JP2010100809A - Biocoke production process and production apparatus - Google Patents

Biocoke production process and production apparatus Download PDF

Info

Publication number
JP2010100809A
JP2010100809A JP2009083889A JP2009083889A JP2010100809A JP 2010100809 A JP2010100809 A JP 2010100809A JP 2009083889 A JP2009083889 A JP 2009083889A JP 2009083889 A JP2009083889 A JP 2009083889A JP 2010100809 A JP2010100809 A JP 2010100809A
Authority
JP
Japan
Prior art keywords
pressure
fine particles
biomass
bio
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009083889A
Other languages
Japanese (ja)
Inventor
Tamio Ida
民男 井田
Yoshimasa Kawami
佳正 川見
Atsushi Sato
佐藤  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinki University
Original Assignee
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinki University filed Critical Kinki University
Publication of JP2010100809A publication Critical patent/JP2010100809A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/02Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with stationary charge
    • C10B47/12Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with stationary charge in which the charge is subjected to mechanical pressures during coking
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • C10L5/447Carbonized vegetable substances, e.g. charcoal, or produced by hydrothermal carbonization of biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Processing Of Solid Wastes (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Coke Industry (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biocoke production process and an apparatus by which breakage of biocoke caused by occlusion of gas in the biocoke is prevented and the biocoke can be efficiently produced in a short time. <P>SOLUTION: In the biocoke production process including a filling step of filling a reaction vessel 2 with a biomass granule 11 and a reaction step of pressure molding the biomass granule 11 packed in the reaction vessel 2 while heating the crushed biomass in a temperature range and a pressure range in which a semi-carbonized product or a solid product before being semi-carbonized is obtained in a nearly close state, in the reaction step, the biomass granule 11 is pressurized so as to be in the pressure range by a pressurizing body 6 vertically sliding in the reaction vessel and a back pressure of a fluid pressure cylinder 7 driving the pressurizing body 6 is sensed upon the pressurization and when the sensed back pressure is higher than a predetermined tolerance range, the pressurizing body 6 is made to ascend to perform degassing of the crushed biomass 11. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、バイオマスを原料としたバイオコークスの製造技術に関し、特に石炭コークスの代替燃料として効果的に利用可能であるバイオコークスを製造するためのバイオコークス製造方法及び製造装置に関する。   The present invention relates to a technology for producing bio-coke using biomass as a raw material, and more particularly to a bio-coke production method and a production apparatus for producing bio-coke that can be effectively used as an alternative fuel for coal coke.

近年、地球温暖化の観点からCO排出の削減が推進されている。特に、製鉄業界に於いて鋳造炉(キュウポラ炉)や高炉などでは、主たる燃料や還元剤に化石燃料である石炭コークスが用いられている。また、ボイラ発電等の燃焼設備においては、燃料として石炭や重油等の化石燃料が用いられることが多い。この化石燃料は、CO排出の問題から地球温暖化の原因となり、地球環境保全の見地からその使用が規制されつつある。また化石燃料の枯渇化の観点からもこれに代替するエネルギー資源の開発、実用化が求められている。 In recent years, CO 2 emission reduction has been promoted from the viewpoint of global warming. In particular, in the steel industry, coal coke, which is a fossil fuel, is used as the main fuel and reducing agent in casting furnaces (cupola furnaces) and blast furnaces. In combustion equipment such as boiler power generation, fossil fuels such as coal and heavy oil are often used as fuel. This fossil fuel causes global warming due to the problem of CO 2 emission, and its use is being regulated from the viewpoint of global environmental conservation. In addition, from the viewpoint of depletion of fossil fuels, the development and commercialization of alternative energy resources are required.

そこで、化石燃料の代替として、大気中のCO量に影響を与えないバイオマスを用いた燃料の利用促進が図られている。バイオマスとは、光合成に起因する有機物であって、木質類、草木類、農作物類、農作物に基づく厨芥類等のバイオマスがある。このバイオマスを燃料化処理することにより、バイオマスをエネルギー源又は工業原料として有効に利用し地球環境保全に貢献することができる。
バイオマスを燃料化する方法としては、バイオマスを乾燥させて燃料化する方法、加圧して燃料ペレット化する方法、炭化、乾留させて固体及び液体の燃料化する方法等が知られている。しかし、バイオマスを乾燥させるのみでは、空隙率が大きくみかけ比重が低くなるため、輸送や貯留が困難であり、長距離輸送や貯留して使用する燃料としては有効とはいえない。
Therefore, as an alternative to fossil fuels, the use of fuel using biomass that does not affect the amount of CO 2 in the atmosphere is being promoted. Biomass is an organic substance resulting from photosynthesis, and includes biomass such as wood, vegetation, agricultural products, and moss based on agricultural products. By converting this biomass into a fuel, it is possible to effectively use the biomass as an energy source or industrial raw material and contribute to global environmental conservation.
As a method of converting biomass into fuel, a method of drying biomass into fuel, a method of pressurizing to form fuel pellets, a method of carbonizing and carbonizing to solidify and liquid fuel, and the like are known. However, simply drying the biomass makes it difficult to transport and store because the porosity is large and the specific gravity is low, so it cannot be said that it is effective as a fuel for long-distance transport or storage.

一方、バイオマスを燃料ペレット化する方法は、特許文献1(特公昭61−27435号公報)に開示されている。この方法は、細断された有機繊維材料の含水量を16〜28%に調節し、これをダイス内で圧縮して乾燥し燃料ペレットを製造するようにしている。
また、バイオマスを乾留して燃料化する方法は、特許文献2(特開2003−206490号公報)等に開示されている。この方法は、酸素欠乏雰囲気中において、バイオマスを200〜500℃、好適には250〜400℃で加熱して、バイオマス半炭化圧密燃料前駆体を製造する方法となっている。
On the other hand, a method for converting biomass into fuel pellets is disclosed in Patent Document 1 (Japanese Patent Publication No. 61-27435). In this method, the water content of the chopped organic fiber material is adjusted to 16 to 28%, and this is compressed in a die and dried to produce fuel pellets.
Further, a method for carbonizing biomass to produce fuel is disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2003-206490) and the like. This method is a method in which biomass is heated at 200 to 500 ° C., preferably 250 to 400 ° C. in an oxygen-deficient atmosphere to produce a biomass semi-carbonized consolidated fuel precursor.

しかしながら、特許文献1に記載される方法では、圧縮成形を行うことによりバイオマスを燃料化しているが、生成した燃料ペレットは水分量が多いため発熱量が低く、燃料としては適していない。
また、特許文献2等に記載されるように乾留によりバイオマスを燃料化する方法では、加工処理を施さないバイオマスに比べると燃料として価値が高いものとなっているが、やはり石炭コークスに比べてみかけ比重が低く、発熱量が低い。さらに、石炭コークスに比べて硬度が低いため、石炭コークスの代替として利用するには不十分である。
However, in the method described in Patent Document 1, biomass is made into fuel by performing compression molding. However, since the generated fuel pellet has a large amount of water, it generates a small amount of heat and is not suitable as a fuel.
In addition, as described in Patent Document 2 and the like, the method of converting biomass into fuel by dry distillation has a higher value as a fuel than biomass that is not processed, but it is apparently compared with coal coke. Low specific gravity and low calorific value. Furthermore, since the hardness is lower than that of coal coke, it is insufficient for use as an alternative to coal coke.

そこで、近年石炭コークスの代替として、特許文献3(特許第4088933号公報)に基づくバイオコークスが研究されている。
バイオコークスは、バイオマス原料を加圧、加熱した状態で一定時間保持した後に、加圧を維持した状態で冷却することにより製造される。加圧、加熱条件は、バイオマス細粒体中の主成分であるリグニン、セルロース及びヘミセルロースのうち、ヘミセルロースを熱分解させると共にセルロース及びリグニンの骨格を保持しつつ低温反応させて半炭化或いは半炭化前固形物を得る圧力範囲及び温度範囲に設定する。これにより以下の反応機構が成立し、高硬度で高圧密されたバイオコークスが製造できる。
In recent years, bio-coke based on Patent Document 3 (Japanese Patent No. 4088933) has been studied as an alternative to coal coke.
Bio-coke is produced by holding a biomass raw material under pressure and heating for a certain period of time and then cooling it while maintaining the pressure. The pressurization and heating conditions are as follows: before the semi-carbonization or semi-carbonization of the main components in the biomass fine particles, the lignin, cellulose and hemicellulose are subjected to low temperature reaction while thermally decomposing hemicellulose and retaining the skeleton of cellulose and lignin. Set the pressure range and temperature range to obtain solids. As a result, the following reaction mechanism is established, and high-hardness and high-pressure dense bio-coke can be produced.

その反応機構は、上記した条件で反応を行うことにより、バイオマス細粒体の繊維成分であるヘミセルロースが熱分解し接着効果を発現させ、バイオマス細粒体に含まれる自由水がこの加圧、加熱条件下での作用によりリグニンがその骨格を維持したまま低温で反応し、圧密効果と相乗的に作用することによって、高硬度で高圧密されたバイオコークスが製造できるものである。熱硬化反応は、リグニン等に含まれるフェノール性の高分子間で反応活性点が誘発することにより進行する。   The reaction mechanism is that the reaction is performed under the above-described conditions, so that the hemicellulose, which is the fiber component of the biomass fine particles, is thermally decomposed to develop an adhesive effect, and the free water contained in the biomass fine particles is subjected to this pressurization and heating. The lignin reacts at a low temperature while maintaining its skeleton by the action under the conditions, and acts synergistically with the compaction effect, whereby high-hardness and high-pressure compacted bio-coke can be produced. The thermosetting reaction proceeds when a reactive site is induced between phenolic polymers contained in lignin and the like.

図10に、バイオコークスの物性値を他の燃料と比較した表を示す。尚、この表は実験的に得られた数値を記載しているのみであり、本発明はこの数値に限定されるものではない。
この表に示されるように、バイオコークスは、みかけ比重1.2〜1.52に高圧密され、最高圧縮強度20〜200MPa、発熱量18〜23MJ/kgの物性値を示す硬度、燃焼性ともに優れた性能を有しており、未加工の木質バイオマスが、みかけ比重約0.4〜0.6、発熱量約17MJ/kg、最高圧縮強度約30MPaであるのと比べると、発熱量及び硬度の点において格段に優れていることが判る。また、石炭コークスの物性値である、みかけ比重約1.85、最高圧縮強度約15MPa、発熱量約29MJ/kgに比しても、バイオコークスは燃焼性、硬度とも遜色ない性能を有する。従って、バイオコークスは石炭コークスの代替として有効な燃料であるとともに、マテリアル素材としての利用価値も高い。
FIG. 10 shows a table comparing the physical properties of bio-coke with other fuels. Note that this table only describes experimentally obtained numerical values, and the present invention is not limited to these numerical values.
As shown in this table, bio-coke is densely packed with an apparent specific gravity of 1.2 to 1.52, and has a maximum compressive strength of 20 to 200 MPa and a physical property value of a calorific value of 18 to 23 MJ / kg, both in hardness and combustibility. It has excellent performance, and its raw woody biomass has an apparent specific gravity of about 0.4 to 0.6, a calorific value of about 17 MJ / kg, and a maximum compressive strength of about 30 MPa. It can be seen that this is far superior. Further, even when compared with physical properties of coal coke, apparent specific gravity of about 1.85, maximum compressive strength of about 15 MPa, and calorific value of about 29 MJ / kg, bio-coke has performance comparable to that of combustibility and hardness. Therefore, bio-coke is an effective fuel as an alternative to coal-coke and has a high utility value as a material material.

特公昭61−27435号公報Japanese Patent Publication No. 61-27435 特開2003−206490号公報JP 2003-206490 A 特許第4088933号公報Japanese Patent No. 4088933

しかしながら、バイオコークスは未だ研究段階であり、特許文献3には加圧手段や加熱、冷却手段等の具体的な装置構成やその制御については開示されておらず、バイオコークスを短時間で且つ効率的に製造する技術については言及されていなかった。
また、バイオマス原料に水分が多く含まれる場合、加圧中にバイオマスからガスが発生し、この発生したガスがバイオコークスに内包され、製造されたバイオコークスが破損したり品質低下する惧れがあった。
そこで本発明は、バイオコークスにガスが内包され破損することを防止するとともに、バイオコークスを短時間で且つ効率的に製造することを可能としたバイオコークス製造方法及び装置を提案する。
However, bio-coke is still in the research stage, and Patent Document 3 does not disclose a specific device configuration such as pressurizing means, heating, cooling means, etc. and its control. No mention was made of technically manufacturing techniques.
In addition, when the biomass raw material contains a lot of moisture, gas is generated from the biomass during pressurization, and the generated gas is encapsulated in the bio-coke, so that the produced bio-coke may be damaged or the quality may be deteriorated. It was.
Therefore, the present invention proposes a bio-coke production method and apparatus that can prevent gas from being included in the bio-coke and breakage, and that can produce the bio-coke in a short time and efficiently.

上記の課題を解決するために、本発明は、有底筒状の反応容器にバイオマス細粒体を充填する充填工程と、前記反応容器に充填したバイオマス細粒体を略密状態にて半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲で加熱しながら加圧成形する反応工程と、を備えたバイオコークス製造方法において、
前記反応工程にて、前記反応容器内を上下摺動する加圧体により前記圧力範囲となるようにバイオマス細粒体を加圧し、この加圧時に、前記加圧体を駆動する流体圧シリンダの背圧を検知し、該検知した背圧が予め設定された許容範囲よりも大きい場合、前記加圧体を上昇させてバイオマス細粒体のガス抜きを行うことを特徴とする。
In order to solve the above problems, the present invention includes a filling step of filling a bottomed cylindrical reaction vessel with biomass fine particles, and semi-carbonizing the biomass fine particles filled into the reaction vessel in a substantially dense state. Alternatively, in a bio-coke production method comprising: a reaction step of pressure molding while heating in a temperature range and a pressure range to obtain a semi-carbonized solid product,
In the reaction step, the biomass fine particles are pressurized so as to be in the pressure range by a pressurizing body that slides up and down in the reaction vessel, and at this pressurization, a fluid pressure cylinder that drives the pressurizing body Back pressure is detected, and when the detected back pressure is larger than a preset allowable range, the pressurized body is raised to degas the biomass fine particles.

本発明では、流体圧シリンダの背圧発生を検知し、検知された背圧が予め設定された許容範囲より大きい場合には、加圧成形されているバイオマス細粒体中にガスが発生して背圧が上昇したものと判断し、加圧体を上昇させてガス抜き処理を行うようにしている。これにより、製造されたバイオコークスにガスが内包されて破損することを防止し、割れが少なく高品質のバイオコークスが製造可能となる。   In the present invention, when the back pressure generation of the fluid pressure cylinder is detected, and the detected back pressure is larger than a preset allowable range, gas is generated in the biomass granule that is pressure-molded. It is determined that the back pressure has increased, and the pressurizing body is raised to perform the degassing process. Thereby, it is possible to prevent gas from being included in the manufactured bio-coke and to break it, and it is possible to manufacture high-quality bio-coke with few cracks.

また、前記加圧体の上昇時間を計測し、該計測された時間が所定の設定時間を経過したら前記加圧体を再度下降させ、前記加圧体の圧力を前記圧力範囲に戻すことを特徴とする。
このように、所定の設定時間経過後に加圧体を下降して通常運転を再開させることにより、ガス抜き処理を終えた後に円滑に通常運転に戻ることが可能となる。
Further, the rising time of the pressure body is measured, and when the measured time has passed a predetermined set time, the pressure body is lowered again to return the pressure of the pressure body to the pressure range. And
In this manner, by lowering the pressure body after a predetermined set time has elapsed and restarting the normal operation, it is possible to smoothly return to the normal operation after the degassing process.

さらに、前記充填工程では、前記反応容器にバイオマス細粒体を投入した後、前記反応容器の上部から前記加圧体を下降させ該加圧体により前記圧力範囲より低圧でバイオマス細粒体を充填時加圧することを特徴とする。
バイオマスは細粒体状で反応容器に投入されるため嵩密度が低く、そのままの状態だと反応容器の容積を大きくしなければならないが、本構成のように充填工程にて加圧体により低圧で充填時加圧を行うことで、より多くのバイオマス細粒体を投入することが可能となり、反応容器の小型化が可能となる。
Further, in the filling step, after the biomass fine particles are charged into the reaction vessel, the pressurized body is lowered from the upper part of the reaction vessel and filled with the biomass fine particles at a pressure lower than the pressure range by the pressurized body. It is characterized by pressurizing.
Biomass is in the form of fine particles and is charged into the reaction vessel, so the bulk density is low. If it is left as it is, the volume of the reaction vessel must be increased. By performing the pressurization at the time of filling, it becomes possible to introduce more biomass fine particles, and the reaction vessel can be miniaturized.

また、バイオマス細粒体が充填される有底筒状の反応容器と、前記反応容器内のバイオマス細粒体を加圧する加圧体と、前記バイオマス細粒体を加熱する加熱手段と、前記バイオマス細粒体を略密状態にて前記加熱手段と前記加圧体により半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲で加熱しながら加圧成形して得られた成形体を冷却する冷却手段と、を備えたバイオコークス製造装置において、
前記加圧体を駆動する流体圧シリンダの背圧を検知する背圧検知手段と、前記加圧体の圧力制御を行う制御装置とを備え、
前記制御装置は、前記背圧検知手段で検知された背圧が予め設定された許容範囲よりも大きい場合、前記加圧体を上昇させる制御を行うことを特徴とする。
Also, a bottomed cylindrical reaction vessel filled with biomass fine particles, a pressure body that pressurizes the biomass fine particles in the reaction vessel, a heating means that heats the biomass fine particles, and the biomass Cooling the molded body obtained by pressure molding while heating the fine granules in a substantially dense state while heating in the temperature range and pressure range to obtain a semi-carbonized or pre-semi-carbonized solid by the heating means and the pressure body. In a bio-coke production apparatus comprising a cooling means,
A back pressure detecting means for detecting a back pressure of a fluid pressure cylinder for driving the pressurizing body, and a control device for controlling the pressure of the pressurizing body,
When the back pressure detected by the back pressure detecting means is larger than a preset allowable range, the control device performs control to raise the pressurizing body.

また、前記制御装置は、前記加圧体の上昇時間を計測するタイマを備え、該タイマにより計測された時間が所定の設定時間を経過したら前記加圧体を再度下降させて該加圧体の圧力を前記圧力範囲に戻す制御を行うことを特徴とする。
さらに、前記流体圧シリンダの作動流体の給排を制御する電磁制御弁と、該電磁制御弁と前記加圧シリンダの背圧室の間の作動流体通路に配置される逆止弁と、を備え、
前記背圧検知手段は、前記逆止弁の圧力を検知する手段であることを特徴とする。
さらにまた、前記制御装置は、前記バイオマス細粒体に付与する加圧力を、前記圧力範囲より低圧で前記バイオマス細粒体を充填時加圧する第1の圧力段階と前記充填時加圧したバイオマス細粒体を前記圧力範囲で加圧する第2の圧力段階とに圧力制御するとともに、
前記加圧体の第2の圧力段階にて前記加熱手段を作動させ、半炭化或いは半炭化前固形物が生成した後に前記加熱手段から前記冷却手段に切り替える制御を行なうことを特徴とする。
Further, the control device includes a timer for measuring the rising time of the pressurizing body, and when the time measured by the timer has passed a predetermined set time, the pressurizing body is lowered again to Control is performed to return the pressure to the pressure range.
And an electromagnetic control valve for controlling supply and discharge of the working fluid of the fluid pressure cylinder, and a check valve disposed in a working fluid passage between the electromagnetic control valve and a back pressure chamber of the pressurizing cylinder. ,
The back pressure detecting means is means for detecting the pressure of the check valve.
Furthermore, the control device is configured to apply a pressure applied to the biomass fine particles at a pressure lower than the pressure range at the time of filling the biomass fine particles at the time of filling and the biomass fine particles pressurized at the time of filling. While controlling the pressure to a second pressure stage that pressurizes the granules in the pressure range,
The heating means is operated at the second pressure stage of the pressurizing body, and control is performed to switch from the heating means to the cooling means after the semi-carbonized or semi-carbonized solid is generated.

本発明は、流体圧シリンダの背圧発生を検知し、検知された背圧が予め設定された許容範囲より大きい場合には、加圧成形されているバイオマス細粒体中にガスが発生して背圧が上昇したものと判断し、加圧体を上昇させてガス抜き処理を行うようにしている。これにより、製造されたバイオコークスにガスが内包されて破損することを防止し、割れが少なく高品質のバイオコークスが製造可能となる。
また、加圧体を上昇させたら所定の設定時間経過後に加圧体を下降して通常運転を再開させることにより、ガス抜き処理を終えた後に円滑に通常運転に戻ることが可能となる。
さらに、充填工程にて加圧体により低圧で充填時加圧を行うことで、より多くのバイオマス細粒体を投入することが可能となり、反応容器の小型化が可能となる。
The present invention detects the occurrence of back pressure in the fluid pressure cylinder, and if the detected back pressure is larger than a preset allowable range, gas is generated in the biomass granules that are pressure-molded. It is determined that the back pressure has increased, and the pressurizing body is raised to perform the degassing process. As a result, it is possible to prevent gas from being included in the manufactured bio-coke and break it, and it is possible to manufacture high-quality bio-coke with few cracks.
Further, when the pressurizing body is raised, the pressurizing body is lowered after a predetermined set time has elapsed and normal operation is resumed, so that it is possible to smoothly return to normal operation after the degassing process is completed.
Furthermore, by performing pressurization at a low pressure with a pressurized body in the filling step, it becomes possible to introduce more biomass fine particles, and the reaction vessel can be miniaturized.

本発明の実施形態に係るバイオコークス製造装置の構成を示す断面図である。It is sectional drawing which shows the structure of the bio-coke manufacturing apparatus which concerns on embodiment of this invention. 加圧用油圧機構の油圧回路図である。FIG. 3 is a hydraulic circuit diagram of a pressurizing hydraulic mechanism. 冷熱媒回路の一例を示すシステム構成図である。It is a system configuration diagram showing an example of a cooling medium circuit. 本発明の実施形態に係るガス抜き処理を備えた反応工程のフローチャートである。It is a flowchart of the reaction process provided with the degassing process which concerns on embodiment of this invention. 本発明の実施形態に係るガス抜き処理の動作を説明する図である。It is a figure explaining operation | movement of the degassing process which concerns on embodiment of this invention. 本発明の実施形態に係るバイオコークス製造方法の全工程を示すフローチャートである。It is a flowchart which shows all the processes of the bio-coke manufacturing method which concerns on embodiment of this invention. 本発明の実施形態に係る充填工程の動作を説明する図である。It is a figure explaining operation | movement of the filling process which concerns on embodiment of this invention. 本発明の実施形態に係る反応工程の動作を説明する図である。It is a figure explaining operation | movement of the reaction process which concerns on embodiment of this invention. 本発明の実施形態に係る排出工程の動作を説明する図である。It is a figure explaining operation | movement of the discharge process which concerns on embodiment of this invention. バイオコークスの物性値を比較する表である。It is a table | surface which compares the physical-property value of bio-coke.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の種類、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
本実施形態において、バイオコークスの原料となるバイオマスは、光合成に起因する有機物であって、木質類、草木類、農作物類、厨芥類等のバイオマスであり、例えば、廃木材、間伐材、剪定枝、植物、農業廃棄物、コーヒー滓や茶滓等の厨芥廃棄物等が挙げられる。
本実施形態では、必要に応じて所定の含水率になるように水分調整されたバイオマス細粒体を原料としている。バイオマス細粒体は、茶滓やコーヒー滓等のように小粒径のバイオマスをそのまま用いてもよいし、廃木材等の大粒径のバイオマスを予め所定粒径以下まで粉砕したものであってもよい。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the types of components described in this embodiment, the relative arrangement thereof, and the like are not merely intended to limit the scope of the present invention, but are merely illustrative examples, unless otherwise specified.
In the present embodiment, the biomass that is the raw material for bio-coke is an organic substance resulting from photosynthesis, and is biomass such as wood, plants, crops, and moss. For example, waste wood, thinned wood, pruned branches, etc. , Plants, agricultural waste, and coffee waste such as coffee and tea.
In the present embodiment, biomass fine particles whose water content is adjusted so as to have a predetermined moisture content as required are used as raw materials. The biomass fine granule may be a small particle size biomass such as a teacup or coffee koji, or may be obtained by previously pulverizing a large particle size biomass such as waste wood to a predetermined particle size or less. Also good.

まず、図1を参照して、本実施形態に係るバイオコークス製造装置の全体構成を説明する。
図1に示すように、バイオコークス製造装置1はバイオマス細粒体11が投入される円筒形の反応容器2を有している。該反応容器2の上部にはバイオマス細粒体11を受け入れる漏斗状のホッパ3が設けられ、下端には成形されたバイオコークスを排出する排出部5が設けられている。また、反応容器2は、内容物を所定温度まで加熱する加熱手段と、加熱後に内容物を冷却する冷却手段とを備える。さらに、反応容器2の上方には、該シリンダ2内のバイオマス細粒体11を所定圧力まで加圧する加圧手段が設けられている。さらにまた、加圧ピストン6の上下方向の位置を加圧ピストン6の伸び量で検出する位置センサ20が設けられていることが好ましい。
First, with reference to FIG. 1, the whole structure of the bio-coke manufacturing apparatus which concerns on this embodiment is demonstrated.
As shown in FIG. 1, the bio-coke production apparatus 1 has a cylindrical reaction vessel 2 into which biomass fine particles 11 are charged. A funnel-like hopper 3 for receiving the biomass fine particles 11 is provided at the upper part of the reaction vessel 2, and a discharge part 5 for discharging the formed bio-coke is provided at the lower end. The reaction vessel 2 also includes a heating unit that heats the contents to a predetermined temperature and a cooling unit that cools the contents after heating. Furthermore, a pressurizing means for pressurizing the biomass fine particles 11 in the cylinder 2 to a predetermined pressure is provided above the reaction vessel 2. Furthermore, it is preferable that a position sensor 20 for detecting the vertical position of the pressure piston 6 by the amount of extension of the pressure piston 6 is provided.

次いで、各装置、部位の詳細な構成を以下に記載する。
前記反応容器2の上部に設けられたホッパ3は、該ホッパ3にバイオマス細粒体11を供給する原料供給部(不図示)を備えている。該原料供給部は、バイオマス細粒体11を定量計量してホッパ3に投入する装置であってもよいし、又はバイオマス細粒体11をホッパ3に連続投入する装置であってもよい。
前記反応容器2の排出部5は反応容器2の径と同一径の開口からなり、その下方には該排出部5を開閉する排出装置が設けられている。該排出装置は、排出部5を封止する底面蓋部9と、該底面蓋部9を水平方向にスライドさせて排出部5の封止、開放を制御する排出用油圧機構10とから構成される。この排出装置は、反応容器2内にて反応工程が終了した後に、油圧機構10を駆動させ底面蓋部9をスライドさせて排出部5を開放し、シリンダ2内のバイオコークスを落下させて排出するようになっている。
Next, the detailed configuration of each device and part will be described below.
The hopper 3 provided in the upper part of the reaction vessel 2 includes a raw material supply unit (not shown) for supplying the biomass fine particles 11 to the hopper 3. The raw material supply unit may be a device that measures and measures the biomass fine particles 11 into the hopper 3, or may be a device that continuously charges the biomass fine particles 11 into the hopper 3.
The discharge part 5 of the reaction vessel 2 has an opening having the same diameter as the reaction vessel 2, and a discharge device for opening and closing the discharge part 5 is provided below the opening. The discharge device includes a bottom cover portion 9 that seals the discharge portion 5 and a discharge hydraulic mechanism 10 that controls sealing and opening of the discharge portion 5 by sliding the bottom cover portion 9 in the horizontal direction. The After the reaction process is completed in the reaction vessel 2, the discharge device drives the hydraulic mechanism 10 to slide the bottom cover portion 9 to open the discharge portion 5 to drop the bio-coke in the cylinder 2 and discharge it. It is supposed to be.

前記反応容器2が備える加圧手段は、流体圧シリンダ(以下、加圧シリンダと称する)7により駆動されて反応容器2の内周面を上下摺動する加圧ピストン(加圧体)6と、該加圧シリンダ7内の作動油の給排を制御する加圧用油圧機構8とからなる(図2参照)。加圧ピストン6及び加圧シリンダ7は、反応容器2と同軸上に配置される。加圧ピストン6は、反応容器2の底面付近まで下降する。該加圧ピストン6は、所定時間だけこの加圧状態を保持できる構成となっている。   The pressure means provided in the reaction vessel 2 is driven by a fluid pressure cylinder (hereinafter referred to as a pressure cylinder) 7 and a pressure piston (pressure body) 6 that slides up and down on the inner peripheral surface of the reaction vessel 2. And a pressurizing hydraulic mechanism 8 for controlling the supply and discharge of hydraulic oil in the pressurizing cylinder 7 (see FIG. 2). The pressurizing piston 6 and the pressurizing cylinder 7 are arranged coaxially with the reaction vessel 2. The pressurizing piston 6 descends to near the bottom surface of the reaction vessel 2. The pressurizing piston 6 is configured to be able to maintain this pressurized state for a predetermined time.

図2に、加圧用油圧機構の油圧回路図の一例を示す。加圧シリンダ7に供給される作動油は、ポンプ77によりタンク76から汲み上げられ、電磁弁78により供給量を制御されて加圧シリンダ7に供給される。該電磁弁78は制御装置100により開度制御され、この開度に基づいて加圧ピストン6の圧力値が調整されるようになっている。加圧ピストン6の圧力段階は、バイオマス細粒体11を反応させて半炭化或いは半炭化前固形物を得る圧力範囲より低圧で、バイオマス細粒体11を充填時加圧する第1の圧力段階Pと、充填時加圧したバイオマス細粒体11を前記圧力範囲で加圧する第2の圧力段階Pと、の少なくとも2段階を有する。
また、電磁弁78と加圧シリンダ7の間の作動油通路には逆止弁71、72が設けられている。このうち、電磁弁78と加圧シリンダ7の背圧室7aの間の作動油通路に配置された逆止弁72の作動油圧力が圧力検知センサ75によって背圧として検知され、制御装置100に入力される。ここで検知された背圧は、後述するガス抜き処理に用いられる。
FIG. 2 shows an example of a hydraulic circuit diagram of the pressurizing hydraulic mechanism. The hydraulic oil supplied to the pressurizing cylinder 7 is pumped up from the tank 76 by the pump 77, and the supply amount is controlled by the electromagnetic valve 78 and supplied to the pressurizing cylinder 7. The opening degree of the electromagnetic valve 78 is controlled by the control device 100, and the pressure value of the pressurizing piston 6 is adjusted based on the opening degree. The pressure stage of the pressurizing piston 6 is a first pressure stage P that pressurizes the biomass granules 11 at the time of filling at a pressure lower than the pressure range in which the biomass granules 11 are reacted to obtain semi-carbonized or semi-carbonized solids. a first and a second pressure stage P 2 which is pressurized with the pressure range of biomass granulates 11 pressurized during filling, the at least two stages.
In addition, check valves 71 and 72 are provided in the hydraulic oil passage between the electromagnetic valve 78 and the pressurizing cylinder 7. Among these, the hydraulic oil pressure of the check valve 72 arranged in the hydraulic oil passage between the electromagnetic valve 78 and the back pressure chamber 7 a of the pressurizing cylinder 7 is detected as a back pressure by the pressure detection sensor 75, and is sent to the control device 100. Entered. The back pressure detected here is used for a degassing process to be described later.

図1に戻り、前記反応容器2が備える加熱手段及び冷却手段は、同一の温度調整手段としてもよい。本実施形態では、温度調整手段として、反応容器2にジャケットを設けた二重管構造とし、内筒と外筒の間に冷熱媒通路4を設けた構成としている。冷熱媒通路4には、熱媒若しくは冷媒(以後、冷熱媒と称する)が通流し、該冷熱媒による伝熱によりシリンダ内筒に充填されたバイオマス細粒体11に熱エネルギの授受を行うようになっている。冷熱媒通路4の下方側には冷熱媒入口4aが設けられ、上方側には冷熱媒出口4bが設けられている。これらの冷熱媒入口4a及び冷熱媒出口4bは、後述する冷熱媒回路に接続されている(図3参照)。冷熱媒通路4、冷熱媒入口4a、冷熱媒出口4b、冷熱媒回路を含み、冷熱媒の切り替えにより反応容器2の温度制御を行う機構を冷熱媒循環機構と称する。   Returning to FIG. 1, the heating means and the cooling means provided in the reaction vessel 2 may be the same temperature adjusting means. In the present embodiment, the temperature adjusting means has a double tube structure in which a jacket is provided in the reaction vessel 2, and a cooling medium passage 4 is provided between the inner cylinder and the outer cylinder. A heat medium or a refrigerant (hereinafter referred to as a cold medium) flows through the cold medium passage 4 so that heat energy is transferred to the biomass fine particles 11 filled in the cylinder inner cylinder by heat transfer by the cold medium. It has become. A cooling medium inlet 4 a is provided below the cooling medium passage 4, and a cooling medium outlet 4 b is provided above the cooling medium passage 4. The cooling medium inlet 4a and the cooling medium outlet 4b are connected to a cooling medium circuit described later (see FIG. 3). A mechanism that includes the cooling medium passage 4, the cooling medium inlet 4a, the cooling medium outlet 4b, and a cooling medium circuit and controls the temperature of the reaction vessel 2 by switching the cooling medium is referred to as a cooling medium circulation mechanism.

図3を参照して、冷熱媒循環機構が備える冷熱媒回路30の一例につき説明する。この冷熱媒回路30を用いることにより、熱効率が高く且つ安全性の高い温度調整手段とすることが可能であるが、もちろん他の構成の冷熱媒回路を用いてもよい。この冷熱媒回路30では、冷媒及び熱媒にシリコンオイルを用いることが好ましい。
反応容器2の冷熱媒入口4aと出口4bは、同図に示される冷熱媒回路30に夫々接続されている。該冷熱媒回路30は、冷媒回路と熱媒回路とが組み合わされた構成となっている。冷熱媒出口4bは、冷熱媒排出ライン41に接続され、該排出ライン41上の三方バルブ45を介して熱媒戻りライン42と、冷媒戻りライン43に分岐している。
熱媒戻りライン42は熱媒タンク31に接続されている。該熱媒タンク31は、加熱器31aと、撹拌機31bを具備しており、冷却された熱媒を昇温するようになっている。必要に応じてNボンベからNガスが供給されるようにし、タンク内を不活性雰囲気に保持して安全性を確保することが好ましい。熱媒タンク31の出口側は、三方バルブ46を介して冷熱媒供給ライン40に接続されている。
このような構成を用いて、反応容器2の加熱時には、三方バルブ45、46を制御することにより熱媒タンク31側に熱媒が循環するようにし、熱媒タンク31、冷熱媒供給ライン40、冷熱媒通路4(反応容器2)、冷熱媒排出ライン41、熱媒戻りライン42からなる熱媒回路を形成する。
With reference to FIG. 3, an example of the cooling medium circuit 30 provided in the cooling medium circulation mechanism will be described. By using this cooling / heating medium circuit 30, it is possible to provide a temperature adjusting means with high thermal efficiency and high safety. Of course, a cooling / heating medium circuit having another configuration may be used. In this cooling / heating medium circuit 30, it is preferable to use silicon oil for the refrigerant and the heating medium.
The cooling medium inlet 4a and the outlet 4b of the reaction vessel 2 are connected to a cooling medium circuit 30 shown in FIG. The cooling medium circuit 30 has a configuration in which a refrigerant circuit and a heating medium circuit are combined. The cooling medium outlet 4 b is connected to a cooling medium discharge line 41 and branches into a heating medium return line 42 and a refrigerant return line 43 via a three-way valve 45 on the discharge line 41.
The heat medium return line 42 is connected to the heat medium tank 31. The heating medium tank 31 includes a heater 31a and a stirrer 31b, and raises the temperature of the cooled heating medium. It is preferable that N 2 gas is supplied from an N 2 cylinder as necessary, and the tank is maintained in an inert atmosphere to ensure safety. The outlet side of the heating medium tank 31 is connected to the cooling medium supply line 40 via a three-way valve 46.
Using such a configuration, when the reaction vessel 2 is heated, the heat medium is circulated to the heat medium tank 31 side by controlling the three-way valves 45 and 46, and the heat medium tank 31, the cooling medium supply line 40, A heat medium circuit including the cold heat medium passage 4 (reaction vessel 2), the cold heat medium discharge line 41, and the heat medium return line 42 is formed.

冷媒戻りライン43は、冷媒熱交換器36に接続されている。該冷媒熱交換器36は、上水等の冷却水と冷媒とを熱交換し、冷媒を冷却する構成となっている。
さらに、好適には冷媒戻りライン43の冷媒熱交換器36より上流側に、冷媒タンク35を設ける。この冷媒タンク35は、少なくとも冷媒温度を水の沸点以下、好適には80℃以下まで冷却する能力を有するものとする。さらに、冷媒タンク35は、撹拌機35aを具備することが好ましく、これにより冷媒タンク35出口の冷媒温度変化を軽減し冷却能力を向上させる。
このような構成を用いて、反応容器2の冷却時には、三方バルブ45、46を制御することにより冷媒タンク35側に切り替えて、該冷媒タンク35側に冷媒が循環するようにし、冷媒タンク35、冷媒熱交換器36、冷熱媒供給ライン40、冷熱媒通路4(反応容器2)、冷熱媒排出ライン41、冷媒戻りライン43からなる冷媒回路を形成する。
このように、反応容器2内のバイオマス細粒体11の加熱手段、冷却手段として、冷熱媒回路30を備えた冷熱媒循環機構を用いることにより、バイオマス細粒体11の加熱又は冷却が迅速に行え、また加熱から冷却への切替を円滑に行うことが可能となる。
The refrigerant return line 43 is connected to the refrigerant heat exchanger 36. The refrigerant heat exchanger 36 is configured to exchange heat between cooling water such as clean water and the refrigerant to cool the refrigerant.
Furthermore, a refrigerant tank 35 is preferably provided upstream of the refrigerant heat exchanger 36 in the refrigerant return line 43. This refrigerant tank 35 has at least the ability to cool the refrigerant temperature to the boiling point of water or lower, preferably 80 ° C. or lower. Furthermore, the refrigerant tank 35 preferably includes a stirrer 35a, thereby reducing a change in refrigerant temperature at the outlet of the refrigerant tank 35 and improving the cooling capacity.
Using such a configuration, when the reaction vessel 2 is cooled, the three-way valves 45 and 46 are controlled to switch to the refrigerant tank 35 side so that the refrigerant circulates to the refrigerant tank 35 side. A refrigerant circuit including a refrigerant heat exchanger 36, a cooling medium supply line 40, a cooling medium passage 4 (reaction vessel 2), a cooling medium discharge line 41, and a refrigerant return line 43 is formed.
As described above, by using the cooling medium circulation mechanism including the cooling medium circuit 30 as the heating means and the cooling means for the biomass granules 11 in the reaction vessel 2, the biomass granules 11 can be heated or cooled quickly. It is possible to smoothly switch from heating to cooling.

