JP2010101025A - Construction method and construction apparatus for diaphragm wall - Google Patents

Construction method and construction apparatus for diaphragm wall Download PDF

Info

Publication number
JP2010101025A
JP2010101025A JP2008271386A JP2008271386A JP2010101025A JP 2010101025 A JP2010101025 A JP 2010101025A JP 2008271386 A JP2008271386 A JP 2008271386A JP 2008271386 A JP2008271386 A JP 2008271386A JP 2010101025 A JP2010101025 A JP 2010101025A
Authority
JP
Japan
Prior art keywords
wall
muddy water
groove
water
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008271386A
Other languages
Japanese (ja)
Inventor
Futoshi Ishida
太嗣 石田
Akihiro Ito
彰浩 伊藤
Yuji Okumura
雄二 奥村
Eitaro Kawaura
栄太郎 川浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HONMA GIKEN KK
HONMAGUMI KK
Honma Corp
Original Assignee
HONMA GIKEN KK
HONMAGUMI KK
Honma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HONMA GIKEN KK, HONMAGUMI KK, Honma Corp filed Critical HONMA GIKEN KK
Priority to JP2008271386A priority Critical patent/JP2010101025A/en
Publication of JP2010101025A publication Critical patent/JP2010101025A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a construction method and a construction apparatus for a diaphragm wall, improving workability and reducing environmental load. <P>SOLUTION: A chain-type cutter 32 is rotated in the state of being built up in the ground, and the cutter 32 is moved to continuously excavate a ditch G of constant width. A PC wall body is then inserted in the ditch G to form the diaphragm wall. Muddy water W produced in the excavation is recovered, and a sediment part D is separated from the recovered muddy water W. The separated sediment part D and classified muddy water W1 which is a separated liquid separated from the sediment part D are recycled. When the PC wall body of large cross section is used, a large quantity of waste is generated, but the muddy water W produced by the excavation is recovered and separated into the separated liquid and a sediment part D. The muddy water W heretofore required to be discarded or treated can thereby be effectively utilized. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、土木建築工事において構築する地中連続壁の施工方法と施工装置に関する。   The present invention relates to an underground continuous wall construction method and construction apparatus constructed in civil engineering construction.

地中連続壁の施工性の向上を図ったものとして、掘削刃を備えたエンドレスチェーンがカッターポストに設けられた駆動輪と誘導輪との間に掛け渡されて成るチェーン式カッターをガイドに取付け、このチェーン式カッターを地中に挿入した状態で、同カッターを回転させながら上記ガイドにより水平に移動させて地中に連続壁を掘削し、この掘削された連続溝内に固化材を注入することによって地中に連続壁を造成する施工方法(例えば特許文献1)が知られている。   To improve the workability of the underground continuous wall, a chain type cutter, in which an endless chain equipped with a drilling blade is stretched between a drive wheel and a guide wheel provided on the cutter post, is attached to the guide. While the chain cutter is inserted into the ground, it is horizontally moved by the guide while rotating the cutter to excavate the continuous wall into the ground, and the solidified material is injected into the excavated continuous groove. There is a known construction method (for example, Patent Document 1) for creating a continuous wall in the ground.

上記の施工方法では、カッターにより掘削しながら、掘削孔内において掘削土砂と注入した掘削液と混合して先行掘削を行い、この後の固化段階で掘削孔内において掘削土砂と注入した固化材を混合して連続壁を構築するため、原則的には、注入した掘削液と固化材の分は泥水が発生する。このため、従来は、現場に貯泥ピットを設け、天日乾燥もしくはセメント固化処理を行って固化した後、搬出したり、所定の強度に達した後、現場で再利用したりしている。   In the above construction method, while excavating with a cutter, the excavated sediment is mixed with the excavated liquid in the excavated hole and preceded excavation is performed, and the solidified material injected with the excavated sediment in the excavated hole is solidified in the subsequent solidification stage. In order to construct a continuous wall by mixing, in principle, muddy water is generated for the injected drilling fluid and solidified material. For this reason, conventionally, a mud pit is provided at the site, solidified by performing sun drying or cement solidification, and then carried out, or after reaching a predetermined strength, reused at the site.

また、固化材入りスラリーが造成された掘削溝に壁形成用柱材を連続的に設置して先行壁を形成する地中連続壁の構築方法が知られており、先行壁の打ち継ぎ面に仮設用柱材を密着状に設置し、スラリーが固化してソイルセメントとなった後に、仮設用柱材を引き抜いて先行壁の打ち継ぎ面に連結用空隙部を形成すると共に、固化液入りスラリーを造成しながら連結用空隙部まで後戻り掘削して後行壁用の掘削溝を掘削した後、先行壁の打ち継ぎ面に後行壁用の壁形成用柱材を密着状に設置する(例えば特許文献2)。
特開平7−180154号公報 特開2006−70608号公報
In addition, there is a known method for constructing a continuous underground wall in which a wall forming pillar is continuously installed in a drilling groove in which a slurry containing a solidifying material is formed to form a leading wall. After the temporary pillar material is installed in close contact and the slurry is solidified to form a soil cement, the temporary pillar material is pulled out to form a connecting gap on the joint surface of the preceding wall, and the slurry containing the solidified liquid And then drilling back to the connecting gap and excavating the excavation groove for the subsequent wall, and then installing the wall forming column material for the subsequent wall in close contact with the joining surface of the preceding wall (for example, Patent Document 2).
JP-A-7-180154 JP 2006-70608 A

上記地中連続壁の構築方法において、掘削溝に大きな断面の壁形成用柱材を設置する場合、地中壁の壁厚に対して、使用する壁形成用柱材の体積が大きくなるため、多量の泥土が排出され、この泥土は産業廃棄物として処分されるが、処分量が多いため、処理費用が膨大なものになるという問題がある。   In the construction method of the underground continuous wall, when installing a wall-forming column with a large cross section in the excavation groove, the volume of the wall-forming column to be used is larger than the wall thickness of the underground wall. A large amount of mud is discharged, and this mud is disposed of as industrial waste. However, since the amount of disposal is large, there is a problem that the treatment cost becomes enormous.

また、上記地中連続壁の構築方法では、先行壁と後行壁用の壁形成用柱材とを密着することができるが、先行壁に仮設用柱材を設置及び撤去する作業が必要となると共に、ソイルセメントとなった先行壁まで戻ってソイルセメント部分を再度掘削する必要があった。   Moreover, in the construction method of the underground continuous wall, the leading wall and the wall forming pillar material for the trailing wall can be brought into close contact with each other, but work for installing and removing the temporary pillar material on the leading wall is required. At the same time, it was necessary to return to the preceding wall that became the soil cement and excavate the soil cement portion again.

そこで、本発明は、地中連続壁を構築する際に発生する泥水を再利用することにより、廃棄物を無くし、施工性の向上を図り、環境負荷を低減することが出来る地中連続壁の施工方法と施工装置を提供することを目的とし、加えて、仮設用柱材の設置及び撤去が不要で、ソイルセメント部分の再掘削が不要で、施工性を向上することを目的とする。   Therefore, the present invention eliminates waste by reusing the muddy water generated when building the underground continuous wall, improves workability, and reduces the environmental load. An object is to provide a construction method and a construction apparatus, and in addition, it is not necessary to install and remove a temporary pillar material, and it is not necessary to re-excavate a soil cement portion, thereby improving workability.

請求項1の発明は、チェーン式カッターを地中に建て込んだ状態で、カッターを回転させると共に、該カッターを移動させることにより一定幅の溝を連続して掘削し、この溝内に壁形成用柱材を挿入して地中壁を形成する地中連続壁の施工方法において、前記壁形成用柱材がPC壁体であり、前記掘削時に発生した泥水を回収し、この回収した泥水から土砂分を分離し、この分離された土砂分と土砂分を分離した分離液とを再利用する施工方法である。   According to the first aspect of the present invention, in the state where the chain type cutter is built in the ground, the cutter is rotated, and the cutter is moved to continuously excavate a groove having a constant width, and a wall is formed in the groove. In the construction method of the underground continuous wall in which the pillar material is inserted to form the underground wall, the wall forming pillar material is a PC wall body, and the muddy water generated during the excavation is recovered, and the recovered muddy water is In this construction method, the earth and sand are separated, and the separated earth and sand and the separated liquid from which the earth and sand are separated are reused.

請求項2の発明は、前記溝内に前記PC壁体を挿入した後、前記溝に固化材を充填する施工方法である。   Invention of Claim 2 is the construction method which fills the said solidification material in the said groove | channel after inserting the said PC wall body in the said groove | channel.

請求項3の発明は、前記カッターを移動させながら前記溝内の掘削土砂に固化材を注入し、この固化材を注入した溝内に前記PC壁体を挿入して地中壁を形成する施工方法である。   According to a third aspect of the present invention, the solidifying material is injected into the excavated soil in the groove while moving the cutter, and the PC wall is inserted into the groove into which the solidifying material has been injected to form an underground wall. Is the method.

請求項4の発明は、前記発生した泥水をスクイーズポンプにより吸引する施工方法である。   Invention of Claim 4 is the construction method which attracts | sucks the said generated muddy water with a squeeze pump.

