JP2010096085A - Surface-derived supplementary power generation system for enabling constituting ratio of capacity of power generating facility in which fossil fuel is not used - Google Patents

Surface-derived supplementary power generation system for enabling constituting ratio of capacity of power generating facility in which fossil fuel is not used Download PDF

Info

Publication number
JP2010096085A
JP2010096085A JP2008267486A JP2008267486A JP2010096085A JP 2010096085 A JP2010096085 A JP 2010096085A JP 2008267486 A JP2008267486 A JP 2008267486A JP 2008267486 A JP2008267486 A JP 2008267486A JP 2010096085 A JP2010096085 A JP 2010096085A
Authority
JP
Japan
Prior art keywords
power generation
ratio
demand
capacity
facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008267486A
Other languages
Japanese (ja)
Other versions
JP5243180B2 (en
JP2010096085A5 (en
Inventor
Toshihisa Shirakawa
白川利久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008267486A priority Critical patent/JP5243180B2/en
Publication of JP2010096085A publication Critical patent/JP2010096085A/en
Publication of JP2010096085A5 publication Critical patent/JP2010096085A5/ja
Application granted granted Critical
Publication of JP5243180B2 publication Critical patent/JP5243180B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a constituting ratio of the capacity of power generating facilities in which a remarkably large amount of surface-derived energy is introduced to improve energy security. <P>SOLUTION: This surface-derived supplementary power generation system supplements the power of a wind power generation by an instantaneous power generating facility even if the wind power generation falls to zero suddenly. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は環境重視社会における大規模に表面由来のエネルギー発電(太陽発電や風力発電や水力発電。略して表面由来発電)を組み込んでの発電設備容量構成割合法及び電力補完システムである。   The present invention is a power generation capacity configuration method and a power supplement system incorporating large-scale surface-derived energy power generation (solar power generation, wind power generation, hydropower generation, or surface power generation for short) in an environment-conscious society.

図1は、発電設備毎の特徴を要約した図である。日本のようにエネルギー資源の少ない国では、必要な電源を確保するには熟慮が必要である。
国民が継続的生活を送るために生存セキュリティー(生き続けていくために必要な資源が安価に大量に供給される必要がある。絶対的資源不足とか、資源が偏在する場合は政治的に供給が調整されることによる相対的資源不足とかにより価格の高騰が起こる)を確保せねばならない。エネルギーとなる資源の量と種類が多い程安全である。偏在していないエネルギーの方が安全性は高い。原子力用のウランは偏在しているが再処理を施せば長期間使えるし、海水中には無限のウランがある。核融合発電を無限と見るのは海水中の重水を利用するからであり、その点からすると原子力も無限とみなせる。ある特定の地域に偏在している場合は、政治的、不慮の出来事からそのエネルギーが途絶えることのあることを考慮して多様化が必要である。
国民がよりよい生活を送るためには生活良好セキュリエィー(健康で快適な生活を送るために温暖化問題や環境問題を生じない)を確保せねばならない。
国民が継続的に快適な生活を送るためには、大量に安いエネルギーを使いたいから経済性があるかどうかが重要である。第一の目安は燃料費/kWhである。太陽や風力は日本中どこにでも無限にあるからほぼゼロ円/kWhと見ていいだろう。
図2は最高需要期と最低需要期の最高需要に対する発電割合の24時間推移の需要曲線を示した図である(非特許文献1)。
最高需要期(関東では7月下旬から8月下旬迄の1ヶ月間)の土曜日と日曜日を除く1ヶ月間の12時頃の平均電力需要を%表示した値を今後最高需要と呼ぶ。したがって、最高需要は100%である。
最高需要期の5時頃の平均電力需要を最高需要期最低需要と呼ぶ。最高需要を100%とすると約50%である。
最低需要期(関東では4月中旬から5月中旬迄の1ヶ月間または10月中旬から11月中旬迄の1ヶ月間)の5時頃の平均電力需要を最低需要割合と呼ぶ。最高需要を100%とすると約25%である。
最低需要期の土曜日と日曜日を除く1ヶ月間の12時頃の平均電力需要割合を最低需要期最高需要割合と呼ぶ。最高需要を100%とすると約50%である。
当該年度最高需要の絶対値の予想は、前前々年度最高需要絶対値と前々年度最高需要絶対値とから外挿するのが簡単である。当該年度最高需要期最低需要や当該年度最低需要や当該年度最低需要期最高需要や当該年度月別需要曲線の絶対値も前前々年度絶対値と前々年度絶対値とから簡単に外挿できる。
なお、当該年度発電設備容量の絶対値の予想は、前前々年度発電設備容量絶対値と前々年度発電設備容量絶対値とから外挿するのが簡単である。低経済成長率や人口減や環境保護の近年の日本での電力需要は今後大きく変動することはないと考えられ、外挿近似で予想しても大きくはずれない。
人口減少が続くと言われている。電力消費は伸びない。現在の設備容量で十分であり電源容量を増設する必要性は少ない。老朽化した設備を交換していくだけで十分であろう。したがって、交換する設備の中に風力や太陽に基づく発電設備を組み入れていくことになろう。但し、発電効率が悪く発電コストは高い。
:オーム社、2000年、徳光「電力自由化と電気の上手な使い方」。
FIG. 1 is a diagram summarizing the characteristics of each power generation facility. In countries with few energy resources, such as Japan, careful consideration is necessary to secure the necessary power sources.
Survival security in order for people to live a continuous life (resources necessary to continue living need to be supplied in large quantities at low cost. If there is an absolute resource shortage or resources are unevenly distributed, political supply will be The price will rise due to relative resource shortages caused by adjustments). The greater the amount and type of energy resources, the safer. Energy that is not unevenly distributed is safer. Nuclear uranium is ubiquitous, but if it is reprocessed, it can be used for a long time, and there is infinite uranium in seawater. Fusion power generation is viewed as infinite because heavy water in seawater is used, and from that point, nuclear power can be considered infinite. If it is unevenly distributed in a specific region, diversification is necessary in consideration of the fact that its energy may be cut off from political and unforeseen events.
In order for the people to live a better life, they must ensure good security (no global warming or environmental problems to live a healthy and comfortable life).
In order for the people to live a comfortable life continuously, it is important whether they are economical because they want to use a large amount of cheap energy. The first guideline is fuel cost / kWh. The sun and wind power are infinite everywhere in Japan, so it can be seen as almost zero yen / kWh.
FIG. 2 is a diagram showing a demand curve of a 24-hour transition of the power generation ratio with respect to the highest demand in the highest demand period and the lowest demand period (Non-Patent Document 1).
The value of the average electricity demand at around 12:00 for one month excluding Saturday and Sunday during the highest demand period (one month from the end of July to the end of August in Kanto) is called the highest demand in the future. Therefore, the highest demand is 100%.
The average power demand around 5 o'clock in the highest demand period is called the lowest demand in the highest demand period. If the maximum demand is 100%, it is about 50%.
The average power demand at around 5:00 in the lowest demand period (one month from mid-April to mid-May or one month from mid-October to mid-November in the Kanto region) is called the minimum demand ratio. If the maximum demand is 100%, it is about 25%.
The average power demand ratio around 12:00 for one month excluding Saturday and Sunday in the lowest demand period is called the highest demand ratio in the lowest demand period. If the maximum demand is 100%, it is about 50%.
It is easy to extrapolate the absolute value of the highest demand for the year from the highest demand absolute value for the previous year and the highest demand absolute value for the previous year. The absolute value of the highest demand period minimum demand, the current year minimum demand, the current year minimum demand period highest demand, and the monthly demand curve of the current year can be easily extrapolated from the previous year absolute value and the previous year absolute value.
In addition, it is easy to extrapolate the absolute value of the power generation capacity of the current fiscal year from the power generation capacity absolute value of the previous fiscal year and the power generation capacity absolute value of the previous fiscal year. The recent power demand in Japan for low economic growth, population decline, and environmental protection is not expected to fluctuate significantly in the future, and it cannot be predicted by extrapolation approximation.
It is said that the population will continue to decline. Power consumption will not increase. The current installation capacity is sufficient, and there is little need to increase the power supply capacity. It will be sufficient to replace the aging equipment. Therefore, power generation facilities based on wind power or solar power will be incorporated in the replacement facilities. However, power generation efficiency is poor and power generation cost is high.
: Ohmsha, 2000, Tokumitsu "Electric power liberalization and good use of electricity".

図1から見えてくる課題は以下の通りである。
太陽発電設備(21)に基づく発電は8時頃から16時程度だから、稼働率は(16―8)時間/24時間の33%が最大で、実際には曇天もあるから約20%であろう。燃料費がゼロであろうとも稼働率が低ければ発電端原価は高いものになる。太陽光から電気への変換効率が20%程度になれば建設費/kWeは安いといえるが、現在は10%台でありやや高い。建設費/kWeに稼働率と耐用年数を勘案したのが建設費/kWhであるから、稼働率の低い太陽発電の建設費/kWhは高くなる。燃料費はゼロだとは言え、ベース電源にはし難い。蓄電池を併設すれば可能であるとの意見があるが、梅雨時や秋の長雨時のある日本では膨大な量の蓄電池が必要となるから、高価な蓄電池を大量に設置・維持するための費用が電力料金を上げてしまう。更に、劣化して廃棄物となった時ゴミ処理費用やゴミ堆積用地難と言った環境問題にぶつかるであろう。燃料費にあたるものはないから、一見安そうに思われるが稼働率の低さは致命的である。ベース電源(通年24時間発電し続ける電源)とはなりえない。ピーク対応にしか使えないものの、太陽さえ出ていれば太陽エネルギーから電気への変換効率は低いものの発電してくれ、夏季の昼間に限定すればほぼ100%の稼働率であるから適切に対応すれば利用価値が出てくる。
風力発電設備(31)に基づく発電は原理的には1日中可能ではあるが、風は連続的に吹いていることはまれで大方は間欠的にしか吹かない。無風の日や台風で強すぎて運転不可能日もあるから稼働率は30%程度であろう。建設費/kWeは比較的安い。燃料費はゼロであることを考えるとベース電源に適しているが上記の稼動の箇所で述べた如く、ベース電源を風力発電のみとすることは難しいがその1部を担え得うる。蓄電池を併設すればよいとの風説があるが、太陽発電設備(21)に述べたように、電力料金の上昇要因や環境問題にぶつかるであろう。燃料費にあたるものはないから一見安そうに思われるが稼働率の低さは問題であるが、原理的には夜間でも発電可能であるからベース電源とすることはできるかもしれない。ただ、1年中風が吹かなかったら容量が十分あっても発電量はゼロだし、容量が十分あり過ぎると1年中風が吹き続けても発電は需要分しか許されないから需要の少ない時期には停止させざるを得ない。発電設備は電力需要が高い時でも供給できるようにする義務があるから電力需要が落ちる4月と10月には稼働率が落ちる。渇水、洪水、曇天、長雨、無風に耐えられる過剰予備設備に経済的にどの程度耐えうるか。また、風は間欠的にしか吹かないから発生電力も間欠的であり、風力発電設備(31)での給電は短時間で急激に乱れたものになる。電灯が明るくなったり暗くなったりするのでは困りものである。フライホイール併設で間欠的な問題は対処できよう。長期間30分程度の出力安定化は困難であろうから、補完的設備としての比較的応答が速い発電設備の常時待機が必要である。ベース電源に風力の割合を高める程、応答が速い発電設備を常備する必要がある。
台風等で1日中発電量ゼロの生活は大変だが休業や休暇や家事の手抜きや我慢で対処できたとしても、自家化石燃料発電で賄えたとしても、風力発電設備(31)だけで長年ベース電源とすることは困難を伴うだろう。蓄電池が安くなると共に寿命となった大量の蓄電池廃棄処理場、再処理工場設備が整うまではベース電源として風力発電のみとすることは考えものである。
流水式の水力発電は風力発電と類似していて安定性に欠け、水が凍る厳冬期、渇水時期、洪水日、旱魃による農業用への優先で発電が難しいことはあるものの稼働率が高くベース電源となり得る。
原子力はベース電源になれそうである。機器の定期検査は18ヶ月〜24ヶ月に1回であるから稼働率が高い。燃料費/kWhが安いから長期間運転に向いている。原子力発電の設備費は高いが昼夜高稼働率で運転すればコストが下がるから付加追随に不向きで、かつ建設費/kWhも比較的高いが核燃料費/kWhが安いからベース電源に適している。再処理設備が整えば廃棄物は少なくなる。しかし、恣意的に喧伝されているチェリノブイル事故やお話としての地球を貫いて事故が広まるチャイナシンドローム映画の影響で発電割合を増やせない。
機器点検は18~24ヶ月ごとでもよいが、春秋の電力需要が少ない時には燃料交換停止して燃料交換を頻繁にすれば核燃料加工施設の稼働率が高まり核燃料加工費用低減を通して発電コストが下がるメリットが生まれる。更に、頻繁に原子炉を停止できれば核燃料集合体の取出燃焼度を低くするか核燃料集合体の交換体数を少なくできるから核燃料費を安くできる。したがって、ベース電源用に100%にすることは難しいがその1部を担うようにできれば利用できる。
石炭発電は短時間の出力調節は難しいが30%程度の出力調整は可能である。石炭は資源が豊富にあり、ベース電源になれそうであるが、地球温暖化の1原因と言われている炭酸ガス放出が多いので発電割合を増やせないからベース電源にはし難い。他の化石燃料が高騰しそうな時に、石炭利用を多くしたりして、他の化石燃料の値段が高くなるのを牽制できる。ミドル電源にはなる。石炭発電の設備費/kWhは比較的安い。燃料費/kWhも比較的安く昼夜高稼働率で運転すれば非常にコストが下がるからベース電源候補とはなるが環境問題でベース電源にはし難い。出力変動調整はし難いため付加追随に不向きである。
ガス発電は短時間の出力調節は難しいが30%程度の出力調整は可能である。ガスは資源がそれほど多くはなく偏在しているから燃料費/kWhが高いためベース電源にはし難い。
炭酸ガス汚染が少ないから世界中が使いだすと資源の枯渇が早まり価格も高騰する。ミドル電源にはなる。ガス発電の設備費/kWhだけなら比較的安いがガス輸送のインフラ整備に金がかかる。環境問題は小さく、燃料費/kWhが高くとも昼夜高稼働率で運転すればコストが下がるからベース電源候補とはなるが、燃料費/kWhが高過ぎることとインフラ整備に時間がかかるためベース電源にはし難い。出力変動調整はし難いため付加追随に不向きである。
石油発電は短時間の出力調節ができ0%〜100%の出力調整が比較的簡単である。石油は資源がそれほど多くはなく偏在していて、かつ、利用範囲が広いため需要が多く高価でかつ、諸情勢により価格の乱高下が激しい。ベース電源にはし難い。ミドル電源になる。
次に、そのエネルギーを使う設備を設置するのにどの程度の建設費/kWeであるかが重要である。石油発電の設備費/kWhは安い。昼夜高稼働率で運転すれば非常にコストが下がるからベース電源候補とはなるが、環境問題と資源が少なく偏在しているためベース電源にはできない。付加追随が容易な石油発電は、風力発電や太陽発電の発電量変動に対処するのに適している。
表面由来のエネルギー(太陽、風力、水力)は一般に環境にやさしいが効率が悪く高価であり、地下起源のエネルギーである化石燃料(石炭、天然ガス、石油)は一般に環境にやさしくないが効率が良く安価であると言われている。
石炭発電と石油発電といった地下由来の燃料使用により環境が損なわれるようであれば、使用を控えねばならない。生活良好セキュリティーも大事であるから、コストは高くとも表面由来エネルギーをある程度導入する必要がある。
以上発電設備毎の特徴を述べたが一長一短がある。各種発電設備を適切に組み入れて発電せねばならない。
生存セキュリティーとか生活良好セキュリエィーに関する購買者の好みとから、電力供給は電源の分散化をせざるを得なくなってくる。
資源問題、温暖化問題、環境問題、経済問題(廉価な電気を欲する企業の国際競争力問題)と日本の1年間の激しい電力需要変化に対処しながら、できるだけ不満が少ないように電源構成割合を決めねばならない。
The issues that can be seen from Figure 1 are as follows.
Since the power generation based on the solar power generation facility (21) is around 8 o'clock to 16 o'clock, the operating rate is maximum at 33% of (16-8) hours / 24 hours, and in fact it is about 20% because there is cloudy weather. Let's go. Even if the fuel cost is zero, if the operation rate is low, the power generation end cost will be high. If the conversion efficiency from sunlight to electricity reaches about 20%, the construction cost / kWe can be said to be cheap, but it is currently in the 10% range and is somewhat high. Since construction cost / kWh takes into account the utilization rate and useful life in construction cost / kWe, the construction cost / kWh for solar power generation with low utilization rate is high. Although the fuel cost is zero, it is difficult to use as a base power source. There is an opinion that it is possible to install a storage battery, but in Japan, where there is a rainy season or a long rainy season, a huge amount of storage battery is required, so the cost of installing and maintaining a large amount of expensive storage batteries Will raise the electricity bill. In addition, when it is deteriorated into waste, it will encounter environmental problems such as waste disposal costs and waste accumulation sites. Since there is no fuel cost, it seems to be cheap at first glance, but low availability is fatal. It cannot be a base power source (a power source that continues to generate electricity 24 hours a year). Although it can only be used for peak response, if the sun is out, the conversion efficiency from solar energy to electricity is low, but it generates electricity, and if it is limited to the daytime in the summer, it is almost 100% uptime, so you can respond appropriately Use value comes out.
Although it is possible in principle to generate electricity based on the wind power generation facility (31), the wind is rarely blown continuously, and the wind blows only intermittently. Occupancy rate will be about 30% because there are days when it is impossible to drive due to strong winds and typhoons. Construction cost / kWe is relatively cheap. Considering that the fuel cost is zero, it is suitable for the base power supply. However, as described in the operation section above, it is difficult to use only the wind power generation as the base power supply, but a part of it can be carried. There is a theory that a storage battery should be added, but as mentioned in the solar power generation facility (21), it will encounter an increase in power charges and environmental problems. Although it seems to be cheap at first because there is no fuel cost, the low availability factor is a problem, but in principle it can generate electricity at night, so it may be a base power source. However, if the wind does not blow all year round, the amount of power generation is zero even if there is enough capacity, and if there is too much capacity, even if the wind continues blowing all year round, power generation is only allowed for demand, so it stops when there is less demand I must do it. Since power generation facilities are obligated to be able to supply even when power demand is high, the capacity utilization rate falls in April and October when power demand falls. How economically will it be able to withstand excess reserves that can withstand droughts, floods, cloudy weather, long rains and no wind? Moreover, since the wind blows only intermittently, the generated electric power is also intermittent, and the power supply in the wind power generation facility (31) is suddenly disturbed in a short time. It would be a problem if the light gets brighter or darker. Intermittent problems can be addressed with the flywheel. Since it will be difficult to stabilize the output for about 30 minutes for a long period of time, it is necessary to always stand by a power generation facility with relatively quick response as a complementary facility. As the proportion of wind power increases in the base power supply, it is necessary to have a power generation facility that responds faster.
Life with zero power generation all day due to typhoons is difficult, but even if it can be dealt with through holidays, vacations, housekeeping or patience, even if it can be covered by private fossil fuel power generation, it is based on wind power generation facilities (31) for many years It would be difficult to use as a power source. It is conceivable to use only wind power generation as a base power source until a large number of storage battery disposal facilities and reprocessing plant facilities that have reached the end of their life as their storage batteries become cheaper.
Flowing hydroelectric power generation is similar to wind power generation and lacks stability. Although it is difficult to generate power due to priority for agricultural use due to severe winter, drought, flood days, and drought, the operating rate is high. Can be a power source.
Nuclear power is likely to become a base power source. Since the regular inspection of equipment is once every 18 to 24 months, the operation rate is high. It is suitable for long-term operation because the fuel cost / kWh is low. Although the power generation cost of nuclear power generation is high, it is unsuitable for follow-up because the cost is reduced if it is operated at a high operating rate day and night, and the construction cost / kWh is relatively high, but the nuclear fuel cost / kWh is low, so it is suitable for the base power source. If reprocessing facilities are in place, less waste will be generated. However, the rate of power generation cannot be increased due to the influence of the Chernobyl accident that is being arrogantly spread and the China syndrome movie that spreads through the earth as a story.
Equipment inspections can be done every 18 to 24 months, but if the demand for electricity in spring and autumn is low, stopping fuel replacement and making frequent fuel changes will increase the operating rate of nuclear fuel processing facilities and reduce power generation costs by reducing nuclear fuel processing costs. to be born. Furthermore, if the nuclear reactor can be shut down frequently, the nuclear fuel cost can be reduced because the removal burn-up of the nuclear fuel assembly can be reduced or the number of exchanges of the nuclear fuel assembly can be reduced. Therefore, it is difficult to make it 100% for the base power supply, but it can be used if it can be part of that.
Coal power generation is difficult to adjust for a short time, but it is possible to adjust the output by 30%. Coal is abundant in resources and is likely to become a base power source, but it is difficult to use it as a base power source because the amount of power generation cannot be increased because of the large amount of carbon dioxide emission that is said to be one cause of global warming. When other fossil fuels are likely to soar, the use of coal can be increased to keep prices of other fossil fuels from rising. It becomes middle power. The cost of coal power generation / kWh is relatively low. Fuel cost / kWh is also relatively cheap, and if it is operated at high availability during the day and night, the cost will be very low, so it will be a base power source candidate, but it is difficult to use as a base power source due to environmental problems. Since it is difficult to adjust the output fluctuation, it is not suitable for follow-up.
With gas power generation, it is difficult to adjust output for a short time, but output adjustment of about 30% is possible. Since gas is not abundant in resources and unevenly distributed, the fuel cost / kWh is high, making it difficult to use as a base power source.
Since carbon dioxide pollution is low, when the world starts using it, resources will be depleted and prices will rise. It becomes middle power. Although it is relatively cheap if it is only the cost of gas power generation facilities / kWh, it will cost money for infrastructure development of gas transportation. Although the environmental problems are small and the fuel cost / kWh is high, if it operates at a high availability rate day and night, the cost will be reduced, so it becomes a candidate for the base power source, but the base power source because the fuel cost / kWh is too high and infrastructure development takes time It is difficult to do. Since it is difficult to adjust the output fluctuation, it is not suitable for follow-up.
Oil power generation can be adjusted in a short time, and output adjustment from 0% to 100% is relatively easy. Petroleum is not abundant in resources, is unevenly distributed, has a wide range of use, and is highly demanded and expensive. Hard to base power. Middle power supply.
Next, it is important how much construction cost / kWe is to install the equipment that uses the energy. The cost of oil power generation / kWh is low. If it is operated at high day / night availability, the cost will be very low, so it will be a base power source candidate, but it cannot be used as a base power source because of environmental problems and few resources. Oil power generation, which is easy to follow, is suitable for dealing with fluctuations in the amount of power generated by wind power generation and solar power generation.
Surface-derived energy (solar, wind, hydropower) is generally environmentally friendly but inefficient and expensive. Fossil fuels (coal, natural gas, oil), which are underground energy, are generally not environmentally friendly but efficient. It is said to be cheap.
If the environment is damaged by the use of underground fuels such as coal and oil, it must be avoided. Since good life security is also important, it is necessary to introduce surface-derived energy to some extent even if the cost is high.
The characteristics of each power generation facility have been described above, but there are advantages and disadvantages. Various power generation facilities must be properly incorporated to generate power.
Due to the purchaser's preference for survival security and good living security, power supply must be decentralized.
While coping with resource problems, global warming problems, environmental problems, economic problems (international competitiveness of companies that want low-cost electricity) and Japan's intense changes in power demand over the past year, the ratio of power sources should be set as low as possible. I have to decide.