図1に戻り、上記した加圧用油圧機構8、排出用油圧機構10及び冷熱媒循環機構は、制御装置100により制御される。該制御装置100は、中央処理装置
(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。さらに、制御装置100は、加圧用油圧機構8の加圧ピストン6の充填回数等をカウントするカウンタ101、所定の制御における継続時間を計測するタイマ102を備えている。
Returning to FIG. 1, the pressurizing hydraulic mechanism 8, the discharging hydraulic mechanism 10, and the cooling medium circulating mechanism are controlled by the control device 100. The control device 100 includes a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). Furthermore, the control device 100 includes a counter 101 that counts the number of times of filling of the pressurizing piston 6 of the pressurizing hydraulic mechanism 8 and a timer 102 that measures the duration of predetermined control.

上記した構成を備えるバイオコークス製造装置1にて、反応容器2内にバイオマス細粒体11を充填して充填時加圧する充填工程を行った後、バイオマス細粒体を略密状態にて半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲で加熱しながら加圧成形して一定時間保持し、加圧を維持した状態で冷却する反応工程を行い、バイオコークスを製造する。前記温度範囲、圧力範囲は、バイオマス細粒体中の主成分であるリグニン、セルロース及びヘミセルロースのうち、ヘミセルロースを熱分解させると共にセルロース及びリグニンの骨格を保持しつつ低温反応させて半炭化或いは半炭化前固形物を得る圧力範囲及び温度範囲とする。即ち、前記バイオマス細粒体中のヘミセルロースが熱分解されるとともにリグニンが熱硬化反応を誘起する温度範囲及び圧力範囲である。   In the bio-coke manufacturing apparatus 1 having the above-described configuration, after performing a filling step of filling the biomass fine particles 11 in the reaction vessel 2 and pressurizing at the time of filling, the biomass fine particles are semi-carbonized in a substantially dense state. Alternatively, a bio-coke is produced by carrying out a reaction process in which pressure-molding is performed while heating in a temperature range and a pressure range to obtain a semi-pre-carbonized solid, and the mixture is kept for a certain period of time, and then cooled while maintaining the pressure. The temperature range and the pressure range are semi-carbonized or semi-carbonized by thermally decomposing hemicellulose among lignin, cellulose, and hemicellulose, which are the main components in the fine biomass of biomass, and maintaining the skeleton of cellulose and lignin. The pressure range and temperature range for obtaining the pre-solid material are set. That is, a temperature range and a pressure range in which hemicellulose in the biomass fine particles is thermally decomposed and lignin induces a thermosetting reaction.

本実施形態は、前記反応工程において、加圧シリンダ7の背圧を検知し、該検知した背圧が予め設定された許容範囲よりも大きい場合に、加圧ピストン6を上昇させてバイオマス細粒体11をガス抜きするガス抜き処理を行うようになっている。
図4は本発明の実施形態に係るガス抜き処理を備えた反応工程のフローチャート、図5は本発明の実施形態に係るガス抜き処理の動作を説明する図である。
In the present embodiment, in the reaction step, the back pressure of the pressure cylinder 7 is detected, and when the detected back pressure is larger than a preset allowable range, the pressure piston 6 is raised to make the biomass fine particles. A degassing process for degassing the body 11 is performed.
FIG. 4 is a flowchart of a reaction process including the degassing process according to the embodiment of the present invention, and FIG. 5 is a diagram for explaining the operation of the degassing process according to the embodiment of the present invention.

図4を参照して、加圧シリンダ7を高圧にて下降側に駆動し、図5(i)に示すように加圧ピストン6を下降させ(S13)、反応容器2の冷熱媒通路4へ熱媒の循環を開始し(S14)、バイオマス細粒体11を反応させる。このとき、圧力検知センサ75(図2参照)により加圧シリンダ7の背圧を検知し、加圧シリンダ圧pが予め設定された許容圧力p以上となるか否かを監視する(S30)。加圧シリンダ圧pが許容圧力p未満である場合は、熱媒循環及び加圧シリンダ圧pを前記圧力範囲に維持し、通常運転を続行うする。 Referring to FIG. 4, the pressurizing cylinder 7 is driven to the lower side at a high pressure, and the pressurizing piston 6 is lowered as shown in FIG. 5 (i) (S <b> 13) to the cooling medium passage 4 of the reaction vessel 2. The circulation of the heat medium is started (S14), and the biomass fine particles 11 are reacted. In this case, detecting the back pressure of the pressure cylinder 7 by the pressure detection sensor 75 (see FIG. 2), whether to monitor the pressure cylinder pressure p becomes equal to a preset allowable pressure p 1 or more (S30) . If pressure cylinder pressure p is lower than the allowable pressure p 1 is the heat medium circulation and pressurized cylinder pressure p is maintained in the pressure range, continue normal operation Uslu.

一方、加圧シリンダ圧pが所定圧力p以上である場合は、加圧中のバイオマス細粒体11内に異常な反応により発生したガスが溜まり圧力が上昇しているものと推測し、ガス抜き処理を行う。ガス抜き処理は、図5(ii)に示すように加圧ピストン6を僅かに上昇させ(S31)、所定時間だけ保持してガス抜きを行った後、図5(iii)に示すように再度加圧ピストン6を下降して前記圧力範囲まで戻す(S32)。加圧ピストン6を上昇させた時に、制御装置100のタイマ102により経過時間を計測し、該計測された時間が所定の設定時間を経過したら加圧ピストン6を再度下降させるとよい。具体的には、前記設定時間を30秒〜90秒、好適には60秒程度とする。また、加圧ピストン6の上昇量は30〜60mm、好適には50mm程度とする。さらにまた、背圧の許容圧力pは、18MPaとすることが好ましい。 On the other hand, if the pressing cylinder pressure p is a predetermined pressure p 1 or more, and assumed that the gas reservoir pressure generated by biomass granulate 11 abnormal reaction in the pressurization is rising, gas Perform the removal process. In the degassing process, as shown in FIG. 5 (ii), the pressure piston 6 is slightly raised (S31), held for a predetermined time and degassed, and then again as shown in FIG. 5 (iii). The pressure piston 6 is lowered and returned to the pressure range (S32). When the pressurizing piston 6 is raised, the elapsed time is measured by the timer 102 of the control device 100, and when the measured time has passed a predetermined set time, the pressurizing piston 6 may be lowered again. Specifically, the set time is set to 30 seconds to 90 seconds, preferably about 60 seconds. Further, the rising amount of the pressure piston 6 is set to 30 to 60 mm, preferably about 50 mm. Furthermore, the allowable back pressure p 1 is preferably 18 MPa.

反応工程では加圧シリンダ7の背圧を常時監視しておき、検知された背圧が許容範囲を超えたらその都度ガス抜き処理を行うようにする。
このように本実施形態によれば、加圧シリンダ7の背圧発生を検知し、検知された背圧が予め設定された許容範囲より大きい場合には、加圧成形されているバイオマス細粒体11中にガスが発生して背圧が上昇したものと判断し、加圧ピストン6を上昇させてガス抜き処理を行う。これにより、製造されたバイオコークスにガスが内包されて破損することを防止し、割れが少なく高品質のバイオコークスが製造可能となる。
In the reaction process, the back pressure of the pressurizing cylinder 7 is constantly monitored, and when the detected back pressure exceeds the allowable range, the degassing process is performed each time.
As described above, according to this embodiment, when the back pressure generation of the pressure cylinder 7 is detected and the detected back pressure is larger than a preset allowable range, the biomass fine particles that are pressure-molded 11, it is determined that gas has been generated and the back pressure has increased, and the pressurizing piston 6 is raised to perform the degassing process. As a result, it is possible to prevent gas from being included in the manufactured bio-coke and break it, and it is possible to manufacture high-quality bio-coke with few cracks.

次に、図6を参照して、バイオコークス製造方法の全工程のフローを説明する。
まず、充填工程において、制御装置100により充填操作を起動させる(S1)。これは、加圧用油圧機構8や排出用油圧機構10を含む各油圧機構、及び冷熱媒循環機構を起動させ(S2)、カウンタ101の充填回数をリセットする(S3)。即ち、充填回数をX(回)とすると、X=0に設定する。このとき、図7(i)に示すように、加圧ピストン6は反応容器2上部の初期位置Hに設定しておく。
そして、原料であるバイオマス細粒体11をホッパ部3より反応容器2内に投入する(S4)。バイオマス細粒体11を投入後、図7(ii)に示すように、加圧用油圧機構8により加圧シリンダ7を低圧で下降側に駆動して加圧ピストン6を下降させる(S5)。低圧下降時の圧力は、後述する反応工程の圧力より低い第1の圧力段階Pとする。この時、カウンタ101の充填回数を+1増加させて、X=X+1とする(S6)。低圧下降時に制御装置100では、加圧シリンダ7の油圧Pが予め設定された所定圧力Pより大きいか否かを監視する(S7)。加圧シリンダ7の油圧Pが所定圧力P以下の状態にて、タイマ102にて計測される加圧時間が予め設定された所定時間以上経過した場合は、S5に戻り再度加圧シリンダ7を下降側に駆動する。好適には、充填時加圧を行う第1段階の圧力Pは14MPaとし、所定時間は10秒とする。
Next, the flow of all the steps of the bio-coke manufacturing method will be described with reference to FIG.
First, in the filling process, the filling operation is started by the control device 100 (S1). This starts each hydraulic mechanism including the pressurizing hydraulic mechanism 8 and the discharge hydraulic mechanism 10 and the cooling medium circulating mechanism (S2), and resets the number of times the counter 101 is filled (S3). That is, if the number of times of filling is X (times), X 0 = 0 is set. At this time, as shown in FIG. 7 (i), the pressurizing piston 6 is set to an initial position H 0 above the reaction vessel 2.
And the biomass fine particle 11 which is a raw material is thrown in in the reaction container 2 from the hopper part 3 (S4). After the biomass fine particles 11 are charged, as shown in FIG. 7 (ii), the pressurizing cylinder 6 is driven downward by the pressurizing hydraulic mechanism 8 at a low pressure to lower the pressurizing piston 6 (S5). The pressure during the low pressure descending, a pressure stage P 1 of the first lower than the pressure of the reaction steps described below. At this time, the filling count of the counter 101 is incremented by +1, and X 0 = X 0 +1 is set (S6). The control device 100 at the time of low-pressure lowering, pressure P of the pressure cylinder 7 monitors whether the set is greater than a predetermined pressure P 1 in advance (S7). Oil pressure P of the pressure cylinder 7 is at a predetermined pressure P 1 the following conditions, if the pressing time is measured by the timer 102 has elapsed preset predetermined time or more, the pressure cylinder 7 again returns to step S5 Drive down. Preferably, the pressure P 1 of the first stage of performing filling upon pressurization and 14 MPa, the predetermined time is set to 10 seconds.

一方、加圧シリンダ7の油圧Pが所定圧力Pより大きい状態で所定時間以上経過した場合は、次いで反応容器2内のバイオマス細粒体11の充填量を検出する。これは、バイオコークスを目的とする大きさに成型するために行われる。
バイオマス細粒体11の充填量検出は以下のように行う。
図7(ii)に示すように、位置センサ20により下降時の加圧ピストン6の高さ方向位置Hを検出する。そして、検出された高さ方向位置Hが、目的とする高さ設定値H以上であるか否か(H≧H)を判断する(S8)。
On the other hand, the hydraulic pressure P of the pressure cylinder 7 is if older than a predetermined time at a predetermined pressure P 1 is greater than the state, then it detects the filling amount of biomass granulates 11 in the reaction vessel 2. This is done to mold bio-coke to the desired size.
The filling amount detection of the biomass fine particles 11 is performed as follows.
As shown in FIG. 7 (ii), the position sensor 20 detects the height direction position H of the pressurizing piston 6 when it is lowered. Then, it is determined whether or not the detected height direction position H is equal to or higher than the target height setting value H 1 (H ≧ H 1 ) (S8).

また、バイオマス細粒体11の充填量検出の別の方法として、加圧ピストン6が初期位置Hから加圧時の高さ方向位置Hまで下降する下降時間Tをタイマ102により検出して充填量を推定するようにしてもよい。この場合、予め初期位置Hから目的とする高さ設定値Hまでの加圧ピストン6の下降時間を取得しておき、これを指定時間Tとする。そして検出された下降時間Tが指定時間T以下であるか否か(T≦T)を判断する(S8)。
このように、位置センサ20又は加圧ピストン6の下降時間Tを用いることにより、簡単にバイオマス細粒体11の充填量を検出することが可能となる。特に、位置センサ20を用いる場合は精度の高い検出が可能となり、下降時間Tを用いる場合は装置を安価にできる。
Another method of loading detection of biomass granules 11, the fall time T that the pressure piston 6 descends from the initial position H 0 to the height direction position H of the pressurization is detected by the timer 102 filling The amount may be estimated. In this case, the descending time of the pressurizing piston 6 from the initial position H 0 to the target height setting value H 1 is acquired in advance, and this is set as the designated time T 1 . Then, it is determined whether or not the detected fall time T is less than or equal to the designated time T 1 (T ≦ T 1 ) (S8).
As described above, by using the descent time T of the position sensor 20 or the pressure piston 6, it is possible to easily detect the filling amount of the biomass fine particles 11. In particular, when the position sensor 20 is used, highly accurate detection is possible, and when the falling time T is used, the apparatus can be made inexpensive.

反応容器2内の充填位置Hが充填目的位置Hに到達していない場合(H<H)、若しくは加圧シリンダ7の下降時間Tが指定時間Tより長い場合(T>T)は、充填量が不足していると判断し、加圧シリンダ7を上昇側に駆動し(S11)、加圧シリンダ7の油圧Pが所定圧力Pより大きいか否かを判断し(S12)、大きい場合にはS11に戻りさらに加圧シリンダ7を上昇側に駆動し、小さい場合には図7(iii)に示すように再度バイオマス細粒体11を投入して(S4)、S4以降の加圧シリンダ7の充填工程を繰り返し行う。この操作は、図7(iv)に示すように、加圧シリンダ7の油圧Pが所定圧力Pより大きく、且つバイオマス細粒体11の充填量が予め設定された充填量設定値H以上となったら終了する。
上記したように充填工程を行うことにより、反応容器2にバイオマス細粒体11を投入する際に予め計量する必要がなく、一定の大きさのバイオコークスを得ることが可能となる。また、バイオマスは細粒体状で反応容器2に投入されるため嵩密度が低く、そのままの状態だと反応容器2の容積を大きくしなければならないが、充填工程にて加圧ピストン6により低圧で充填時加圧を行うことで、より多くのバイオマス細粒体11を投入することが可能となり、反応容器2の小型化が可能となる。
When the filling position H in the reaction vessel 2 has not reached the filling target position H 1 (H <H 1 ), or when the lowering time T of the pressure cylinder 7 is longer than the specified time T 1 (T> T 1 ). determines that the amount of filler is insufficient to drive the pressure cylinder 7 to rise side (S11), the hydraulic pressure P of the pressure cylinder 7 is determined whether greater than a predetermined pressure P 1 (S12) If it is larger, the process returns to S11, and the pressure cylinder 7 is further driven to the ascending side. If it is smaller, the biomass fine particle 11 is again introduced as shown in FIG. 7 (iii) (S4). The filling process of the pressure cylinder 7 is repeated. This operation, as shown in FIG. 7 (iv), the hydraulic pressure P of the pressure cylinder 7 is larger than the predetermined pressure P 1, and biomass granulate 11 filling amount preset filling amount set value H 1 or more It ends when it becomes.
By performing the filling step as described above, it is not necessary to measure the biomass fine particles 11 in the reaction vessel 2 in advance, and it is possible to obtain bio-coke having a certain size. Further, since the biomass is put into the reaction vessel 2 in the form of fine particles, the bulk density is low, and if it is as it is, the volume of the reaction vessel 2 must be increased, but the pressure is reduced by the pressure piston 6 in the filling process. By performing the pressurization at the time of filling, it becomes possible to introduce more biomass fine particles 11 and to reduce the size of the reaction vessel 2.

S8にて反応容器2内のバイオマス細粒体11が目的とする充填量に達していると検出された場合には、カウンタ101にてカウントされる充填回数Xが所定の充填回数Xa未満であるか否かを判断し(S9)、充填回数Xが所定の充填回数Xa未満である場合には、加圧ピストン6が反応容器2の入口付近に引っかかるなどの異常が発生した事により加圧ピストン6が適切に下降しなかったものと推測し、装置を停止する(S10)。充填回数Xが所定の充填回数Xa以上である場合には、反応工程に移行する。このように、カウンタ101にて充填回数Xをカウントすることにより、充填時加圧における異常を簡単に且つリアルタイムで把握することが可能となる。 If the biomass granulate 11 in the reaction vessel 2 is detected to have reached the loading of interest at S8, the filling times X 0 which is counted by the counter 101 is less than the predetermined fill times Xa it is determined whether or not there (S9), when the filling number X 0 is less than the predetermined fill times Xa is pressurized by the pressure piston 6 is abnormality such caught near the entrance of the reaction vessel 2 has occurred It is presumed that the pressure piston 6 has not been lowered properly, and the apparatus is stopped (S10). When filling the number X 0 is a predetermined filling number Xa or more, the process proceeds to the reaction step. Thus, by counting the fill count X 0 by the counter 101, it is possible to grasp an abnormal easily and real-time in the filling time of pressurization.

反応工程では、図8に示すように、加圧シリンダ7を高圧にて下降側に駆動して加圧ピストン6を下降させ(S13)、バイオマス細粒体11を反応させるために必要とされる所定の圧力範囲P(第2の圧力段階)で該バイオマス細粒体11を加圧する。また、熱媒を反応容器2の冷熱媒通路4に循環させ所定の温度範囲でバイオマス細粒体11を加熱する(S14)。所定の圧力範囲Pは、上記したようにバイオマス細粒体中のヘミセルロース、リグニンの熱分解又は熱硬化反応を誘起する圧力範囲及び温度範囲とする。好適には、圧力範囲Pを8〜25MPa、温度範囲を115〜230℃とする。反応容器2内のバイオマス細粒体11は、上記した加圧、加熱状態を一定時間保持する。例えば、シリンダ径が50mmの場合、保持時間は10〜20分間で、150mmの場合は30〜60分間とする。 In the reaction step, as shown in FIG. 8, the pressure cylinder 7 is driven to the lower side at a high pressure to lower the pressure piston 6 (S13), and is required for reacting the biomass fine particles 11. The biomass fine particles 11 are pressurized in a predetermined pressure range P 2 (second pressure stage). Further, the heating medium is circulated through the cooling medium passage 4 of the reaction vessel 2 to heat the biomass fine particles 11 within a predetermined temperature range (S14). Predetermined pressure range P 2 is the pressure range and temperature range that induces hemicellulose of the biomass fine body in a pyrolysis or thermal curing reaction of lignin as described above. Preferably, the pressure range P2 is 8 to 25 MPa, and the temperature range is 115 to 230 ° C. The biomass fine particles 11 in the reaction vessel 2 hold the above-described pressurization and heating state for a certain period of time. For example, when the cylinder diameter is 50 mm, the holding time is 10 to 20 minutes, and when it is 150 mm, the holding time is 30 to 60 minutes.