請求項5の発明は、請求項1記載の地中連続壁の施工方法に用いる施工装置において、前記発生した泥水を回収するスクイーズポンプと、このスクイーズポンプにより回収した泥水を貯留する貯泥槽と、この貯泥槽の泥水から土砂分を分離する土砂分分離手段とを備える施工装置である。   Invention of Claim 5 is the construction apparatus used for the construction method of the underground continuous wall of Claim 1, The squeeze pump which collect | recovers the generated muddy water, A mud storage tank which stores the muddy water collect | recovered with this squeeze pump, The construction apparatus includes a soil and sand separation means for separating the soil and sand from the mud in the mud tank.

請求項1の構成によれば、断面の大きなPC壁体を用いると、多量の廃棄物が発生するが、掘削により発生する泥水を回収し、分離液と土砂分とに分離するため、従来、廃棄又は処理を必要とした泥水を有効利用することができ、例えば、分離液は掘削液の成分と、現場から発生するシルトや粘土分などの細粒分を含むから、分離液に再利用することができ、添加成分の使用量を削減することができ、また、土砂分は土木材料などに再利用できる。   According to the configuration of claim 1, when a PC wall having a large cross section is used, a large amount of waste is generated. However, in order to collect muddy water generated by excavation and separate it into a separated liquid and sediment, Muddy water that needs to be disposed or treated can be used effectively. For example, the separation liquid contains components of drilling liquid and fine particles such as silt and clay generated on site, so it can be reused in the separation liquid. The amount of additive components used can be reduced, and earth and sand can be reused for civil engineering materials.

また、請求項2の構成によれば、PC壁体を挿入した後、固化材を充填するから、打ち注ぎ部分を施工した後、打ち継ぎ部分に固化材を充填することにより、施工性を向上することができる。すなわち、従来の仮設用柱材の設置及び撤去と、ソイルセメント部分の再掘削が不要となる。   Further, according to the configuration of claim 2, since the solidified material is filled after the PC wall is inserted, the workability is improved by filling the solidified material in the jointed portion after constructing the pouring portion. can do. That is, it becomes unnecessary to install and remove the conventional temporary pillar material and to re-excavate the soil cement portion.

また、請求項3の構成によれば、固化材を含んだ泥水を回収し、分離液と土砂分とに分離し、土砂分又は分離水を再利用することができる。   Moreover, according to the structure of Claim 3, the muddy water containing the solidification material is collect | recovered, and it can isolate | separate into a separated liquid and earth and sand, and can reuse earth and sand or separated water.

また、請求項4の構成によれば、泥水の発生量が多くなっても、泥水をスムーズに連続吸引することができる。   Moreover, according to the structure of Claim 4, even if the generation amount of muddy water increases, muddy water can be sucked smoothly and continuously.

また、請求項5の構成によれば、この装置を用いて地中壁を構築することにより、掘削時,PC壁体2の挿入時又は固化材の注入時に発生する泥水を回収し、従来、廃棄又は処理を必要とした泥水を有効利用することができる。また、PC壁体を挿入する際、泥水の発生量が多くなり、装置の処理能力を超えても、貯泥槽に一端ストックして処理することができる。   Further, according to the configuration of claim 5, by constructing the underground wall using this device, the muddy water generated at the time of excavation, at the time of insertion of the PC wall body 2 or at the injection of the solidified material is recovered, Muddy water that needs to be discarded or treated can be used effectively. Further, when the PC wall is inserted, the amount of mud generated increases, and even if the processing capacity of the apparatus is exceeded, it can be stocked once in the mud storage tank and processed.

本発明における好適な実施の形態について、添付図面を参照しながら詳細に説明する。なお、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。各実施例では、従来とは異なる新規な地中連続壁の施工方法と施工装置を採用することにより、従来にない機能を付加した地中連続壁の施工方法と施工装置が得られ、その地中連続壁の施工方法と施工装置を夫々記述する。   Preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments described below do not limit the contents of the present invention described in the claims. In addition, all the configurations described below are not necessarily essential requirements of the present invention. In each example, by adopting a new underground continuous wall construction method and construction equipment different from conventional ones, an underground continuous wall construction method and construction equipment with an unprecedented function can be obtained. The construction method and construction equipment for the medium continuous wall are described respectively.

以下、本発明の実施形態を添付図面を参照して説明する。図1〜図5は、本発明の実施例1を示し、同図に示すように、地中連続壁1は、複数のPC壁体(プレキャストコンクリート壁体)2により構築され、このPC壁体2は、平断面が略正方形形状をなし、その中央に長さ方向に連結する略円形の中空部3が形成されて筒状をなし、隣合うPC壁体2,2が接する打ち継ぎ面4には、複数の打ち継ぎ溝5,5が形成されている。   Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 to 5 show a first embodiment of the present invention. As shown in FIG. 1, the underground continuous wall 1 is constructed by a plurality of PC wall bodies (precast concrete wall bodies) 2. 2, the plane section has a substantially square shape, a substantially circular hollow portion 3 connected in the longitudinal direction is formed at the center thereof to form a cylindrical shape, and the joining surface 4 on which adjacent PC wall bodies 2 and 2 are in contact with each other. A plurality of joining grooves 5 and 5 are formed.

11は地盤、12は掘削装置10の自走車両、13はそのクローラ、14は旋回台、15は運転室、16は後部に設けた油圧ユニットである。本実施例においては、上部水平部材17と、下部水平部材18と、4本の垂直部材19を枠組みしてフレーム20を形成し、このフレーム20を車両12の一側に垂直に立てて固定する。すなわち21は一方のクローラ13の外側面に突設した2個のブラケットで、このブラケット21にフレーム20の下部水平部材18を固定すると共に、フレーム20の上部水平部材17の後面に突設したブラケット22に連結したステー23の後端部を、他のクローラ13の外側に突設したブラケット24に連結してフレーム20を固定する。   11 is the ground, 12 is a self-propelled vehicle of the excavator 10, 13 is a crawler, 14 is a swivel, 15 is a driver's cab, and 16 is a hydraulic unit provided at the rear. In the present embodiment, the upper horizontal member 17, the lower horizontal member 18, and the four vertical members 19 are framed to form a frame 20, and the frame 20 is fixed vertically on one side of the vehicle 12. . That is, 21 is two brackets projecting on the outer surface of one of the crawlers 13. The lower horizontal member 18 of the frame 20 is fixed to the bracket 21 and the bracket is projected on the rear surface of the upper horizontal member 17 of the frame 20. The frame 20 is fixed by connecting the rear end of the stay 23 connected to 22 to a bracket 24 protruding outside the other crawler 13.

また、掘削装置10は、フレーム20の上下の水平部材17,18をガイドとして垂直フレーム25を横方向に摺動自在に設ける。25aは上部水平部材17のガイド部と摺動自在に係合するブラケット部であり、25bは下部水平部材18のガイド部と摺動自在に係合するブラケット部である。また上部水平部材17に油圧シリンダー26の基部を枢支すると共に、このピストンロッド26aの先端部を連結部材27を介して垂直フレーム25の上部に連結し、下部水平部材18に油圧シリンダー28の基部を枢支すると共に、このピストンロッド28aの先端部を連結部材29を介して垂直フレーム25の下部に連結する。   Further, the excavator 10 is provided with a vertical frame 25 slidable in the horizontal direction with the horizontal members 17 and 18 above and below the frame 20 as guides. A bracket portion 25a is slidably engaged with the guide portion of the upper horizontal member 17, and a bracket portion 25b is slidably engaged with the guide portion of the lower horizontal member 18. Further, the base portion of the hydraulic cylinder 26 is pivotally supported on the upper horizontal member 17, and the tip end portion of the piston rod 26 a is connected to the upper portion of the vertical frame 25 via the connecting member 27, and the base portion of the hydraulic cylinder 28 is connected to the lower horizontal member 18. And the tip of the piston rod 28a is connected to the lower portion of the vertical frame 25 via a connecting member 29.

また、掘削装置10は、垂直フレーム25に対してカッター支持ポスト30を昇降自在に設ける。31(図4参照)はその昇降用油圧シリンダーである。そしてこのカッター支持ポスト30に対してエンドレスチエーン式カッター32を垂直に設ける。33はこのカッター32のカッターポストであって上下に長い箱形フレームからなり、34はカッターポスト33の上端部に設けたスプロケット、35はポスト33の下端部に設けたスプロケット、36はこれら上下のスプロケット34,35にかけ渡した掘削刃付きエンドレスチエーンである。また、37はこのカッター駆動用のモータであり、38はその伝動装置である。図中51は掘削した溝Gに掘削液Aとセメント液(セメントスラリー)やグラウト材などの固化材Kを注入する注入装置であり、この注入装置51は、掘削装置10に設けられ、前記カッター32の下端側から掘削液Aと、セメント液(セメントスラリー)グラウト材などの固化材Kとを溝Gに選択的に注入するものである。   Further, the excavator 10 is provided with a cutter support post 30 that can be raised and lowered with respect to the vertical frame 25. 31 (see FIG. 4) is a hydraulic cylinder for raising and lowering. An endless chain cutter 32 is provided perpendicular to the cutter support post 30. 33 is a cutter post of this cutter 32, which is composed of a box frame that is long vertically, 34 is a sprocket provided at the upper end of the cutter post 33, 35 is a sprocket provided at the lower end of the post 33, and 36 is the upper and lower This is an endless chain with excavating blades that spans sprockets 34 and 35. 37 is a motor for driving the cutter, and 38 is a transmission device. In the figure, 51 is an injection device for injecting a drilling fluid A and a solidified material K such as cement liquid (cement slurry) or grout material into the excavated groove G. This injection device 51 is provided in the excavation device 10 and includes the cutter The drilling fluid A and the solidified material K such as cement liquid (cement slurry) grout material are selectively injected into the groove G from the lower end side of 32.

図4〜図6示すように、施工装置は、上述した自走車両12に設けられた掘削装置10と供に、現場から発生した泥水Wが送られてくる泥水槽71と、前記泥水Wから土砂分Dを分離する土砂分分離手段たる振動篩72と、この泥水Wから土砂分Dを分離した分級泥水W1が送られてくる泥水調整槽73と、この泥水調整槽73内に水を供給する清水槽74と、前記泥水調整槽73に送られた分級泥水W1と清水槽74の水とを混合した調整済泥水W2の濃度を検出する自動計測装置75と、前記汚水調整槽73内において調整された調整済汚水W2が送られる注入液供給装置76とを備える。   As shown in FIGS. 4 to 6, the construction apparatus includes a mud tank 71 to which the muddy water W generated from the site is sent and the muddy water W together with the excavator 10 provided in the self-propelled vehicle 12 described above. Vibrating sieve 72 as a means for separating soil and sand D, mud adjustment tank 73 to which classification mud W1 separated from the mud W is sent, and water is supplied into the mud adjustment tank 73 In the fresh water tank 74, the automatic measuring device 75 for detecting the concentration of the adjusted mud water W2 obtained by mixing the classified mud water W1 sent to the mud water adjustment tank 73 and the water in the fresh water tank 74, and the sewage adjustment tank 73 And an infusion solution supply device 76 to which the adjusted adjusted sewage W2 is sent.

まず、掘削時においては、図3(A)に示すように、地中壁施工位置の始端側の掘削孔61にカッター32を吊し下げて挿入すると共に、このカッター32を垂直フレーム25に取り付ける。つぎに、油圧シリンダー26,28を縮めた状態で、フレーム20の上下部の水平部材17,18によるガイド方向を構築しようとする地中連続壁1の方向と一致させ、必要があればクローラ13が移動しないように地盤11に対してアンカー等によって固定し、この状態でカッター32のチエーン36をモータ37によって駆動しながら、油圧シリンダー26,28に圧力油を供給して、各ピストンロッド16a,18aを押し出すことによって、垂直フレーム25を介してカッター32を図3(A)の矢印の方向へ地盤11をほぐすように掘削しながら移動させる。この際、進行方向又は掘削した溝Gに注入装置51から掘削液Aを注入し、掘削液Aと溝G内の土砂を撹拌する。その掘削液Aは、主としてベントナイトを水に混合したものであり、掘削液Aを用いることにより、溝G内の安定を図ると共に、カッター32の駆動が円滑になり、また、溝G内の土砂がほぐし易くなり、掘削が容易となる。   First, at the time of excavation, as shown in FIG. 3A, the cutter 32 is suspended and inserted into the excavation hole 61 on the start end side of the underground wall construction position, and the cutter 32 is attached to the vertical frame 25. . Next, in a state where the hydraulic cylinders 26 and 28 are contracted, the guide direction by the upper and lower horizontal members 17 and 18 of the frame 20 is made to coincide with the direction of the underground continuous wall 1 to be constructed, and if necessary, the crawler 13 Is fixed to the ground 11 by an anchor or the like so as not to move, and in this state, while driving the chain 36 of the cutter 32 by the motor 37, pressure oil is supplied to the hydraulic cylinders 26 and 28, and each piston rod 16a, By extruding 18a, the cutter 32 is moved through the vertical frame 25 while digging so as to loosen the ground 11 in the direction of the arrow in FIG. At this time, the drilling liquid A is injected from the injection device 51 into the traveling direction or the excavated groove G, and the excavating liquid A and the earth and sand in the groove G are agitated. The drilling fluid A is mainly a mixture of bentonite and water. By using the drilling fluid A, the inside of the groove G is stabilized and the cutter 32 is driven smoothly. It becomes easy to loosen and excavation becomes easy.

そして、各油圧シリンダー26,28のピストンロッド26a,28aが伸びきったならば、そのピストンロッド26a,28aを後退させると共に、自走車両12を図3(B)に示すように、図中右方向(掘削方向)へ移動させて、再び前記した操作を繰り返し行って、所定の長さの地中壁用の溝Gをほぐすように掘削する。また、進行方向又は掘削した溝Gに注入装置51から掘削液Aを注入し、掘削液Aと溝G内の土砂の一部を撹拌する。この場合、カッター32を図中左側に戻して溝G内を撹拌することができる。   When the piston rods 26a, 28a of the hydraulic cylinders 26, 28 are fully extended, the piston rods 26a, 28a are retracted, and the self-propelled vehicle 12 is moved to the right as shown in FIG. It moves to a direction (excavation direction), repeats the above-mentioned operation again, and excavates so that the groove | channel G for underground walls of predetermined length may be loosened. Further, the drilling fluid A is injected from the injection device 51 into the traveling direction or the excavated groove G, and the drilling fluid A and a part of the earth and sand in the groove G are stirred. In this case, the cutter 32 can be returned to the left side in the figure to stir the groove G.

続いて、図3(B)に示したように、掘削液Aと土砂との混合物が入った溝G内に、PC壁体2を連続的に挿入し、開始位置から所定長さLの地中連続壁1を形成する。前記所定長さLは、一日の工程で施工できる程度のものであるが、工程により適宜設定できる長さである。一方、PC壁体2を挿入した後、開始位置から所定長さLより短い固化範囲長さの溝G内に、固化材Kを充填し、反開始位置である施工完了位置の非充填範囲Lhには、固化材Kを充填しない。前記充填には、固化材充填装置62が用いられ、溝Gの内壁GNとPC壁体2との間、中空部3及び打ち継ぎ溝5,5間の前記混合物に、グラウト材などの固化材Kを充填する。非充填範囲Lhは1回の工程の途中施工完了位置を跨いでおり、非充填範囲Lhには固化材Kを充填しないから、この範囲の溝Gの混合物は固化することなく、所定長さLの施工が終了した後、例えば翌日又は次に工程で連続してPC壁体2を溝Gに挿入することもできる。尚、途中施工完了位置から先行する退避掘削部63に掘削装置10を退避させておくが、待避掘削部63を短くできる。また、次ぎの工程で、前記退避掘削部63から途中施工完了位置まで、掘削装置10を後戻り掘削して溝G内の土砂をほぐしてから、PC壁体2を溝Gに挿入するようにしてもよく、この場合も、従来に比べて、後戻り掘削は短く済む。   Subsequently, as shown in FIG. 3B, the PC wall 2 is continuously inserted into the groove G containing the mixture of the drilling fluid A and the earth and sand, and the ground having a predetermined length L from the start position is inserted. The middle continuous wall 1 is formed. The predetermined length L is a length that can be applied in a day's process, but is a length that can be appropriately set according to the process. On the other hand, after inserting the PC wall 2, the solidified material K is filled into the groove G having a solidification range length shorter than the predetermined length L from the start position, and the non-filling range Lh at the construction completion position which is the anti-start position. Is not filled with the solidifying material K. For the filling, a solidification material filling device 62 is used, and a solidification material such as a grout material is added to the mixture between the inner wall GN of the groove G and the PC wall body 2 and between the hollow portion 3 and the joining grooves 5 and 5. Fill with K. Since the non-filling range Lh straddles the construction completion position in the middle of one process and the non-filling range Lh is not filled with the solidifying material K, the mixture of the grooves G in this range does not solidify, and the predetermined length L After the construction is completed, for example, the PC wall 2 can be inserted into the groove G continuously on the next day or in the next process. Note that the excavator 10 is retracted from the midway construction completion position to the preceding excavation excavator 63, but the retracted excavator 63 can be shortened. Further, in the next step, the excavator 10 is moved backward from the evacuation excavating part 63 to the construction completion position to loosen the earth and sand in the groove G, and then the PC wall 2 is inserted into the groove G. In this case as well, the back excavation is shorter than in the conventional case.

翌日又は次の工程では、必要に応じて、掘削装置10を後戻りして、掘削液Aを注入しながら施工完了位置まで、後戻り掘削し、溝G内の土砂を攪拌し、掘削装置10を掘削方向に移動して、上述したように所定長さLの掘削を行い、PC壁体2を挿入後、途中施工完了位置の非充填範囲Lhを除いて、固化材Kを充填し、同様に、翌日又は次の工程に備える。   On the next day or in the next process, if necessary, the excavator 10 is returned to the construction completion position while injecting the drilling fluid A, and the excavator 10 is excavated by stirring the earth and sand in the groove G. Move in the direction, perform excavation of a predetermined length L as described above, and after inserting the PC wall 2, except for the non-filling range Lh at the midway construction completion position, the solidified material K is filled, Prepare for the next day or the next step.