上記課題を解決するためには3つの手段が必要である。1つ目は、資源問題、温暖化問題、環境問題、経済問題を同時に解決するために表面由来発電をどの程度組み込むかの発電設備容量構成割合の決定である。2つ目は、扱い難い表面由来発電を大幅に組み込んだ時の発電の運用法の決定である。3つ目は、定格電力の定まらない表面由来発電を補完し常時定格電力を発電するためのシステムの決定である。
課題克服のための1つ目の手段を以下に示す。
地熱、バイオ等その他新エネルギー、流水式発電予備は割合が小さいため対象外とする。揚水式発電は将来性がないため対象外とする(夜間原子力発電で揚水したとしても原子力発電電力料金よりも高くなる。揚水ダムが渇水なら揚水する水がないから不可能)。
電力消費者に電力を供給するには、生活良好セキュリティーと生存セキュリティーと経済性(国際競争力)とを考慮した最高需要における発電構成割合に基づき発電設備容量構成割合を決め、季節や時刻により変動する電力需要を考慮した運用の仕方も決めておかねばならない。
化石燃料使用に余裕がある状況下で電力消費者に電力を供給することにおいて、消費用電力提供(日本原子力発電会社のように現行9電力会社のみに供給する会社は除く。主に家庭用電灯電力を供給する会社)は以下のようにする。
最高需要(夏季12時頃100%)における発電構成割合である最高需要発電構成割合は以下のようにする。
水力発電割合は従来の割合(約8%)と同じとする。
最高需要期最低需要割合(夏季5時頃50%)の半分から水力発電割合を差し引いた割合を風力発電割合(約17%)とする。
最高需要期最低需要割合の半分を原子力発電割合(約25%)とする。
太陽発電割合を従来の予備発電割合(約9%)と同じにする。
最高需要から水力発電割合及び風力発電割合及び原子力発電割合及び太陽発電割合を差し引いた割合を化石燃料発電セット割合(石炭発電+ガス発電+石油発電の合計で41%)とする。
発電設備容量構成割合の計画法は以下のようにする。
水力発電設備容量割合は最高需要における水力発電割合と同じにする。
風力発電設備容量割合は最高需要における風力発電割合と同じにする。
原子力発電設備容量割合は最高需要における原子力発電割合と同じにする。
太陽発電設備容量割合は最高需要における太陽発電割合と同じにする。
石炭発電設備容量割合は最高需要における化石燃料発電セット発電割合の1/3とする。
ス発電設備容量割合は最高需要における化石燃料発電セット発電割合の1/3とする。
石油発電設備容量割合は最高需要における化石燃料発電セット発電割合の1/3とする。
余分に保持する予備発電設備容量割合は最高需要における従来の予備発電割合相当とする。
余分に保持する瞬時型発電設備容量割合は最高需要における風力発電割合相当とする。
課題克服のための2つ目の手段を以下に示す。
電力需要は季節や時刻により変動するから運用は以下のようにする。
最高需要期での運用は以下のようにする。
毎日の予想し得る電力需要変動は化石燃料発電セットの発電調節で対応する。
風力発電割合が予想から減少した場合は瞬時型発電設備(41)で対応する。
風力発電割合が規定から増加した場合は風力発電設備(31)のブレーキによる放熱または風力発電設備(31)の当該部停止で対応する。
太陽発電割合が予想から減少した場合は待機せる予備発電設備の発電で対応する。
供給電力に比べて需要が大きい場合は待機せる予備発電設備とピークカットとで対応する。
供給電力の大幅なる予想外不足は老朽休止中化石燃料発電セット設備で対応する。なお、最高需要時刻(夏季12時頃。割合は100%)から最高需要期最低需要時刻(夏季翌朝5時頃。割合は50%)までの間は化石燃料発電セットの発電調節で制御する。
次に、最低需要期 (春季)での運用は無駄が生じないように最低需要発電構成割合と最低需要期最高需要発電構成割合とを基礎にして以下のようにする。
最低需要割合(春季5時頃約25%)での発電構成割合である最低需要発電構成割合は、水力発電割合は最高需要での水力発電割合と同じとし、
風力発電設備容量を停止する群と運転する群とに等分に2群に分け運転中風力発電設備(31)群での風力発電割合は最高需要での風力発電割合の1/2とし、
原子力発電設備容量を停止する群と運転する群とに等分に2群に分け運転中原子力発電設備群での原子力発電割合は最低需要割合から水力発電割合及び最低需要割合での風力発電割合を差し引いた割合とする。
最低需要期最高需要発電構成割合(春季12時頃約50%)は、最低需要発電構成割合に最高需要での太陽発電割合(約9%)を加味し、その上で化石燃料発電セットの発電で調節する。
毎日の予想し得る電力需要変動は化石燃料発電セットの発電調節で対応する。
風力発電割合が予想から減少した場合は瞬時型発電設備(41)で対応する。
風力発電割合が規定から増加した場合は風力発電設備(31)のブレーキによる放熱または風力発電設備(31)の当該部停止で対応する。
太陽発電割合が予想から減少した場合は待機せる予備発電設備の発電で対応する。
供給電力に比べて需要が大きい場合は待機せる予備発電設備とピークカットとで対応する。
供給電力の大幅なる予想外不足は老朽休止中化石燃料発電セット設備で対応する。
最低需要が所定の値よりも下がった場合は運転中原子力発電設備群の出力を下げる。
なお、最低需要期最高需要時刻(春季12時頃。割合は約50%)から最低需要時刻(春季翌朝5時頃。割合は約25%)までの間は化石燃料発電セットの発電調節で制御する。
最高需要期(夏季)と最低需要期(春季)の間での運用は化石燃料発電セットの発電調節の他に、燃料交換による原子力発電設備の停止基数の調節と運転中原子力発電設備群の出力調節とで制御する。
最低需要期での供給電力の大幅なる予想外不足は休止中設備で問題なく対応できる。
今後、経済成長は大幅には変動することはないと予想されるから消費電力も大幅には変動することはないと考えられる。したがって、発電設備容量構成割合も具体的に決め易い。
定量的には発電設備容量構成割合は、太陽発電設備容量割合を9%、風力発電設備容量割合を17%、水力発電設備容量割合を8%、原子力発電設備容量割合を25%、石炭発電設備容量割合を14%、ガス発電設備容量割合を14%、石油発電設備容量割合を13%とし、余分に予備発電設備容量割合を9%保持し、余分に瞬時型発電設備容量割合を風力発電設備容量割合相当の17%保持する。
化石燃料使用に余裕がない状況下で電力消費者に電力を供給することにおいて、消費用電力供給は以下のようにする。
最高需要(夏季12時頃。割合は100%)における発電構成割合である最高需要発電構成割合は以下のようにする。
水力発電割合は従来の割合と同じとする。
最高需要期最低需要割合(約50%)から水力発電割合(約8%)を差し引いた割合を原子力発電割合(約42%)とする。
最高需要期における8時(太陽発電開始時刻)の電力需要(約65%)から最高需要期最低需要割合(約50%)を差し引いた分を風力発電割合(約15%)とする。
最高需要から水力発電割合及び原子力発電割合及び風力発電割合を差し引いた割合を太陽発電割合(約35%)とする。
化石燃料原則不使用発電設備容量構成割合の計画法は以下のようにする。
水力発電設備容量割合は最高需要における水力発電割合と同じにする。
風力発電設備容量割合は最高需要における風力発電割合と同じにする。
原子力発電設備容量割合は最高需要における原子力発電割合と同じにする。
太陽発電設備容量割合は最高需要における太陽発電割合と同じにする。
余分に保持する蓄電池設備容量割合は最高需要における太陽発電割合の半分とする。
余分に保持する瞬時型発電設備容量割合は最高需要における風力発電割合相当とする。
電力需要は季節や時刻により変動するから化石燃料原則不使用発電設備容量構成割合で表面由来発電補完システク導入の元での表面由来発電補完システク導入化石燃料原則不使用運用は以下のようにする。
最高需要期での運用は以下のようにする。
風力発電割合または太陽発電割合が予想から減少した場合は蓄電池設備(51)の放電または瞬時型発電設備(41)の発電で対応する。
風力発電割合が規定から増加した場合は蓄電池設備(51)の蓄電で吸収または風力発電設備(31)のブレーキによる放熱または風力発電設備(31)の当該部停止で対応する。
供給電力に比べて需要が大きい場合は蓄電池設備(51)の放電と瞬時型発電設備(41)の発電とピークカットとで対応する。
供給電力の大幅なる予想外不足は老朽休止中化石燃料発電セット設備で対応する。
最高需要期太陽発電が得られるまで(夏季16時〜翌朝8時)の運用は最高需要期最低需割合(夏季5時頃約65%)における発電構成割合に加えて蓄電池設備(51)に蓄積せる電力を放電する。
最低需要期(春季)での運用は無駄が生じないように最低需要発電構成割合(水力発電割合は最高需要での水力発電割合と同じとする。風力発電設備容量を停止する群と運転する群とに等分に2群に分け運転中風力発電設備(31)群による風力発電割合は最高需要での風力発電割合の1/2とする。原子力発電設備容量を停止する群と運転する群とに等分に2群に分け運転中原子力発電設備群による原子力発電割合は最低需要割合から最高需要での水力発電割合及び最高需要での風力発電割合の1/2を差し引いた割合とする。)及び最低需要期最高需要発電構成割合(最低需要発電構成割合に太陽発電設備容量を停止する群と運転する群とに等分に2群に分け運転中太陽発電設備(21)群による太陽発電割合は最高需要での太陽発電割合の1/2を加味する。更には、蓄電池設備(51)に蓄積せる電力を放電する。)を基礎にして以下のようにする。
風力発電割合または太陽発電割合が予想から減少した場合は蓄電池設備(51)の放電または瞬時型発電設備(41)の発電で対応する。
風力発電割合が規定から増加した場合は蓄電池設備(51)の蓄電で吸収または風力発電設備(31)のブレーキによる放熱または風力発電設備(31)の当該部停止で対応する。
供給電力に比べて需要が大きい場合は蓄電池設備(51)の放電と瞬時型発電設備(41)の発電とピークカットとで対応する。
供給電力の大幅なる予想外不足は老朽休止中化石燃料発電セット設備で対応する。
最低需要が所定の値よりも下がった場合は運転中原子力発電設備群の出力を下げる。
最低需要期太陽発電が得られるまでは最低需要発電構成割合に蓄電池設備(51)からの蓄放電と瞬時型発電設備(41)の発電とピークカットとで対応する。
最高需要期(夏季)と最低需要期(春季)の間での運用は燃料交換による原子力発電設備の停止基数の調節と運転中原子力発電設備群の出力調節とで制御する。なお、いかなる時でも風力発電や太陽発電や水力発電における電力供給過剰は蓄電池設備(51)が蓄電できる範囲内で吸収する。上記一連の作業をコンピュータ(10)の指令により自動的に実施する。
今後は安定的な電力需要が予想されるから発電設備容量構成割合も具体的に決め易い。
定量的には化石燃料原則不使用発電設備容量構成割合は、太陽発電設備容量割合を35%、風力発電設備容量割合を15%、水力発電設備容量割合を8%、原子力発電設備容量割合を42%とし、余分に蓄電池設備容量を18%保持し、余分に瞬時型発電設備容量を15%保持する。
最高需要における発電構成割合において昼間のピーク対応用に、原子力発電所のECCS用発電装置を起動しておき必要に応じてすぐに発電し原子力発電所内電力を賄い余剰分を送電に加える運用法が考えられる。
課題克服のための3つ目の手段を以下に示す。
記憶装置(14)に保存されたる送受信器1(15)から送られてきた太陽発電設備(21)と風力発電設備(31)といった各表面由来発電設備の太陽発電量と風力発電量といった各表面由来発電量をコンピュータ(10)の演算装置(11)に読み込み計算し、当該時刻の表面由来発電割合cが定格表面由来発電割合c0に比べて小さいと判別した場合はコンピュータ(10)からの指令により自動的に蓄電池設備(51)から放電し、放電できそうもなければコンピュータ(10)からの指令により自動的に燃料タンク(46)からの燃料によって発電する瞬時型発電設備(41)の発電量を上昇させ、当該時刻の表面由来発電割合cが定格表面由来発電割合c0に比べて大きいと判別した場合はコンピュータ(10)からの指令により自動的に蓄電池設備(51)に充電し、充電できないと判別すればコンピュータ(10)からの指令により自動的に表面由来発電設備の風力発電設備(31)にブレーキをかけたり表面由来発電設備の太陽発電設備(21)に遮光によるブレーキをかけたりし、
記憶装置(14)に保存されたる送受信器2(16)から送られてきた系統電線(200)の系統電力電圧VV(t)をコンピュータ(10)の演算装置(11)に読み込み計算し、当該時刻の系統電力電圧VV(t)が系統電力定格電圧VV0よりも下がり電力需要が大き過ぎて電力供給が追いつかないと判別した場合はコンピュータ(10)からの指令により自動的に蓄電池設備(51)から放電し、それでも足りないと判別した場合はコンピュータ(10)からの指令により自動的に瞬時型発電設備(41)の発電量を上昇させ、当該時刻の系統電力電圧VV(t)が系統電力定格電圧VV0よりも上がり電力需要が少な過ぎて電力供給過多と判別した場合はコンピュータ(10)からの指令により自動的に蓄電池設備(51)に充電し、それでも電力供給過剰であると判別した場合はコンピュータ(10)からの指令により自動的に表面由来発電設備にブレーキをかけるように制御した表面由来発電補完システムの導入により表面由来発電設備を大幅に導入しても系統電力の乱れを抑制し安定化させる。
何らかの事情で電力需要急増に対する電力供給が間に合わなかった場合には、給電指令所からのインターネット接続または電灯線を介して遠隔操作を受ける遠隔制御器付きプラグイン駐車場にプラグインして駐車せる瞬時型発電設備(41)の予備として登録せる電気自動車及びハイブリッド車への表面由来発電補完システム指令により自動的に放蓄電し配電する広義表面由来発電補完システムを導入する。
突然一部の発電所が停止した場合のように電力供給が急減した場合には、給電指令所からのインターネット接続または電灯線を介して遠隔操作を受ける遠隔制御器付きプラグイン駐車場に駐車せるエンジン式自動車のバッテリーと遠隔制御器とをジャンパー接続し、表面由来発電補完システム指令により自動的にエンジン式自動車エンジンを始動させ緊急用に発電し配電する緊急対応広義表面由来発電補完システムを導入する。
表面由来発電補完システムの中の表面由来発電設備として休耕田に震度4以下の耐震強度を持たせた太陽発電設備(21)を敷き詰めて所々に震度4以下の耐震強度を持たせた風力発電設備(31)群を林立させた表面由来発電ファームに対応した表面由来発電ファーム補完システムの導入は、表面由来発電を大幅に拡充する。
In order to solve the above problems, three means are necessary. The first is the determination of the power generation capacity ratio of how much surface-based power generation is incorporated to solve the resource problem, global warming problem, environmental problem, and economic problem at the same time. The second is the determination of the operation method of power generation when the hard-to-handle power generation is largely incorporated. The third is the determination of a system for always generating rated power by supplementing surface-based power generation where the rated power is not fixed.
The first means for overcoming the problem is shown below.
Other new energy such as geothermal, bio, and running water power generation reserves are excluded because of their small proportion. Pumped-type power generation is excluded because it has no future potential (even if it is pumped by nighttime nuclear power generation, it will be higher than the price of nuclear power generation. Impossible because there is no water to pump if the pumping dam is drought).
In order to supply electricity to power consumers, the power generation capacity capacity composition ratio is determined based on the power generation composition ratio at the highest demand in consideration of good living security, survival security, and economic efficiency (international competitiveness), and varies depending on the season and time You must also decide how to operate in consideration of the power demand.
Providing power to consumers in the situation where there is room for fossil fuel use (excluding companies that supply only nine current electric power companies, such as Japan Nuclear Power Company. Mainly household lights The company that supplies power:
The highest demand power generation composition ratio that is the power generation composition ratio in the highest demand (100% around 12:00 in summer) is as follows.
The hydropower generation ratio is the same as the conventional ratio (about 8%).
Wind power generation ratio (about 17%) is calculated by subtracting hydropower generation ratio from half of the minimum demand ratio (50% around 5 o'clock in summer).
Half of the lowest demand ratio in the highest demand period is the nuclear power generation ratio (about 25%).
Make the solar power generation ratio the same as the conventional standby power generation ratio (about 9%).
The ratio of fossil fuel power generation set (41% in total of coal power generation + gas power generation + oil power generation) is obtained by subtracting the ratio of hydropower generation, wind power generation ratio, nuclear power generation ratio and solar power generation ratio from the highest demand.
The method for planning the power generation capacity composition ratio is as follows.
The hydropower generation capacity ratio is the same as the hydropower generation ratio at the highest demand.
The wind power generation capacity ratio is the same as the wind power generation ratio at the highest demand.
The nuclear power generation capacity ratio is the same as the nuclear power generation ratio at the highest demand.
The solar power generation capacity ratio is the same as the solar power generation ratio at the highest demand.
The coal power generation capacity ratio will be 1/3 of the fossil fuel power generation set generation ratio at the highest demand.
The power generation equipment capacity ratio is 1/3 of the power generation set power generation ratio at the highest demand.
Oil power generation capacity will be 1/3 of fossil fuel power generation set at the highest demand.
The reserve power generation capacity ratio to be retained is equivalent to the conventional reserve power generation ratio at the highest demand.
The excess instantaneous power generation capacity capacity ratio to be retained is equivalent to the wind power generation ratio at the highest demand.
The second means for overcoming the problem is shown below.
Since power demand varies depending on the season and time, operation is as follows.
Operation during the highest demand period is as follows.
Daily power demand fluctuations can be accommodated by adjusting the power generation of fossil fuel power generation sets.
When the wind power generation ratio decreases from the expected value, the instantaneous power generation facility (41) is used.
When the wind power generation ratio increases from the regulation, this is dealt with by heat radiation by the brake of the wind power generation facility (31) or by stopping the part of the wind power generation facility (31).
If the solar power generation ratio decreases from the expected value, it will respond by generating power from a standby power generation facility.
When the demand is larger than the supplied power, the standby power generation facility that is on standby and the peak cut are used.
The unexpected unexpected shortage of power supply will be dealt with by the fossil fuel power generation set during the aging outage. The period from the highest demand time (around 12:00 in the summer, the rate is 100%) to the lowest demand time during the highest demand period (around 5:00 the following morning in the summer, the rate is 50%) is controlled by the power generation adjustment of the fossil fuel power generation set.
Next, the operation in the minimum demand period (spring) is performed as follows based on the minimum demand generation composition ratio and the minimum demand generation maximum demand generation composition ratio so as not to waste.
The minimum demand power generation composition ratio, which is the power generation composition ratio at the minimum demand ratio (about 25% around spring 5 o'clock), is assumed that the hydropower generation ratio is the same as the hydropower generation ratio at the highest demand,
The wind power generation capacity of the wind power generation equipment (31) group is divided into two groups equally divided into the group that stops the wind power generation capacity and the operating group, and the wind power generation ratio in the maximum demand is 1/2 of the highest demand,
Divided into two groups, the group that shuts down the nuclear power generation capacity and the group that operates it.The nuclear power generation ratio in the nuclear power generation equipment group is from the minimum demand ratio to the hydropower generation ratio and the wind power generation ratio at the minimum demand ratio. The ratio is deducted.
The highest demand power generation composition ratio (about 50% around 12:00 in the spring season) takes into account the minimum demand power generation composition ratio and the solar power generation ratio (about 9%) at the highest demand, and then generates power from the fossil fuel power generation set. Adjust with.
Daily power demand fluctuations can be accommodated by adjusting the power generation of fossil fuel power generation sets.
When the wind power generation ratio decreases from the expected value, the instantaneous power generation facility (41) is used.
When the wind power generation ratio increases from the regulation, this is dealt with by heat radiation by the brake of the wind power generation facility (31) or by stopping the part of the wind power generation facility (31).
If the solar power generation ratio decreases from the expected value, it will respond by generating power from a standby power generation facility.
When the demand is larger than the supplied power, the standby power generation facility that is on standby and the peak cut are used.
The unexpected unexpected shortage of power supply will be dealt with by the fossil fuel power generation set during the aging outage.
When the minimum demand falls below a predetermined value, the output of the nuclear power generation equipment group is reduced during operation.
The period from the highest demand time in the lowest demand period (around 12:00 in spring. The ratio is about 50%) to the lowest demand time (around 5 in the morning in the spring. The percentage is about 25%) is controlled by adjusting the power generation of the fossil fuel power generation set. To do.
Operation between the highest demand period (summer) and the lowest demand period (spring) is to adjust power generation of the fossil fuel power generation set, adjust the number of nuclear power generation facilities stopped by fuel replacement, and output the operating nuclear power generation facilities. Control with adjustment.
The unexpected shortage of power supply in the minimum demand period can be dealt with without problems by the out-of-service equipment.
In the future, economic growth is not expected to fluctuate significantly, so power consumption will not fluctuate significantly. Therefore, it is easy to determine the power generation equipment capacity composition ratio specifically.
Quantitatively, the power generation capacity ratio is 9% for solar power capacity, 17% for wind power capacity, 8% for hydro power capacity, 25% for nuclear power capacity, 25% for coal power capacity The capacity ratio is 14%, the gas power generation capacity ratio is 14%, the oil power generation capacity ratio is 13%, the extra power generation capacity ratio is 9%, and the instantaneous power generation capacity ratio is the wind power generation capacity. Hold 17% equivalent to the capacity ratio.
In supplying power to power consumers in a situation where there is no room for fossil fuel use, the power supply for consumption is as follows.
The highest demand power generation composition ratio, which is the power generation composition ratio in the highest demand (around 12:00 in summer, the ratio is 100%) is as follows.
The hydropower generation ratio is the same as the conventional ratio.
The ratio of nuclear power generation (about 42%) is obtained by subtracting the hydropower generation ratio (about 8%) from the minimum demand ratio (about 50%) during the highest demand period.
Wind power generation ratio (about 15%) is obtained by subtracting the minimum demand ratio (about 50%) from the power demand (about 65%) at 8 o'clock (solar power generation start time) in the maximum demand period.
The solar power generation ratio (about 35%) is obtained by subtracting the hydroelectric power generation ratio, nuclear power generation ratio, and wind power generation ratio from the highest demand.
The planning method for the capacity composition ratio of fossil fuel-free power generation facilities is as follows.
The hydropower generation capacity ratio is the same as the hydropower generation ratio at the highest demand.
The wind power generation capacity ratio is the same as the wind power generation ratio at the highest demand.
The nuclear power generation capacity ratio is the same as the nuclear power generation ratio at the highest demand.
The solar power generation capacity ratio is the same as the solar power generation ratio at the highest demand.
The storage battery capacity ratio to be retained is half of the solar power generation ratio at the highest demand.
The excess instantaneous power generation capacity capacity ratio to be retained is equivalent to the wind power generation ratio at the highest demand.
Since the demand for electricity fluctuates depending on the season and time, the fossil fuel principle non-use operation with the introduction of the surface-based power generation complementation system under the introduction of the surface-based power generation complementation system at the ratio of the fossil fuel principle non-use power generation facility capacity composition is as follows.
Operation during the highest demand period is as follows.
When the wind power generation ratio or the solar power generation ratio decreases from the expectation, it is handled by discharging the storage battery facility (51) or generating power by the instantaneous power generation facility (41).
When the wind power generation ratio increases from the regulation, it is dealt with by absorption of power stored in the storage battery facility (51), heat radiation by braking of the wind power generation facility (31), or stop of the relevant part of the wind power generation facility (31).
When the demand is larger than the supplied power, the discharge of the storage battery facility (51), the power generation of the instantaneous power generation facility (41), and the peak cut correspond.
The unexpected unexpected shortage of power supply will be dealt with by the fossil fuel power generation set during the aging outage.
Operation until the solar power generation in the highest demand period (from 16:00 in the summer to 8:00 in the next morning) is accumulated in the storage battery equipment (51) in addition to the power generation composition ratio in the minimum demand ratio in the highest demand period (about 65% in the summer) Discharge the electric power.
Minimum demand power generation composition ratio (hydropower generation ratio is the same as hydropower generation ratio at maximum demand so that waste during operation in the minimum demand period (spring) will not be wasted. The wind power generation ratio of the wind power generation equipment (31) group in operation divided into two equal parts is half of the wind power generation ratio at the highest demand. The ratio of nuclear power generated by the group of operating nuclear power generation facilities is divided into two equal parts, and the ratio of the hydroelectric power generation at the highest demand and the wind power generation ratio at the highest demand are subtracted from the lowest demand ratio. And the highest demand power generation composition ratio in the lowest demand period (the solar power generation ratio by the operating solar power generation equipment (21) group equally divided into two groups, the group that stops the solar power generation capacity and the group that operates) Takes into account one half of solar power generation at the highest demand . Further, the discharge power to accumulate battery equipment (51).) And the basis of the set as follows.
When the wind power generation ratio or the solar power generation ratio decreases from the expectation, it is handled by discharging the storage battery facility (51) or generating power by the instantaneous power generation facility (41).
When the wind power generation ratio increases from the regulation, it is dealt with by absorption of power stored in the storage battery facility (51), heat radiation by braking of the wind power generation facility (31), or stop of the relevant part of the wind power generation facility (31).
When the demand is larger than the supplied power, the discharge of the storage battery facility (51), the power generation of the instantaneous power generation facility (41), and the peak cut correspond.
The unexpected unexpected shortage of power supply will be dealt with by the fossil fuel power generation set during the aging outage.
When the minimum demand falls below a predetermined value, the output of the nuclear power generation equipment group is reduced during operation.
Until the minimum demand period solar power generation is obtained, the minimum demand power generation component ratio is accommodated by storage discharge from the storage battery equipment (51), power generation by the instantaneous power generation equipment (41), and peak cut.
The operation between the highest demand period (summer) and the lowest demand period (spring) is controlled by adjusting the number of shutdowns of nuclear power generation facilities by changing the fuel and adjusting the output of the nuclear power generation facilities during operation. At any time, excess power supply in wind power generation, solar power generation, or hydroelectric power generation is absorbed within a range where the storage battery facility (51) can store power. The above-described series of operations are automatically performed according to commands from the computer (10).
Since stable power demand is expected in the future, it is easy to determine the power generation capacity composition ratio.
Quantitatively, fossil fuel principle unused power generation capacity capacity composition ratio is 35% for solar power generation capacity, 15% for wind power capacity, 8% for hydropower capacity, 42 for nuclear power capacity %, With an additional 18% storage battery capacity and an additional 15% instantaneous power generation capacity.
In response to daytime peaking in the power generation composition ratio at the highest demand, there is an operation method that activates the ECCS power generation device of the nuclear power plant and immediately generates power as needed to cover the power in the nuclear power plant and add surplus to the transmission Conceivable.
The third means for overcoming the problem is shown below.
Each surface such as solar power generation amount and wind power generation amount of each surface-derived power generation facility such as solar power generation facility (21) and wind power generation facility (31) sent from the transceiver 1 (15) stored in the storage device (14) When the power generation amount derived from the computer is read and calculated in the arithmetic unit (11) of the computer (10), and it is determined that the surface-derived power generation ratio c at that time is smaller than the rated surface-derived power generation ratio c0, a command from the computer (10) Is automatically discharged from the storage battery facility (51), and if it is not likely to be discharged, the power generation of the instantaneous power generation facility (41) that automatically generates electricity with the fuel from the fuel tank (46) in response to a command from the computer (10) When the amount is increased and it is determined that the surface-derived power generation ratio c at that time is larger than the rated surface-derived power generation ratio c0, it is automatically performed by a command from the computer (10). If the storage battery facility (51) is charged and it is determined that charging cannot be performed, the wind power generation facility (31) of the surface-derived power generation facility is automatically braked by the command from the computer (10), or the solar power generation facility of the surface-derived power generation facility (21) to brake by shading,
The grid power voltage VV (t) of the grid wire (200) sent from the transceiver 2 (16) stored in the storage device (14) is read into the arithmetic unit (11) of the computer (10) and calculated. When the system power voltage VV (t) at the time is lower than the system power rated voltage VV0 and it is determined that the power demand is too large to catch up with the power supply, the storage battery equipment (51) is automatically set by a command from the computer (10). If it is determined that it is still not enough, the power generation amount of the instantaneous power generation facility (41) is automatically increased by a command from the computer (10), and the system power voltage VV (t) at that time becomes the system power. If it is determined that the power demand is too high due to a rise in the rated voltage VV0 and the power supply is excessive, the battery (51) is automatically charged according to the command from the computer (10). If it is determined that the system power is not generated even if a large amount of surface-derived power generation equipment is introduced by introducing a surface-derived power generation supplement system that is controlled to automatically brake the surface-derived power generation equipment according to a command from the computer (10) Suppresses and stabilizes turbulence.
If for some reason the power supply due to the sudden increase in power demand is not in time, the moment when you plug in and park in a plug-in parking lot with a remote controller that can be remotely operated via the Internet connection or power line from the power supply command center Introduces a broad surface-based power generation supplement system that automatically discharges and distributes power according to a surface-based power generation supplement system command to an electric vehicle and a hybrid vehicle that are registered as a reserve of the power generation facility (41).
If the power supply suddenly decreases, such as when some of the power stations suddenly shut down, park in a plug-in parking lot with a remote controller that can be remotely operated via the Internet connection or power line from the power supply command station. Introducing an emergency response surface-based power generation supplement system that jumps the engine-type car battery and remote controller, automatically starts the engine-type car engine according to the surface-based power generation supplement system command, and generates and distributes power for emergency use. .
Wind power generation equipment with a seismic intensity of 4 or less by placing solar power generation equipment (21) with seismic intensity of 4 or less on fallow fields as surface-derived power generation equipment in the surface-based power generation complementation system ( 31) The introduction of the surface-derived power generation farm supplement system corresponding to the surface-derived power generation farm in which the group is forested greatly expands the surface-derived power generation.

本発明の表面由来発電補完システムの採用と明確な発電設備構成割合の決定とにより、発生電力が変動する表面由来発電の割合を大幅に取り入れる目標が明確になり将来設計が立てやすくなった。
8時〜16時での気温変化が高々20℃程度であることを考えると太陽発電の電力変動はそれほど大きいものではなく、電力需要ピークが現れる夏場の昼間に最も効率が上がる太陽発電の割合を大幅に導入できるため、発電コストを大幅に上昇させることなく環境に配慮した電力の提供ができた。
安定的な発電は期待できないが、昼夜を分かたずに発電し続ける可能性がある風力発電を系統電力に組み入れられる目途がたった。夜間には発電できない太陽発電を補完できる。
かくて、温室効果が高い地下由来の化石燃料を原則として使わずに原子力発電と発電コストが高いとされる表面由来発電とにより、発電コストを大幅に上げることなくかつエネルギー源を海外に頼ることもなく環境に易しい系統電力の供給が可能になった。
The adoption of the surface-derived power generation supplement system and the clear determination of the power generation equipment composition ratio of the present invention have clarified the goal of greatly incorporating the ratio of the surface-derived power generation in which the generated power fluctuates, making it easier to design in the future.
Considering that the temperature change from 8:00 to 16:00 is at most about 20 degrees Celsius, the power fluctuation of solar power generation is not so large, and the ratio of solar power generation with the highest efficiency in the daytime in summer when power demand peaks appear Because it can be introduced drastically, it was possible to provide environmentally friendly power without significantly increasing power generation costs.
Although stable power generation cannot be expected, wind power generation, which may continue to generate power without knowing day and night, was planned to be incorporated into the grid power. It can complement solar power generation that cannot generate power at night.
Thus, relying on overseas energy sources without significantly increasing power generation costs through nuclear power generation and surface-based power generation, which is considered to have high power generation costs, without using fossil fuels derived from underground with a high greenhouse effect. It has become possible to supply grid power that is easy for the environment.

本発明により表面由来発電を大幅に取り入れた安定な電力供給が提供できた。   The present invention can provide a stable power supply that greatly incorporates surface-derived power generation.

電力を供給するには、生存セキュリティーと生活良好セキュリティーと経済性とを考慮した最高需要における発電構成割合に基づき発電設備容量構成割合を決め、季節や時刻により変動する電力需要を考慮した運用の仕方も決めておかねばならない。
化石燃料使用に余裕がある状況下での電力供給において、発電設備容量構成割合の計画法は以下のようにする。
まず、最高需要(夏季12時頃100%)における発電構成割合を以下のようにする。
図3は、本発明の日本の年間昼夜電力需要事情を勘案した最高需要における発電構成割合 (最高需要発電構成割合。%表示)である。化石燃料使用に余裕がある状況下、最高需要期(夏季)における24時間の需要曲線も折れ線で示した。運用上必要な余分な設備による待機中予備発電割合も合わせて図示した。コスト高となるため敢えて−とした。必要な余分な設備による瞬時型発電割合も合わせて図示した。
安くて資源量が豊富な燃料を使って電力需要の少ない深夜でもフル運転させるベース電源を水力発電、及び風力発電、及び原子力発電とする。
最高需要発電構成割合は以下のようにする。
水力発電割合は従来の割合(8%)と同じとする。水力発電量は従来の流水式水力発電設備容量でほぼ決まってしまう。
最高需要期最低需要割合(夏季5時約50%)の半分から水力発電割合を差し引いた割合を風力発電割合(約17%)とする。気紛れながらも24時間電力を得られるかもしれない風力発電を、電力需要の少ない時刻でもフル運転させるベース発電とした。但し、気紛れ故に全てを託すのは危険過ぎるからこの程度にした。
最高需要期最低需要割合の半分を原子力発電割合(約25%)とする。本来なら、ベース発電として最高需要期最低需要割合の全部を原子力発電割合としたい所であるが、風力発電をベース発電と位置づけたため半分とした。
環境を重んじる人々に受けのよい表面由来エネルギーである太陽ではあるが夜間には発電できないからベース電源にはできない。しかし電力需要の高い時刻には比較的安定的に発電する太陽発電割合を従来の予備発電割合(約9%)と同じにする。曇りや雨の日があっても予備発電設備で対応できるからである。
最高需要から水力発電割合及び風力発電割合及び原子力発電割合及び太陽発電割合を差し引いた割合を化石燃料発電セット割合(石炭発電+ガス発電+石油発電の合計で約41%)とする。電力需要が高く需要変動も大きい昼間での発電を燃料費用は高いが出力調節し易い化石燃料発電セットで対応する。化石燃料は政治的要因に左右され易いため多様化の観点から石炭発電、ガス発電、石油発電に等分散の1/3ずつにする。
上記最高需要における発電構成割合を元に、発電設備容量構成割合の計画法は以下のようにする。
図4は、最高需要を満たすための上記発電構成割合とこのための後述の本発明の発電設備容量構成割合を示した図である。合わせて最低需要期最高需要発電構成割合も示した。
風力発電と太陽発電といった気まぐれな表面由来エネルギー由来の発電設備を大規模導入したため、若干の定義をしておく。表面由来発電設備(風力発電設備(31)と太陽発電設備(21))に指定した条件の下で、長期間安定的に得られる電気出力の限度を定格電気出力(P0kWe)と呼ぶ。1年間に実際に得られた総電気出力エネルギー(QkWh)を定格電気出力で1年間運転し続けたとした時に得られるはずの総電気出力エネルギー(Q0kWh)で除した値を電気稼働率と呼ぶ。最高需要での電力を発生させるのに必要な発電設備容量を求めるには1年間の電気稼働率ではなく1時間〜30分程度の電気稼働率(時間電気稼働率と呼ぶ)が問題である。
水力発電設備容量割合は最高需要における水力発電割合と同じにする。水力発電の夏季での時間電気稼働率はおおむね100%に近いから水力発電設備容量割合を最高需要における水力発電割合と同じにした。老朽水力発電設備は多少残っているのでこれを予備として期待できるが無視し得る程度である。
風力発電設備容量割合は最高需要における風力発電割合と同じにする。風力発電においては、設備それ自体の定格電気出力を定義できても風速が長期間安定的に吹いているはずはないから定格電気出力を定義することは難しいが当該風力発電設備(31)が設置されている地域の最高需要時刻での平均風速で発電された電気出力を定格電気出力とする。無風の日には風力発電設備容量割合がいくら高くても風力発電割合はゼロであるが、多くの地域に多数設置すれば平均的には定常的に所定の発電が得られるかもしれないことに期待して時間電気稼働率を暫定的に100%とし風力発電設備容量割合を最高需要における風力発電割合と同じにした。その代わり発電が何時ゼロになってもいいように瞬時型発電設備(41)を余分に設置した。燃料となる石油または水素または炭化水素ガスを常時備えている限り100%運転し続け所定の最高需要における風力発電割合を確保することができる。最高需要における風力発電割合を高く設定するほど瞬時型発電設備容量を大きくしなければならない。
原子力発電設備容量割合は最高需要における原子力発電割合と同じにする。
太陽発電設備容量割合は最高需要における太陽発電割合と同じにする。太陽発電では装置が決まれば後は晴天の程度で決まってしまう。最高需要時刻における晴天の程度はおおむね100%に近いから太陽発電設備容量割合を最高需要における太陽発電割合と同じにした。但し、自然現象であるから突発的に発電がゼロになってもいいように予備発電設備容量で対応し得る程度の太陽発電設備容量割合とした。
石炭発電設備容量割合は最高需要における化石燃料発電セット発電割合の1/3とする。石炭発電は安い石炭を常時備えている限り100%運転し続けることができるからベース電力になる資格はあるが、炭酸ガス問題で今のところ発電量は抑制せざるを得ない。また、燃料種類の多様化によるセキュリティー向上を狙った。
ガス発電設備容量割合は最高需要における化石燃料発電セット発電割合の1/3とする。
石油発電設備容量割合は最高需要における化石燃料発電セット発電割合の1/3とする。
余分に保持する予備発電設備容量割合は最高需要における従来の予備発電割合相当とする。
余分に保持する瞬時型発電設備容量割合は最高需要における風力発電割合相当とする。
瞬時型発電設備(41)は化石燃料によるエンジン式発電機またはタービン式発電機にする。キャパシターを組み合わせれば短時間での風力発電の電力低下に即応し易い。その他、化石燃料または水素燃料による燃料電池でもよい。電気を長期間蓄積し難い蓄電池は余裕を持った容量にする必要があるため非常に高価になり不向きである。燃料電池の燃料として原子力発電で生成された水素を燃料とするなら炭酸ガスは放出しない。燃料電池の良い所は、化石燃料または水素燃料を貯蔵タンクに大量に貯蔵しておけば長期間瞬時に発電できる点である。石油発電に匹敵し、瞬時に発電できる点は優れている。難点は設備価格が高いことである。
電力需要は季節や時刻により変動するから運用は以下のようにする。春または秋の最低需要期の発電設備運用には工夫が必要である。燃料費用がタダである風力発電設備(31)や太陽発電設備(21)を積極的に運用しながら需要に対応しなければならない。
まず、最高需要(夏季12時頃100%)での運用は以下のようにする。
毎日の予想し得る電力需要変動に対しては化石燃料発電セットの発電調節で対応する。
風力発電割合が予想から減少した場合は瞬時型発電設備(41)で対応する。
風力発電割合が規定から増加した場合は風力発電設備(31)のブレーキによる放熱または風力発電設備の当該部停止で対応する。
太陽発電割合が予想から減少した場合は待機せる予備発電設備の発電で対応する。
太陽発電割合が規定から増加することはほとんど無い。
供給電力に比べて需要が増加する場合は待機せる予備発電設備とピークカットとで対応する。
供給電力の大幅なる予想外不足は老朽休止中老朽発電設備で対応する。なお、最高需要(夏季12時頃100%)から最高需要期最低需要割合(夏季翌朝5時頃約50%)までの間(図3の電力需要曲線の下の空白部分)は化石燃料発電セットの発電調節で制御する。
次に、最低需要期(春季)での運用は無駄が生じないように最低需要発電構成割合と最低需要期最高需要発電構成割合とを基礎にして以下のようにする。
図5は、最低需要期(春季)における24時間の需要曲線を折れ線で示し、最高需要 (夏季12時頃100%)に対する発電構成割合(%表示)も示した。
最低需要割合(春季5時頃約25%)での発電構成割合である最低需要発電構成割合は以下のようにする。
水力発電割合は最高需要での水力発電割合と同じにする。
風力発電設備容量を停止する群と運転する群とに等分に2群に分け運転中風力発電設備群での風力発電割合は最高需要での風力発電割合の1/2とする。多数基ある風力発電設備(31)の内、1部を点検のために春に停止する風力発電設備(31)群とする。春に運転する風力発電設備(31)群は点検のために秋に停止する。
原子力発電設備容量を停止する群と運転する群とに等分に2群に分け運転中原子力発電設備群での原子力発電割合は最低需要割合から水力発電割合及び最低需要割合での風力発電割合を差し引いた割合とする。
最低需要期最高需要発電構成割合(春季12時頃約50%)は、最低需要発電構成割合に最高需要での太陽発電割合(約9%)を加味し、その上で化石燃料発電セットの発電で調節する。
毎日の予想し得る電力需要変動は、化石燃料発電セット(図5の電力需要曲線の下の空白部分。最高で約16%)で対応する。
最低需要が所定の値よりも下がった場合は運転中原子力発電設備群の出力を下げる。多数基ある原子力発電設備の内、1部を燃料交換のために春に停止する原子力発電設備群とする。春に運転する原子力発電設備群は燃料交換のために秋に停止する。12ヶ月の内、1ヶ月原子炉を停止しても稼働率は約11ヶ月/12ヶ月であって90%程度の稼働率を維持できる。その上、燃料交換頻度を多くして運転期間を短くすることは核燃料集合体の取出燃焼度向上に寄与するため発電コストが低減できる。なお、停止中原子力発電設備群を更に2分割し、11ヶ月運転の後燃料交換のため短い停止をする停止中原子力発電設備群と24ヶ月運転の後機器検査のため(この間に燃料交換もする)長い停止をする停止中原子力発電設備群とに分ければ晩春や晩秋の中間電力需要期での運用がやりやすくなる。
燃料費が高く、環境に悪影響を及ぼすとされている化石燃料発電セットは、最低需要期最高需要割合を満たす程度運転する。他の化石燃料発電セットは休止する。
供給電力の大幅なる予想外不足は老朽休止中化石燃料発電セット設備で対応する。
最後に、最高需要期(夏季)と最低需要期(春季)の間での運用は燃料交換による原子力発電設備の停止基数の調節と運転中原子力発電設備群の出力調節とで制御する。沸騰水型原子炉であれば再循環流量を下げれば30%程度の出力減にすることは比較的簡単である。更に需要が下がれば、運転中の原子炉に制御棒を部分的に挿入して出力を更に下げればよい。
今後、経済成長は大幅には変動することはないと予想されるから消費電力も大幅には変動することはないと考えられる。したがって、定量的に発電設備容量構成割合も具体的に決め易い。
図4は発電設備容量構成割合を定量的に示した図でもある。太陽発電設備容量割合を9%、風力発電設備容量割合を17%、水力発電設備容量割合を8%、原子力発電設備容量割合を25%、石炭発電設備容量割合を14%、ガス発電設備容量割合を14%、石油発電設備容量割合を13%とし、余分に予備発電設備容量割合を9%保持(図4では−9%。設備を余分に持つことはコスト高となるため敢えて−とした。)し、余分に瞬時型発電設備容量割合を風力発電設備容量割合相当の17%(図4では−17%)保持する。
In order to supply power, the power generation capacity capacity composition ratio is determined based on the power generation composition ratio at the highest demand considering survival security, good life security and economic efficiency, and the operation method considering the power demand that fluctuates depending on the season and time You must also decide.
In the power supply in the situation where there is a margin for using fossil fuel, the method of planning the power generation capacity composition ratio is as follows.
First, the power generation composition ratio at the highest demand (100% around 12:00 in summer) is as follows.
FIG. 3 shows the power generation composition ratio (maximum demand power generation composition ratio, expressed in%) at the highest demand in consideration of the annual demand for electricity in Japan. The 24-hour demand curve in the highest demand period (summer) is also shown as a broken line under the situation where fossil fuels can be used. The figure also shows the standby power generation ratio during standby using extra facilities necessary for operation. Dare-because of high cost. The instantaneous power generation rate with the necessary extra facilities is also shown.
Base power sources that can be operated at full power even in the middle of the night with low power demand using cheap and resource-rich fuels are hydropower, wind power, and nuclear power.
The maximum demand power generation composition ratio is as follows.
The hydropower generation ratio is the same as the conventional ratio (8%). The amount of hydroelectric power generation is almost determined by the capacity of conventional flowing hydroelectric power generation facilities.
Wind power generation ratio (about 17%) is calculated by subtracting hydropower generation ratio from half of the minimum demand ratio (about 50% at 5am in summer). Wind power generation, which may be able to obtain power for 24 hours despite being freaky, was used as a base power generation system that can be fully operated even at times when power demand is low. However, because it is freaky, it is too dangerous to entrust everything.
Half of the lowest demand ratio in the highest demand period is the nuclear power generation ratio (about 25%). Originally, we would like to make all of the lowest demand ratio in the highest demand period as the base power generation the nuclear power generation ratio, but we halved it because we positioned the wind power generation as the base power generation.
Although it is the sun, which is a surface-derived energy that is well received by those who value the environment, it cannot be used as a base power source because it cannot generate electricity at night. However, the solar power generation ratio for relatively stable power generation at the time when power demand is high is made the same as the conventional standby power generation ratio (about 9%). This is because standby power generation facilities can cope with cloudy and rainy days.
The ratio of fossil fuel power generation set (coal power generation + gas power generation + oil power generation total 41%) is obtained by subtracting the hydroelectric power generation ratio, wind power generation ratio, nuclear power generation ratio and solar power generation ratio from the highest demand. Power generation in the daytime when power demand is high and demand fluctuations are large will be supported by a fossil fuel power generation set with high fuel costs but easy output control. Since fossil fuels are easily influenced by political factors, 1/3 of coal power generation, gas power generation, and oil power generation are equally distributed from the viewpoint of diversification.
Based on the power generation composition ratio at the highest demand, the planning method for the power generation equipment capacity composition ratio is as follows.
FIG. 4 is a diagram showing the above-described power generation composition ratio for satisfying the highest demand and the power generation equipment capacity composition ratio of the present invention to be described later. In addition, the ratio of the highest demand generation in the lowest demand period is also shown.
Since we have introduced large-scale power generation facilities derived from the fleeting surface-derived energy such as wind power generation and solar power generation, some definitions will be made. Under the conditions specified for the surface-derived power generation facilities (wind power generation facility (31) and solar power generation facility (21)), the limit of the electrical output that can be obtained stably over a long period of time is called the rated electrical output (P0kWe). The value obtained by dividing the total electrical output energy (QkWh) actually obtained in one year by the total electrical output energy (Q0kWh) that should be obtained when the system is operated for one year at the rated electrical output is called the electrical availability. In order to determine the power generation capacity required to generate electricity at the highest demand, the problem is not an annual electricity availability rate but an electricity availability rate of about 1 hour to 30 minutes (referred to as hourly electricity availability rate).
The hydropower generation capacity ratio is the same as the hydropower generation ratio at the highest demand. The hydroelectric power generation capacity ratio in the summer is almost 100%, so the capacity ratio of hydroelectric power generation equipment is the same as the ratio of hydroelectric power generation at the highest demand. Since some old hydroelectric power facilities remain, this can be expected as a spare, but is negligible.
The wind power generation capacity ratio is the same as the wind power generation ratio at the highest demand. In wind power generation, even if the rated electrical output of the facility itself can be defined, it is difficult to define the rated electrical output because the wind speed should not be stable for a long time, but the wind power generation facility (31) is installed. The electrical output generated at the average wind speed at the highest demand time in the area where the power is supplied is defined as the rated electrical output. On windless days, the wind power generation ratio is zero no matter how high the capacity ratio of wind power generation facilities is. However, if a large number of wind power generation facilities are installed in many areas, average power generation may be obtained on a regular basis. Expecting that the hourly electricity utilization rate is tentatively 100% and the wind power generation capacity ratio is the same as the wind power generation rate at the highest demand. Instead, an instantaneous power generation facility (41) was installed so that the power generation could be zero at any time. As long as oil, hydrogen, or hydrocarbon gas as a fuel is always provided, 100% operation can be continued and a wind power generation ratio at a predetermined maximum demand can be secured. The higher the wind power generation ratio at the highest demand, the larger the instantaneous power generation capacity.
The nuclear power generation capacity ratio is the same as the nuclear power generation ratio at the highest demand.
The solar power generation capacity ratio is the same as the solar power generation ratio at the highest demand. In solar power generation, once the device is decided, it will be decided at a fine level. Since the degree of clear sky at the highest demand time was almost 100%, the solar power generation capacity ratio was made the same as the solar power generation ratio at the highest demand. However, since it is a natural phenomenon, the ratio of the capacity of solar power generation equipment is set to a level that can be accommodated by the capacity of standby power generation equipment so that the power generation may suddenly become zero.
The coal power generation capacity ratio will be 1/3 of the fossil fuel power generation set generation ratio at the highest demand. As long as coal power generation is always equipped with cheap coal, it can qualify as base power because it can continue to operate 100%, but for the moment it has to curb power generation due to the carbon dioxide problem. In addition, we aimed to improve security by diversifying fuel types.
The capacity ratio of gas power generation facilities will be 1/3 of the ratio of fossil fuel power generation set generation at the highest demand.
Oil power generation capacity will be 1/3 of fossil fuel power generation set at the highest demand.
The reserve power generation capacity ratio to be retained is equivalent to the conventional reserve power generation ratio at the highest demand.
The excess instantaneous power generation capacity capacity ratio to be retained is equivalent to the wind power generation ratio at the highest demand.
The instantaneous power generation facility (41) is an engine generator or a turbine generator using fossil fuel. Combined with a capacitor, it is easy to respond quickly to the power reduction of wind power generation in a short time. In addition, a fuel cell using fossil fuel or hydrogen fuel may be used. A storage battery that is difficult to store electricity for a long period of time needs to have a sufficient capacity, so it is very expensive and unsuitable. Carbon dioxide is not released if hydrogen generated by nuclear power generation is used as fuel for the fuel cell. A good point of a fuel cell is that if a large amount of fossil fuel or hydrogen fuel is stored in a storage tank, power can be generated instantaneously for a long period of time. It is comparable to oil power generation and is excellent in that it can generate power instantaneously. The difficulty is that the equipment price is high.
Since power demand varies depending on the season and time, operation is as follows. Ingenuity is necessary for the operation of power generation facilities in the minimum demand period in spring or autumn. The wind power generation facility (31) and the solar power generation facility (21), which have free fuel costs, must be used to meet demand.
First, the operation at the highest demand (100% around 12:00 in summer) is as follows.
Daily fluctuations in power demand that can be anticipated will be handled by adjusting the power generation of fossil fuel power generation sets.
When the wind power generation ratio decreases from the expected value, the instantaneous power generation facility (41) is used.
When the wind power generation ratio increases from the regulation, it is dealt with by heat radiation by the brake of the wind power generation facility (31) or by stopping the part of the wind power generation facility.
If the solar power generation ratio decreases from the expected value, it will respond by generating power from a standby power generation facility.
The percentage of solar power generation rarely increases from the regulation.
When the demand increases compared to the supplied power, the standby power generation facility that is on standby and the peak cut are used.
The unexpected shortage of power supply will be dealt with by the old power generation facilities during aging stoppage. Note that the fossil fuel power generation set from the highest demand (100% around 12:00 in summer) to the lowest demand ratio during the highest demand period (about 50% around 5am in the summer) is the fossil fuel power generation set. Control by adjusting the power generation.
Next, operation in the lowest demand period (spring) is performed as follows based on the lowest demand power generation component ratio and the lowest demand period highest demand power generation component ratio so as not to waste.
Figure 5 shows the 24-hour demand curve in the lowest demand period (spring) as a broken line, and also shows the power generation composition ratio (in%) with respect to the highest demand (100% around 12:00 in summer).
The minimum demand power generation composition ratio, which is the power generation composition ratio at the minimum demand ratio (about 25% around 5 pm in spring), is as follows.
The hydropower generation rate will be the same as the hydropower generation rate at the highest demand.
The wind power generation capacity in the operating wind power generation equipment group is divided into two groups equally divided into the group that stops the wind power generation capacity and the operating group, and the wind power generation ratio at the highest demand is ½. Among the many wind power generation facilities (31), a part of the wind power generation facilities (31) is stopped in the spring for inspection. The wind power generation facilities (31) that are operating in the spring will be stopped in the fall for inspection.
Divided into two groups, the group that shuts down the nuclear power generation capacity and the group that operates it.The nuclear power generation ratio in the nuclear power generation equipment group is from the minimum demand ratio to the hydropower generation ratio and the wind power generation ratio at the minimum demand ratio. The ratio is deducted.
The highest demand power generation composition ratio (about 50% around 12:00 in the spring season) takes into account the minimum demand power generation composition ratio and the solar power generation ratio (about 9%) at the highest demand, and then generates power from the fossil fuel power generation set. Adjust with.
Daily and predictable fluctuations in power demand correspond with fossil fuel power generation sets (blanks below the power demand curve in FIG. 5, up to about 16%).
When the minimum demand falls below a predetermined value, the output of the nuclear power generation equipment group is reduced during operation. Among the many nuclear power generation facilities, one part will be a group of nuclear power generation facilities that will be shut down in the spring for fuel replacement. A group of nuclear power plants operating in the spring will be shut down in the fall to refuel. Within 12 months, even if the reactor is shut down for 1 month, the operation rate is about 11 months / 12 months, and it can maintain an operation rate of about 90%. In addition, shortening the operation period by increasing the frequency of fuel replacement contributes to the improvement of the burnup degree of the nuclear fuel assembly, so that the power generation cost can be reduced. In addition, the nuclear power generation facility group that is out of service is further divided into two, and the nuclear power generation facility group that is out of service for a short stop for fuel replacement after 11 months of operation and equipment inspection after operation for 24 months (fuel change is also performed during this period) ) If it is divided into a group of out-of-service nuclear power generation facilities that have a long outage, it will be easier to operate in the middle power demand period in late spring or late autumn.
The fossil fuel power generation set, which has high fuel costs and is considered to have a negative impact on the environment, operates to meet the highest demand ratio in the lowest demand period. Other fossil fuel power generation sets are suspended.
The unexpected unexpected shortage of power supply will be dealt with by the fossil fuel power generation set during the aging outage.
Finally, the operation between the highest demand period (summer season) and the lowest demand period (spring season) is controlled by adjusting the number of stopping nuclear power generation facilities by changing fuel and adjusting the output of the operating nuclear power generation facilities. In the case of a boiling water reactor, it is relatively easy to reduce the output by about 30% if the recirculation flow rate is lowered. If the demand further decreases, the control rod may be partially inserted into the operating nuclear reactor to further reduce the output.
In the future, economic growth is not expected to fluctuate significantly, so power consumption will not fluctuate significantly. Therefore, it is easy to determine the power generation capacity capacity composition ratio quantitatively.
FIG. 4 is also a diagram quantitatively showing the power generation equipment capacity composition ratio. Solar power generation capacity ratio 9%, wind power generation capacity ratio 17%, hydropower capacity ratio 8%, nuclear power capacity ratio 25%, coal power capacity ratio 14%, gas power capacity ratio 14%, oil power generation capacity ratio is 13%, and extra power generation capacity ratio is 9% (-9% in Fig. 4). ) And an extra 17% (-17% in Fig. 4) of the instantaneous power generation capacity capacity equivalent to the wind power generation capacity ratio.

実施例1は化石燃料使用に余裕がある状況下の場合であるから化石燃料を燃焼させる化石燃料発電セットを使用し、風力発電割合と太陽発電割合を少なめにした。一方、化石燃料が不足し高騰することもありえるから、化石燃料発電セット割合はほぼゼロにせざるを得ない事態も考えられる。
化石燃料使用に余裕がない状況下での電力供給において、化石燃料原則不使用発電設備容量構成割合の計画法は以下のようにする。
図6は、化石燃料使用に余裕がない状況下、本発明の日本の年間昼夜電力需要事情を勘案した最高需要における発電構成割合 (最高需要発電構成割合。%表示)である。最高需要期(夏季)における24時間の需要曲線も折れ線で示した。運用上必要な余分な設備による蓄電池放電割合も合わせて図示した。コスト高となるため敢えて−とした。必要な余分な設備による瞬時型発電割合も合わせて図示した。
最高需要(夏季12時頃100%)における発電構成割合である最高需要発電構成割合は以下のようにする。
水力発電割合は従来の割合と同じにする。
最高需要期最低需要割合(約50%)から水力発電割合(約8%)を差し引いた割合を原子力発電割合(約42%)とする。化石燃料不足を補うためには信頼性が高い原子力発電を増加せざるを得ない。
最高需要期における8時(太陽発電開始時刻)の電力需要(約65%)から最高需要期最低需要割合(約50%)を差し引いた分を風力発電割合(約15%)とする。風力発電の導入は発電運用に問題があるため大幅には増加しにくい。発電が何時ゼロになってもいいように瞬時型発電設備(41)を余分に設置するのは実施例1と同様である。
最高需要から水力発電割合及び原子力発電割合及び風力発電割合を差し引いた割合を太陽発電割合(約35%)とする。関東での電力最高需要は夏の昼であるため太陽発電を大幅に増加できる余地がある。但し、化石燃料燃焼による予備発電設備を原則的に利用しないため、コスト増加を招く蓄電池を余分に手当てする必要がある。
化石燃料原則不使用発電設備容量構成割合の計画法は以下のようにする。
図7は、化石燃料使用に余裕がない状況下、最高需要を満たすための上記発電構成割合とこのための後述の本発明の化石燃料原則不使用発電設備容量構成割合を示した図である。合わせて最低需要期最高発電割合も示した。
水力発電設備容量割合は最高需要における水力発電割合と同じにする。
風力発電設備容量割合は最高需要における風力発電割合と同じにする。
原子力発電設備容量割合は最高需要における原子力発電割合と同じにする。
太陽発電設備容量割合は最高需要における太陽発電割合と同じにする。
余分に保持する蓄電池設備容量割合は最高需要における太陽発電割合の半分程度とする。夏季の太陽発電は18時くらいまで可能で12時頃の太陽発電の20%程度あるし、夏季には曇天が少なく曇天では電力需要は少なくなるため、高価な蓄電池を節約した。
余分に保持する瞬時型発電設備容量割合は最高需要における風力発電割合相当とする。
化石燃料使用に余裕がない状況下での運用法は以下のようにする。
電力需要は季節や時刻により変動するから、化石燃料原則不使用の元で出力が安定しない表面由来発電を大幅に導入するには後述の表面由来発電補完システムを導入する必要がある。
表面由来発電補完システム導入化石燃料原則不使用運用法は以下のようにする。
まず、最高需要期での運用は以下のようにする。
風力発電割合が予想から減少した場合は瞬時型発電設備(41)の発電で対応する。
風力発電割合が規定から増加した場合は蓄電池設備(51)の蓄電で吸収または風力発電設備(31)のブレーキによる放熱または風力発電設備(31)の当該部停止で対応する。
太陽発電割合が予想から減少した場合は蓄電池設備(51)の放電または瞬時型発電設備(41)の発電で対応する。
太陽発電割合が規定から増加することはほとんど無い。
供給電力に比べて需要が大きい場合は蓄電池設備(51)の放電と瞬時型発電設備(41)の発電とピークカットとで対応する。瞬時型発電設備(41)で蓄電池設備(51)に充電して必要に応じ放電することもする。
供給電力の大幅なる予想外不足は老朽休止中化石燃料発電セット設備で対応する。使用し難くなった化石燃料発電セットを撤去するには金がかかるから休止状態であろう。したがって、老朽休止中化石燃料発電セット設備容量は大幅に残っているはずである。
最高需要期太陽発電が得られるまで(16時〜翌朝8時)の運用は最高需要期最低需要割合(夏季5時頃約65%)における発電構成割合に加えて蓄電池設備(51)に蓄積せる電力を放電する。
次に、最低需要期(春季)での運用は無駄が生じないように最低需要発電構成割合と最低需要期最高需要発電構成割合とを基礎にして以下のようにする。
図8は、化石燃料使用に余裕がない状況下、最低需要期(春季)における24時間の需要曲線を折れ線で示し、最高需要 (夏季12時頃100%)に対する発電構成割合(%)も示した。
最低需要割合(春季5時頃約25%)での発電構成割合である最低需要発電構成割合は以下のようにする。
水力発電割合は最高需要での水力発電割合と同じにする。
風力発電設備容量を停止する群と運転する群とに等分に2群に分け運転中風力発電設備群での風力発電割合は最高需要での風力発電割合の1/2とする。設備の半分を定期検査等で停止しておく。
原子力発電設備容量を停止する群と運転する群とに等分に2群に分け運転中原子力発電設備群での原子力発電割合は最低需要割合から水力発電割合及び最高需要での風力発電割合の1/2を差し引いた割合とする。
最低需要割合での発電構成割合である最低需要期最高需要発電構成割合(春季12時頃約50%)は、最低需要発電構成割合に太陽発電設備容量を停止する群と運転する群とに等分に2群に分け運転中太陽発電設備(21)群での太陽発電割合は最高需要での太陽発電割合の1/2を加味する。更には、蓄電池設備(51)に蓄積せる電力を放電する。
最低需要が所定の値よりも下がった場合は運転中原子力発電設備群の出力を下げる。
最低需要期太陽発電が得られるまでは最低需要割合における発電構成割合に加えて蓄電池設備(51)に蓄積せる電力を放電する。
供給電力に比べて需要が大きい場合は蓄電池設備(51)の放電と瞬時型発電設備(41)の発電とピークカットとで対応する。
供給電力の大幅なる予想外不足は老朽休止中化石燃料発電セット設備で対応する。
最後に、最高需要期(夏季)と最低需要期(春季)の間での運用は燃料交換による原子力発電設備の停止基数の調節と運転中原子力発電設備群の出力調節で制御する。なお、いかなる時でも風力発電や太陽発電や水力発電における電力供給過剰は蓄電できる範囲内で蓄電池設備(51)に吸収する。上記一連の作業はコンピュータ(10)からの指令により自動的に実施される。
今後は安定的な電力需要が予想されるから発電設備容量構成割合も具体的に決め易い。
図7は化石燃料原則不使用発電設備容量構成割合を定量的に示した図である。太陽発電設備容量割合を35%、風力発電設備容量割合を15%、水力発電設備容量割合を8%、原子力発電設備容量割合を42%とし、余分に蓄電池設備容量を18%(図7では−18%)保持し、余分に瞬時型発電設備容量を15%(図7は−15%)保持する。
最高需要における発電構成割合において昼間のピーク対応用に、原子力発電所のECCS用発電装置を起動しておき(ゼロ出力)必要に応じてすぐに発電し原子力発電所内電力を賄い(逆に外部電源をECCS用発電装置のバックアップとする)、余剰分を送電に加えることも考えられる。
Since Example 1 is a case where there is room for using fossil fuel, a fossil fuel power generation set for burning fossil fuel was used, and the wind power generation ratio and the solar power generation ratio were reduced. On the other hand, there is a possibility that the fossil fuel power supply set ratio is almost zero because the fossil fuel may be insufficient and soar.
In the power supply in a situation where there is no allowance for fossil fuel use, the planning method for the power generation equipment capacity composition ratio not using fossil fuel principle is as follows.
FIG. 6 shows the power generation composition ratio (highest demand power generation composition ratio, expressed in%) in the highest demand in consideration of Japan's annual day and night power demand situation in a situation where there is no room for fossil fuel use. The demand curve for 24 hours in the highest demand period (summer) is also shown by a broken line. The storage battery discharge rate due to the extra equipment required for operation is also shown. Dare-because of high cost. The instantaneous power generation rate with the necessary extra facilities is also shown.
The highest demand power generation composition ratio that is the power generation composition ratio in the highest demand (100% around 12:00 in summer) is as follows.
The hydropower generation ratio will be the same as the conventional ratio.
The ratio of nuclear power generation (about 42%) is obtained by subtracting the hydropower generation ratio (about 8%) from the minimum demand ratio (about 50%) during the highest demand period. In order to make up for the shortage of fossil fuels, we have to increase nuclear power generation with high reliability.
Wind power generation ratio (about 15%) is obtained by subtracting the minimum demand ratio (about 50%) from the power demand (about 65%) at 8 o'clock (solar power generation start time) in the maximum demand period. The introduction of wind power generation is difficult to increase significantly due to problems in power generation operation. As in the first embodiment, an extra instantaneous power generation facility (41) is installed so that power generation can be zero at any time.
The solar power generation ratio (about 35%) is obtained by subtracting the hydroelectric power generation ratio, nuclear power generation ratio, and wind power generation ratio from the highest demand. Since the highest demand for electricity in the Kanto region is summer noon, there is room for a significant increase in solar power generation. However, since a reserve power generation facility using fossil fuel combustion is not used in principle, it is necessary to deal with an extra storage battery that causes an increase in cost.
The planning method for the capacity composition ratio of fossil fuel-free power generation facilities is as follows.
FIG. 7 is a diagram showing the above-mentioned power generation composition ratio for satisfying the highest demand and the fossil fuel principle non-use power generation equipment capacity composition ratio of the present invention to be described later for this purpose in a situation where there is no allowance for fossil fuel use. At the same time, the highest power generation ratio in the lowest demand period is also shown.
The hydropower generation capacity ratio is the same as the hydropower generation ratio at the highest demand.
The wind power generation capacity ratio is the same as the wind power generation ratio at the highest demand.
The nuclear power generation capacity ratio is the same as the nuclear power generation ratio at the highest demand.
The solar power generation capacity ratio is the same as the solar power generation ratio at the highest demand.
The storage battery capacity ratio to be retained is about half of the solar power generation ratio at the highest demand. Solar power generation in the summer is possible until about 18:00, and there is about 20% of solar power generation around 12:00, and there is little cloudy in the summer, and power demand is reduced in the cloudy weather, thus saving expensive storage batteries.
The excess instantaneous power generation capacity capacity ratio to be retained is equivalent to the wind power generation ratio at the highest demand.
The operation method in the situation where there is not enough room for fossil fuel use is as follows.
Since electricity demand fluctuates depending on the season and time of day, it is necessary to introduce a surface-based power generation supplement system described later in order to significantly introduce surface-based power generation whose output is not stable under the non-use of fossil fuel principles.
The method of non-use of fossil fuel in principle is introduced as follows.
First, the operation in the highest demand period is as follows.
If the wind power generation ratio decreases from the expected value, the instantaneous power generation facility (41) generates power.
When the wind power generation ratio increases from the regulation, it is dealt with by absorption of power stored in the storage battery facility (51), heat radiation by braking of the wind power generation facility (31), or stop of the relevant part of the wind power generation facility (31).
When the solar power generation ratio decreases from the expectation, it is dealt with by the discharge of the storage battery facility (51) or the power generation of the instantaneous power generation facility (41).
The percentage of solar power generation rarely increases from the regulation.
When the demand is larger than the supplied power, the discharge of the storage battery facility (51), the power generation of the instantaneous power generation facility (41), and the peak cut correspond. The storage battery facility (51) is charged by the instantaneous power generation facility (41) and discharged as necessary.
The unexpected unexpected shortage of power supply will be dealt with by the fossil fuel power generation set during the aging outage. It will be dormant because it takes money to remove a fossil fuel power generation set that has become difficult to use. Therefore, the fossil fuel power generation set capacity during the aging outage should remain significantly.
Operation until the solar power generation in the highest demand period is obtained (16:00 to 8:00 the next morning) is accumulated in the storage battery equipment (51) in addition to the power generation composition ratio in the lowest demand ratio in the highest demand period (about 65% in the summer season) Discharge power.
Next, operation in the lowest demand period (spring) is performed as follows based on the lowest demand power generation component ratio and the lowest demand period highest demand power generation component ratio so as not to waste.
Figure 8 shows the demand curve for 24 hours in the lowest demand period (spring) in a situation where there is not enough room for fossil fuel use, and also shows the power generation composition ratio (%) with respect to the highest demand (100% around 12:00 in summer). It was.
The minimum demand power generation composition ratio, which is the power generation composition ratio at the minimum demand ratio (about 25% around 5 pm in spring), is as follows.
The hydropower generation rate will be the same as the hydropower generation rate at the highest demand.
The wind power generation capacity in the operating wind power generation equipment group is divided into two groups equally divided into the group that stops the wind power generation capacity and the operating group, and the wind power generation ratio at the highest demand is ½. Stop half of the equipment at regular inspections.
Divided into two groups equally divided into the group that shuts down the nuclear power generation capacity and the group that is in operation.The nuclear power generation ratio in the nuclear power generation equipment group is from the minimum demand ratio to the hydropower generation ratio and the wind power generation ratio at the maximum demand. Use the ratio minus / 2.
The power generation composition ratio at the minimum demand ratio, which is the power generation composition ratio at the minimum demand ratio (about 50% around 12:00 in the spring season) is the same as the group that stops the solar power generation capacity and the group that operates Divided into two groups, the solar power generation ratio in the operating solar power generation equipment (21) group takes into account 1/2 of the solar power generation ratio at the highest demand. Furthermore, the electric power stored in the storage battery facility (51) is discharged.
When the minimum demand falls below a predetermined value, the output of the nuclear power generation equipment group is reduced during operation.
Until the minimum demand period solar power generation is obtained, the power stored in the storage battery facility (51) is discharged in addition to the power generation component ratio at the minimum demand ratio.
When the demand is larger than the supplied power, the discharge of the storage battery facility (51), the power generation of the instantaneous power generation facility (41), and the peak cut correspond.
The unexpected unexpected shortage of power supply will be dealt with by the fossil fuel power generation set during the aging outage.
Finally, the operation between the highest demand period (summer season) and the lowest demand period (spring season) is controlled by adjusting the number of stopping nuclear power generation facilities by changing the fuel and adjusting the output of the nuclear power generation facilities during operation. At any time, excess power supply in wind power generation, solar power generation, or hydroelectric power generation is absorbed by the storage battery facility (51) within a range where power can be stored. The series of operations described above is automatically performed according to a command from the computer (10).
Since stable power demand is expected in the future, it is easy to determine the power generation capacity composition ratio.
FIG. 7 is a diagram quantitatively showing the power generation equipment capacity composition ratio not using fossil fuel principle. The solar power generation capacity ratio is 35%, the wind power generation capacity ratio is 15%, the hydropower generation capacity ratio is 8%, the nuclear power generation capacity ratio is 42%, and the extra storage battery capacity is 18%. 18%), and 15% of instantaneous power generation capacity (-15% in Fig. 7).
In order to respond to daytime peaks in the power generation composition ratio at the highest demand, the nuclear power plant ECCS generator is activated (zero output) and immediately generates power as needed to cover the power in the nuclear power plant (conversely external power Can be used as a backup for the ECCS generator), and the surplus can be added to the transmission.

