust emission control device
JP2017089198A (en) * 2015-11-09 2017-05-25 日立建機株式会社 Work machine
CN107524505A (en) * 2016-06-15 2017-12-29 罗伯特·博世有限公司 Method and apparatus for implementing the method for diagnostic reagent allocating system
CN107524505B (en) * 2016-06-15 2021-03-23 罗伯特·博世有限公司 Method for a diagnostic reagent dispensing system and device for carrying out said method

Also Published As

Publication number Publication date
JP5195277B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5195277B2 (en) Engine exhaust purification system
US8959890B2 (en) SCR thawing control system
JP5912232B2 (en) SCR system
JP5840829B2 (en) SCR system
JP6062771B2 (en) Exhaust gas purification device for internal combustion engine
EP2573344B1 (en) Validity diagnosis system for urea water temperature sensor
JP2013072392A (en) Foreign matter removing method and selective reduction catalyst system
JP6222168B2 (en) Urea water supply system
JP6575441B2 (en) Urea injection control device
JP5471832B2 (en) SCR system
JP5712515B2 (en) NOx sensor temperature raising device
JP6012086B2 (en) Control method for reducing agent supply device and reducing agent supply device
JP6062906B2 (en) Exhaust gas purification device for internal combustion engine
JP2012137037A (en) Exhaust purification system and method for controlling the same
JP2015151978A (en) Controller for exhaust emission control device
JP2016079957A (en) Control device for vehicle
JP6108534B2 (en) Exhaust purification system and control method of exhaust purification system
JP2015034465A (en) Controller of exhaust purification device
JP2012052868A (en) Liquid quantity/liquid state sensor
JPWO2020121713A1 (en) Control device for reducing agent supply device
JP5617342B2 (en) SCR system
JP2014134117A (en) Control device of urea water adding device
JP2018071387A (en) Defrosting controlling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5195277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees