JP2010096085A5 - - Google Patents

Download PDF

Info

Publication number
JP2010096085A5
JP2010096085A5 JP2008267486A JP2008267486A JP2010096085A5 JP 2010096085 A5 JP2010096085 A5 JP 2010096085A5 JP 2008267486 A JP2008267486 A JP 2008267486A JP 2008267486 A JP2008267486 A JP 2008267486A JP 2010096085 A5 JP2010096085 A5 JP 2010096085A5
Authority
JP
Japan
Prior art keywords
power generation
ratio
facility
demand
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008267486A
Other languages
Japanese (ja)
Other versions
JP2010096085A (en
JP5243180B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2008267486A priority Critical patent/JP5243180B2/en
Priority claimed from JP2008267486A external-priority patent/JP5243180B2/en
Publication of JP2010096085A publication Critical patent/JP2010096085A/en
Publication of JP2010096085A5 publication Critical patent/JP2010096085A5/ja
Application granted granted Critical
Publication of JP5243180B2 publication Critical patent/JP5243180B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (4)

コンピュータ(10)及び蓄電池設備(51)及び瞬時型発電設備(41)及び表面由来発電装置からなる表面由来発電補完システムにおいて、
表面由来発電装置は、日射量測定装置(22)及び電力計(100)及び送電線(110)及びコンピュータ(10)の送受信器1(15)に直結せる主通信線(300)を具備した太陽発電設備(21)並びに風速測定装置(32)及び電力計(100)及び送電線(110)及びコンピュータ(10)の送受信器1(15)に直結せる主通信線(300)を具備した風力発電設備(31)からなり、
蓄電池設備(51)は、蓄電池監視装置(52)及び蓄電池制御器(53)及び送電線(110)及びコンピュータ(10)の送受信器2(16)に直結せる主通信線(300)を具備し、
瞬時型発電設備(41)は、燃料タンク(46)からの燃料によって発電し、エンジン制御器(43)及び送電線(110)及びコンピュータ(10)の送受信器2(16)に直結せる主通信線(300)を具備し、
表面由来発電装置に設置した日射量測定装置(22)または風速測定装置(32)と電力計(100)からの測定量が常時入力されるコンピュータ(10)による演算監視により、
当該時刻の表面由来発電割合cが定格表面由来発電割合c0に比べて小さいと判別した場合はコンピュータ(10)からの指令により自動的に蓄電池設備(51)から放電し、放電できそうもなければコンピュータ(10)からの指令により自動的に燃料タンク(46)からの燃料によって発電する瞬時型発電設備(41)の発電量を上昇させ、当該時刻の表面由来発電割合cが定格表面由来発電割合c0に比べて大きいと判別した場合はコンピュータ(10)からの指令により自動的に蓄電池設備(51)に充電し、充電できないと判別すればコンピュータ(10)からの指令により自動的に表面由来発電設備にブレーキをかけ、
系統電線(200)の系統電力電圧VV(t)をコンピュータ(10)の演算装置(11)に読み込み計算し、当該時刻の系統電力電圧VV(t)が系統電力定格電圧VV0よりも下がり電力需要が大き過ぎて電力供給が追いつかないと判別した場合はコンピュータ(10)からの指令により自動的に蓄電池設備(51)から放電し、それでも足りないと判別した場合はコンピュータ(10)からの指令により自動的に瞬時型発電設備(41)の発電量を上昇させ、当該時刻の系統電力電圧VV(t)が系統電力定格電圧VV0よりも上がり電力需要が少な過ぎて電力供給過多と判別した場合はコンピュータ(10)からの指令により自動的に蓄電池設備(51)に充電し、それでも電力供給過剰であると判別した場合はコンピュータ(10)からの指令により自動的に表面由来発電設備にブレーキをかけるように制御したことを特徴とする表面由来発電補完システム。
In a surface-derived power generation supplement system comprising a computer (10), a storage battery facility (51), an instantaneous power generation facility (41), and a surface-derived power generation device,
The solar power generator comprises a solar communication device (22), a power meter (100), a power transmission line (110), and a main communication line (300) directly connected to the transmitter / receiver 1 (15) of the computer (10). Wind power generation provided with a main communication line (300) directly connected to a power generation facility (21), a wind speed measuring device (32), a power meter (100), a transmission line (110), and a transceiver 1 (15) of a computer (10) It consists of equipment (31),
The storage battery facility (51) includes a storage battery monitoring device (52), a storage battery controller (53), a power transmission line (110), and a main communication line (300) directly connected to the transmitter / receiver 2 (16) of the computer (10). ,
The instantaneous power generation facility (41) generates power using fuel from the fuel tank (46) and is directly connected to the engine controller (43), the power transmission line (110), and the transceiver 2 (16) of the computer (10). Wire (300),
By calculating and monitoring the solar radiation amount measuring device (22) or the wind speed measuring device (32) installed in the surface-derived power generation device and the computer (10) to which the measured amount from the wattmeter (100) is constantly input,
If it is determined that the surface-derived power generation ratio c at that time is smaller than the rated surface-derived power generation ratio c0, it is automatically discharged from the storage battery facility (51) according to a command from the computer (10). In accordance with a command from the computer (10), the power generation amount of the instantaneous power generation facility (41) that automatically generates power from the fuel from the fuel tank (46) is increased, and the surface-derived power generation ratio c at that time is the rated surface-derived power generation ratio. If it is determined that it is larger than c0, the storage battery facility (51) is automatically charged by a command from the computer (10), and if it is determined that charging is not possible, the surface-derived power generation is automatically performed by a command from the computer (10). Brake the equipment,
The grid power voltage VV (t) of the grid cable (200) is read and calculated in the computing device (11) of the computer (10), and the grid power voltage VV (t) at that time falls below the grid power rated voltage VV0, and the power demand Is determined to be too large to catch up with the power supply, the battery (51) is automatically discharged by a command from the computer (10), and if it is still insufficient, the command from the computer (10) is used. If the power generation amount of the instantaneous power generation facility (41) is automatically increased, and the system power voltage VV (t) at that time is higher than the system power rated voltage VV0, and the power demand is too low and it is determined that the power supply is excessive. When the battery (51) is automatically charged by a command from the computer (10) and it is determined that the power supply is still excessive, it is automatically displayed by a command from the computer (10). Surface from generation completion system being characterized in that controlled to brake the origin power plant.
給電指令所からのインターネット接続または電灯線を介して遠隔操作を受ける遠隔制御器付きプラグイン駐車場にプラグインして駐車せる瞬時型発電設備(41)の予備として登録せる電気自動車及びハイブリッド車への請求項1の表面由来発電補完システム指令により自動的に放蓄電し配電することを特徴とせる広義表面由来発電補完システム、
または給電指令所からのインターネット接続または電灯線を介して遠隔操作を受ける遠隔制御器付きプラグイン駐車場に駐車せるエンジン式自動車のバッテリーと遠隔制御器とをジャンパー接続し、請求項1の表面由来発電補完システム指令により自動的にエンジン式自動車エンジンを始動させ緊急用に発電し配電することを特徴とせる緊急対応広義表面由来発電補完システム、
または請求項1における表面由来発電補完システムの中の表面由来発電設備として休耕田に震度4以下の耐震強度を持たせた太陽発電設備(21)を敷き詰めて所々に震度4以下の耐震強度を持たせた風力発電設備(31)群を林立させた表面由来発電ファームにしたことを特徴とする表面由来発電ファーム補完システム。
To electric vehicles and hybrid vehicles that are registered as spares for the instantaneous power generation facility (41) that plugs in and parks in a plug-in parking lot with a remote controller that is remotely operated via the Internet connection or power line from the power supply command center A surface-based power generation complementing system characterized in that it automatically discharges and distributes electricity according to the surface-based power generation supplementing system command of claim 1;
Alternatively, the battery of an engine-type automobile parked in a plug-in parking lot with a remote controller that can be remotely operated via an Internet connection or a power line from a power supply command center and a remote controller are jumper-connected, and derived from the surface of claim 1 An emergency response broad surface derived power generation supplement system characterized by automatically starting an engine-type automobile engine according to a power generation supplement system command and generating and distributing power for emergency use,
Alternatively, as a surface-derived power generation facility in the surface-derived power generation supplement system according to claim 1, solar power generation facilities (21) having seismic intensity of 4 or less are spread over the fallow paddy field to give seismic intensity of seismic intensity 4 or less in places. A surface-derived power generation farm complementation system characterized in that a wind power generation facility (31) group is used as a surface-derived power generation farm.
請求項1における表面由来発電補完システムを導入しての運用において、化石燃料使用に余裕がない状況下では、
最高需要期での運用のためには、
水力発電設備容量割合は、最高需要における従来の水力発電割合とし、
風力発電設備容量割合は、最高需要期における太陽発電開始時刻の電力需要割合から最高需要期最低需要割合を差し引いた割合とし、
原子力発電設備容量割合は、最高需要期最低需要割合から水力発電割合を差し引いた割合とし、
太陽発電設備容量割合は、最高需要から水力発電割合及び原子力発電割合及び風力発電割合を差し引いた割合とし、
蓄電池設備容量割合は、最高需要における太陽発電割合の半分とし、
瞬時型発電設備容量割合は、最高需要における風力発電割合としたことを特徴とせる化石燃料原則不使用発電設備容量構成割合として、
または定量的に発電設備容量構成割合は太陽発電設備容量割合を35%、風力発電設備容量割合を15%、水力発電設備容量割合を8%、原子力発電設備容量割合を42%とし、余分に蓄電池設備容量割合を18%保持し、余分に瞬時型発電設備容量割合を15%保持したことを特徴とせる化石燃料原則不使用発電設備容量構成割合として、
当最高需要期での運用は、
風力発電割合または太陽発電割合が予想から減少した場合は蓄電池設備(51)の放電または瞬時型発電設備(41)の発電で対応し、
風力発電割合が規定から増加した場合は蓄電池設備(51)の蓄電で吸収または風力発電設備(31)のブレーキによる放熱または風力発電設備(31)の当該部停止で対応し、
供給電力に比べて需要が大きい場合は蓄電池設備(51)の放電と瞬時型発電設備(41)の発電とピークカットとで対応し、
供給電力の大幅なる予想外不足は老朽休止中化石燃料発電セット設備で対応し、
最高需要期太陽発電が得られるまでの発電構成割合は最高需要期最低需要割合における発電構成割合に加えて蓄電池設備(51)に蓄積せる電力を放電し、
最高需要時刻(夏季12時頃)から最高需要期最低需要時刻(夏季翌朝5時頃)までの間は蓄電池設備(51)の蓄放電と瞬時型発電設備(41)の発電で調節し、
最低需要期での運用のためには、
水力発電割合は、最高需要における従来の水力発電割合とし、
風力発電割合は、風力発電設備を停止する群と運転する群とに等分に2群に分け運転する風力発電設備(31)群により最高需要での風力発電割合の1/2とし、
原子力発電割合は、原子力発電設備を停止する群と運転する群とに等分に2群に分け運転する原子力発電設備群により最低需要割合から当期の水力発電割合及び当期の風力発電割合を差し引いた割合とし、
太陽発電割合は、太陽発電設備を停止する群と運転する群とに等分に2群に分け運転する太陽発電設備(21)群による最高需要での太陽発電割合の1/2とし、
当最低需要期での運用は、
風力発電割合または太陽発電が予想から減少した場合は蓄電池設備(51)の放電または瞬時型発電設備(41)の発電で対応し、
風力発電割合が規定から増加した場合は蓄電池設備(51)の蓄電で吸収または風力発電設備(31)のブレーキによる放熱または風力発電設備(31)の当該部停止で対応し、
供給電力に比べて需要が大きい場合は蓄電池設備(51)の放電と瞬時型発電設備(41)の発電とピークカットとで対応し、
供給電力の大幅なる予想外不足は老朽休止中化石燃料発電セット設備で対応し、
最低需要が所定の値よりも下がった場合は運転中原子力発電設備群の出力を下げ、
太陽発電が得られるまでの運用は蓄電池設備(51)からの蓄放電と瞬時型発電設備(41)の発電とピークカットとで対応し、
最高需要期と最低需要期の間での運用は、
燃料交換による原子力発電設備の停止基数の調節と運転中原子力発電設備群の出力調節とで対応し、
風力発電や太陽発電や水力発電における電力供給過剰は蓄電池設備(51)が蓄電できる範囲内で吸収する上記一連の作業をコンピュータ(10)の指令により自動的にしたことを特徴とする表面由来発電補完システム導入化石燃料原則不使用発電の運用法。
In the operation of introducing the surface-derived power generation supplement system in claim 1, under the situation where there is no room for fossil fuel use,
For operation in the highest demand period,
Hydropower generation capacity ratio is the ratio of conventional hydropower generation at the highest demand.