尚、エンドレスチェーン式カッター32を備えた掘削装置10は、施工精度が高く、連続性が確保できるから、PC壁体2と溝Gの内壁GNとの間隔が片側数センチ(10cm以下)程度で済み、固化材Kの注入量を大幅に削減できる。   The excavator 10 provided with the endless chain cutter 32 has high construction accuracy and can ensure continuity. Therefore, the distance between the PC wall 2 and the inner wall GN of the groove G is about several centimeters (10 cm or less) on one side. As a result, the injection amount of the solidifying material K can be greatly reduced.

上記のように掘削液Aを注入する掘削時及びにおいては、図1に示すように、施工時に現場から発生した泥水Wをスクイーズポンプ70により管路71Aを通して前記貯泥槽78に送り、この貯泥槽78に溜めた泥水Wを前記泥水槽71に送り、必要に応じて泥水槽71の泥水Wに水を加えて(加水)含水比を調整する。この場合、振動篩72における選別を容易にするため、泥水Wの含水比を75〜125%とする。尚、含水比は、水分に対する土粒子などの固形分の割合(含水比=水分重量/固形分重量×100)であり、固形分には土砂以外にも、掘削液Aに含まれるベントナイト、現場から発生するシルトや粘土分などを含む。泥水槽71で含水比を調整された泥水Wは、振動篩72において、土砂分Dと分級泥水W1とに篩い分けされる。例えば、その振動篩72の篩目は1mmメッシュ程度であり、この大きさの篩目を通過する土粒子分などは分級泥水W1に含まれ、例えば含水比が105〜155%の分級泥水W1が得られ、篩い分けされた土砂分Dは20〜40%の含水比となり、この土砂分Dは、土木材料として施工現場内又は施工現場外で利用する。一方、ベントナイト、現場から発生するシルトや粘土分などの細粒分を含む分級泥水W1は、管路73Aを通って泥水調整槽73に送られ、また、清水槽74の水が管路74Aを通って泥水調整槽73に送られ、その清水槽74から送られた水と分級泥水W1を混合した調整済泥水W2の濃度,比重や粘度などを自動計測装置75に測定し、調整済泥水W2は、管路76Aを通って注入液製造装置76に送られ、ベントナイトを追加混合して掘削液Aを製造し、この掘削液Aが管路76Bを通って前記注入装置51に送られる。尚、前記泥水調整槽73には、回転撹拌翼や噴流攪拌装置などの撹拌手段77が設けられ、この撹拌手段77により調整済泥水W2が均一に撹拌される。   At the time of excavation in which the drilling fluid A is injected as described above, as shown in FIG. 1, the mud water W generated from the site at the time of construction is sent by the squeeze pump 70 to the mud tank 78 through the pipe line 71A. The muddy water W stored in the muddy tank 78 is sent to the muddy water tank 71, and water is added to the muddy water W in the muddy water tank 71 as necessary to adjust the water content ratio. In this case, the water content ratio of the muddy water W is set to 75 to 125% in order to facilitate selection in the vibrating sieve 72. The water content is the ratio of solids such as soil particles to water (water content = water weight / solid weight × 100). The solid content includes bentonite contained in the drilling fluid A in addition to earth and sand, Including silt and clay generated from. The muddy water W whose water content ratio is adjusted in the muddy water tank 71 is sieved into the earth and sand content D and the classified muddy water W1 in the vibrating sieve 72. For example, the mesh of the vibrating sieve 72 is about 1 mm mesh, and the soil particles passing through the mesh of this size are included in the classified mud water W1, for example, the classified mud water W1 having a water content ratio of 105 to 155%. The obtained and sieved soil and sand content D has a water content ratio of 20 to 40%, and this soil and sand content D is used as a civil engineering material inside or outside the construction site. On the other hand, the classified mud water W1 containing fine particles such as bentonite, silt and clay generated from the site is sent to the muddy water adjustment tank 73 through the pipe 73A, and the water in the fresh water tank 74 passes through the pipe 74A. The concentration, specific gravity, viscosity, etc. of the adjusted mud water W2 mixed with the water sent from the fresh water tank 74 and the classified mud water W1 are measured by the automatic measuring device 75 and adjusted mud water W2. Is sent to the injection liquid production apparatus 76 through the pipe line 76A, and the drilling liquid A is produced by additionally mixing bentonite. The drilling liquid A is sent to the injection apparatus 51 through the pipe line 76B. The muddy water adjusting tank 73 is provided with stirring means 77 such as a rotary stirring blade or a jet stirring apparatus, and the adjusted muddy water W2 is uniformly stirred by the stirring means 77.

前記PC壁体2はH型鋼等に比べて大断面であるから、溝Gに挿入する時に多量の泥水Wが発生する。その泥水Wをスクイーズポンプ70により連続吸引することにより、多量の泥土Wを吸引できる。また、前記溝Gから吸引した泥土Wを、泥水槽71に送る前に、スクイーズポンプ70により回収した泥水Wを貯留する貯泥槽78を設け、この貯泥槽78は前記管路71Aの途中に設けられている。また、前記貯泥槽78には、泥土Wを攪拌する攪拌装置79が設けられている。   Since the PC wall 2 has a larger cross section than H-shaped steel or the like, a large amount of muddy water W is generated when inserted into the groove G. By continuously sucking the muddy water W by the squeeze pump 70, a large amount of mud W can be sucked. Further, before sending the mud W sucked from the groove G to the mud tank 71, a mud tank 78 for storing the mud water W collected by the squeeze pump 70 is provided, and the mud tank 78 is provided in the middle of the pipe 71A. Is provided. The mud storage tank 78 is provided with a stirring device 79 for stirring the mud W.

したがって、処理装置の振動篩72などの処理能力を超える泥土Wが発生しても、貯泥槽78にストックすることにより、処理装置を大型化することなく、効率よく泥土Wを処理することができる。   Therefore, even if mud W exceeding the processing capability such as the vibrating screen 72 of the processing device is generated, the mud W can be efficiently processed without increasing the size of the processing device by stocking in the mud storage tank 78. it can.

前記PC壁体2の挿入及び掘削により発生する泥水Wの水分量(含水比)を調整し、1ミリ以上の土砂分Dを篩分けし、分級泥水W1と分離し、その分離した土砂分Dを土木材料として際利用することができ、また、分級泥水W1はベントナイト、現場から発生するシルトや粘土分などの細粒分を含むから、分級泥水W1を掘削液Aに再利用することにより、添加するベントナイトの使用量を削減することができる。   The moisture content (moisture content ratio) of the mud water W generated by the insertion and excavation of the PC wall 2 is adjusted, and the sand content D of 1 mm or more is sieved and separated from the classified mud water W1, and the separated soil content D Since the classified mud water W1 contains bentonite, fine particles such as silt and clay generated from the site, by reusing the classified mud water W1 to the drilling fluid A, The amount of bentonite to be added can be reduced.

また、施工装置には、必要に応じて、前記分級泥水W1をプレスにより濾過脱水する脱水手段たるフィルタープレス81が設けられる。このフィルタープレス80は、図1の概略図に示すように、固定フレーム81と締込板82の間に、複数枚の濾布を張設した濾板83を複数枚配置すると共に、これら濾板83,83間に濾室を形成し、前記締板82を油圧シリンダ(図示せず)により移動し、泥水を濾室内に供給するポンプ圧力により、前記濾室内の分級泥水W1をプレスして濾過脱水するものなどであり、脱水土砂分Ddと濾過水とが得られ、その脱水土砂分Ddは土木材料として施工現場内又は施工現場外で利用され、その濾過水は管路80Bを通して前記清水槽74に送られ、さらに、清水槽74から泥水調整槽73に送られる。   Further, the construction apparatus is provided with a filter press 81 as a dehydrating means for filtering and dewatering the classified mud water W1 with a press, if necessary. As shown in the schematic diagram of FIG. 1, the filter press 80 includes a plurality of filter plates 83 each having a plurality of filter cloths arranged between a fixed frame 81 and a clamping plate 82. A filter chamber is formed between 83 and 83, the clamping plate 82 is moved by a hydraulic cylinder (not shown), and the classified muddy water W1 in the filter chamber is pressed and filtered by a pump pressure for supplying muddy water into the filter chamber. Dehydrated earth and sand Dd and filtered water are obtained. The dehydrated earth and sand Dd is used as a civil engineering material inside or outside the construction site, and the filtered water passes through the pipe 80B to the fresh water tank. 74 and further sent from the fresh water tank 74 to the muddy water adjustment tank 73.

そして、現場などにおいて使用する土木材料としての土砂分Dの必要性が高い場合は、振動篩72とフィルタープレス81とを接続する管路80Aを通して、分級泥水W1をフィルタープレス81に送り、例えば含水比が20〜40%の脱水土砂分Ddを得ることができ、これを土木材料に再利用する。   And when there is a high necessity for soil and sand D as a civil engineering material to be used in the field, the classified muddy water W1 is sent to the filter press 81 through a pipe line 80A connecting the vibrating sieve 72 and the filter press 81, for example, containing water A dehydrated earth and sand portion Dd having a ratio of 20 to 40% can be obtained and reused as a civil engineering material.