このとき、図4及び図5に示したガス抜き処理(※1)を行う。ガス抜き処理については上記したため、ここでは説明を省略する。
そして、タイマ102にて熱媒循環時間が終了したか否かを判断し(S15)、終了したら冷熱媒循環機構を熱媒から冷媒に切り替えて、冷熱媒通路4への冷媒循環を開始する(S16)。同様にタイマ102にて冷媒循環時間が終了したか否かを判断し(S17)、終了したら冷媒循環を停止し、排出工程に移行する。
At this time, the degassing process (* 1) shown in FIGS. 4 and 5 is performed. Since the degassing process has been described above, the description thereof is omitted here.
Then, it is determined whether or not the heat medium circulation time has ended in the timer 102 (S15). When the heat medium circulation time has ended, the cooling medium circulation mechanism is switched from the heating medium to the refrigerant, and the refrigerant circulation to the cooling medium passage 4 is started ( S16). Similarly, it is determined by the timer 102 whether or not the refrigerant circulation time has ended (S17), and when it has ended, the refrigerant circulation is stopped and the process proceeds to the discharge step.

排出工程では、図9(i)に示すように、加圧シリンダ7の高圧を抜き(S18)排出用油圧機構10を駆動して底面蓋部9をスライドして排出部5を開放する(S19)。次いで、図9(ii)に示すように加圧シリンダ7を低圧で下降側に駆動させ、反応容器2内に製造されたバイオコークス19を加圧ピストン6により押出し排出する(S20)。これにより、反応容器2内に圧密して形成されたバイオコークス19を容易に排出可能となる。
このとき、位置センサ20により検出される加圧ピストン6の位置が下降端位置まで到達したか否かを判断し(S21)、到達した場合には加圧シリンダ7を低圧で上昇側に駆動させ加圧ピストン6を上昇させる(S22)とともに底面蓋部9を閉鎖し(S23)、加圧ピストン6を上昇端まで移動させる(S24)。そして、制御装置100に通常運転停止命令が入力された場合には(S25)、運転を終了する(S26)。停止命令が入力されていない場合には(S25)、S3まで戻り、充填回数をリセットした後、原料投入(S4)移行のステップを繰り返し行う。
In the discharging step, as shown in FIG. 9 (i), the high pressure of the pressurizing cylinder 7 is removed (S18), the discharging hydraulic mechanism 10 is driven to slide the bottom cover portion 9 to open the discharging portion 5 (S19). ). Next, as shown in FIG. 9 (ii), the pressure cylinder 7 is driven to the lower side at a low pressure, and the bio-coke 19 produced in the reaction vessel 2 is extruded and discharged by the pressure piston 6 (S20). Thereby, it becomes possible to easily discharge the bio-coke 19 formed in the reaction container 2 in a consolidated state.
At this time, it is determined whether or not the position of the pressure piston 6 detected by the position sensor 20 has reached the lower end position (S21), and if it has reached, the pressure cylinder 7 is driven to the higher side at a low pressure. The pressurizing piston 6 is raised (S22), the bottom cover 9 is closed (S23), and the pressurizing piston 6 is moved to the rising end (S24). When a normal operation stop command is input to the control device 100 (S25), the operation is terminated (S26). If no stop command has been input (S25), the process returns to S3, the number of times of filling is reset, and then the step of transferring the material (S4) is repeated.

上記したように本実施形態では、充填工程にて、先ず加圧ピストン6を低圧の第1の圧力段階で作動させてバイオマス細粒体11の充填時加圧を行い、次いで反応工程で加圧ピストン6の圧力を上昇させるとともにこれに連動させて冷熱媒通路4に熱媒を通流させ、反応容器2内でバイオマス細粒体11を略密閉状態にて半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲(第2の圧力段階)で加圧しながら加熱し、所定時間保持した後に、加圧状態は保持したまま冷熱媒通路4を熱媒から冷媒に切り替えて冷却を行い、バイオコークス成形体19を製造するようにしている。このように、制御装置100により加圧用油圧機構8、排出用油圧機構10及び冷熱媒循環機構を連動させて制御することにより、短時間で且つ効率的にバイオコークスを製造することが可能となる。   As described above, in the present embodiment, in the filling step, first, the pressurizing piston 6 is operated at the first low pressure stage to pressurize the biomass fine particles 11 and then pressurize in the reaction step. The pressure of the piston 6 is increased and the heat medium is caused to flow through the cooling medium passage 4 in conjunction with the pressure, and the biomass fine particles 11 are semi-carbonized or semi-carbonized before semi-carbonization in a substantially sealed state in the reaction vessel 2. Heating is performed while applying pressure in the temperature range and pressure range (second pressure stage) to be obtained, and after maintaining for a predetermined time, the cooling medium passage 4 is switched from the heat medium to the refrigerant while cooling is performed while the pressure state is maintained. The coke molded body 19 is manufactured. In this way, by controlling the pressurization hydraulic mechanism 8, the discharge hydraulic mechanism 10 and the cooling medium circulation mechanism in conjunction with each other by the control device 100, it is possible to efficiently produce bio-coke in a short time. .

本実施形態に係るバイオコークス製造装置を用いることにより、石炭コークスの代替として利用可能な高硬度で高密度のバイオコークスを効率的に製造することが可能となる。また、本実施形態にて製造されたバイオコークスは、鋳物製造或いは製鉄において、キュポラ炉、高炉等における熱源・還元剤等として利用可能であり、また発電用ボイラー燃料、消石灰等の焼成燃料等の燃料需要にも利用可能であり、更に高い圧縮強度等の特性を活かして、マテリアル素材としての使用も可能である。   By using the bio-coke production apparatus according to this embodiment, it is possible to efficiently produce high-hardness and high-density bio-coke that can be used as an alternative to coal coke. In addition, the bio-coke produced in the present embodiment can be used as a heat source / reducing agent in a cupola furnace, a blast furnace, etc. in casting production or iron production, and also as a fired fuel such as boiler fuel for power generation and slaked lime. It can also be used for fuel demand, and can be used as a material material by utilizing characteristics such as higher compressive strength.

1 バイオコークス製造装置
2 反応容器
4 冷熱媒通路
6 加圧ピストン(加圧体)
7 加圧シリンダ
8、10 油圧機構
9 底面蓋部
11 バイオマス細粒体
20 位置センサ
30 冷熱媒回路
75 圧力検知センサ
100 制御装置
101 カウンタ
102 タイマ
DESCRIPTION OF SYMBOLS 1 Bio-coke manufacturing apparatus 2 Reaction container 4 Cooling medium passage 6 Pressurization piston (pressurization body)
7 Pressure Cylinder 8, 10 Hydraulic Mechanism 9 Bottom Cover 11 Biomass Fine Granules 20 Position Sensor 30 Cooling Heat Medium Circuit 75 Pressure Detection Sensor 100 Control Device 101 Counter 102 Timer

Claims (7)

有底筒状の反応容器にバイオマス細粒体を充填する充填工程と、前記反応容器に充填したバイオマス細粒体を略密状態にて半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲で加熱しながら加圧成形する反応工程と、を備えたバイオコークス製造方法において、
前記反応工程にて、前記反応容器内を上下摺動する加圧体により前記圧力範囲となるようにバイオマス細粒体を加圧し、この加圧時に、前記加圧体を駆動する流体圧シリンダの背圧を検知し、該検知した背圧が予め設定された許容範囲よりも大きい場合、前記加圧体を上昇させてバイオマス細粒体のガス抜きを行うことを特徴とするバイオコークス製造方法。
A filling step of filling the bottomed cylindrical reaction vessel with the biomass fine particles, and a temperature range and a pressure range in which the biomass fine particles filled in the reaction vessel are semi-carbonized or pre-semi-carbonized to obtain a solid before semi-carbonization. In the bio-coke manufacturing method, comprising a reaction step of pressure molding while heating at
In the reaction step, the biomass fine particles are pressurized so as to be in the pressure range by a pressurizing body that slides up and down in the reaction vessel, and at this pressurization, a fluid pressure cylinder that drives the pressurizing body A method for producing bio-coke, wherein a back pressure is detected, and when the detected back pressure is larger than a preset allowable range, the pressurized body is raised to degas the biomass fine particles.
前記加圧体の上昇時間を計測し、該計測された時間が所定の設定時間を経過したら前記加圧体を再度下降させ、前記加圧体の圧力を前記圧力範囲に戻すことを特徴とする請求項1記載のバイオコークス製造方法。   The rising time of the pressurizing body is measured, and when the measured time has passed a predetermined set time, the pressurizing body is lowered again, and the pressure of the pressurizing body is returned to the pressure range. The bio-coke manufacturing method according to claim 1. 前記充填工程では、前記反応容器にバイオマス細粒体を投入した後、前記反応容器の上部から前記加圧体を下降させ該加圧体により前記圧力範囲より低圧でバイオマス細粒体を充填時加圧することを特徴とする請求項1記載のバイオコークス製造方法。   In the filling step, after the biomass fine particles are charged into the reaction vessel, the pressurized body is lowered from the upper part of the reaction vessel, and the pressurized fine body is added at the time of filling the biomass fine particles at a pressure lower than the pressure range. The method for producing bio-coke according to claim 1, wherein pressure is applied. バイオマス細粒体が充填される有底筒状の反応容器と、前記反応容器内のバイオマス細粒体を加圧する加圧体と、前記バイオマス細粒体を加熱する加熱手段と、前記バイオマス細粒体を略密状態にて前記加熱手段と前記加圧体により半炭化或いは半炭化前固形物を得る温度範囲及び圧力範囲で加熱しながら加圧成形して得られた成形体を冷却する冷却手段と、を備えたバイオコークス製造装置において、
前記加圧体を駆動する流体圧シリンダの背圧を検知する背圧検知手段と、前記加圧体の圧力制御を行う制御装置とを備え、
前記制御装置は、前記背圧検知手段で検知された背圧が予め設定された許容範囲よりも大きい場合、前記加圧体を上昇させる制御を行うことを特徴とするバイオコークス製造装置。
A bottomed cylindrical reaction vessel filled with biomass fine particles, a pressure body for pressurizing the biomass fine particles in the reaction vessel, a heating means for heating the biomass fine particles, and the biomass fine particles Cooling means for cooling a molded body obtained by pressure molding while heating in a temperature range and a pressure range to obtain a semi-carbonized or semi-carbonized solid body by the heating means and the pressure body in a substantially dense state In a bio-coke production apparatus comprising:
A back pressure detecting means for detecting a back pressure of a fluid pressure cylinder for driving the pressurizing body, and a control device for controlling the pressure of the pressurizing body,
The said control apparatus performs the control which raises the said pressurization body, when the back pressure detected by the said back pressure detection means is larger than the preset tolerance | permissible_range, The bio-coke manufacturing apparatus characterized by the above-mentioned.
前記制御装置は、前記加圧体の上昇時間を計測するタイマを備え、該タイマにより計測された時間が所定の設定時間を経過したら前記加圧体を再度下降させて該加圧体の圧力を前記圧力範囲に戻す制御を行うことを特徴とする請求項4記載のバイオコークス製造装置。   The control device includes a timer for measuring the rising time of the pressurizing body, and when the time measured by the timer has passed a predetermined set time, the pressurizing body is lowered again to reduce the pressure of the pressurizing body. The bio-coke producing apparatus according to claim 4, wherein control for returning to the pressure range is performed. 前記流体圧シリンダへの作動流体の給排を制御する電磁制御弁と、該電磁制御弁と前記流体圧シリンダの背圧室の間の作動流体通路に配置される逆止弁と、を備え、
前記背圧検知手段は、前記逆止弁の圧力を検知する手段であることを特徴とする請求項4記載のバイオコークス製造装置。
An electromagnetic control valve for controlling supply and discharge of the working fluid to and from the fluid pressure cylinder, and a check valve disposed in a working fluid passage between the electromagnetic control valve and a back pressure chamber of the fluid pressure cylinder,
The bio-coke manufacturing apparatus according to claim 4, wherein the back pressure detection means is means for detecting the pressure of the check valve.
前記制御装置は、前記バイオマス細粒体に付与する加圧力を、前記圧力範囲より低圧で前記バイオマス細粒体を充填時加圧する第1の圧力段階と前記充填時加圧したバイオマス細粒体を前記圧力範囲で加圧する第2の圧力段階とに圧力制御するとともに、
前記加圧体の第2の圧力段階にて前記加熱手段を作動させ、半炭化或いは半炭化前固形物が生成した後に前記加熱手段から前記冷却手段に切り替える制御を行なうことを特徴とする請求項4記載のバイオコークス製造装置。
The control device includes a first pressure stage in which the pressure applied to the biomass fine particles is pressurized when filling the biomass fine particles at a pressure lower than the pressure range and the biomass fine particles pressurized during the filling. While controlling the pressure to the second pressure stage to pressurize in the pressure range,
The heating means is operated in a second pressure stage of the pressurizing body, and control is performed to switch from the heating means to the cooling means after the semi-carbonized or pre-semi-carbonized solid is generated. 4. The bio-coke production apparatus according to 4.
JP2009083889A 2008-10-27 2009-03-31 Biocoke production process and production apparatus Pending JP2010100809A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10867208P 2008-10-27 2008-10-27