図9は、本発明の表面由来発電補完システム概念図である。表面由来発電設備には太陽発電設備(21)や風力発電設備(31)の他に水力発電設備や地熱発電設備やバイオマス発電設備もあるが本図では表面由来発電設備の代表的なものとして太陽発電設備(21)と風力発電設備(31)を記載した。
表面由来発電設備である太陽発電設備(21)や風力発電設備(31)からの電力は不安定である。系統電力(表面由来発電の他に化石燃料発電や原子力発電もあるならそれ等を加えた全電力)の需要変動により生じる発電量の過不足を補完する必要がある。更には、原則として化石燃料発電無しにすると系統電力の安定的主要な電力設備は需要変動への対応が迅速ではない原子力発電のみとなる。系統電力の需要変動により生じる発電量の過不足を補完する必要がある。
太陽発電設備(21)と風力発電設備(31)とからの電力は電力計(100)を通り送電線(110)経由で系統電線(200)に送られる。太陽発電設備(21)の設置地域に日射量測定装置(22)を付随させている。風力発電設備(31)の設置地域に風速測定装置(32)を付随させている。電力計(100)からの太陽発電電力計データまたは風力発電電力計データは主通信線(300)によってコンピュータ(10)に接続されている送受信器1(15)に送られ記憶装置(14)に記憶される。日射量測定装置(22)からの日射量データまたは風速測定装置(32)からの風速データは通信枝線(310)を通り主通信線(300)によってコンピュータ(10)に接続されている送受信器1(15)に送られ記憶装置(14)に記憶される。
系統電線(200)の系統電力電圧VV(t)は主通信線(300)を介してコンピュータ(10)に接続されている送受信器2(16)に送られ記憶装置(14)に記憶される。
記憶装置(14)から各種データをコンピュータ(10)に読み込み、演算装置(11)で計算した結果を画面(13)に随時表示したり各設備を制御したりする。必要に応じてキーボード(12)から手入力により過去データの参照等をしたり各種発電設備を制御したりする。
コンピュータ(10)は系統電力を制御する給電指令所内に設置すると効率が上がる。気象の異なる広い管轄内に設置せる多数の太陽発電設備(21)と風力発電設備(31)とからの発電が平均化され変動の少ない電力になることが期待でき、これを更にコンピュータ(10)で一括管理すれば表面由来発電により発電される電力のより一層の安定化が期待できる。
演算装置(11)が、記憶装置(14)から読み出された単位時間当りの太陽発電量sp(t)と単位時間当りの風力発電量wp(t)に基づいて計算した当該時刻の表面由来発電割合cが定格表面由来発電割合c0(太陽が出てる昼間は風力発電と太陽発電が可能なので1.0、太陽が出てない夜間は風力発電のみであるから0.5)に比べて小さいと判別した場合は蓄電池設備(51)から放電し放電できそうもなければ送信器により蓄電池設備(51)の蓄電池制御器(53)に充電することを指令すると共に瞬時型発電設備(41)の発電量を上昇させ、cがc0に比べて大きいと判別した場合は蓄電池設備(51)に充電し、充電できそうもなければ表面由来発電設備の風力発電設備(31)にブレーキをかけたり太陽発電設備(21)に遮光によるブレーキをかけたりする。
演算装置(11)が、記憶装置(14)から読み出された当該時刻の系統電力電圧VV(t)が系統電力定格電圧VV0よりも下がり電力需要が大き過ぎて電力供給が追いつかないと判別した場合は蓄電池設備(51)から放電し、それでも足りないと判別した場合は瞬時型発電設備(41)の発電量を上昇させる。系統電力電圧VV(t)が系統電力定格電圧VV0よりも上がり電力需要が少な過ぎて電力供給過多と判別した場合は蓄電池設備(51)に充電し、それでも供給過剰であると判別した場合は表面由来発電設備にブレーキをかける。
蓄電池設備(51)は、蓄電池監視装置(52)及び蓄電池制御器(53)及び蓄電池(54)及び電力計(100)とからなる。蓄電量は蓄電池監視装置(52)から主通信線(300)により送受信器2(12)に接続されたコンピュータ(10)に入力される。蓄電池制御器(53)は主通信線(300)により送受信器2(16)に接続されたコンピュータ(10)により制御される。蓄電池(54)からの放電量または充電量は電力計(100)から主通信線(300)により送受信器2(12)に接続されたコンピュータ(10)に入力される。
瞬時型発電設備(41)は、発電機(42)及び燃料タンク(46)から燃料管(45)を通って送られる燃料によって動くエンジン(44)及びエンジン制御機(43)及び電力計(100)とからなる。エンジン制御機(43)は主通信線(300)により送受信器2(16)に接続されたコンピュータ(10)により制御される。エンジン(44)出力は電力計(100)から主通信線(300)により送受信器1(15)に送られコンピュータ(10)に入力される。
瞬時型発電設備(41)としてエンジン(44)の代わりに燃料電池を選択すれば発電機(42)は不要になる。その他、瞬時型発電設備(41)として原子力船用の加圧水型原子炉を導入し制御棒操作によったり、沸騰水型原子炉を導入し再循環ポンプ操作による炉心流量の調節によったりして出力を素早く変動させることができる。
系統電線(200)の系統電力電圧VV(t)は、系統電力定格電圧VV0から変動しないことが望ましい。電力需要>電力供給ならVV(t)が下がり、電力需要<電力供給ならVV(t)が上がる。VV(t)の検出値は主通信線(300)によってコンピュータ(10)に接続されている送受信器2(16)に送られ記憶装置(14)に記憶される。
図10は、表面由来発電を補完し常時定格電力を維持するためにコンピュータ(10)の演算装置(11)に内臓せるプログラムのフローチャートである。
ステップ1:固定入力の読み込み(±5%程度の余裕を見込む)。
最大日射量L0 (t)(t=12を1.0に正規化した時刻8<t<16における最大日射量。近似例は、
L0 (12)を時刻12時での最大日射量として L0 (t) = L0 (12) X ( 1 - ( (t - 12) / 4 )2 )、
定格風速v0、時間間隔(時間差)Δt、単位時間当りの太陽定格発電量usp0(t)(L0(t)の時に太陽発電設備(21)が長時間安定して維持できる発電量。時刻によって日射量が弱まれば太陽発電設備が正常であっても太陽発電量は下がる。近似例は、8<t<16
でusp0 (12)を時刻12時での単位時間当りの最大発電量としてusp0(t) = usp0(12) X L0 (t) / L0 (12) )、単位時間当りの風力定格発電量uwp0(v0の時に風力発電設備が長時間安定して維持できる発電量。)、蓄電池蓄電量下限ccL、蓄電池蓄電量上限ccH、ccL以下の場合に充電するための充電割合α、系統電力定格電圧VV0。
ステップ2:時間依存変動データの読み込み。
時刻tの日射量データL(t)、風速データv(t)、蓄電池残量cc(t)、時刻tまでの太陽発電量kWhであるsp(t)、時刻tまでの風力発電量kWhであるwp(t)、系統電力電圧VV(t)。
ステップ3:太陽発電の時刻tにおける解析。
日差しが十分かどうかを日射量割合sRで監視する。時刻tまでの発電量kWhと時刻t-Δtまでの発電量kWhとから単位時間当りの太陽発電量usp(t)を計算する。太陽発電量割合cs(=usp(t)/usp0(t))を計算する。時刻tが夕方16時〜明け方8時までは太陽発電がゼロだからcsは0.0で、電力は発生していない。時刻tが8時〜16時の太陽日射量は有効で12時頃には太陽発電が十分ならcsは1.0で定格電力が発生している。時刻0時〜24時までの定格表面由来発電割合c0は、tが8時〜16時の太陽日射量が有効である間は1.0とし夕方16時〜明け方8時までは風力発電しか期待できないから0.5とした(太陽活動を考慮した設定値で夏季終日晴天日の太陽日差し変化考慮した修正は必要。季節毎に設定値変更も必要である)。cs=0、c0=0.5 と代入しておく。
ステップ4:風力発電の時刻tにおける解析。
風速が十分かどうかを風速比vRで監視する。時刻tまでの発電量kWhと時刻t-Δtまでの発電量kWhとから単位時間当りの風力発電量uwp(t)を計算する。風力発電量割合cw(=uwp(t)/uwp0)を計算する。風力発電がゼロならcwは0.0で電力は発生しない。太陽発電量割合csと風力発電量割合cwとの和による表面由来発電割合cを計算する。
ステップ5:系統電力需給の判断。
電力需要と電力供給が合っていれば系統電力電圧VV(t)は系統電力定格電圧VV0にほぼ等しく比CHは許容偏差(図では例として0.01とした)内であるから全体としては正常であるとしてステップ7に行く。CHが許容偏差から外れていればステップ6に行く。
ステップ6:系統電力需給にミスマッチがある時の判断。
c0=1、c=CH と代入しておく。電力需要が給電に比べて小さいならば系統電力電圧VV(t)は系統電力定格電圧VV0よりも高くなるから比CHは1以上になる。このことは表面由来発電から見ると表面由来発電過剰だとしてステップ8−2に行く。電力需要が給電に比べて大きいならば系統電力電圧VV(t)は系統電力定格電圧VV0よりも低くなるから比CHは1以下になる。このことは表面由来発電から見ると表面由来発電不足だとしてステップ10に行く。
ステップ7:表面由来発電割合cの過不足判定。
昼間なら0.5夜間なら1.0である定格表面由来発電割合c0において、c<c0なら発電不足であるとしてステップ8-1に行き、c>c0なら発電過剰であるとしてステップ8-2に行く。
ステップ8−1:表面由来発電不足の場合。蓄電池(54)に十分充電されていて放電が可能かどうかの判定をする。
蓄電量cc(t) >蓄電量下限ccLなら放電可能としてステップ9−2に行く。
蓄電量cc(t) >蓄電量下限ccLではないなら放電不可能としてステップ9−1に行く。
ステップ8−2:表面由来発電過剰の場合。蓄電池(54)に充電の余地があり充電が可能かどうかの判定をする。
蓄電量cc(t) <蓄電量上限ccHなら充電可能としてステップ9−3に行く。蓄電量cc(t) <蓄電量上限ccHではないなら充電不可能としてステップ9−4に行く。
ステップ9−1:送信器により蓄電池設備(51)の蓄電池制御器(53)に単位時間にαの割合で充電することを指令すると共に送信器により瞬時型発電設備(41)のエンジン制御機(43)に制御量c41として( c0 - c )+αに比例して出力上昇することを指令する。系統電力需要が供給に比べて過大であればエンジン制御機(43)にc0=1、c=|CH|としてc41=c0-c+αに比例して出力上昇することを指令する。電力需要の大幅増大や急激な電力供給減少にはキーボード(12)から手入力によりエンジン制御機(43)に制御量c41=1.0を入力し出力上昇させることができる。ステップ2に行き上記過程を繰り返す。
ステップ9−2:送信器により蓄電池設備(51)の蓄電池制御器(53)に制御量c51として( c0 - c )に比例して放電することを指令し、ステップ10に行く。
ステップ9−3:送信器により蓄電池設備(51)の蓄電池制御器(51)に制御量c51として( c - c0 )に比例して充電することを指令する。ステップ2に行き上記過程を繰り返す。
ステップ9−4:送信器により風力発電設備(31)に装備せるブレーキに制御量c31として( c - c0 )に比例してブレーキを掛けることを指令する。ステップ2に行き上記過程を繰り返す。
ステップ10:蓄電池放電だけで電力需要が満たされるかどうかの判定。
c0=1、c=|CH| と代入しておく。|CH -1| < 0.01の系統電力の変動が許容偏差以内ならば蓄電池放電で賄えるとしてステップ2に行き上記過程を繰り返す。|CH -1| < 0.01でないならc0=1、c=|CH|としてステップ9−1に行く。c=|CH|<1。
FIG. 9 is a conceptual diagram of the surface-derived power generation supplement system of the present invention. In addition to solar power generation equipment (21) and wind power generation equipment (31), surface-derived power generation equipment includes hydroelectric power generation equipment, geothermal power generation equipment, and biomass power generation equipment. The power generation facility (21) and the wind power generation facility (31) are described.
Electric power from the solar power generation facility (21) and the wind power generation facility (31), which are surface-derived power generation facilities, is unstable. It is necessary to compensate for the excess or deficiency of power generation caused by fluctuations in the demand for grid power (total power including fossil fuel power generation and nuclear power generation in addition to surface-based power generation). Furthermore, as a general rule, without fossil fuel power generation, the stable main power facility for grid power is only nuclear power generation that cannot respond quickly to demand fluctuations. It is necessary to supplement the excess or deficiency of power generation caused by fluctuations in grid power demand.
Electric power from the solar power generation facility (21) and the wind power generation facility (31) passes through the power meter (100) and is sent to the system electric wire (200) via the transmission line (110). The solar radiation amount measuring device (22) is attached to the installation area of the solar power generation facility (21). The wind speed measuring device (32) is attached to the installation area of the wind power generation facility (31). Solar power meter data or wind power meter data from the power meter (100) is sent to the transmitter / receiver 1 (15) connected to the computer (10) via the main communication line (300) and stored in the storage device (14). Remembered. The solar radiation data from the solar radiation measuring device (22) or the wind speed data from the wind speed measuring device (32) passes through the communication branch line (310) and is connected to the computer (10) by the main communication line (300). 1 (15) and stored in the storage device (14).
The grid power voltage VV (t) of the grid wire (200) is sent to the transceiver 2 (16) connected to the computer (10) via the main communication line (300) and stored in the storage device (14). .
Various data are read from the storage device (14) into the computer (10), and the results calculated by the arithmetic device (11) are displayed on the screen (13) as needed, and each facility is controlled. If necessary, the past data is referred to by manual input from the keyboard (12), and various power generation facilities are controlled.
If the computer (10) is installed in a power supply command station that controls the system power, the efficiency increases. It can be expected that the power generation from a large number of solar power generation facilities (21) and wind power generation facilities (31) installed in a wide jurisdiction with different weather will be averaged and become less fluctuating power, which is further computer (10) If you manage them collectively, you can expect further stabilization of power generated by surface-derived power generation.
The calculation device (11) is derived from the surface at the time calculated based on the solar power generation amount sp (t) per unit time and the wind power generation amount wp (t) per unit time read from the storage device (14). When it is determined that the power generation ratio c is smaller than the rated surface power generation ratio c0 (1.0 because wind power and solar power generation are possible in the daytime when the sun is out, and 0.5 because it is only wind power generation at night when the sun is not out) Discharges from the storage battery equipment (51), and if not likely to discharge, instructs the storage battery controller (53) of the storage battery equipment (51) to be charged by the transmitter and increases the power generation amount of the instantaneous power generation equipment (41) If it is determined that c is larger than c0, the storage battery facility (51) is charged. If it is not possible to charge, the wind power generation facility (31) of the surface-derived power generation facility is braked or the solar power generation facility (21 ) To brake by shading .
The arithmetic unit (11) determines that the system power voltage VV (t) at the time read from the storage device (14) is lower than the system power rated voltage VV0 and the power demand is too large to catch up with the power supply. In this case, the battery is discharged from the storage battery facility (51), and if it is still not enough, the power generation amount of the instantaneous power generation facility (41) is increased. When the grid power voltage VV (t) is higher than the grid power rated voltage VV0 and the demand for power is too small and it is determined that the power supply is excessive, the storage battery equipment (51) is charged. Brake the power generation facility.
The storage battery facility (51) includes a storage battery monitoring device (52), a storage battery controller (53), a storage battery (54), and a power meter (100). The amount of stored electricity is input from the storage battery monitoring device (52) to the computer (10) connected to the transceiver 2 (12) through the main communication line (300). The storage battery controller (53) is controlled by the computer (10) connected to the transceiver 2 (16) by the main communication line (300). The amount of discharge or charge from the storage battery (54) is input from the power meter (100) to the computer (10) connected to the transceiver 2 (12) via the main communication line (300).
The instantaneous power generation facility (41) includes an engine (44), an engine controller (43), and a wattmeter (100) driven by fuel sent from a generator (42) and a fuel tank (46) through a fuel pipe (45). ). The engine controller (43) is controlled by a computer (10) connected to the transceiver 2 (16) by the main communication line (300). The engine (44) output is sent from the power meter (100) to the transceiver 1 (15) via the main communication line (300) and input to the computer (10).
If a fuel cell is selected as the instantaneous power generation facility (41) instead of the engine (44), the generator (42) becomes unnecessary. In addition, as an instantaneous power generation facility (41), a pressurized water reactor for nuclear ships is introduced and operated by control rod operation, or a boiling water reactor is introduced and output by adjusting the core flow rate by recirculation pump operation Can be changed quickly.
It is desirable that the system power voltage VV (t) of the system cable (200) does not vary from the system power rated voltage VV0. If power demand> power supply, VV (t) decreases, and if power demand <power supply, VV (t) increases. The detected value of VV (t) is sent to the transceiver 2 (16) connected to the computer (10) through the main communication line (300) and stored in the storage device (14).
FIG. 10 is a flowchart of a program incorporated in the arithmetic unit (11) of the computer (10) in order to complement the surface-derived power generation and maintain the rated power at all times.
Step 1 : Read fixed input (allow about ± 5% margin).
Maximum solar radiation L0 (t) (maximum solar radiation at time 8 <t <16 when t = 12 is normalized to 1.0.
L0 (12) is the maximum solar radiation at 12:00 L0 (t) = L0 (12) X (1-((t-12) / 4) 2 ),
Rated wind speed v0, time interval (time difference) Δt, solar rated power generation amount per unit time usp0 (t) (power generation amount that can be stably maintained for a long time by the solar power generation facility (21) at L0 (t). If the amount decreases, the amount of solar power generation will decrease even if the solar power generation equipment is normal.Approximate example is 8 <t <16
Usp0 (12) as the maximum power generation per unit time at 12:00 usp0 (t) = usp0 (12) X L0 (t) / L0 (12)), wind rated power generation per unit time uwp0 ( The amount of power that can be stably maintained by the wind power generation facility for a long time when v0.), storage battery charge lower limit ccL, storage battery charge upper limit ccH, charging rate α for charging below ccL, grid power rated voltage VV0.
Step 2 : Reading time-dependent fluctuation data.
Solar radiation amount data L (t) at time t, wind speed data v (t), remaining battery level cc (t), solar power generation amount kWh up to time t, sp (t), wind power generation amount kWh up to time t Wp (t), grid power voltage VV (t).
Step 3 : Analysis of solar power generation at time t.
Monitor whether the sunlight is sufficient with the solar radiation rate sR. The solar power generation amount usp (t) per unit time is calculated from the power generation amount kWh until time t and the power generation amount kWh until time t−Δt. Calculate the solar power generation rate cs (= usp (t) / usp0 (t)). Since the solar power generation is zero from time 16:00 in the evening to 8:00, cs is 0.0 and no power is generated. The amount of solar radiation from time 8:00 to 16:00 is effective. If solar power generation is sufficient at around 12:00, cs is 1.0 and rated power is generated. The rated surface-derived power generation ratio c0 from 0:00 to 24:00 is 1.0 while the solar radiation is effective at t from 8:00 to 16:00, and only wind power generation can be expected from 16:00 in the evening to 8:00 in the morning. 0.5 (A set value that takes into account solar activity needs to be corrected in consideration of changes in the sun's sunshine on a clear day in the summer. Change in the set value is also required for each season.) Substitute cs = 0 and c0 = 0.5.
Step 4 : Analysis of wind power generation at time t.
The wind speed ratio vR is used to monitor whether the wind speed is sufficient. The wind power generation amount uwp (t) per unit time is calculated from the power generation amount kWh until time t and the power generation amount kWh until time t-Δt. Calculate the wind power generation rate cw (= uwp (t) / uwp0). If wind power is zero, cw is 0.0 and no power is generated. Calculate the surface-derived power generation ratio c by the sum of the solar power generation ratio cs and the wind power generation ratio cw.
Step 5 : Determination of grid power supply and demand.
If the power demand and power supply match, the grid power voltage VV (t) is almost equal to the grid power rated voltage VV0, and the ratio CH is within the allowable deviation (0.01 in the figure as an example). Go to step 7. If CH deviates from the allowable deviation, go to Step 6.
Step 6 : Judgment when there is a mismatch in grid power supply and demand.
Substitute c0 = 1 and c = CH. If the power demand is smaller than the power supply, the system power voltage VV (t) will be higher than the system power rated voltage VV0, so the ratio CH will be 1 or more. If this is seen from the surface-derived power generation, it is determined that the surface-derived power generation is excessive. If the power demand is larger than the power supply, the system power voltage VV (t) is lower than the system power rated voltage VV0, so the ratio CH is 1 or less. If this is seen from surface-derived power generation, it will go to step 10 noting that surface-derived power generation is insufficient.
Step 7 : Excess or deficiency determination of the surface-derived power generation ratio c.
At the rated surface-derived power generation ratio c0 that is 0.5 during the daytime and 1.0 during the nighttime, if c <c0, go to step 8-1 because power generation is insufficient, and if c> c0, go to step 8-1 because power generation is excessive.
Step 8-1 : When surface-derived power generation is insufficient. It is determined whether or not the storage battery (54) is sufficiently charged and can be discharged.
If the charged amount cc (t)> the charged amount lower limit ccL, it is determined that discharging is possible and the process goes to Step 9-2.
If the charged amount cc (t)> the charged amount lower limit ccL is not satisfied, it is determined that the discharge is impossible and the process goes to Step 9-1.
Step 8-2 : When surface-derived power generation is excessive. It is determined whether there is room for charging in the storage battery (54) and charging is possible.
If the charged amount cc (t) <the charged amount upper limit ccH, it is determined that charging is possible and the process goes to Step 9-3. If the charged amount cc (t) <the charged amount upper limit ccH is not satisfied, it is determined that charging is impossible and the process goes to Step 9-4.
Step 9-1 : Instruct the storage battery controller (53) of the storage battery facility (51) to charge at a rate of α per unit time by the transmitter and use the engine controller ( 43) is commanded to increase the output in proportion to (c0-c) + α as control amount c41. If the grid power demand is excessive compared to the supply, the engine controller (43) is commanded to increase the output in proportion to c41 = c0−c + α as c0 = 1 and c = | CH |. For a large increase in power demand or a rapid decrease in power supply, the control amount c41 = 1.0 can be input to the engine controller (43) manually from the keyboard (12) to increase the output. Go to step 2 and repeat the above process.
Step 9-2 : The transmitter instructs the storage battery controller (53) of the storage battery facility (51) to discharge in proportion to (c0-c) as the control amount c51, and goes to Step 10.
Step 9-3 : The transmitter instructs the storage battery controller (51) of the storage battery facility (51) to charge in proportion to (c-c0) as the control amount c51. Go to step 2 and repeat the above process.
Step 9-4 : Command the brake to be installed in the wind power generation facility (31) by the transmitter as a control amount c31 in proportion to (c-c0). Go to step 2 and repeat the above process.
Step 10 : Judgment whether electric power demand is satisfied only by battery discharge.
Substitute c0 = 1 and c = | CH |. If the fluctuation of the system power with | CH -1 | <0.01 is within the allowable deviation, go to Step 2 and repeat the above process to cover the battery discharge. If | CH -1 | <0.01 is not satisfied, go to Step 9-1 with c0 = 1 and c = | CH |. c = | CH | <1.