したがって、上記の方法では、複雑な選別装置などを用いず、従来から土木工事で用いられている施工機械を用いて、分級を行うことができ、分級泥水W1は、シルト、粘土分、ベントナイトの細粒分を含んでいるため、分級泥水W1を掘削液A中に混合することにより、ベントナイトの使用量を低減できる。また、プレス脱水手段により分級泥水Wを機械脱水することにより、分級土砂分Ddの供給量を調整できる。また、建設発生土の抑制により、産業廃棄物の発生をなくすことができる。   Therefore, in the above method, classification can be performed using a construction machine conventionally used in civil engineering work without using a complicated sorting device, and the classified mud water W1 is made of silt, clay, bentonite. Since the fine particle content is contained, the amount of bentonite used can be reduced by mixing the classified mud water W1 into the drilling fluid A. Moreover, the supply amount of the classified sediment component Dd can be adjusted by mechanically dewatering the classified mud water W by the press dewatering means. Moreover, the generation of industrial waste can be eliminated by controlling the construction waste soil.

特に、掘削現場の地山の細粒分が少ない(10%以下)場合に有効であり、礫、砂分の多きところでは、溝壁の安定を確保するためにベントナイトを多く必要とする。この際、細粒分を含む分級泥水W1を掘削液Aに混入することにより、ベントナイトの使用量を低減することができるので、経済的な施工となる。   In particular, it is effective when there are few fine grains (10% or less) in the ground at the excavation site, and where there is a lot of gravel and sand, a lot of bentonite is required to ensure the stability of the groove wall. At this time, since the amount of bentonite used can be reduced by mixing the classified mud water W1 containing fine particles into the drilling fluid A, the construction is economical.

したがって、上記の方法では、複雑な選別装置などを用いず、従来から土木工事で用いられている施工機械を用いて、分級を行うことができ、固化段階の分級泥水W1を固化材Kに使用することにより、現場で発生した泥水Wに含まれるセメントにより、セメント使用量の低減を図ることができる。また、プレス脱水手段により分級泥水Wを機械脱水することにより、分級土砂分Ddの供給量を調整できる。また、建設発生土の抑制により、産業廃棄物の発生をなくすことができる。   Therefore, in the above method, classification can be performed using a construction machine conventionally used in civil engineering work without using a complicated sorting device, and the classification mud water W1 in the solidification stage is used as the solidification material K. By doing so, the amount of cement used can be reduced by the cement contained in the muddy water W generated on site. Moreover, the supply amount of the classified sediment component Dd can be adjusted by mechanically dewatering the classified mud water W by the press dewatering means. Moreover, the generation of industrial waste can be eliminated by controlling the construction waste soil.

このように本実施例では、請求項1に対応して、チェーン式カッター32を地中に建て込んだ状態で、カッター32を回転させると共に、該カッター32を移動させることにより一定幅の溝Gを連続して掘削し、この溝G内に壁形成用柱材を挿入して地中壁1を形成する地中連続壁の施工方法において、壁形成用柱材がPC壁体2であり、掘削時に発生した泥水Wを回収し、この回収した泥水Wから土砂分Dを分離し、この分離された土砂分Dと土砂分Dを分離した分離液たる分級泥水W1とを再利用するから、断面の大きなPC壁体2を用いると、多量の廃棄物が発生するが、掘削により発生する泥水Wを回収し、分離液と土砂分Dとに分離するため、従来、廃棄又は処理を必要とした泥水Wを有効利用することができ、例えば、分離液は掘削液の成分と、現場から発生するシルトや粘土分などの細粒分を含むから、分離液に再利用することができ、添加成分の使用量を削減することができ、また、土砂分Dは土木材料などに再利用できる。   Thus, in the present embodiment, corresponding to claim 1, the cutter 32 is rotated and the cutter 32 is moved in a state where the chain type cutter 32 is built in the ground, so that a groove G having a constant width is obtained. In the construction method of the underground continuous wall in which the wall forming pillar material is inserted into the groove G to form the underground wall 1, the wall forming pillar material is the PC wall body 2. Since the mud water W generated at the time of excavation is collected, the earth and sand part D is separated from the collected mud water W, and the separated earth and sand part D and the classification mud water W1 which is the separated liquid separated from the earth and sand part D are reused. If the PC wall body 2 having a large cross section is used, a large amount of waste is generated. However, in order to collect the muddy water W generated by excavation and separate it into the separated liquid and the sediment D, conventionally, disposal or treatment is required. Muddy water W can be used effectively. And fine particles such as silt and clay that are generated on site, it can be reused in the separation liquid, and the amount of additive components used can be reduced. Can be reused.

また、このように本実施例では、請求項2に対応して、溝G内にPC壁体2を挿入した後、溝Gに固化材Kを充填するから、打ち注ぎ部分を施工した後、打ち継ぎ部分に固化材Kを充填することにより、施工性を向上することができる。すなわち、従来の仮設用柱材の設置及び撤去と、ソイルセメント部分の再掘削が不要となる。   In this way, in this embodiment, after inserting the PC wall body 2 into the groove G and filling the solidified material K into the groove G in accordance with claim 2, after constructing the pouring portion, By filling the joint portion with the solidifying material K, the workability can be improved. That is, it becomes unnecessary to install and remove the conventional temporary pillar material and to re-excavate the soil cement portion.

また、このように本実施例では、請求項4に対応して、前記発生した泥水Wをスクイーズポンプ70により吸引するから、泥水の発生量が多くなっても、泥水Wをスムーズに連続吸引することができる。   In this way, in this embodiment, the generated muddy water W is sucked by the squeeze pump 70 in correspondence with the fourth aspect. Therefore, the muddy water W is sucked smoothly and continuously even if the amount of muddy water generated is increased. be able to.

また、このように本実施例では、請求項5に対応して、請求項1記載の地中連続壁の施工方法に用いる施工装置において、発生した泥水Wを回収するスクイーズポンプ70と、このスクイーズポンプ70により回収した泥水Wを貯留する貯泥槽71と、この貯泥槽71の泥水Wから土砂分Dを分離する土砂分分離手段たる振動篩72とを備えるから、この装置を用いて地中壁1を構築することにより掘削時,PC壁体2の挿入時又は固化材の注入時に発生する泥水Wを回収し、従来、廃棄又は処理を必要とした泥水Wを有効利用することができる。また、PC壁体2を挿入する際、泥水Wの発生量が多くなり、装置の処理能力を超えても、貯泥槽71に一端ストックして処理することができる。   In this way, in this embodiment, corresponding to claim 5, in the construction apparatus used for the construction method of the underground continuous wall according to claim 1, the squeeze pump 70 for collecting the generated muddy water W, and the squeeze A mud storage tank 71 for storing the mud water W collected by the pump 70, and a vibrating sieve 72 as a soil sediment separating means for separating the soil sediment D from the mud water W of the mud tank 71 are provided. By constructing the inner wall 1, the muddy water W generated at the time of excavation, the insertion of the PC wall 2 or the injection of the solidified material can be recovered, and the muddy water W conventionally required to be discarded or treated can be effectively used. . Further, when the PC wall 2 is inserted, the amount of generated muddy water W increases, and even if the processing capacity of the apparatus is exceeded, the mud storage tank 71 can be stocked and processed.

また、実施例上の効果として、土砂分分離手段が振動篩72であり、この振動篩により土砂分Dを分離した分離液たる分級泥水W1に残った土砂分Dをプレスにより脱水する脱水手段たるフィルタープレス81を備えるから、振動篩72により土砂分Dを分離し、さらに、専用の分離施設などを現場に設けることなくフィルタープレス81により土砂分Ddを分離して土木材料に再利用することができる。また、固化段階で発生した泥水Wを回収し、この回収した泥水Wから土砂分Dを分離し、この分離された土砂分Dと土砂分Dを分離した分離液たる分級泥水W1と土砂分Dとを再利用するから、従来、廃棄又は処理を必要とした泥水Wを有効利用することができ、例えば、分級泥水W1はセメント成分と掘削液Aの成分と、現場から発生するシルトや粘土分などの細粒分を含むから、セメント成分などを再利用することができ、セメントの使用量を削減することができる。また、フィルタープレス81は、分級泥水W1に残った土砂分Dをプレスにより脱水するプレス脱水手段であり、これを用いることにより効率よく脱水を行うことができる。   Further, as an effect on the embodiment, the earth and sand separation means is the vibrating sieve 72, and is a dewatering means for dewatering the earth and sand D remaining in the classified mud water W1 as a separation liquid obtained by separating the earth and sand D by the vibration sieve by a press. Since the filter press 81 is provided, the earth and sand D can be separated by the vibrating sieve 72, and further the earth and sand Dd can be separated by the filter press 81 and reused as a civil engineering material without providing a dedicated separation facility. it can. Further, the mud water W generated in the solidification stage is recovered, the earth and sand part D is separated from the recovered mud water W, and the separated mud water W1 and the earth and sand part D which are separated liquids separated from the separated earth and sand part D and the earth and sand part D Therefore, the muddy water W that has been conventionally required to be discarded or treated can be effectively used. For example, the classified muddy water W1 is a cement component, a component of the drilling fluid A, and a silt or clay component generated from the site. As a result, the cement component can be reused and the amount of cement used can be reduced. The filter press 81 is a press dewatering means for dewatering the earth and sand D remaining in the classified mud water W1 by a press, and by using this, the dewatering can be performed efficiently.

また、実施例上の効果として、PC壁体2は、断面略正方形形状をなし、断面積が大きなものであるが、中空部3を有するから、土砂と掘削液Aとを混合した溝G内に挿入し易い。また、隣合うPC壁体2,2の間には、打ち継ぎ溝5が位置するから、この打ち継ぎ溝5内の土砂と掘削液Aとの混合物に固化材Kを注入することにより、隣合うPC壁体2,2を一体化することができる。   Further, as an effect on the embodiment, the PC wall body 2 has a substantially square cross section and a large cross sectional area. However, since the PC wall body 2 has the hollow portion 3, the inside of the groove G in which the earth and sand and the drilling fluid A are mixed is provided. Easy to insert into. Further, since the joining groove 5 is located between the adjacent PC wall bodies 2, 2, by injecting the solidifying material K into the mixture of the earth and sand and the drilling fluid A in the joining groove 5, Matching PC wall bodies 2 and 2 can be integrated.

図7は本発明の実施例2を示し、上記実施例1と同一部分に同一符号を付し、その詳細な説明を省略して詳述する。この例は、施工において、固化材Kを用いた固化段階の工程と、掘削液Aを用いた掘削の工程とを備える。   FIG. 7 shows a second embodiment of the present invention, in which the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. This example includes a solidification stage process using the solidification material K and a drilling process using the drilling fluid A in construction.

まず、固化材Kを注入して地中連続壁1を築造する固化段階においては、同様に図7(A)に示すように、地中壁施工位置の始端側の掘削孔61にカッター32を吊し下げて挿入すると共に、このカッター32を垂直フレーム25に取り付ける。つぎに、油圧シリンダー26,28を縮めた状態で、フレーム20の上下部の水平部材17,18によるガイド方向を構築しようとする地中連続壁1の方向と一致させ、必要があればクローラ13が移動しないように地盤11に対してアンカー等によって固定し、この状態でカッター32のチエーン36をモータ37によって駆動しながら、油圧シリンダー26,28に圧力油を供給して、各ピストンロッド16a,18aを押し出すことによって、垂直フレーム25を介してカッター32を図7(A)の矢印の方向へ地盤1を掘削しながら移動させる。この際、進行方向又は掘削した溝Gに注入装置51から固化材Kを注入し、固化材Kと溝G内の土砂を撹拌する。その固化材Kとして、セメントスラリーを用いる。   First, in the solidification stage in which the solidification material K is injected to build the underground continuous wall 1, similarly, as shown in FIG. 7 (A), the cutter 32 is inserted into the excavation hole 61 on the start end side of the underground wall construction position. The cutter 32 is attached to the vertical frame 25 while being suspended and inserted. Next, in a state where the hydraulic cylinders 26 and 28 are contracted, the guide direction by the upper and lower horizontal members 17 and 18 of the frame 20 is made to coincide with the direction of the underground continuous wall 1 to be constructed, and if necessary, the crawler 13 Is fixed to the ground 11 by an anchor or the like so as not to move, and in this state, while the chain 36 of the cutter 32 is driven by the motor 37, pressure oil is supplied to the hydraulic cylinders 26 and 28, and each piston rod 16a, By extruding 18a, the cutter 32 is moved through the vertical frame 25 while excavating the ground 1 in the direction of the arrow in FIG. At this time, the solidification material K is injected from the injection device 51 into the groove G in the traveling direction or excavated, and the solidification material K and the earth and sand in the groove G are agitated. As the solidifying material K, cement slurry is used.

そして、各油圧シリンダー26,28のピストンロッド26a,28aが伸びきったならば、そのピストンロッド26a,28aを後退させると共に、自走車両12を図7(B)に示すように、図中右方向へ移動させて、再び上述した操作を繰り返し行って、所定の長さの地中壁用の溝Gを掘削する。また、進行方向又は掘削した溝Gに注入装置51から固化材Kを注入し、固化材Kと掘削孔61内の土砂の一部を撹拌する。この場合、カッター32を図中左側に戻して溝G内を撹拌することができる。   When the piston rods 26a, 28a of the hydraulic cylinders 26, 28 are fully extended, the piston rods 26a, 28a are retracted, and the self-propelled vehicle 12 is moved to the right as shown in FIG. 7B. Then, the above-mentioned operation is repeated again to excavate the underground wall groove G having a predetermined length. Further, the solidification material K is injected from the injection device 51 into the traveling direction or the excavated groove G, and the solidification material K and a part of the earth and sand in the excavation hole 61 are stirred. In this case, the cutter 32 can be returned to the left side in the figure to stir the groove G.

次に、固化材Kと土砂との混合物が入った溝G内に、PC壁体2を連続的に挿入し、開始位置から所定長さLの地中連続壁1を形成する。前記所定長さLは、一日の工程で施工できる程度のものであるが、工程により適宜設定できる長さである。そして、連続地中壁1の途中施工完了位置の打ち継ぎ面4に仮設材(図示せず)を配置する。尚、途中施工完了位置から先行する退避掘削部63に掘削装置10を退避させておく。   Next, the PC wall 2 is continuously inserted into the groove G containing the mixture of the solidifying material K and the earth and sand, and the underground continuous wall 1 having a predetermined length L from the start position is formed. The predetermined length L is a length that can be applied in a day's process, but is a length that can be appropriately set according to the process. And temporary material (not shown) is arrange | positioned in the joining surface 4 of the midway construction completion position of the continuous underground wall 1. Note that the excavator 10 is retracted from the intermediate excavation completion position to the preceding excavation excavator 63.

翌日又は次の工程では、仮設材を引き抜き、この引き抜いた位置まで、図7(B)の白抜き矢印に示すように、掘削液Aを注入しながら掘削装置10を後戻りして後戻り掘削し、溝G内の土砂を攪拌し、戻った後、固化材Kを充填しながら、図7(C)に示すように、掘削装置10を掘削方向に移動して、上述したように所定長さL以上の掘削を行い、所定長さL分だけPC壁体2を溝G内に挿入し、同様な工程を繰り返す。   On the next day or the next process, the temporary material is pulled out, and as shown by the white arrow in FIG. After the earth and sand in the groove G is stirred and returned, the excavator 10 is moved in the excavation direction as shown in FIG. The above excavation is performed, the PC wall 2 is inserted into the groove G by a predetermined length L, and the same process is repeated.

このように固化材Kを注入すると共にPC壁体2を挿入する固化段階の工程においては、上記図1で示した装置を用い、図1に示すように、施工時に現場から発生した泥水Wをスクイーズポンプ70により管路71Aを通して前記貯泥槽78に送り、この貯泥槽78に溜めた泥水Wを管路71Aを通して前記泥水槽71に送り、必要に応じて泥水槽71の泥水Wに水を加えて含水比を調整する。この場合、振動篩72における選別を容易にするため、泥水Wの含水比を75〜125%とする。尚、含水比は、水分に対する土粒子などの固形分の割合(含水比=水分重量/固形分重量×100)であり、固形分には土砂以外にも、固化材Kに含まれるセメント、掘削液Aに含まれるベントナイト、現場から発生するシルトや粘土分などを含む。泥水槽71で含水比を調整された泥水Wは、振動篩72において、土砂分Dと分級泥水W1とに篩い分けされる。例えば、その振動篩72の篩目は1mmメッシュ程度であり、この大きさの篩目を通過する土粒子分などは分級泥水W1に含まれ、例えば含水比が85〜135%の分級泥水W1が得られ、篩い分けされた土砂分Dは28〜48%の含水比となり、この土砂分Dは、土木材料として施工現場内又は施工現場外で利用する。一方、セメント、ベントナイト、現場から発生するシルトや粘土分などの細粒分を含む分級泥水W1は、管路73Aを通って泥水調整槽73に送られ、また、清水槽74の水が管路74Aを通って泥水調整槽73に送られ、その清水槽74から送られた水と分級泥水W1を混合した調整済泥水W2の濃度,比重や粘度などを自動計測装置75に測定し、調整済泥水W2は、管路76Aを通って注入液製造装置76に送られ、セメントを追加混合してセメントスラリーなどの固化材Kを製造し、この固化材Kが管路76Bを通って前記注入装置51に送られる。   In the solidification step in which the solidification material K is injected and the PC wall 2 is inserted in this way, the apparatus shown in FIG. 1 is used, and as shown in FIG. The squeeze pump 70 is sent to the mud tank 78 through the pipe 71A and the mud water W stored in the mud tank 78 is sent to the mud tank 71 through the pipe 71A, and water is supplied to the mud water W of the mud tank 71 as necessary. To adjust the water content. In this case, the water content ratio of the muddy water W is set to 75 to 125% in order to facilitate selection in the vibrating sieve 72. The moisture content is the ratio of solids such as soil particles to moisture (moisture content = moisture weight / solids weight × 100). The solid content includes cement contained in the solidified material K in addition to earth and sand, excavation It contains bentonite contained in liquid A, silt and clay generated from the site. The muddy water W whose water content ratio is adjusted in the muddy water tank 71 is sieved into the earth and sand content D and the classified muddy water W1 in the vibrating sieve 72. For example, the mesh of the vibrating sieve 72 is about 1 mm mesh, and the soil particles passing through the sieve of this size are included in the classified mud water W1, for example, the classified mud water W1 having a water content ratio of 85 to 135%. The obtained and sieved soil and sand content D has a water content ratio of 28 to 48%, and this soil and sand content D is used as a civil engineering material inside or outside the construction site. On the other hand, the classified mud water W1 containing fine particles such as cement, bentonite, silt and clay generated from the site is sent to the mud adjustment tank 73 through the pipe 73A, and the water in the fresh water tank 74 is sent to the pipe. The concentration, specific gravity, viscosity, etc. of the adjusted mud water W2 mixed with the water sent from the fresh water tank 74 and the classified mud water W1 are measured by the automatic measuring device 75 and adjusted. The muddy water W2 is sent to the injection liquid production apparatus 76 through the pipe line 76A, and the cement is additionally mixed to produce a solidified material K such as cement slurry, and the solidification material K passes through the pipe line 76B and the injection apparatus. Sent to 51.

このように固化段階により発生する泥水Wの水分量(含水比)を調整し、1ミリ以上の土砂分Dを篩分けし、分級泥水W1と分離し、その分離した土砂分Dを土木材料として際利用することができ、また、分級泥水W1はセメント、ベントナイト、現場から発生するシルトや粘土分などの細粒分を含むから、分級泥水W1を固化材Kなどに再利用することにより、添加するセメントの使用量を削減することができる。   In this way, the water content (moisture content ratio) of the mud water W generated by the solidification stage is adjusted, and the sand and sand content D of 1 mm or more is sieved and separated from the classified mud water W1, and the separated soil and sand content D is used as a civil engineering material. In addition, since the classified mud water W1 contains fine particles such as cement, bentonite, silt and clay generated from the site, it can be added by reusing the classified mud water W1 to the solidifying material K, etc. The amount of cement used can be reduced.

また、施工装置には、必要に応じて、前記分級泥水W1をプレスにより濾過脱水する脱水手段たるフィルタープレス81が設けられ、フィルタープレス81により分級泥水W1をプレスして濾過脱水し、脱水土砂分Ddと濾過水とが得られ、その脱水土砂分Ddは土木材料として施工現場内又は施工現場外で利用され、その濾過水は管路80Bを通して前記清水槽74に送られ、さらに、清水槽74から泥水調整槽73に送られる。   In addition, the construction apparatus is provided with a filter press 81 as a dewatering means for filtering and dewatering the classified mud water W1 with a press, if necessary. Dd and filtered water are obtained, and the dehydrated earth and sand Dd is used as a civil engineering material inside or outside the construction site, and the filtered water is sent to the fresh water tank 74 through the pipe line 80B. To the muddy water adjustment tank 73.

そして、現場などにおいて使用する土木材料としての土砂分Dの必要性が高い場合は、振動篩72とフィルタープレス81とを接続する管路80Aを通して、分級泥水W1をフィルタープレス81に送り、例えば含水比が30〜50%の脱水土砂分Ddを得る。   And when there is a high necessity for soil and sand D as a civil engineering material to be used in the field, the classified muddy water W1 is sent to the filter press 81 through a pipe line 80A connecting the vibrating sieve 72 and the filter press 81, for example, containing water A dehydrated earth and sand part Dd having a ratio of 30 to 50% is obtained.

また、前記後戻り掘削時には、進行方向又は掘削した溝Gに注入装置51から掘削液Aを注入し、掘削液Aと溝G内の土砂を撹拌する。その掘削液Aは、主としてベントナイトを水に混合したものであり、掘削液Aを用いることにより、溝G内の安定を図ると共に、カッター32の駆動が円滑になり、また、溝G内の土砂がほぐし易くなり、後戻り掘削が容易となる。   Further, during the backward excavation, the excavating liquid A is injected from the injection device 51 into the traveling direction or the excavated groove G, and the excavating liquid A and the earth and sand in the groove G are agitated. The drilling fluid A is mainly a mixture of bentonite and water. By using the drilling fluid A, the inside of the groove G is stabilized and the cutter 32 is driven smoothly. It becomes easy to loosen, and back excavation becomes easy.

このように、掘削液Aを注入する後戻り掘削時においても、図1に示すように、施工時に現場から発生した泥水Wをスクイーズポンプ70により管路71Aを通して前記泥水槽71に送り、必要に応じて泥水槽71の泥水Wに水を加えて(加水)含水比を調整し、前記固化段階と同様に泥土Wを処理し、分離した土砂分Dを土木材料として際利用することができ、また、分級泥水W1はベントナイト、現場から発生するシルトや粘土分などの細粒分を含むから、分級泥水W1を掘削液Aや固化材Kに再利用することにより、添加するベントナイトの使用量を削減することができる。   As shown in FIG. 1, the mud water W generated from the site during construction is sent to the mud tank 71 through the pipe 71A by the squeeze pump 70 as shown in FIG. The water content is adjusted by adding water to the muddy water W in the muddy water tank 71 (hydrolysis), the muddy soil W is treated in the same manner as in the solidification step, and the separated earth and sand D can be used as a civil engineering material. Since the classified mud water W1 contains bentonite and fine particles such as silt and clay generated from the site, by reusing the classified mud water W1 for the drilling fluid A and the solidified material K, the amount of bentonite added is reduced. can do.

このように本実施例では、請求項1に対応して、チェーン式カッター32を地中に建て込んだ状態で、カッター32を回転させると共に、該カッター32を移動させることにより一定幅の溝Gを連続して掘削し、この溝G内に壁形成用柱材を挿入して地中壁1を形成する地中連続壁の施工方法において、壁形成用柱材がPC壁体2であり、固化材Kを注入すると共にPC壁体2を挿入する際に掘削時に発生した泥水Wを回収し、この回収した泥水Wから土砂分Dを分離し、この分離された土砂分Dと土砂分Dを分離した分離液たる分級泥水W1とを再利用するから、断面の大きなPC壁体2を用いると、多量の廃棄物が発生するが、掘削により発生する泥水Wを回収し、分離液と土砂分Dとに分離するため、従来、廃棄又は処理を必要とした泥水Wを有効利用することができ、例えば、分離液は掘削液の成分と、現場から発生するシルトや粘土分などの細粒分を含むから、分離液に再利用することができ、添加成分の使用量を削減することができ、また、土砂分Dは土木材料などに再利用でき、また、請求項4及び5に対応して、上記実施例1と同様な作用・効果を奏する。   Thus, in the present embodiment, corresponding to claim 1, the cutter 32 is rotated and the cutter 32 is moved in a state where the chain type cutter 32 is built in the ground, so that a groove G having a constant width is obtained. In the construction method of the underground continuous wall in which the wall forming pillar material is inserted into the groove G to form the underground wall 1, the wall forming pillar material is the PC wall body 2. The muddy water W generated during excavation when the solidifying material K is injected and the PC wall 2 is inserted is collected, and the sediment D is separated from the collected muddy water W. The separated sediment D and sediment D are separated. Since the separated muddy water W1 that is the separated liquid is reused, a large amount of waste is generated when the PC wall body 2 having a large cross section is used. However, the muddy water W generated by excavation is recovered, and the separated liquid and earth and sand are collected. Conventionally, the muddy water W that had to be discarded or treated to separate it into D For example, the separation liquid contains the components of the drilling fluid and fine particles such as silt and clay that are generated on site, so it can be reused in the separation liquid, and the amount of added components used. In addition, the earth and sand content D can be reused as a civil engineering material, and the same actions and effects as those of the first embodiment can be achieved in correspondence with claims 4 and 5.

また、このように本実施例では、請求項3に対応して、カッター32を移動させながら溝G内の掘削土砂に固化材Kを注入し、この固化材Kを注入した溝G内にPC壁体2を挿入して地中壁2を形成するから、固化材Kを含んだ泥水Wを回収し、分離液と土砂分Dとに分離し、土砂分D又は分離水を再利用することができる。   In this way, in this embodiment, corresponding to claim 3, the solidifying material K is injected into the excavated soil in the groove G while moving the cutter 32, and the PC is inserted into the groove G into which the solidifying material K has been injected. Since the underground wall 2 is formed by inserting the wall body 2, the muddy water W containing the solidifying material K is collected, separated into the separation liquid and the sediment D, and the sediment D or the separated water is reused. Can do.

なお、本発明は、前記実施例に限定されるものではなく、種々の変形実施が可能である。例えば、PC壁体は各種タイプのものを用いることができる。   In addition, this invention is not limited to the said Example, A various deformation | transformation implementation is possible. For example, various types of PC wall bodies can be used.

本発明の実施例1を示す施工装置の説明図であり、施工状態を示す。It is explanatory drawing of the construction apparatus which shows Example 1 of this invention, and shows a construction state. 同上、施工状態における溝の平面図を示す。A plan view of the groove in the construction state is shown. 同上、施工方法を説明する断面図であり、図3(A)はカッターを垂直フレームに取り付けて地中に建て込んだ状態を示す。It is sectional drawing explaining a construction method same as the above, and FIG. 3 (A) shows the state which attached the cutter to the vertical frame and built it in the ground. 同上、施工装置を正面から見た施工時の断面図である。It is sectional drawing at the time of construction which looked at the construction apparatus from the front same as the above. 同上、施工装置を側面から見た施工時の断面図である。It is sectional drawing at the time of construction which looked at the construction apparatus from the side same as the above. 同上、施工装置の平面図である。It is a top view of a construction apparatus same as the above. 本発明の実施例1を示し、施工方法を説明する断面図であり、図7(A)はカッターを垂直フレームに取り付けて地中に建て込んだ状態を示し、図7(B)は、カッターによる掘削とPC壁体の挿入工程を示し、図3(C)は後戻り掘削後に掘削方向に掘削し、PC壁体を挿入する工程を示す。It is sectional drawing which shows Example 1 of this invention and demonstrates a construction method, FIG. 7 (A) shows the state which attached the cutter to the vertical frame, and built it in the ground, FIG.7 (B) is a cutter. FIG. 3C shows a process of excavating in the excavation direction after back excavation and inserting the PC wall body.

符号の説明Explanation of symbols

1 地中連続壁
2 PC壁体
3 中空部
4 打ち継ぎ面
5 打ち継ぎ溝
10 掘削装置
32 エンドレスチェーン式カッター(カッター)
A 安定液
K 固化材
G 溝
D 土砂分
W 泥水
70 スクイーズポンプ
78 貯泥槽
79 攪拌装置
DESCRIPTION OF SYMBOLS 1 Underground continuous wall 2 PC wall body 3 Hollow part 4 Joint surface 5 Joint groove
10 Drilling rig
32 Endless chain cutter (cutter)
A Stabilizer K Solidifying material G Groove D Earth and sand W Muddy water
70 Squeeze pump
78 Mud tank
79 Stirrer

Claims (5)

チェーン式カッターを地中に建て込んだ状態で、カッターを回転させると共に、該カッターを移動させることにより一定幅の溝を連続して掘削し、この溝内に壁形成用柱材を挿入して地中壁を形成する地中連続壁の施工方法において、前記壁形成用柱材がPC壁体であり、前記掘削時に発生した泥水を回収し、この回収した泥水から土砂分を分離し、この分離された土砂分と土砂分を分離した分離液とを再利用することを特徴とする地中連続壁の施工方法。 With the chain cutter built in the ground, the cutter is rotated and the cutter is moved to continuously excavate a groove with a constant width, and a wall forming pillar is inserted into the groove. In the construction method of the underground continuous wall that forms the underground wall, the pillar material for wall formation is a PC wall body, the muddy water generated at the time of excavation is recovered, and the sediment is separated from the recovered muddy water. A method for constructing an underground continuous wall characterized in that the separated earth and sand and the separated liquid from which the earth and sand are separated are reused. 前記溝内に前記PC壁体を挿入した後、前記溝に固化材を充填することを特徴とする請求項1記載の地中連続壁の施工方法。 2. The underground continuous wall construction method according to claim 1, wherein after the PC wall body is inserted into the groove, the groove is filled with a solidifying material. 前記カッターを移動させながら前記溝内の掘削土砂に固化材を注入し、この固化材を注入した溝内に前記PC壁体を挿入して地中壁を形成することを特徴とする請求項1記載の地中連続壁の施工方法。 2. The solidified material is injected into the excavated soil in the groove while moving the cutter, and the underground wall is formed by inserting the PC wall into the groove into which the solidified material has been injected. The underground continuous wall construction method described. 前記発生した泥水をスクイーズポンプにより吸引することを特徴とする請求項1〜3のいずれか1項に記載の地中連続壁の施工方法。 The construction method of the underground continuous wall according to any one of claims 1 to 3, wherein the generated muddy water is sucked by a squeeze pump. 請求項1記載の地中連続壁の施工方法に用いる施工装置において、前記発生した泥水を回収するスクイーズポンプと、このスクイーズポンプにより回収した泥水を貯留する貯泥槽と、この貯泥槽の泥水から土砂分を分離する土砂分分離手段とを備えることを特徴とする地中連続壁の施工装置。 In the construction apparatus used for the construction method of the underground continuous wall of Claim 1, the squeeze pump which collect | recovers the generated muddy water, the mud tank which stores the muddy water collect | recovered with this squeeze pump, and the muddy water of this mud tank A construction apparatus for an underground continuous wall, comprising: a sediment separation means for separating sediment from the soil.
JP2008271386A 2008-10-21 2008-10-21 Construction method and construction apparatus for diaphragm wall Pending JP2010101025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008271386A JP2010101025A (en) 2008-10-21 2008-10-21 Construction method and construction apparatus for diaphragm wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008271386A JP2010101025A (en) 2008-10-21 2008-10-21 Construction method and construction apparatus for diaphragm wall

Publications (1)

Publication Number Publication Date
JP2010101025A true JP2010101025A (en) 2010-05-06

Family

ID=42291897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008271386A Pending JP2010101025A (en) 2008-10-21 2008-10-21 Construction method and construction apparatus for diaphragm wall

Country Status (1)

Country Link
JP (1) JP2010101025A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101302246B1 (en) 2012-04-04 2013-09-02 위성배 The method for continuous construction walls of underground structure
JP2016008431A (en) * 2014-06-25 2016-01-18 前田建設工業株式会社 Cut-off structure and method for underground continuous wall
CN106555395A (en) * 2016-12-15 2017-04-05 岩土科技股份有限公司 A kind of assembled underground continuous wall and construction method
WO2018166516A1 (en) * 2017-03-17 2018-09-20 王燏斌 Composite device connected with top of foundation during construction and construction method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134422A (en) * 1984-12-04 1986-06-21 Fujita Corp Method of building precast concrete underground continuous wall
JPS62194318A (en) * 1986-02-20 1987-08-26 Ohbayashigumi Ltd Recovery system for highly viscous mud water in mud-water excavation work
JPH11131524A (en) * 1997-10-29 1999-05-18 Nippon Sharyo Seizo Kaisha Ltd Underground excavator
JP2005113498A (en) * 2003-10-07 2005-04-28 Honmagumi:Kk Continuous underground wall construction method and continuous underground wall construction apparatus
JP2006070608A (en) * 2004-09-03 2006-03-16 Mirai Geo-Tech Kk Construction method of diaphragm wall

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134422A (en) * 1984-12-04 1986-06-21 Fujita Corp Method of building precast concrete underground continuous wall
JPS62194318A (en) * 1986-02-20 1987-08-26 Ohbayashigumi Ltd Recovery system for highly viscous mud water in mud-water excavation work
JPH11131524A (en) * 1997-10-29 1999-05-18 Nippon Sharyo Seizo Kaisha Ltd Underground excavator
JP2005113498A (en) * 2003-10-07 2005-04-28 Honmagumi:Kk Continuous underground wall construction method and continuous underground wall construction apparatus
JP2006070608A (en) * 2004-09-03 2006-03-16 Mirai Geo-Tech Kk Construction method of diaphragm wall

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101302246B1 (en) 2012-04-04 2013-09-02 위성배 The method for continuous construction walls of underground structure
JP2016008431A (en) * 2014-06-25 2016-01-18 前田建設工業株式会社 Cut-off structure and method for underground continuous wall
CN106555395A (en) * 2016-12-15 2017-04-05 岩土科技股份有限公司 A kind of assembled underground continuous wall and construction method
WO2018166516A1 (en) * 2017-03-17 2018-09-20 王燏斌 Composite device connected with top of foundation during construction and construction method therefor

Similar Documents

Publication Publication Date Title
US4696607A (en) Slurry trench method and apparatus for constructing underground walls
CN109537574A (en) The construction technology of diaphram wall in a kind of extremely hard rock
JP2010101025A (en) Construction method and construction apparatus for diaphragm wall
CN108978643A (en) Supporting pile construction method, reinforcement cage structure and supporting pile structure
JP2012057407A (en) Slurry recycling method
JP3846887B2 (en) Construction method and equipment for underground continuous wall
JP5541018B2 (en) Manufacturing method of backfill material
JP2002028698A (en) Method and device for separating soil and sand from drilled muddy water
JP2920097B2 (en) Construction method and device for underground continuous wall
JP2000144737A (en) Compaction device of underwater charging material
JP2012057355A (en) Manufacturing method of backfill material, backfill method of backfill material, recycle method of slurry, backfill system of backfill material and recycle system of slurry
CN212640241U (en) Stirring device for solidification treatment and recycling of waste slurry
CN204530680U (en) A kind of Churn drill sieve sand punched hole construction device
JPH1018746A (en) Dual system muddy water treatment method and treatment device
JP5367642B2 (en) Method and apparatus for thawing soil material
JP4463590B2 (en) Drilling mud treatment method and drilling mud treatment system
JP2016044479A (en) Continuous underground wall structure
JP7255072B2 (en) Infiltration well repair method
CN113236157A (en) Drilling pile-forming construction system and working method thereof
JP4137173B1 (en) Reinforcing bar construction in cast-in-place pile
JP2000257109A (en) Construction method for fluidized back-filling
CN215292397U (en) Drilling pile-forming construction system
KR101320302B1 (en) Method for processing muddy water in the huge tunnel
JP3720914B2 (en) Muddy water treatment method and treatment apparatus
JPS6192213A (en) Pile head processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521