Wind power generation capacity ratio is the ratio of power demand at the start of solar power generation in the highest demand period minus the minimum demand ratio in the highest demand period.
The nuclear power generation capacity ratio is the ratio of the minimum demand ratio during the highest demand period minus the hydropower generation ratio.
The solar power generation capacity ratio is the maximum demand minus the hydroelectric power generation ratio, nuclear power generation ratio and wind power generation ratio.
Storage battery capacity ratio is half of solar power generation at the highest demand,
The instantaneous power generation equipment capacity ratio is characterized by the ratio of wind power generation at the highest demand.
Or quantitatively, the power generation capacity capacity ratio is 35% for solar power generation capacity, 15% for wind power generation capacity, 8% for hydropower capacity, 42% for nuclear power capacity, and 42% extra storage battery. Fossil fuel principle non-use power generation equipment capacity composition ratio characterized by holding the equipment capacity ratio 18% and holding the instantaneous power generation equipment capacity ratio 15% extra,
Operation during this peak demand period
If the wind power generation ratio or solar power generation ratio decreases from the expected value, it can be dealt with by discharging the storage battery equipment (51) or generating power from the instantaneous power generation equipment (41).
If the wind power generation ratio increases from the regulation, it can be absorbed by the electricity stored in the storage battery facility (51) or released by the brake of the wind power generation facility (31) or by stopping the part of the wind power generation facility (31),
If the demand is greater than the supply power, the discharge of the storage battery facility (51), the power generation of the instantaneous power generation facility (41) and the peak cut,
The unexpected and unexpected shortage of power supply will be handled by the fossil fuel power generation set facility,
In addition to the power generation composition ratio in the highest demand period and the lowest demand ratio, the power generation composition ratio until the solar power generation in the highest demand period is discharged, the power stored in the storage battery facility (51) is discharged.
During the period from the highest demand time (around 12:00 in summer) to the lowest demand time in the highest demand period (around 5:00 in the morning following the summer), the storage and discharge of the storage battery equipment (51) and the power generation of the instantaneous power generation equipment (41) are adjusted.
For operation in the minimum demand period,
Hydropower generation ratio is the ratio of conventional hydropower generation at the highest demand.
The wind power generation ratio is set to be half of the wind power generation ratio at the highest demand by the wind power generation equipment (31) group that is divided into two groups divided into the group that stops the wind power generation equipment and the group that operates it,
The ratio of nuclear power generation was calculated by subtracting the ratio of hydropower generation and the ratio of wind power generation for the current period from the minimum demand ratio for the group of nuclear power generation facilities that are divided into two groups, the group that shuts down the nuclear power generation facility and the group that operates. As a percentage,
The solar power generation ratio is ½ of the solar power generation ratio at the highest demand by the solar power generation equipment (21) group that is divided into two groups equally divided into the group that stops the solar power generation equipment and the group that operates.
Operation during this minimum demand period
If the wind power generation rate or solar power generation decreases from the expected value, it can be dealt with by discharging the storage battery facility (51) or generating power by the instantaneous power generation facility (41).
If the wind power generation ratio increases from the regulation, it can be absorbed by the electricity stored in the storage battery facility (51) or released by the brake of the wind power generation facility (31) or by stopping the part of the wind power generation facility (31),
If the demand is greater than the supply power, the discharge of the storage battery facility (51), the power generation of the instantaneous power generation facility (41) and the peak cut,
The unexpected and unexpected shortage of power supply will be handled by the fossil fuel power generation set facility,
If the minimum demand falls below a certain value, reduce the output of the nuclear power generation equipment group during operation.
The operation until solar power generation is obtained corresponds to the storage and discharge from the storage battery facility (51), the power generation of the instantaneous power generation facility (41) and the peak cut.
Operation between the highest demand period and the lowest demand period
Responding to the adjustment of the number of stopping nuclear power generation facilities by changing the fuel and the output adjustment of the nuclear power generation facilities during operation,
Electric power surplus in wind power generation, solar power generation, and hydroelectric power generation is a surface-derived power generation characterized by automatically performing the above-described series of operations to be absorbed within a range that can be stored in the storage battery facility (51) by a command from the computer (10). Operation method of power generation that does not use fossil fuels in principle
請求項1における表面由来発電補完システムを導入しての運用において、化石燃料使用に余裕がある状況下では、
最高需要期での運用のためには、
水力発電設備容量割合は、最高需要における従来の水力発電割合とし、
風力発電設備容量割合は、最高需要期最低需要割合の半分から水力発電割合を差し引いた割合とし、
原子力発電設備容量割合は、最高需要期最低需要割合の半分とし、
太陽発電設備容量割合は、最高需要における従来の予備発電割合と同じとし、
石炭発電設備容量割合は、最高需要から水力発電割合及び風力発電割合及び原子力発電割合及び太陽発電割合を差し引いた割合を化石燃料発電セット割合とした当該化石燃料発電セット発電割合の1/3とし、
ガス発電設備容量割合は、当該化石燃料発電セット発電割合の1/3とし、
石油発電設備容量割合は、当該化石燃料発電セット発電割合の1/3とし、
予備発電設備容量割合は、最高需要における従来の予備発電割合相当を余分に保持し、
瞬時型発電設備容量割合は、最高需要における風力発電割合相当を余分に保持したことを特徴とせる発電設備容量構成割合として、
または定量的に発電設備容量構成割合は太陽発電設備容量割合を9%、風力発電設備容量割合を17%、水力発電設備容量割合を8%、原子力発電設備容量割合を25%、石炭発電設備容量割合を14%、ガス発電設備容量割合を14%、石油発電設備容量割合を13%とし、余分に予備発電設備容量割合を9%保持し、余分に瞬時型発電設備容量割合を風力発電設備容量割合相当の17%保持したことを特徴とせる発電設備容量構成割合として、
当最高需要期での運用は、
毎日の予想し得る電力需要変動は化石燃料発電セットの発電調節で対応し、
風力発電割合が予想から減少した場合は瞬時型発電設備(41)で対応し、
風力発電割合が規定から増加した場合は風力発電設備(31)のブレーキによる放熱または風力発電設備(31)の当該部停止で対応し、
太陽発電割合が予想から減少した場合は待機せる予備発電設備で対応し、
供給電力に比べて需要が大きい場合は待機せる予備発電設備とピークカットとで対応し、
供給電力の大幅なる予想外不足は老朽休止中化石燃料発電セット設備で対応し、
最高需要時刻から最高需要期最低需要時刻までの間は化石燃料発電セットの発電調節で制御し、
最低需要期での運用のためには、
水力発電割合は、最高需要における従来の水力発電割合とし、
風力発電割合は、風力発電設備を停止する群と運転する群とに等分に2群に分け運転する風力発電設備(31)群により最高需要での風力発電割合の1/2とし、
原子力発電割合は、原子力発電設備を停止する群と運転する群とに等分に2群に分け運転する原子力発電設備群により最低需要割合から当期の水力発電割合及び当期の風力発電割合を差し引いた割合とし、
太陽発電割合は、太陽発電設備を停止する群と運転する群とに等分に2群に分け運転する太陽発電設備(21)群による最高需要での太陽発電割合の1/2とし、
当最低需要期での運用は、
毎日の予想し得る電力需要変動は化石燃料発電セットの発電調節で対応し、
風力発電割合が予想から減少した場合は瞬時型発電設備(41)で対応し、
風力発電割合が規定から増加した場合は風力発電設備(31)のブレーキによる放熱または風力発電設備(31)の当該部停止で対応し、
太陽発電割合が予想から減少した場合は待機せる予備発電設備で対応し、
供給電力に比べて需要が大きい場合は待機せる予備発電設備とピークカットとで対応し、
供給電力の大幅なる予想外不足は老朽休止中化石燃料発電セット設備で対応し、
最低需要が所定の値よりも下がった場合は運転中原子力発電設備群の出力を下げ、
最高需要期と最低需要期の間での運用を
燃料交換による原子力発電設備の停止基数の調節と運転中原子力発電設備群の出力調節とで制御したことを特徴とする発電の運用法。
In operation with the introduction of the surface-derived power generation supplement system in claim 1, under the situation where there is room for fossil fuel use,
For operation in the highest demand period,
Hydropower generation capacity ratio is the ratio of conventional hydropower generation at the highest demand.
The ratio of wind power generation capacity is half of the highest demand period and the lowest demand ratio minus the hydropower generation ratio.
The nuclear power generation capacity ratio is half of the minimum demand ratio during the highest demand period.
The solar power generation capacity ratio is the same as the conventional standby power generation ratio at the highest demand.
The coal power generation capacity capacity ratio is 1/3 of the fossil fuel power generation set power generation ratio, which is obtained by subtracting the hydropower generation ratio, wind power generation ratio, nuclear power generation ratio and solar power generation ratio from the highest demand,
The gas power generation equipment capacity ratio is 1/3 of the fossil fuel power generation set power generation ratio.
The oil power generation equipment capacity ratio is 1/3 of the fossil fuel power generation power generation ratio.
The reserve power generation capacity ratio keeps an excess of the conventional reserve power generation ratio at the highest demand,
Instantaneous power generation capacity ratio is a power generation capacity capacity ratio that is characterized by an extra share of wind power generation at the highest demand.
Or quantitatively, the power generation capacity ratio is 9% for solar power capacity, 17% for wind power capacity, 8% for hydro power capacity, 25% for nuclear power capacity, 25% for coal power capacity The ratio is 14%, the gas power generation capacity ratio is 14%, the oil power generation capacity ratio is 13%, the extra power generation capacity ratio is 9%, and the instantaneous power generation capacity ratio is the extra wind power capacity. As a power generation equipment capacity composition ratio characterized by holding 17% corresponding to the ratio,
Operation during this peak demand period
Daily fluctuations in power demand can be anticipated by adjusting the power generation of fossil fuel power generation sets.
If the wind power generation ratio decreases from the expected value, the instantaneous power generation facility (41)
If the wind power generation ratio increases from the regulation, it can be dealt with by heat radiation by the brake of the wind power generation facility (31) or by stopping the part of the wind power generation facility (31),
If the solar power generation ratio decreases from the forecast, we will respond with standby power generation equipment that will be on standby,
If the demand is larger than the supply power, the standby power generation equipment that can be put on standby and peak cuts will be used.
The unexpected and unexpected shortage of power supply will be handled by the fossil fuel power generation set facility,
Control from power generation adjustment of fossil fuel power generation set from the highest demand time to the lowest demand time of the highest demand period,
For operation in the minimum demand period,
Hydropower generation ratio is the ratio of conventional hydropower generation at the highest demand.
The wind power generation ratio is set to be half of the wind power generation ratio at the highest demand by the wind power generation equipment (31) group that is divided into two groups divided into the group that stops the wind power generation equipment and the group that operates it,
The ratio of nuclear power generation was calculated by subtracting the ratio of hydropower generation and the ratio of wind power generation for the current period from the minimum demand ratio for the group of nuclear power generation facilities that are divided into two groups, the group that shuts down the nuclear power generation facility and the group that operates. As a percentage,
The solar power generation ratio is ½ of the solar power generation ratio at the highest demand by the solar power generation equipment (21) group that is divided into two groups equally divided into the group that stops the solar power generation equipment and the group that operates.
Operation during this minimum demand period
Daily fluctuations in power demand can be anticipated by adjusting the power generation of fossil fuel power generation sets.
If the wind power generation ratio decreases from the expected value, the instantaneous power generation facility (41)
If the wind power generation ratio increases from the regulation, it can be dealt with by heat radiation by the brake of the wind power generation facility (31) or by stopping the part of the wind power generation facility (31),
If the solar power generation ratio decreases from the forecast, we will respond with standby power generation equipment that will be on standby,
If the demand is larger than the supply power, the standby power generation equipment that can be put on standby and peak cuts will be used.
The unexpected and unexpected shortage of power supply will be handled by the fossil fuel power generation set facility,
If the minimum demand falls below a certain value, reduce the output of the nuclear power generation equipment group during operation.
An operation method of power generation characterized in that operation between the maximum demand period and the minimum demand period is controlled by adjusting the number of stopped nuclear power generation facilities by refueling and adjusting the output of the nuclear power generation facilities in operation.