何らかの事情で電力供給が間に合わなかった場合には、給電指令所からのインターネット接続または電灯線を介して遠隔操作を受ける遠隔制御器付きプラグイン駐車場にプラグインして駐車せる、瞬時型発電設備(41)の予備として登録しておいた電気自動車及びハイブリッド車への表面由来発電補完システム指令により自動的に放蓄電して配電することが考えられる。
電気自動車とハイブリッド車への充電は深夜電力とする。深夜電力の増加は、原子力発電設備容量を増加すればよい。
自動車ドアキーの施錠開錠は遠隔操作で実用化されているし、家庭のエアコンスイッチは携帯電話で可能であるから給電指令所からの遠隔操作により電気自動車及びハイブリッド車から放蓄電することは実現性が高い。
駐車中電気自動車やハイブリッド自動車を蓄電池設備(51)または瞬時型発電設備(41)と見立て、駐車料金の他に発受電した時刻により電気料金を加減計算する料金計も駐車場に設置すれば実現性が増す。
緊急事態が生じて緊急に電力を供給する必要が生じた場合には、給電指令所からのインターネット接続または電灯線を介して遠隔操作を受ける遠隔制御器付きプラグイン駐車場に駐車せるエンジン式自動車のバッテリーと遠隔制御器とをジャンパー接続し、表面由来発電補完システム指令により自動的にエンジン式自動車エンジンを始動させ緊急用に発電し配電することが考えられる。通勤用駐車場は瞬時型発電設備(41)の予備に適している。
風力発電や太陽発電は当てにならないから、駐車中電気自動車やハイブリッド自動車や各種自動車を電池や瞬時型発電設備(41)として仮設定しておくことは重要である。
蓄電せる電力の漏洩を少なくして長期間(1ヶ月程度)溜めておける安価な蓄電池が開発されれば太陽発電設備容量や風力発電設備容量を増やして蓄電し、石油タンク集積所のように蓄電池集積所を敷設できよう。石油発電が便利なのは石油タンク集積所を安価に敷設できるからである。
表面由来発電を大幅に導入するために、休耕田に太陽発電設備(21)を敷き詰めて所々に風力発電設備(31)群を林立させた表面由来発電ファームを単位とした発電所から一括した電力を系統に繋げることにより、変動しやすい電力を各ファーム発電所毎に局所的に平滑化することができる。
耐震強度は震度4以下とする。設備費用を安くできる。頻繁ではないが何時何所に起こるか判らない震度5以上の地震に対しては金を掛けられない。休耕田の中なら設備が倒壊しても人的被害は軽微である。安い設備なら立替も苦にならない。
設置後、活断層の上であることが判明しても地震で倒壊するまで使用し続けることができる。地震で倒壊したら活断層の真上の部分のみ避けて再建設すればよい。
風に対しては、電柱程度の強度があればよい。台風で壊れたら再建設すればよい。台風直撃が何度も起こるとは考え難い。もし、何度も起こったらそこには風力発電設備(31)を再設置しなければよい。
表面由来発電補完システムの表面由来発電設備において、持続的に定格電力を出し続け難い風力発電と、需要が高くて供給に余裕がない昼間でも比較的安定的に定格電力を発生する太陽発電を一緒にした表面由来発電ファーム発電所に対応した表面由来発電ファーム補完システムの導入は、出力変動がより一層抑制されたものになる。
休耕田を利用した太陽発電畑の中に風力発電の風車を整然と美しく林立させる。但し、畑に戻しやすいようにしておくべきであろう。
土地の有効利用が図れる当該ファームから得られた金銭は地元に還元されるだろうから地域間格差の解消に役立つ。
Instantaneous power generation equipment that plugs in and parks in a plug-in parking lot with a remote controller that receives remote control via the Internet connection or power line from the power supply command center if the power supply is not in time for some reason It is conceivable that power is automatically discharged and distributed in accordance with the surface-derived power generation supplement system command to the electric vehicle and hybrid vehicle registered as the reserve in (41).
Charging electric vehicles and hybrid vehicles will be at midnight. The increase in midnight power may be achieved by increasing the nuclear power generation facility capacity.
Locking / unlocking of automobile door keys has been put into practical use by remote operation, and home air conditioner switches can be operated by mobile phones, so it is feasible to discharge and store electric vehicles and hybrid vehicles by remote operation from the power supply command center. Is expensive.
Realized if parking electric vehicle or hybrid vehicle is regarded as storage battery facility (51) or instantaneous power generation facility (41), and a toll meter that adjusts the electric fee according to the time of transmission and reception in addition to the parking fee is also installed in the parking lot Increases nature.
Engine-type car parked in a plug-in parking lot with a remote controller that can be remotely operated via the Internet connection or power line from the power supply command center when an emergency situation arises and it is necessary to supply power urgently It is conceivable that the battery and the remote controller are connected with a jumper, and the engine-type automobile engine is automatically started by the surface-derived power generation supplement system command to generate and distribute power for emergency use. The commuter parking lot is suitable as a spare for the instantaneous power generation facility (41).
Since wind power generation and solar power generation are not relied on, it is important to temporarily set a parked electric vehicle, a hybrid vehicle, and various vehicles as a battery and an instantaneous power generation facility (41).
If an inexpensive storage battery that can be stored for a long time (about one month) with less leakage of the power that can be stored is developed, it will be stored by increasing the capacity of solar power generation facilities and wind power generation facilities. Let's lay a dump. The reason why oil power generation is convenient is that an oil tank depot can be installed at a low cost.
In order to greatly introduce surface-derived power generation, the power from the power plant in units of surface-derived power generation farms in which solar power generation facilities (21) are spread over fallow fields and wind power generation facilities (31) are planted in places By connecting to the grid, the power that is likely to fluctuate can be locally smoothed for each farm power plant.
The seismic strength is 4 or less. Equipment costs can be reduced. You can't spend money on earthquakes with a seismic intensity of 5 or higher that you don't know when and where. Even if the equipment collapses in a fallow field, human damage is minimal. If it is cheap equipment, the replacement will not be a problem.
After installation, even if it is found to be on an active fault, it can continue to be used until collapsed by an earthquake. If it collapses due to an earthquake, it is only necessary to avoid the part directly above the active fault and rebuild it.
For the wind, it is only necessary to have the strength of a utility pole. If it is broken by a typhoon, it can be rebuilt. It is unlikely that the typhoon hits many times. If it happens many times, there is no need to re-install the wind power generation facility (31).
Combined with wind power generation, which is difficult to continue to provide rated power continuously, and solar power generation, which generates rated power relatively stably even in daytime when demand is high and supply is not enough, in the surface-derived power generation facility of the surface-based power generation complementation system The introduction of the surface-derived power generation farm supplement system corresponding to the surface-derived power generation farm power plant that has been made will further suppress output fluctuations.
Wind power generation windmills are neatly and beautifully established in a solar power generation field using fallow fields. However, it should be easy to return to the field.
The money obtained from the farm, where the land can be used effectively, will be returned to the local area, which helps to close the regional gap.

近年の石油乱高下は柏崎刈羽原子力発電所と無関係ではなかった。原子力撤退見込んで投機的石油高騰の後、電力会社の実害が少なく対応もうまくいったことが判り、投機見込み違いでの石油価格の下落、原子力への回帰による石油需要減少予想での石油価格の下落となった。
地震により柏崎刈羽原子力発電所が停止しても、老朽休止中化石燃料火力発電設備で対応できたし、金銭の赤字は納税額の激減で対応できたから、電力会社の実害はたいしたことはなかったと思われる。
化石燃料を使わずに日本の全電力を賄うとの計画があること自体が化石燃料価格高等への抑止力となろう。したがって、ゆっくりではあるが本発明が実施に移されそれを海外に喧伝すれば石油価格は更に下がる。
将来の人口減社会では、発電所所員の確保がむずかしくなる。その際、共通の発電運用指針マニュアルが重要になる。中でも本発明の発電構成割合と各季節時刻での運用法を確立しておかねばならない。
The recent oil volatility was not unrelated to the Kashiwazaki Kariwa Nuclear Power Station. After the speculative oil surge with the expectation of withdrawal from the nuclear power, it was found that the power company did not cause much harm and the response was successful, the oil price declined due to a difference in speculation prospects, the oil price in the forecast of a decrease in oil demand due to the return to nuclear power It fell.
Even if the Kashiwazaki-Kariwa Nuclear Power Station shut down due to the earthquake, it was possible to cope with fossil fuel-fired power generation facilities during the period of aging, and the deficit of money could be dealt with by drastically reducing the amount of tax payments, so that the actual damage of the power company was not significant Seem.
The plan to cover all of Japan's electricity without using fossil fuels will itself be a deterrent to high fossil fuel prices. Therefore, if the present invention is put into practice slowly and propagated overseas, the oil price will be further lowered.
In a future society with a declining population, it will be difficult to secure power station staff. At that time, a common power generation operation guideline manual becomes important. In particular, the power generation composition ratio of the present invention and the operation method at each seasonal time must be established.

発電設備毎の特徴を要約した図。The figure which summarized the characteristic for every power generation equipment. 最高需要期と最低需要期の最高需要に対する発電割合の24時間推移の需要曲線を示した図。The figure which showed the demand curve of the power generation ratio with respect to the highest demand of the highest demand period and the lowest demand period for 24 hours. 化石燃料使用に余裕がある状況下、最高需要期(夏季)における24時間の需要曲線を折れ線で示し、最高需要期における発電構成割合 (夏季12時を100%とする)も示した図。The figure shows the demand curve for 24 hours in the highest demand period (summer) as a broken line under the situation where fossil fuel can be used, and also shows the power generation composition ratio in the highest demand period (summer 12:00 is 100%). 化石燃料使用に余裕がある状況下、最高需要を満たすための発電構成割合と設備容量構成割合とを示した図。最低需要期最高需要発電構成割合も示した。The figure which showed the electric power generation composition ratio and equipment capacity composition ratio for satisfying the highest demand in the situation where fossil fuel use has room. The ratio of the highest demand generation in the lowest demand period is also shown. 化石燃料使用に余裕がある状況下、最低需要期 (春季)における24時間の需要曲線を示した折れ線と最低需要期における発電構成割合(夏季12時を100%とする)も示した図。The figure also shows a line that shows a 24-hour demand curve in the minimum demand period (spring) and the power generation composition ratio in the minimum demand period (summer 12 o'clock is 100%) in a situation where there is room for fossil fuel use. 化石燃料使用に余裕がない状況下、最高需要期(夏季)における24時間の需要曲線を折れ線で示し、最高需要期における発電構成割合 (夏季12時を100%とする)も示した図。The figure shows the 24-hour demand curve in the highest demand period (summer) as a broken line, and the power generation composition ratio in the highest demand period (summing 12:00 in the summer is 100%) in a situation where fossil fuels cannot be used. 化石燃料使用に余裕がない状況下、最高需要を満たすための発電構成割合と化石燃料原則不使用発電設備容量構成割合とを示した図。最低需要期最高需要発電構成割合も示した。The figure which showed the power generation composition ratio and the fossil fuel principle non-use power generation equipment capacity composition ratio in order to satisfy the highest demand in the situation where fossil fuel use is not enough. The ratio of the highest demand generation in the lowest demand period is also shown. 化石燃料使用に余裕がない状況下、最低需要期 (春季)における24時間の需要曲線を示した折れ線と最低需要期における発電構成割合(夏季12時を100%とする)も示した図。The figure also shows a line that shows a 24-hour demand curve in the minimum demand period (spring) and the power generation composition ratio in the minimum demand period (summer 12 o'clock is 100%) in a situation where there is no allowance for fossil fuel use. 本発明の表面由来発電補完システム概念図。The surface origin electric power generation supplement system conceptual diagram of this invention. 表面由来発電を補完し常時定格電力を維持するためのコンピュータ(10)の演算装置(11)に内臓せるプログラムのフローチャート。The flowchart of the program built in the arithmetic unit (11) of the computer (10) for complementing surface origin electric power generation and maintaining a regular rated electric power.

符号の説明Explanation of symbols

10はコンピュータ。
11は演算装置。
12はキーボード。
13は画面。
14は記憶装置。
15は送受信器1。
16は送受信器2。
21は太陽発電設備。
22は日射量測定装置。
31は風力発電設備。
32は風速測定装置。
41は瞬時型発電設備。
42は発電機。
43はエンジン制御機。
44はエンジン。
45は燃料管。
46は燃料タンク。
51は蓄電池設備。
52は蓄電池監視装置。
53は蓄電池制御器。
54は蓄電池。
100は電力計。
110は送電線。
200は系統電線。
300は主通信線。
310は通信枝線。
10 is a computer.
11 is an arithmetic unit.
12 is a keyboard.
13 is a screen.
14 is a storage device.
Reference numeral 15 denotes a transceiver 1.
Reference numeral 16 denotes a transceiver 2.
21 is a solar power generation facility.
22 is a solar radiation amount measuring device.
31 is a wind power generation facility.
32 is a wind speed measuring device.
41 is an instantaneous power generation facility.
42 is a generator.
43 is an engine controller.
44 is an engine.
45 is a fuel pipe.
46 is a fuel tank.
51 is storage battery equipment.
52 is a storage battery monitoring device.
53 is a storage battery controller.
54 is a storage battery.
100 is a power meter.
110 is a power transmission line.
200 is a system electric wire.
300 is a main communication line.
310 is a communication branch line.

Claims (4)