Publications (1)

Publication Number Publication Date
JP2010100809A true JP2010100809A (en) 2010-05-06

Family

ID=42291721

Family Applications (9)

Application Number Title Priority Date Filing Date
JP2009083890A Pending JP2010100810A (en) 2008-10-27 2009-03-31 Biocoke production process and production apparatus
JP2009083895A Active JP5547420B2 (en) 2008-10-27 2009-03-31 Bio coke manufacturing method and manufacturing apparatus
JP2009083892A Active JP5469896B2 (en) 2008-10-27 2009-03-31 Bio coke manufacturing method and manufacturing apparatus
JP2009083889A Pending JP2010100809A (en) 2008-10-27 2009-03-31 Biocoke production process and production apparatus
JP2009083893A Pending JP2010100813A (en) 2008-10-27 2009-03-31 Biocoke production apparatus
JP2009083888A Active JP5547419B2 (en) 2008-10-27 2009-03-31 Bio coke production apparatus and production method
JP2009083887A Expired - Fee Related JP5078938B2 (en) 2008-10-27 2009-03-31 Bio coke manufacturing method and manufacturing apparatus
JP2009083891A Pending JP2010100811A (en) 2008-10-27 2009-03-31 Biocoke production process and production apparatus
JP2009083894A Pending JP2010100814A (en) 2008-10-27 2009-03-31 Breaking apparatus of biocoke

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2009083890A Pending JP2010100810A (en) 2008-10-27 2009-03-31 Biocoke production process and production apparatus
JP2009083895A Active JP5547420B2 (en) 2008-10-27 2009-03-31 Bio coke manufacturing method and manufacturing apparatus
JP2009083892A Active JP5469896B2 (en) 2008-10-27 2009-03-31 Bio coke manufacturing method and manufacturing apparatus

Family Applications After (5)

Application Number Title Priority Date Filing Date
JP2009083893A Pending JP2010100813A (en) 2008-10-27 2009-03-31 Biocoke production apparatus
JP2009083888A Active JP5547419B2 (en) 2008-10-27 2009-03-31 Bio coke production apparatus and production method
JP2009083887A Expired - Fee Related JP5078938B2 (en) 2008-10-27 2009-03-31 Bio coke manufacturing method and manufacturing apparatus
JP2009083891A Pending JP2010100811A (en) 2008-10-27 2009-03-31 Biocoke production process and production apparatus
JP2009083894A Pending JP2010100814A (en) 2008-10-27 2009-03-31 Breaking apparatus of biocoke

Country Status (2)

Country Link
US (1) US20120168296A1 (en)
JP (9) JP2010100810A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011106645A1 (en) * 2011-07-05 2013-01-10 Linde Aktiengesellschaft Process for the production of coke
JP2014005432A (en) * 2012-06-25 2014-01-16 Kinki Univ Bio-hard charcoal
JP5586801B1 (en) * 2014-01-24 2014-09-10 中外炉工業株式会社 Molding apparatus and method for producing molded product
CN104142261B (en) * 2014-07-14 2016-09-07 中国矿业大学 A kind of method and device of ultrasonic wave de-bubble quick Fabrication fine coal mating plate
JP7185108B2 (en) * 2016-05-21 2022-12-07 望 青木 coffee block forming method
CN111548807B (en) * 2020-04-30 2021-04-27 鞍钢股份有限公司 Device and method for compacting coking by utilizing thermal expansibility of coal
JP7138884B2 (en) * 2020-05-08 2022-09-20 石光商事株式会社 Coffee liquid extraction system, coffee liquid extraction method, method for producing roasted coffee beans, roasted coffee beans
JP2023080635A (en) * 2021-11-30 2023-06-09 国立研究開発法人産業技術総合研究所 Solid biofuel produced by two stage semi-carbonization process, and method of producing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4201128A (en) * 1977-09-02 1980-05-06 Gardner Thomas H Apparatus for the compacting and treatment of materials such as shredded paper
JPH11129097A (en) * 1997-10-31 1999-05-18 Daiki Sato Consolidation treatment device of material to be treated
JPH11320193A (en) * 1998-05-21 1999-11-24 Ryowa Kogyo Kk Compression molding device
JP3632173B2 (en) * 2001-11-30 2005-03-23 東急車輛製造株式会社 Car shredder dust volume reduction packaging equipment
JP2003181690A (en) * 2001-12-17 2003-07-02 Ntn Corp Manufacturing device for solidified sludge
JP4672286B2 (en) * 2004-05-20 2011-04-20 有限会社近藤鉄工 Method for producing fuel pellets
WO2006077652A1 (en) * 2005-01-24 2006-07-27 Osaka Industrial Promotion Organization Woody biomas solid fuel and method for production thereof
JP2008194723A (en) * 2007-02-13 2008-08-28 Koike Sanso Kogyo Co Ltd Apparatus for solidifying powder and granular material
JP2008274108A (en) * 2007-04-27 2008-11-13 Mhi Environment Engineering Co Ltd Bio-coke manufacturing apparatus and method
JP5158751B2 (en) * 2007-04-27 2013-03-06 株式会社ナニワ炉機研究所 Bio coke production apparatus and production method
JP2008274111A (en) * 2007-04-27 2008-11-13 Mhi Environment Engineering Co Ltd Method for producing biocoke and the production product
JP2008274114A (en) * 2007-04-27 2008-11-13 Mhi Environment Engineering Co Ltd Apparatus for producing biocoke and method for producing the same

Also Published As

Publication number Publication date
JP2010100812A (en) 2010-05-06
JP5469896B2 (en) 2014-04-16
JP2010100814A (en) 2010-05-06
JP2010100808A (en) 2010-05-06
JP2010100813A (en) 2010-05-06
JP5547420B2 (en) 2014-07-16
JP2010100811A (en) 2010-05-06
US20120168296A1 (en) 2012-07-05
JP2010100815A (en) 2010-05-06
JP2010100807A (en) 2010-05-06
JP5547419B2 (en) 2014-07-16
JP5078938B2 (en) 2012-11-21
JP2010100810A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP5078938B2 (en) Bio coke manufacturing method and manufacturing apparatus
US8460515B2 (en) Biocoke producing apparatus and process therefor
US8454801B2 (en) Apparatus and process for producing biocoke
EP2668249B1 (en) Method and device for treating biomass
TW201410422A (en) Method and apparatus for material densification
CA2890687C (en) Method and process for producing a water-resistant, mechanically stable form of torrefied biomass
JP2009185183A (en) Device for producing biocoke
WO2010113679A1 (en) Biocoke manufacturing method and manufacturing device
JP2008274114A (en) Apparatus for producing biocoke and method for producing the same
US6349565B1 (en) CO2 block press
JP2008274112A (en) Bio-coke manufacturing apparatus and method
JP2009185180A (en) Device for producing biocoke
JP2009183875A (en) Apparatus for manufacturing biocoke