JP2008267486A 2008-10-16 2008-10-16 Operation method of power generation with surface-derived power generation Expired - Fee Related JP5243180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267486A JP5243180B2 (en) 2008-10-16 2008-10-16 Operation method of power generation with surface-derived power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008267486A JP5243180B2 (en) 2008-10-16 2008-10-16 Operation method of power generation with surface-derived power generation

Publications (3)

Publication Number Publication Date
JP2010096085A JP2010096085A (en) 2010-04-30
JP2010096085A5 true JP2010096085A5 (en) 2011-11-10
JP5243180B2 JP5243180B2 (en) 2013-07-24

Family

ID=42257944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267486A Expired - Fee Related JP5243180B2 (en) 2008-10-16 2008-10-16 Operation method of power generation with surface-derived power generation

Country Status (1)

Country Link
JP (1) JP5243180B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2978623B1 (en) * 2011-07-28 2015-01-09 Technicatome SYSTEM FOR PRODUCING AND DISTRIBUTING ELECTRICAL ENERGY ON AN ELECTRICAL NETWORK AND ASSOCIATED OPTIMIZATION METHOD
EP2757649B1 (en) * 2011-09-13 2021-07-28 Toshiba Mitsubishi-Electric Industrial Systems Corporation Peak cut system
JP5449532B2 (en) * 2011-12-06 2014-03-19 三菱重工業株式会社 Power generation system
JP5700684B2 (en) * 2011-12-27 2015-04-15 東京瓦斯株式会社 Power generation output fluctuation compensation system, its control device, program
JP5970146B1 (en) * 2015-11-16 2016-08-17 株式会社電力システムズ・インスティテュート Power system control method and control system including solar power generation device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163670A (en) * 1985-01-16 1986-07-24 Mitsui Eng & Shipbuild Co Ltd Wind-force and solar ray combined electric power plant
JPH10150733A (en) * 1996-11-19 1998-06-02 Meidensha Corp Emergency power supply
JPH1169893A (en) * 1997-08-26 1999-03-09 Hitachi Eng & Services Co Ltd Hybrid power generation system
JP4169456B2 (en) * 2000-06-09 2008-10-22 シャープ株式会社 Photovoltaic power generator and its management system
JP4102278B2 (en) * 2003-03-19 2008-06-18 三菱電機株式会社 Wind power generation system
JP2007231613A (en) * 2006-03-01 2007-09-13 Tokyo Electric Power Co Inc:The Double glazing device with built-in blind
MX2009006236A (en) * 2006-12-11 2010-02-11 V2Green Inc Transaction management in a power aggregation system for distributed electric resources.
JP4796974B2 (en) * 2007-01-26 2011-10-19 株式会社日立産機システム Hybrid system of wind power generator and power storage device, wind power generation system, power control device

Similar Documents

Publication Publication Date Title
Ursúa et al. Integration of commercial alkaline water electrolysers with renewable energies: Limitations and improvements
AU2011202020B8 (en) Power interchange system for interchanging electric energy between a battery and an electric grid, method for interchanging electric energy between a battery and an electric grid and application of the power interchange system
US7560906B2 (en) Electrical power generation system
CN104518563B (en) The control method of charging system for electric automobile based on new energy application
US8148844B2 (en) Power supply system including alternative sources
WO2011113219A1 (en) Grid-connected wind-photovoltaic hybrid power generation system and power generation method thereof
CN103825307A (en) Method of controlling a power plant
CN102347620A (en) Micro grid control method
Jiang et al. Coordination dispatch of electric vehicles charging/discharging and renewable energy resources power in microgrid
CN105226689A (en) Consider polymorphic type energy-storage system energy management method and the system of operation and maintenance
JP2010096085A5 (en)
CN201865851U (en) Power generation system with a plurality of energy resources
CN105305489B (en) A kind of demanding side of the electrical power net resource response frequency response capability assessment method
Bhatti et al. Charging of electric vehicle with constant price using photovoltaic based grid-connected system
CN110165715B (en) Method for connecting electric vehicle energy storage type charging station into virtual power plant
Chermat et al. Techno-economic feasibility study of investigation of renewable energy system for rural electrification in South Algeria
Raustad The role of V2G in the smart grid of the future
Haque et al. Smart management of PHEV and renewable energy sources for grid peak demand energy supply
Zhang et al. Optimum sizing of non-grid-connected wind power system incorporating battery-exchange stations
CN201639324U (en) Wind-solar hybrid charging station for electric vehicle
RU77948U1 (en) AUTONOMOUS POWER INSTALLATION
CN115133560A (en) Energy storage control system and method for wind-solar high-permeability platform area
US20120068533A1 (en) Power Supply System Including Alternative Sources-DC Power Management
CN202260536U (en) Controlling device for emergency power supply car power supply system
CN209767161U (en) System for synchronously participating in deep peak regulation and frequency modulation of thermal power plant in multidimensional way by utilizing flywheel battery