記憶装置(14)に保存されたる送受信器1(15)から送られてきた各表面由来発電設備の各表面由来発電量をコンピュータ(10)の演算装置(11)に読み込み計算し、当該時刻の表面由来発電割合cが定格表面由来発電割合c0に比べて小さいと判別した場合はコンピュータ(10)からの指令により自動的に蓄電池設備(51)から放電し、放電できそうもなければコンピュータ(10)からの指令により自動的に燃料タンク(46)からの燃料によって発電する瞬時型発電設備(41)の発電量を上昇させ、当該時刻の表面由来発電割合cが定格表面由来発電割合c0に比べて大きいと判別した場合はコンピュータ(10)からの指令により自動的に蓄電池設備(51)に充電し、充電できないと判別すればコンピュータ(10)からの指令により自動的に表面由来発電設備にブレーキをかけ、
記憶装置(14)に保存されたる送受信器2(16)から送られてきた系統電線(200)の系統電力電圧VV(t)をコンピュータ(10)の演算装置(11)に読み込み計算し、当該時刻の系統電力電圧VV(t)が系統電力定格電圧VV0よりも下がり電力需要が大き過ぎて電力供給が追いつかないと判別した場合はコンピュータ(10)からの指令により自動的に蓄電池設備(51)から放電し、それでも足りないと判別した場合はコンピュータ(10)からの指令により自動的に瞬時型発電設備(41)の発電量を上昇させ、当該時刻の系統電力電圧VV(t)が系統電力定格電圧VV0よりも上がり電力需要が少な過ぎて電力供給過多と判別した場合はコンピュータ(10)からの指令により自動的に蓄電池設備(51)に充電し、それでも電力供給過剰であると判別した場合はコンピュータ(10)からの指令により自動的に表面由来発電設備にブレーキをかけるように制御したことを特徴とする表面由来発電補完システム。
The surface-derived power generation amount of each surface-derived power generation facility sent from the transmitter / receiver 1 (15) stored in the storage device (14) is read into the computing device (11) of the computer (10) and calculated. When it is determined that the power generation ratio c derived from the surface is smaller than the power generation ratio c0 derived from the rated surface, the battery (51) is automatically discharged by a command from the computer (10). ), The power generation amount of the instantaneous power generation facility (41) that automatically generates power from the fuel from the fuel tank (46) is increased, and the surface-derived power generation ratio c at that time is compared with the rated surface-derived power generation ratio c0. If it is determined that the battery is large, the battery (51) is automatically charged according to a command from the computer (10). Automatically applying the brakes on the surface derived from power generation facilities by decree,
The grid power voltage VV (t) of the grid wire (200) sent from the transceiver 2 (16) stored in the storage device (14) is read into the arithmetic unit (11) of the computer (10) and calculated. When the system power voltage VV (t) at the time is lower than the system power rated voltage VV0 and it is determined that the power demand is too large to catch up with the power supply, the storage battery equipment (51) is automatically set by a command from the computer (10). If it is determined that it is still not enough, the power generation amount of the instantaneous power generation facility (41) is automatically increased by a command from the computer (10), and the system power voltage VV (t) at that time becomes the system power. If it is determined that the power demand is too high due to a rise in the rated voltage VV0 and the power supply is excessive, the battery (51) is automatically charged according to the command from the computer (10). Surface from generation completion system being characterized in that controlled to brake the automatic surface from power generation equipment in accordance with a command from the computer (10) if it is determined that.
給電指令所からのインターネット接続または電灯線を介して遠隔操作を受ける遠隔制御器付きプラグイン駐車場にプラグインして駐車せる瞬時型発電設備(41)の予備として登録せる電気自動車及びハイブリッド車への請求項1の表面由来発電補完システム指令により自動的に放蓄電し配電することを特徴とせる広義表面由来発電補完システム、
または給電指令所からのインターネット接続または電灯線を介して遠隔操作を受ける遠隔制御器付きプラグイン駐車場に駐車せるエンジン式自動車のバッテリーと遠隔制御器とをジャンパー接続し、請求項1の表面由来発電補完システム指令により自動的にエンジン式自動車エンジンを始動させ緊急用に発電し配電することを特徴とせる緊急対応広義表面由来発電補完システム、
または請求項1における表面由来発電補完システムの中の表面由来発電設備として休耕田に震度4以下の耐震強度を持たせた太陽発電設備(21)を敷き詰めて所々に震度4以下の耐震強度を持たせた風力発電設備(31)群を林立させた表面由来発電ファームにしたことを特徴とする表面由来発電ファーム補完システム。
To electric vehicles and hybrid vehicles that are registered as spares for the instantaneous power generation facility (41) that plugs in and parks in a plug-in parking lot with a remote controller that is remotely operated via the Internet connection or power line from the power supply command center A surface-based power generation complementing system characterized in that it automatically discharges and distributes electricity according to the surface-based power generation supplementing system command of claim 1;
Alternatively, the battery of an engine-type automobile parked in a plug-in parking lot with a remote controller that can be remotely operated via an Internet connection or a power line from a power supply command center and a remote controller are jumper-connected, and derived from the surface of claim 1 An emergency response broad surface derived power generation supplement system characterized by automatically starting an engine-type automobile engine according to a power generation supplement system command and generating and distributing power for emergency use,
Alternatively, as a surface-derived power generation facility in the surface-derived power generation supplement system according to claim 1, solar power generation facilities (21) having seismic intensity of 4 or less are spread over the fallow paddy field to give seismic intensity of seismic intensity 4 or less in places. A surface-derived power generation farm complementation system characterized in that a wind power generation facility (31) group is used as a surface-derived power generation farm.
化石燃料使用に余裕がある状況下においては、
最高需要発電構成割合を
水力発電割合を従来の割合と同じとし、
最高需要期最低需要割合の半分から水力発電割合を差し引いた割合を風力発電割合とし、
最高需要期最低需要割合の半分を原子力発電割合とし、
太陽発電割合を従来の予備発電割合と同じとし、
最高需要から水力発電割合及び風力発電割合及び原子力発電割合及び太陽発電割合を差し引いた割合を化石燃料発電セット割合とし、
水力発電設備容量割合は最高需要における水力発電割合と同じにし、
風力発電設備容量割合は最高需要における風力発電割合と同じにし、
原子力発電設備容量割合は最高需要における原子力発電割合と同じにし、
太陽発電設備容量割合は最高需要における太陽発電割合と同じにし、
石炭発電設備容量割合は最高需要における化石燃料発電セット発電割合の1/3とし、
ガス発電設備容量割合は最高需要における化石燃料発電セット発電割合の1/3とし、
石油発電設備容量割合は最高需要における化石燃料発電セット発電割合の1/3とし、
予備発電設備容量割合は最高需要における従来の予備発電割合相当を余分に保持し、
瞬時型発電設備容量割合は最高需要における風力発電割合相当を余分に保持したことを特徴とせる発電設備容量構成割合の計画法、
または上記状況下での定量的発電設備容量構成割合は太陽発電設備容量割合を9%、風力発電設備容量割合を17%、水力発電設備容量割合を8%、原子力発電設備容量割合を25%、石炭発電設備容量割合を14%、ガス発電設備容量割合を14%、石油発電設備容量割合を13%とし、余分に予備発電設備容量割合を9%保持し、余分に瞬時型発電設備容量割合を風力発電設備容量割合相当の17%保持したことを特徴とせる発電設備容量構成割合、
または化石燃料使用に余裕がない状況下においては、
最高需要発電構成割合を
水力発電割合を従来の割合と同じとし、
最高需要期最低需要割合から水力発電割合を差し引いた割合を原子力発電割合とし、
最高需要期における太陽発電開始時刻の電力需要割合から最高需要期最低需要割合を差し引いた分を風力発電割合とし、
最高需要から水力発電割合及び原子力発電割合及び風力発電割合を差し引いた割合を太陽発電割合とし、
水力発電設備容量割合は最高需要における水力発電割合と同じとし、
風力発電設備容量割合は最高需要における風力発電割合と同じにし、
原子力発電設備容量割合は最高需要における原子力発電割合と同じにし、
太陽発電設備容量割合は最高需要における太陽発電割合と同じにし、
蓄電池設備容量割合は最高需要における太陽発電割合の半分を余分に保持し、
瞬時型発電設備容量割合は最高需要における風力発電割合相当を余分に保持したことを特徴とせる化石燃料原則不使用発電設備容量構成割合の計画法、
または上記状況下での定量的発電設備容量構成割合は太陽発電設備容量割合を35%、風力発電設備容量割合を15%、水力発電設備容量割合を8%、原子力発電設備容量割合を42%とし、余分に蓄電池設備容量割合を18%保持し、余分に瞬時型発電設備容量割合を15%保持したことを特徴とせる化石燃料原則不使用発電設備容量構成割合。
In situations where fossil fuels can be used,
The highest power generation composition ratio is the same as the conventional hydropower generation ratio,
Wind power generation ratio is calculated by subtracting hydropower generation ratio from half of the minimum demand ratio during the highest demand period.
Half of the lowest demand ratio in the highest demand period is the nuclear power generation ratio,
Let the solar power generation ratio be the same as the conventional standby power generation ratio,
The ratio obtained by subtracting the hydroelectric power generation ratio, wind power generation ratio, nuclear power generation ratio, and solar power generation ratio from the highest demand is the fossil fuel power generation set ratio,
The hydropower generation capacity ratio should be the same as the hydropower generation ratio at the highest demand,
Wind power generation capacity ratio is the same as wind power generation ratio at the highest demand,
The nuclear power generation capacity ratio is the same as the nuclear power generation ratio at the highest demand.
The solar power generation capacity ratio is the same as the solar power generation ratio at the highest demand,
The coal power generation capacity ratio is 1/3 of the fossil fuel power generation set ratio at the highest demand.
The gas power generation capacity ratio is 1/3 of the highest fossil fuel power generation set
The oil power generation capacity ratio is 1/3 of the fossil fuel power generation power generation ratio at the highest demand.
The reserve power generation capacity capacity ratio retains the equivalent of the conventional standby power generation ratio at the highest demand,
The instantaneous power generation capacity ratio is a method of planning the power generation capacity capacity ratio, which is characterized by the fact that the wind power generation ratio equivalent to the highest demand is retained.
Or, the quantitative power generation capacity ratio in the above situation is 9% for solar power capacity, 17% for wind power capacity, 8% for hydro power capacity, 25% for nuclear power capacity, The coal power generation capacity ratio is 14%, the gas power generation capacity ratio is 14%, the oil power generation capacity ratio is 13%, the extra power generation capacity ratio is 9%, and the instantaneous power generation capacity ratio is The composition ratio of the power generation equipment capacity, characterized by holding 17% equivalent to the capacity ratio of the wind power generation equipment,
Or in situations where fossil fuels cannot be used,
The highest power generation composition ratio is the same as the conventional hydropower generation ratio,
The ratio of subtracting the hydropower generation ratio from the minimum demand ratio during the highest demand period is the nuclear power generation ratio,
Wind power generation ratio is the power demand ratio at the start of solar power generation in the highest demand period minus the minimum demand ratio in the highest demand period.
The ratio of solar power generation is calculated by subtracting the hydroelectric power generation ratio, nuclear power generation ratio and wind power generation ratio from the highest demand.
The hydropower capacity ratio is the same as the hydropower ratio at the highest demand,
Wind power generation capacity ratio is the same as wind power generation ratio at the highest demand,
The nuclear power generation capacity ratio is the same as the nuclear power generation ratio at the highest demand.
The solar power generation capacity ratio is the same as the solar power generation ratio at the highest demand,
The storage battery capacity ratio holds an extra half of the solar power generation ratio at the highest demand,
A method for planning the composition ratio of non-use of fossil fuel in principle, which is characterized by the fact that the instantaneous power generation capacity ratio is an excess of the wind power generation ratio at the highest demand.
Or, the quantitative power generation capacity ratio in the above situation is 35% for solar power capacity, 15% for wind power capacity, 8% for hydro power capacity, and 42% for nuclear power capacity. The ratio of the capacity of fossil fuels that does not use fossil fuels is characterized by an extra 18% storage battery capacity ratio and an additional 15% instantaneous power generation capacity ratio.
請求項3における化石燃料使用に余裕がある状況下における発電設備容量構成割合の元での運用は、
最高需要期での運用を
毎日の予想し得る電力需要変動は化石燃料発電セットの発電調節で対応し、
風力発電割合が予想から減少した場合は瞬時型発電設備(41)で対応し、
風力発電割合が規定から増加した場合は風力発電設備(31)のブレーキによる放熱または風力発電設備(31)の当該部停止で対応し、
太陽発電割合が予想から減少した場合は待機せる予備発電設備で対応し、
供給電力に比べて需要が大きい場合は待機せる予備発電設備とピークカットとで対応し、
供給電力の大幅なる予想外不足は老朽休止中化石燃料発電セット設備で対応し、
最高需要時刻(夏季12時頃100%)から最高需要期最低需要時刻(夏季翌朝5時頃)までの間は化石燃料発電セットの発電調節で制御し、
最低需要期での運用を
最低需要発電構成割合(水力発電割合は最高需要での水力発電割合と同じとし、
風力発電設備容量を停止する群と運転する群とに等分に2群に分け運転中風力発電設備(31)群での風力発電割合は最高需要での風力発電割合の1/2とし、
原子力発電設備容量を停止する群と運転する群とに等分に2群に分け運転中原子力発電設備群での原子力発電割合は最低需要割合から水力発電割合及び最低需要割合での風力発電割合を差し引いた割合とした。)及び最低需要期最高需要発電構成割合(最低需要発電構成割合に最高需要での太陽発電割合を加味し化石燃料発電セットの発電で調節)を基礎にして、
毎日の予想し得る電力需要変動は化石燃料発電セットの発電調節で対応し、
風力発電割合が予想から減少した場合は瞬時型発電設備(41)で対応し、
風力発電割合が規定から増加した場合は風力発電設備(31)のブレーキによる放熱または風力発電設備(31)の当該部停止で対応し、
太陽発電割合が予想から減少した場合は待機せる予備発電設備で対応し、
供給電力に比べて需要が大きい場合は待機せる予備発電設備とピークカットとで対応し、
供給電力の大幅なる予想外不足は老朽休止中化石燃料発電セット設備で対応し、
最低需要が所定の値よりも下がった場合は運転中原子力発電設備群の出力を下げ、
最高需要期と最低需要期の間での運用を
燃料交換による原子力発電設備の停止基数の調節と運転中原子力発電設備群の出力調節とで制御したことを特徴とする発電の運用法、
または請求項3における化石燃料原則不使用発電設備容量構成割合で請求項1における表面由来発電補完システム導入の元での運用は、
最高需要期での運用を
風力発電割合または太陽発電割合が予想から減少した場合は蓄電池設備(51)の放電または瞬時型発電設備(41)の発電で対応し、
風力発電割合が規定から増加した場合は蓄電池設備(51)の蓄電で吸収または風力発電設備(31)のブレーキによる放熱または風力発電設備(31)の当該部停止で対応し、
供給電力に比べて需要が大きい場合は蓄電池設備(51)の放電と瞬時型発電設備(41)の発電とピークカットとで対応し、
供給電力の大幅なる予想外不足は老朽休止中化石燃料発電セット設備で対応し、
最高需要期太陽発電が得られるまでの発電構成割合は最高需要期最低需要割合における発電構成割合に加えて蓄電池設備(51)に蓄積せる電力を放電し、
最高需要時刻(夏季12時頃)から最高需要期最低需要時刻(夏季翌朝5時頃)までの間は蓄電池設備(51)の蓄放電と瞬時型発電設備(41)の発電で調節し、
最低需要期での運用を
最低需要発電構成割合(水力発電割合は最高需要での水力発電割合と同じとし、
風力発電設備容量を停止する群と運転する群とに等分に2群に分け運転中風力発電設備(31)群による風力発電割合は最高需要での風力発電割合の1/2とし、
原子力発電設備容量を停止する群と運転する群とに等分に2群に分け運転中原子力発電設備群による原子力発電割合は最低需要割合から最高需要での水力発電割合及び最高需要での風力発電割合の1/2を差し引いた割合とした)及び最低需要期最高需要発電構成割合(最低需要発電構成割合に太陽発電設備容量を停止する群と運転する群とに等分に2群に分け運転中太陽発電設備(21)群による太陽発電割合は最高需要での太陽発電割合の1/2を加味した。)を基礎にして、
風力発電割合または太陽発電が予想から減少した場合は蓄電池設備(51)の放電または瞬時型発電設備(41)の発電で対応し、
風力発電割合が規定から増加した場合は蓄電池設備(51)の蓄電で吸収または風力発電設備(31)のブレーキによる放熱または風力発電設備(31)の当該部停止で対応し、
供給電力に比べて需要が大きい場合は蓄電池設備(51)の放電と瞬時型発電設備(41)の発電とピークカットとで対応し、
供給電力の大幅なる予想外不足は老朽休止中化石燃料発電セット設備で対応し、
最低需要が所定の値よりも下がった場合は運転中原子力発電設備群の出力を下げ、
最低需要期太陽発電が得られるまでの運用は最低需要発電構成割合に蓄電池設備(51)からの蓄放電と瞬時型発電設備(41)の発電とピークカットとで対応し、
最高需要期と最低需要期の間での運用を
燃料交換による原子力発電設備の停止基数の調節と運転中原子力発電設備群の出力調節とで対応し、
いかなる時でも風力発電や太陽発電や水力発電における電力供給過剰は蓄電池設備(51)が蓄電できる範囲内で吸収する上記一連の作業をコンピュータ(10)の指令により自動的にしたことを特徴とする表面由来発電補完システム導入化石燃料原則不使用発電の運用法。
The operation under the power generation equipment capacity composition ratio under the situation where there is room for fossil fuel use in claim 3,
Fluctuation in power demand that can be predicted daily during the highest demand period is handled by adjusting the power generation of the fossil fuel power generation set.
If the wind power generation ratio decreases from the expected value, the instantaneous power generation facility (41)
If the wind power generation ratio increases from the regulation, it can be dealt with by heat radiation by the brake of the wind power generation facility (31) or by stopping the part of the wind power generation facility (31),
If the solar power generation ratio decreases from the forecast, we will respond with standby power generation equipment that will be on standby,
If the demand is larger than the supply power, the standby power generation equipment that can be put on standby and peak cuts will be used.
The unexpected and unexpected shortage of power supply will be handled by the fossil fuel power generation set facility,
From the highest demand time (100% around 12:00 in the summer) to the lowest demand time in the highest demand period (around 5:00 in the morning following the summer), control is performed by adjusting the power generation of the fossil fuel power generation set.
Operation in the lowest demand period is the minimum demand power generation composition ratio (the hydropower generation ratio is the same as the hydropower generation ratio in the highest demand,
The wind power generation capacity of the wind power generation equipment (31) group is divided into two groups equally divided into the group that stops the wind power generation capacity and the operating group, and the wind power generation ratio in the maximum demand is 1/2 of the highest demand,
Divided into two groups, the group that shuts down the nuclear power generation capacity and the group that operates it.The nuclear power generation ratio in the nuclear power generation equipment group is from the minimum demand ratio to the hydropower generation ratio and the wind power generation ratio at the minimum demand ratio. The ratio was deducted. ) And the highest demand power generation composition ratio (minimum demand power generation composition ratio, adjusted by the power generation of the fossil fuel power generation set taking into account the solar power generation ratio at the highest demand)
Daily fluctuations in power demand can be anticipated by adjusting the power generation of fossil fuel power generation sets.
If the wind power generation ratio decreases from the expected value, the instantaneous power generation facility (41)
If the wind power generation ratio increases from the regulation, it can be dealt with by heat radiation by the brake of the wind power generation facility (31) or by stopping the part of the wind power generation facility (31),
If the solar power generation ratio decreases from the forecast, we will respond with standby power generation equipment that will be on standby,
If the demand is larger than the supply power, the standby power generation equipment that can be put on standby and peak cuts will be used.
The unexpected and unexpected shortage of power supply will be handled by the fossil fuel power generation set facility,
If the minimum demand falls below a certain value, reduce the output of the nuclear power generation equipment group during operation.
A method of operating power generation, characterized in that operation between the highest demand period and the lowest demand period is controlled by adjusting the number of outages of nuclear power generation facilities by refueling and adjusting the output of the operating nuclear power generation facilities group,
Or the operation under the introduction of the surface-based power generation supplement system in claim 1 with the fossil fuel principle non-use power generation facility capacity composition ratio in claim 3
When the wind power generation rate or solar power generation rate decreases from the forecast during the highest demand period, we can deal with the discharge of the storage battery facility (51) or the power generation of the instantaneous power generation facility (41),
If the wind power generation ratio increases from the regulation, it can be absorbed by the electricity stored in the storage battery facility (51) or released by the brake of the wind power generation facility (31) or by stopping the part of the wind power generation facility (31),
If the demand is greater than the supply power, the discharge of the storage battery facility (51), the power generation of the instantaneous power generation facility (41) and the peak cut,
The unexpected and unexpected shortage of power supply will be handled by the fossil fuel power generation set facility,
In addition to the power generation composition ratio in the highest demand period and the lowest demand ratio, the power generation composition ratio until the solar power generation in the highest demand period is discharged, the power stored in the storage battery facility (51) is discharged.
During the period from the highest demand time (around 12:00 in summer) to the lowest demand time in the highest demand period (around 5:00 in the morning following the summer), the storage and discharge of the storage battery equipment (51) and the power generation of the instantaneous power generation equipment (41) are adjusted.
Operation in the lowest demand period is the minimum demand power generation composition ratio (the hydropower generation ratio is the same as the hydropower generation ratio in the highest demand,
The wind power generation capacity by the wind power generation equipment (31) group is divided into two groups equally divided into the group that stops the wind power generation capacity and the operating group, and the wind power generation ratio at the highest demand is 1/2,
Divided into two groups, the group that shuts down the nuclear power generation capacity and the group that operates The nuclear power generation ratio by the nuclear power generation equipment group is from the lowest demand ratio to the hydroelectric power generation ratio at the highest demand and the wind power generation at the highest demand Operation divided into two groups, equally divided into the group that shuts down the solar power generation capacity and the group that is operated in the lowest demand power generation component ratio. On the basis of the solar power generation ratio by the group of middle solar power generation facilities (21), taking into account 1/2 of the solar power generation ratio at the highest demand)
If the wind power generation rate or solar power generation decreases from the expected value, it can be dealt with by discharging the storage battery facility (51) or generating power by the instantaneous power generation facility (41).
If the wind power generation ratio increases from the regulation, it can be absorbed by the electricity stored in the storage battery facility (51) or released by the brake of the wind power generation facility (31) or by stopping the part of the wind power generation facility (31),
If the demand is greater than the supply power, the discharge of the storage battery facility (51), the power generation of the instantaneous power generation facility (41) and the peak cut,
The unexpected and unexpected shortage of power supply will be handled by the fossil fuel power generation set facility,
If the minimum demand falls below a certain value, reduce the output of the nuclear power generation equipment group during operation.
The operation until the solar power generation in the minimum demand period is obtained corresponds to the minimum demand power generation component ratio by storage and discharge from the storage battery equipment (51), power generation and peak cut of the instantaneous power generation equipment (41),
The operation between the highest demand period and the lowest demand period is handled by adjusting the number of nuclear power generation facilities to be stopped by fuel exchange and adjusting the output of the nuclear power generation facilities in operation.
The above-described series of operations to be absorbed within the range that can be stored in the storage battery facility (51) when the power supply excess in wind power generation, solar power generation, or hydroelectric power generation is made automatically at any time is characterized by the command of the computer (10). Surface-based power generation complementation system introduction Principle of operating fossil fuel-free power generation.
JP2008267486A 2008-10-16 2008-10-16 Operation method of power generation with surface-derived power generation Expired - Fee Related JP5243180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267486A JP5243180B2 (en) 2008-10-16 2008-10-16 Operation method of power generation with surface-derived power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008267486A JP5243180B2 (en) 2008-10-16 2008-10-16 Operation method of power generation with surface-derived power generation

Publications (3)

Publication Number Publication Date
JP2010096085A true JP2010096085A (en) 2010-04-30
JP2010096085A5 JP2010096085A5 (en) 2011-11-10
JP5243180B2 JP5243180B2 (en) 2013-07-24

Family

ID=42257944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267486A Expired - Fee Related JP5243180B2 (en) 2008-10-16 2008-10-16 Operation method of power generation with surface-derived power generation

Country Status (1)

Country Link
JP (1) JP5243180B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084288A1 (en) * 2011-12-06 2013-06-13 三菱重工業株式会社 Power generation system
JP2013135561A (en) * 2011-12-27 2013-07-08 Tokyo Gas Co Ltd Power output variation complementation system, and control device and program thereof
JP2014522221A (en) * 2011-07-28 2014-08-28 ソシエテ テクニク プール レネルジ アトミク テクニカトム System for generating and distributing electrical energy throughout a power system and associated optimization methods
JPWO2013038483A1 (en) * 2011-09-13 2015-03-23 東芝三菱電機産業システム株式会社 Peak cut system
JP5970146B1 (en) * 2015-11-16 2016-08-17 株式会社電力システムズ・インスティテュート Power system control method and control system including solar power generation device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163670A (en) * 1985-01-16 1986-07-24 Mitsui Eng & Shipbuild Co Ltd Wind-force and solar ray combined electric power plant
JPH10150733A (en) * 1996-11-19 1998-06-02 Meidensha Corp Emergency power supply
JPH1169893A (en) * 1997-08-26 1999-03-09 Hitachi Eng & Services Co Ltd Hybrid power generation system
JP2001352693A (en) * 2000-06-09 2001-12-21 Sharp Corp Solar generator and its control system
JP2004301116A (en) * 2003-03-19 2004-10-28 Mitsubishi Electric Corp Wind power generating system
JP2007231613A (en) * 2006-03-01 2007-09-13 Tokyo Electric Power Co Inc:The Double glazing device with built-in blind
WO2008073453A1 (en) * 2006-12-11 2008-06-19 V2Green, Inc. Power aggregation system for distributed electric resources
JP2008182859A (en) * 2007-01-26 2008-08-07 Hitachi Industrial Equipment Systems Co Ltd Hybrid system, wind power generating system, power control device for wind power generating device and storage device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163670A (en) * 1985-01-16 1986-07-24 Mitsui Eng & Shipbuild Co Ltd Wind-force and solar ray combined electric power plant
JPH10150733A (en) * 1996-11-19 1998-06-02 Meidensha Corp Emergency power supply
JPH1169893A (en) * 1997-08-26 1999-03-09 Hitachi Eng & Services Co Ltd Hybrid power generation system
JP2001352693A (en) * 2000-06-09 2001-12-21 Sharp Corp Solar generator and its control system
JP2004301116A (en) * 2003-03-19 2004-10-28 Mitsubishi Electric Corp Wind power generating system
JP2007231613A (en) * 2006-03-01 2007-09-13 Tokyo Electric Power Co Inc:The Double glazing device with built-in blind
WO2008073453A1 (en) * 2006-12-11 2008-06-19 V2Green, Inc. Power aggregation system for distributed electric resources
JP2008182859A (en) * 2007-01-26 2008-08-07 Hitachi Industrial Equipment Systems Co Ltd Hybrid system, wind power generating system, power control device for wind power generating device and storage device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014522221A (en) * 2011-07-28 2014-08-28 ソシエテ テクニク プール レネルジ アトミク テクニカトム System for generating and distributing electrical energy throughout a power system and associated optimization methods
JPWO2013038483A1 (en) * 2011-09-13 2015-03-23 東芝三菱電機産業システム株式会社 Peak cut system
WO2013084288A1 (en) * 2011-12-06 2013-06-13 三菱重工業株式会社 Power generation system
CN103249946A (en) * 2011-12-06 2013-08-14 三菱重工业株式会社 Power generation system
JP2013135561A (en) * 2011-12-27 2013-07-08 Tokyo Gas Co Ltd Power output variation complementation system, and control device and program thereof
JP5970146B1 (en) * 2015-11-16 2016-08-17 株式会社電力システムズ・インスティテュート Power system control method and control system including solar power generation device

Also Published As

Publication number Publication date
JP5243180B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
Wirth et al. Recent facts about photovoltaics in Germany
Hedegaard et al. Wind power impacts and electricity storage–A time scale perspective
Scamman et al. Hybrid hydrogen-battery systems for renewable off-grid telecom power
Duffy et al. Energy sources and supply grids–the growing need for storage
JP2010233352A (en) Power supply system, and device for control of distributed power plant
Michaelides et al. Impact of nuclear energy on fossil fuel substitution
JP5243180B2 (en) Operation method of power generation with surface-derived power generation
Li et al. Cost-optimal operation strategy for integrating large scale of renewable energy in China’s power system: From a multi-regional perspective
Zubi Technology mix alternatives with high shares of wind power and photovoltaics—case study for Spain
Moury et al. Feasibility study of solar PV arrays in grid connected cellular BTS sites
Barnham et al. Benefits of photovoltaic power in supplying national electricity demand
Zini et al. Hydrogen systems for large-scale photovoltaic plants: Simulation with forecast and real production data
KR20140111118A (en) Solar-cell system having maximum power saving function and method thereof
CN115333161A (en) Capacity optimization configuration method for power supply system of green water plant
CN103228910B (en) Hybrid power system on a small scale
Chen et al. Technoeconomic analysis and optimization of hybrid solar-wind-hydrodiesel renewable energy systems using two dispatch strategies
CN108736498B (en) Energy control method for smart home light storage power generation system
Sun et al. Study on the performance and economy of the building-integrated micro-grid considering photovoltaic and pumped storage: a case study in Foshan
Yu et al. The influence of generation mix on the wind integrating capability of North China power grids: A modeling interpretation and potential solutions
Ess et al. The significance of international hydropower storage for the energy transition
Ahshan Pumped hydro storage for microgrid applications
CN111969595B (en) Operation optimization method of water-light-storage hybrid energy system under off-grid/grid-connected condition
Keskamol et al. Sizing of battery energy storage system for sustainable energy in a remote area
Banshwar et al. Determination of optimal capacity of pumped storage plant by efficient management of renewable energy sources
Stiller et al. Storage of renewable electricity through hydrogen production

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees