JP2010096039A - Urea water injection amount control device and urea water injection control system - Google Patents

Urea water injection amount control device and urea water injection control system Download PDF

Info

Publication number
JP2010096039A
JP2010096039A JP2008265881A JP2008265881A JP2010096039A JP 2010096039 A JP2010096039 A JP 2010096039A JP 2008265881 A JP2008265881 A JP 2008265881A JP 2008265881 A JP2008265881 A JP 2008265881A JP 2010096039 A JP2010096039 A JP 2010096039A
Authority
JP
Japan
Prior art keywords
ratio
urea water
conversion rate
exhaust
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008265881A
Other languages
Japanese (ja)
Inventor
Kazuharu Tochikawa
和治 栩川
Masatoshi Maruyama
昌利 丸山
Osamu Shimomura
修 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2008265881A priority Critical patent/JP2010096039A/en
Priority to CN2009101763714A priority patent/CN101725392B/en
Priority to DE102009049521A priority patent/DE102009049521A1/en
Publication of JP2010096039A publication Critical patent/JP2010096039A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0408Methods of control or diagnosing using a feed-back loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a urea water injection amount control device capable of facilitating reduction in excess or deficiency in supply amount of NH3 by improving estimation accuracy of an NO/NO2 ratio. <P>SOLUTION: The ratio of NO to NO2 (NO/NO2 ratio) flowing into an NOx reduction catalyst of SCR (selective catalytic reduction) is estimated based on a conversion rate of NO2 where NO is oxidized by oxygen and is converted to NO2 in an oxidation catalyst of DOC (diesel oxidation catalyst) and a conversion rate of NO where NO2 is converted to NO as carbon is oxidized by NO2 in DPF (diesel particulate filter). Based on the NO/NO2 ratio estimated in this manner, the amount of urea water injected from an injection valve is controlled. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、尿素水から生成されるアンモニアを使用して排気中のNOxを還元するNOx還元触媒を備えた内燃機関の排気浄化システムに適用され、尿素水の噴射量を制御する尿素水噴射量制御装置及びその制御システムに関する。   The present invention is applied to an exhaust gas purification system for an internal combustion engine equipped with a NOx reduction catalyst that uses ammonia generated from urea water to reduce NOx in exhaust gas, and controls the injection amount of urea water. The present invention relates to a control device and a control system thereof.

従来、尿素水から生成されるアンモニアNH3を使用して排気中の窒素酸化物NOx(主にNOとNO2)を還元するNOx還元触媒が知られており、その還元反応は主に以下の反応式(1)〜(3)によるものと考えられる。   Conventionally, a NOx reduction catalyst for reducing nitrogen oxide NOx (mainly NO and NO2) in exhaust gas using ammonia NH3 generated from urea water is known, and the reduction reaction is mainly performed by the following reaction formula. This is considered to be due to (1) to (3).

NH3+1/2NO+1/2NO2→N2+3/2H2O ・・・(1)
NH3+NO+1/4O2→N2+3/2H2O ・・・(2)
NH3+3/4NO2→7/8N2+3/2H2O ・・・(3)
このことは、NOx還元触媒に流入するNO、NO2がいずれの反応式(1)〜(3)にしたがって還元されるのかに応じて、還元に用いられるNH3の量が異なってくることを意味する。そのため、単純にNOx量を推定してその推定値に基づき尿素水の噴射量を制御した場合には、NO及びNO2の割合(以下「NO/NO2割合」と記載)によってはNH3供給量の過不足が生じる。NH3が不足するとNOx浄化率の低下を招き、NH3が過剰であるとNOx還元触媒からNH3の過剰分が排出されるといったアンモニアスリップを招く。そこで従来では、NO/NO2割合を推定し、その推定結果に応じて尿素水の噴射量を制御することで、NH3供給量の過不足抑制を図っていた(特許文献1参照)。
NH 3 + 1 / 2NO + 1 / 2NO 2 → N 2 + 3 / 2H 2 O (1)
NH 3 + NO + 1 / 4O 2 → N 2 + 3 / 2H 2 O (2)
NH 3 + 3 / 4NO 2 → 7 / 8N 2 + 3 / 2H 2 O (3)
This means that the amount of NH3 used for the reduction varies depending on which of the reaction formulas (1) to (3) the NO and NO2 flowing into the NOx reduction catalyst are reduced. . Therefore, when the amount of NOx is simply estimated and the injection amount of urea water is controlled based on the estimated value, depending on the ratio of NO and NO2 (hereinafter referred to as “NO / NO2 ratio”), the excess of NH3 supply amount may be increased. A shortage occurs. When NH3 is insufficient, the NOx purification rate is lowered, and when NH3 is excessive, an ammonia slip is caused such that excess NH3 is discharged from the NOx reduction catalyst. Therefore, conventionally, the NO / NO2 ratio is estimated, and the injection amount of urea water is controlled in accordance with the estimation result, thereby suppressing excess / deficiency of the NH3 supply amount (see Patent Document 1).

特許文献1では、NOx還元触媒の排気上流側に配置された酸化触媒において、排気中のNOが以下の反応式(4)にしたがってNO2に酸化されることに着目し、その酸化によるNO2への変換率(NO2変換率)に基づきNO/NO2割合を推定している。   Patent Document 1 focuses on the fact that NO in exhaust gas is oxidized to NO2 according to the following reaction formula (4) in the oxidation catalyst arranged on the exhaust upstream side of the NOx reduction catalyst. The NO / NO2 ratio is estimated based on the conversion rate (NO2 conversion rate).

2NO+O2→2NO2 ・・・(4)
ちなみに、上記反応式(1)〜(3)の中では反応式(1)の反応速度が最も速い。そして、上記酸化触媒に流入するNOxの大半はNOであるが、上記反応式(4)の如くNOの一部をNO2に変換することで、NOx還元触媒に流入するNO2量をNO量に近づけるよう酸化触媒は機能し、これにより、NOx還元触媒において反応式(1)による反応が促進され、ひいてはNOx浄化率の向上が図られることとなる。
特開2002−250220号公報
2NO + O 2 → 2NO 2 (4)
Incidentally, among the reaction formulas (1) to (3), the reaction rate of the reaction formula (1) is the fastest. Most of the NOx flowing into the oxidation catalyst is NO, but by converting part of the NO into NO2 as in the above reaction formula (4), the amount of NO2 flowing into the NOx reduction catalyst is brought close to the NO amount. The oxidation catalyst functions so that the reaction according to the reaction formula (1) is promoted in the NOx reduction catalyst, and as a result, the NOx purification rate is improved.
JP 2002-250220 A

しかしながら、酸化触媒上でのNO2変換率に基づきNO/NO2割合を推定する従来制御では、その推定精度を向上させる余地があることを本発明者らは見出した。   However, the present inventors have found that there is room for improving the estimation accuracy in the conventional control in which the NO / NO2 ratio is estimated based on the NO2 conversion rate on the oxidation catalyst.

すなわち、排気中の炭素系微粒子(PM:particulate matters)を捕集するフィルタ(DPF:diesel particulate filter)をNOx還元触媒の排気上流側に配置した排気浄化システムにおいては、DPFに捕集されたPMの主成分である煤(C)が以下の反応式(5)にしたがってNO2により酸化される。すると、このような煤の酸化に伴いNO2がNOに変換される。   That is, in an exhaust purification system in which a filter (DPF: diesel particulate filter) that collects carbon-based particulate matter (PM) in exhaust gas is disposed upstream of the NOx reduction catalyst, PM collected by DPF主 成分 (C), which is the main component, is oxidized by NO 2 according to the following reaction formula (5). Then, NO2 is converted to NO with such oxidation of soot.

C+2NO2→CO2+2NO ・・・(5)
したがって、NO/NO2割合は、酸化触媒上でのNO2変換率に応じて変化するのみならず、DPF上にて煤が酸化されることに伴いNO2がNOへ変換される率(NO変換率)に応じても変化する、との知見を本発明者らは得た。
C + 2NO 2 → CO 2 + 2NO (5)
Therefore, the NO / NO2 ratio not only changes according to the NO2 conversion rate on the oxidation catalyst, but also the rate at which NO2 is converted to NO as NOx is oxidized on the DPF (NO conversion rate). The present inventors have obtained the knowledge that it changes depending on the condition.

本発明は、上記課題を解決するためになされたものであり、その目的は、NO/NO2割合の推定精度を向上させることで、NH3供給量の過不足低減を促進できる尿素水噴射量制御装置及び尿素水噴射制御システムを提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to improve the estimation accuracy of the NO / NO2 ratio so as to promote the excess / deficiency reduction of the NH3 supply amount. And providing a urea water injection control system.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1記載の発明は、内燃機関の排気管に配置され、尿素水から生成されるアンモニアを使用して排気中のNOxを還元するNOx還元触媒と、前記NOx還元触媒の排気上流側にて尿素水を噴射供給する噴射弁と、前記NOx還元触媒の排気上流側に配置され、排気中のNOをNO2に酸化しうる酸化触媒と、前記NOx還元触媒の排気上流側に配置され、排気中の炭素系微粒子を捕集するフィルタと、を備える内燃機関の排気浄化システムに適用されたものである。   The invention according to claim 1 is arranged in an exhaust pipe of an internal combustion engine, and uses an ammonia generated from urea water to reduce NOx in the exhaust, and on the exhaust upstream side of the NOx reduction catalyst. An injection valve for injecting and supplying urea water, an oxidation catalyst arranged on the exhaust upstream side of the NOx reduction catalyst, an oxidation catalyst capable of oxidizing NO in the exhaust to NO2, and an exhaust upstream side of the NOx reduction catalyst, The present invention is applied to an exhaust gas purification system for an internal combustion engine including a filter that collects the carbon-based fine particles.

そして、前記酸化触媒においてNOが酸素により酸化されてNO2に変換されるNO2変換率と、前記フィルタにおいて炭素がNO2により酸化されることに伴いNO2がNOへ変換されるNO変換率とに基づき、前記NOx還元触媒へ流入するNOとNO2との割合(NO/NO2割合)を推定する割合推定手段と、前記割合推定手段により推定されたNO/NO2割合に基づき、前記噴射弁から噴射される尿素水の噴射量を制御する噴射量制御手段と、を備えることを特徴とする。   And based on the NO2 conversion rate in which NO is oxidized by oxygen in the oxidation catalyst and converted to NO2, and the NO conversion rate in which NO2 is converted to NO as the carbon is oxidized by NO2 in the filter, Ratio estimating means for estimating the ratio of NO and NO2 flowing into the NOx reduction catalyst (NO / NO2 ratio), and urea injected from the injection valve based on the NO / NO2 ratio estimated by the ratio estimating means And an injection amount control means for controlling the injection amount of water.

本発明は、本発明者らによる上記知見、つまり「NO/NO2割合は、酸化触媒上におけるNO2変換率に応じて変化するのみならず、フィルタ上におけるNO変換率に応じても変化する」との知見に基づきなされたものであり、酸化触媒上でのNO2変換率に加え、フィルタ上でのNO変換率にも基づきNO/NO2割合を推定するので、その推定精度を向上させることができる。よって、尿素水の噴射量過不足低減を促進でき、ひいては、NH3供給量の過不足低減を促進することができる。   The present invention is based on the above findings by the present inventors, that is, “the NO / NO 2 ratio varies not only according to the NO 2 conversion rate on the oxidation catalyst but also according to the NO conversion rate on the filter”. The NO / NO 2 ratio is estimated based on the NO conversion rate on the filter in addition to the NO 2 conversion rate on the oxidation catalyst, so that the estimation accuracy can be improved. Therefore, it is possible to promote the reduction in excess and deficiency of the injection amount of urea water, and consequently promote the reduction in excess and deficiency of the NH 3 supply amount.

請求項2記載の発明では、前記フィルタでの炭素系微粒子(PM)の堆積量を取得するPM堆積量取得手段を備え、前記割合推定手段は、前記PM堆積量取得手段により取得したPM堆積量に基づき前記NO変換率を推定することで、前記割合を推定することを特徴とする。   According to a second aspect of the present invention, there is provided a PM deposition amount acquisition unit that acquires a deposition amount of carbon-based fine particles (PM) on the filter, and the ratio estimation unit is configured to acquire the PM deposition amount acquired by the PM deposition amount acquisition unit. The ratio is estimated by estimating the NO conversion rate based on the above.

先述した反応式(5)から明らかなように、PMの主成分である煤(C)の量に応じてNO変換率は変化する。この点に着目し、上記請求項2記載の発明では、PM堆積量に基づきNO変換率を推定することでNO/NO2割合を推定するので、その推定について十分な精度を確保することを容易に実現できる。   As is clear from the above-described reaction formula (5), the NO conversion rate changes according to the amount of soot (C) which is the main component of PM. Focusing on this point, in the invention according to the second aspect, the NO / NO2 ratio is estimated by estimating the NO conversion rate based on the PM accumulation amount, so that it is easy to ensure sufficient accuracy for the estimation. realizable.

また、PM堆積量が多いほど反応式(5)中のCの量が多くなり、ひいてはNO2がNOに変換される率(NO変換率)が多くなる。よって、請求項3記載の如く前記堆積量が多いほど前記NO変換率が多くなるよう推定することが望ましい。   Further, as the PM deposition amount increases, the amount of C in the reaction formula (5) increases, and as a result, the rate at which NO2 is converted to NO (NO conversion rate) increases. Therefore, it is desirable to estimate that the NO conversion rate increases as the accumulation amount increases.

請求項4記載の発明では、前記フィルタの温度を取得するフィルタ温度取得手段を備え、前記割合推定手段は、前記フィルタ温度取得手段により取得したフィルタ温度に基づき前記NO変換率を推定することで、前記割合を推定することを特徴とする。   In invention of Claim 4, it comprises the filter temperature acquisition means which acquires the temperature of the filter, The ratio estimation means estimates the NO conversion rate based on the filter temperature acquired by the filter temperature acquisition means, The ratio is estimated.

先述した反応式(5)の反応速度はフィルタ温度に依存する。つまり、PM堆積量が同じであっても、フィルタ温度に応じてNO2がNOに変換される量(NO変換率)は異なる。この点に着目し、上記請求項4記載の発明では、フィルタ温度に基づきNO変換率を推定することでNO/NO2割合を推定するので、その推定について十分な精度を確保することを容易に実現できる。   The reaction rate of the above-described reaction formula (5) depends on the filter temperature. That is, even if the PM accumulation amount is the same, the amount of NO2 converted to NO (NO conversion rate) varies depending on the filter temperature. Focusing on this point, the invention according to claim 4 estimates the NO / NO2 ratio by estimating the NO conversion rate based on the filter temperature, so that it is easy to ensure sufficient accuracy for the estimation. it can.

また、NO変換率とフィルタ温度との関係について説明すると、NO変換率はフィルタ温度が所定温度の時に極大となる。よって、請求項5記載の如く、前記フィルタ温度に基づき前記NO変換率を推定するにあたり、前記フィルタ温度が所定温度である時に前記NO変換率が極大となるよう推定することが望ましい。   Further, the relationship between the NO conversion rate and the filter temperature will be described. The NO conversion rate becomes maximum when the filter temperature is a predetermined temperature. Therefore, as described in claim 5, when estimating the NO conversion rate based on the filter temperature, it is desirable to estimate the NO conversion rate to be maximum when the filter temperature is a predetermined temperature.

請求項6記載の発明では、排気の流速を取得する排気流速取得手段を備え、前記割合推定手段は、前記酸化触媒温度取得手段により取得した排気流速が速いほど、前記NO変換率の推定値を少なく補正することを特徴とする。   According to a sixth aspect of the present invention, the apparatus includes an exhaust gas flow rate acquisition unit that acquires a flow rate of exhaust gas, and the ratio estimation unit calculates the estimated value of the NO conversion rate as the exhaust flow rate acquired by the oxidation catalyst temperature acquisition unit increases. It is characterized by correcting less.

排気流速が速いほど反応式(5)の反応がなされることなくNO2がフィルタを通過してしまう割合が高くなる。この点に鑑みた上記請求項6記載の発明では、排気流速が速いほどNO変換率の推定値を少なく補正するので、NO変換率の推定精度を向上でき、ひいてはNO/NO2割合の推定精度を向上できる。   The higher the exhaust gas flow rate, the higher the rate at which NO2 passes through the filter without the reaction of reaction formula (5). In the invention according to claim 6 in view of this point, the estimated value of the NO conversion rate is corrected to be smaller as the exhaust gas flow rate is faster, so that the estimation accuracy of the NO conversion rate can be improved, and consequently the estimated accuracy of the NO / NO2 ratio is improved. Can be improved.

請求項7記載の発明では、前記酸化触媒の温度を取得する酸化触媒温度取得手段を備え、前記割合推定手段は、前記酸化触媒温度取得手段により取得した酸化触媒温度に基づき前記NO2変換率を推定することで、前記割合を推定することを特徴とする。   The invention according to claim 7 further comprises an oxidation catalyst temperature acquisition means for acquiring the temperature of the oxidation catalyst, and the ratio estimation means estimates the NO2 conversion rate based on the oxidation catalyst temperature acquired by the oxidation catalyst temperature acquisition means. Thus, the ratio is estimated.

先述した反応式(4)の反応速度は酸化触媒温度に依存する。つまり、酸化触媒へ流入するNOの量が同じであっても、酸化触媒温度に応じてNOがNO2に変換される率(NO2変換率)は異なる。この点に着目し、上記請求項7記載の発明では、酸化触媒温度に基づきNO2変換率を推定するので、その推定について十分な精度を確保することを容易に実現できる。   The reaction rate of the above-mentioned reaction formula (4) depends on the oxidation catalyst temperature. That is, even if the amount of NO flowing into the oxidation catalyst is the same, the rate at which NO is converted to NO2 (NO2 conversion rate) varies depending on the oxidation catalyst temperature. Focusing on this point, in the invention according to the seventh aspect, the NO2 conversion rate is estimated based on the oxidation catalyst temperature, so that it is possible to easily achieve sufficient accuracy for the estimation.

また、NO2変換率と酸化触媒温度との関係について説明すると、NO2変換率は酸化触媒温度が所定温度の時に極大となる。よって、請求項8記載の如く、前記酸化触媒温度に基づき前記NO2変換率を推定するにあたり、前記酸化触媒温度が所定温度である時に前記NO2変換率が極大となるよう推定することが望ましい。   The relationship between the NO2 conversion rate and the oxidation catalyst temperature will be described. The NO2 conversion rate becomes maximum when the oxidation catalyst temperature is a predetermined temperature. Therefore, as described in claim 8, when estimating the NO2 conversion rate based on the oxidation catalyst temperature, it is desirable to estimate the NO2 conversion rate to be maximum when the oxidation catalyst temperature is a predetermined temperature.

請求項9記載の発明では、排気の流速を取得する排気流速取得手段を備え、前記割合推定手段は、前記酸化触媒温度取得手段により取得した排気流速が速いほど、前記NO2変換率の推定値を少なく補正することを特徴とする。   According to a ninth aspect of the present invention, the exhaust gas flow rate acquisition means for acquiring the flow velocity of the exhaust gas is provided, and the ratio estimation means calculates the estimated value of the NO2 conversion rate as the exhaust flow velocity acquired by the oxidation catalyst temperature acquisition means increases. It is characterized by correcting less.

排気流速が速いほど反応式(4)の反応がなされることなくNOが酸化触媒を通過してしまう割合が高くなる。この点に鑑みた上記請求項9記載の発明では、排気流速が速いほどNO2変換率の推定値を少なく補正するので、NO2変換率の推定精度を向上でき、ひいてはNO/NO2割合の推定精度を向上できる。   The faster the exhaust gas flow rate, the higher the rate at which NO passes through the oxidation catalyst without the reaction of the reaction formula (4). In the invention according to claim 9 in view of this point, the estimated value of the NO2 conversion rate is corrected to be smaller as the exhaust gas flow rate is faster. Therefore, the estimation accuracy of the NO2 conversion rate can be improved, and thus the estimated accuracy of the NO / NO2 ratio is improved. Can be improved.

請求項10記載の発明は、内燃機関の排気管に配置され、尿素水から生成されるアンモニアを使用して排気中のNOxを還元するNOx還元触媒と、/前記NOx還元触媒の排気上流側にて尿素水を噴射供給する噴射弁と、/前記NOx還元触媒の排気上流側に配置され、排気中のNOをNO2に酸化しうる酸化触媒と、/前記NOx還元触媒の排気上流側に配置され、排気中の炭素系微粒子を捕集するフィルタと、を備える内燃機関の排気浄化システムに適用され、/前記フィルタでの炭素系微粒子(PM)の堆積量を取得するPM堆積量取得手段と、/前記PM堆積量取得手段により取得した炭素系微粒子の堆積量に基づき前記NOx還元触媒に流入するNOとNO2との割合を推定する割合推定手段と、/前記割合推定手段により推定されたNOとNO2との割合に基づき、前記噴射弁から噴射される尿素水の噴射量を制御する噴射量制御手段と、を備えることを特徴とする。   The invention according to claim 10 is provided in the exhaust pipe of the internal combustion engine, and reduces NOx in the exhaust using ammonia generated from urea water, and / on the exhaust upstream side of the NOx reduction catalyst. An injection valve for injecting urea water and / or an exhaust catalyst upstream of the NOx reduction catalyst and capable of oxidizing NO in the exhaust to NO2, and / or an exhaust upstream side of the NOx reduction catalyst. A PM deposit amount acquisition means, which is applied to an exhaust gas purification system for an internal combustion engine comprising a filter that collects carbon-based fine particles in exhaust gas, and acquires a deposit amount of carbon-based fine particles (PM) in the filter; / Ratio estimation means for estimating the ratio of NO and NO2 flowing into the NOx reduction catalyst based on the accumulation amount of carbon-based fine particles acquired by the PM accumulation amount acquisition means; / Estimated by the ratio estimation means Based on the ratio between NO and NO2 which is characterized by comprising a an injection quantity control means for controlling the injection amount of urea water injected from the injection valve.

これによれば、フィルタにおいて炭素がNO2により酸化されることに伴いNO2がNOへ変換される率(NO変換率)と相関のあるPM堆積量に基づきNO/NO2割合を推定するので、その推定精度を向上させることができる。よって、尿素水の噴射量過不足低減を促進でき、ひいては、NH3供給量の過不足低減を促進することができる。   According to this, since the NO / NO2 ratio is estimated based on the PM accumulation amount correlated with the rate of conversion of NO2 to NO (NO conversion rate) as the carbon is oxidized by NO2 in the filter, the estimation is performed. Accuracy can be improved. Therefore, it is possible to promote the reduction in excess and deficiency of the injection amount of urea water, and consequently promote the reduction in excess and deficiency of the NH 3 supply amount.

請求項11記載の発明は、上記尿素水噴射量制御装置と、前記NOx還元触媒、前記噴射弁、前記酸化触媒及び前記フィルタの少なくとも1つと、を備えることを特徴とする尿素水噴射制御システムである。この尿素水噴射制御システムによれば、上述の各種効果を同様に発揮することができる。   The invention according to claim 11 is a urea water injection control system comprising the urea water injection amount control device and at least one of the NOx reduction catalyst, the injection valve, the oxidation catalyst, and the filter. is there. According to this urea water injection control system, the above-mentioned various effects can be exhibited similarly.

以下、本発明を具体化した一実施形態について図面を参照しつつ説明する。本実施形態は、車載ディーゼルエンジン用の排気浄化システムとして本発明を具体化しており、その詳細な構成を以下に説明する。   Hereinafter, an embodiment embodying the present invention will be described with reference to the drawings. The present embodiment embodies the present invention as an exhaust purification system for a vehicle-mounted diesel engine, and its detailed configuration will be described below.

はじめに、図1を参照して、本実施形態に係る排気浄化システムの構成について説明する。図1に示す排気浄化システムは、エンジン(内燃機関)の排気系に取り付けられ、同エンジンの排気中に含まれるHC、CO、NOx、PMを主に浄化するものである。   First, the configuration of the exhaust purification system according to the present embodiment will be described with reference to FIG. The exhaust purification system shown in FIG. 1 is attached to the exhaust system of an engine (internal combustion engine) and mainly purifies HC, CO, NOx, and PM contained in the exhaust of the engine.

具体的には、酸化触媒11aを有する酸化装置(DOC11:diesel oxidation catalyst)、排気中の炭素系微粒子(PM)を捕集するフィルタ(DPF12)、NOx還元触媒13aを有する還元装置(SCR13:selective catalytic reduction)を、排気上流側から順に並べて排気管10に取り付けて構成されている。また、排気管10のうちSCR13の上流側かつDPF12の下流側に位置する部分には、尿素水を排気中に噴射供給する噴射弁14が取り付けられている。   Specifically, an oxidation device (DOC11: diesel oxidation catalyst) having an oxidation catalyst 11a, a filter (DPF12) for collecting carbon-based fine particles (PM) in exhaust gas, and a reduction device (SCR13: selective) having a NOx reduction catalyst 13a. catalytic reduction) are arranged in order from the exhaust upstream side and attached to the exhaust pipe 10. An injection valve 14 for injecting and supplying urea water into the exhaust is attached to a portion of the exhaust pipe 10 located upstream of the SCR 13 and downstream of the DPF 12.

DOC11は、基材11bに白金系の酸化触媒11aを担持して構成されており、排気中の未燃燃料HC及びCOを酸化して浄化するとともに、排気中のNOを酸化してNO2に変換する。DPF12は、コーディエライト等の耐熱性セラミックからなる多孔質隔壁構造に形成され、排気中のPMを捕集する連続再生式のフィルタである。例えばメインの燃料噴射後のポスト噴射等で捕集PMを繰り返し燃焼除去する(再生処理に相当)ことにより継続的に使用することができる。   The DOC 11 is configured by supporting a platinum-based oxidation catalyst 11a on a base 11b, oxidizing and purifying unburned fuel HC and CO in the exhaust, and oxidizing NO in the exhaust to convert it to NO2. To do. The DPF 12 is a continuously regenerating filter that is formed in a porous partition structure made of a heat-resistant ceramic such as cordierite and collects PM in exhaust gas. For example, the collected PM can be continuously used by repeatedly burning and removing (corresponding to the regeneration process) by post-injection after the main fuel injection.

車両には、尿素を純水に溶け込ませてなる尿素水を貯蔵する尿素水タンク15が搭載されている。尿素水タンク15に貯蔵された尿素水は、電動ポンプ16により汲み上げられ、フィルタ17を介して噴射弁14へ供給される。電動ポンプ16は、エンジン運転中常時駆動するよう電子制御装置(ECU20)により制御されており、図示しないレギュレータにより噴射弁14への尿素水の供給圧力が一定となるよう制御される。   The vehicle is equipped with a urea water tank 15 for storing urea water obtained by dissolving urea in pure water. The urea water stored in the urea water tank 15 is pumped up by the electric pump 16 and supplied to the injection valve 14 via the filter 17. The electric pump 16 is controlled by an electronic control unit (ECU 20) so that it is always driven during engine operation, and is controlled so that the supply pressure of urea water to the injection valve 14 is constant by a regulator (not shown).

噴射弁14は、電動ポンプ16から供給された尿素水を、排気管10内のうちSCR13の排気上流側に噴射する。より詳細に説明すると、噴射弁14は、噴孔を開閉するニードル(図示せず)を備えており、ニードルの作動をECU20が制御することで噴孔の開閉状態を制御する。そして、所定時間あたりに噴孔を開く時間を制御することで、尿素水の噴射量をECU20は制御する。   The injection valve 14 injects urea water supplied from the electric pump 16 to the exhaust upstream side of the SCR 13 in the exhaust pipe 10. More specifically, the injection valve 14 includes a needle (not shown) that opens and closes the nozzle hole, and the ECU 20 controls the opening and closing state of the nozzle hole by controlling the operation of the needle. And ECU20 controls the injection quantity of urea water by controlling the time which opens a nozzle hole per predetermined time.

噴射弁14から噴射された尿素水は、排気の熱によってアンモニア(NH3)に変換され(次式(6)参照)、排気共々下流のSCR13へ供給される。   The urea water injected from the injection valve 14 is converted into ammonia (NH 3) by the heat of the exhaust (see the following equation (6)), and is supplied to the SCR 13 downstream of both the exhaust.

(NH2)2CO+H2O→2NH3+CO2 ・・・(6)
SCR13は、基材13bに酸化バナジウム等のNOx還元触媒13aを担持して構成されており、酸素共存下でも選択的に排気中のNOxをアンモニアと反応させて(上記式(1)〜(3)参照)、NOxを還元して浄化する。ちなみに、DOC11に流入するNOxの大半はNOであるが、上記反応式(4)の如くNOの一部をNO2に変換することで、SCR13に流入するNO2量はNO量に近づくこととなるので、SCR13において上記反応式(1)による反応が促進され、ひいてはNOx浄化率の向上が図られることとなる。
(NH 2 ) 2CO + H 2 O → 2NH 3 + CO 2 (6)
The SCR 13 is configured by supporting a NOx reduction catalyst 13a such as vanadium oxide on a base material 13b, and selectively reacts NOx in exhaust gas with ammonia even in the presence of oxygen (the above formulas (1) to (3)). )), NOx is reduced and purified. Incidentally, most of the NOx flowing into the DOC 11 is NO, but by converting a part of NO into NO2 as in the above reaction formula (4), the amount of NO2 flowing into the SCR 13 approaches the amount of NO. In the SCR 13, the reaction according to the above reaction formula (1) is promoted, and as a result, the NOx purification rate is improved.

ECU20は、周知のマイクロコンピュータ(図示略)を備え、エアフロメータ21、アクセル開度センサ22、クランク角センサ23等の各種センサの検出値に基づいて、1燃焼サイクル当たりに燃焼室に吸入される吸気量、エンジンの要求トルク、クランク軸の回転速度(エンジン回転速度)等を算出する。そして、これらの算出値に基づきエンジンの運転状態(例えば燃料噴射量、噴射タイミング、EGR量、過給圧等)を制御する。   The ECU 20 includes a well-known microcomputer (not shown), and is sucked into the combustion chamber per combustion cycle based on detection values of various sensors such as an air flow meter 21, an accelerator opening sensor 22, and a crank angle sensor 23. The intake air amount, the required torque of the engine, the rotational speed of the crankshaft (engine rotational speed), etc. are calculated. Based on these calculated values, the engine operating state (for example, fuel injection amount, injection timing, EGR amount, supercharging pressure, etc.) is controlled.

さらにECU20は、SCR13に流入するNO量及びNO2量を算出し、これらの量のNOxを還元するのに必要なアンモニアに相当する尿素水の量を算出し、算出した量の尿素水を噴射するよう噴射弁14の作動を制御する。   Further, the ECU 20 calculates the amount of NO and NO2 flowing into the SCR 13, calculates the amount of urea water corresponding to ammonia necessary to reduce these amounts of NOx, and injects the calculated amount of urea water. The operation of the injection valve 14 is controlled.

次に、SCR13にアンモニアを過不足なく供給するような尿素水噴射量を算出する手順について、図2の機能ブロック図を用いて説明する。ECU20のマイコンは、所定プログラムを実行することで尿素水噴射量を算出するが、その算出処理の過程で実行される各種処理内容を、図2中の各推定部20a,20b,20c及び算出部20dにて示している。   Next, a procedure for calculating the urea water injection amount for supplying ammonia to the SCR 13 without excess or deficiency will be described with reference to the functional block diagram of FIG. The microcomputer of the ECU 20 calculates the urea water injection amount by executing a predetermined program, and the various processing contents executed in the process of the calculation processing are shown in the estimation units 20a, 20b, 20c and the calculation unit in FIG. This is indicated by 20d.

<NOx量推定部20a>
先ず、NOx量推定部20aは、エンジン運転状態(例えばエンジン回転速度、燃料噴射量及び吸気量)に基づき、燃焼室からの排気(つまりDOC11に流入する排気)に含まれるNOx量を算出する。なお、このようにエンジン運転状態に基づきNOx量を算出することに替え、NOxセンサをDOC11の排気上流側に設けて、当該NOxセンサの検出値に基づきNOx量を算出するようにしてもよい。
<NOx amount estimation unit 20a>
First, the NOx amount estimating unit 20a calculates the NOx amount contained in the exhaust from the combustion chamber (that is, the exhaust flowing into the DOC 11) based on the engine operating state (for example, the engine rotation speed, the fuel injection amount, and the intake amount). Instead of calculating the NOx amount based on the engine operating state in this way, a NOx sensor may be provided on the exhaust upstream side of the DOC 11 and the NOx amount may be calculated based on the detected value of the NOx sensor.

<DOCでのNO/NO2割合推定部20b>
上述した反応式(4)によりDOC11にてNOがNO2に変換される量は、当該反応の雰囲気温度つまりDOC11の温度(以下「DOC温度」と記載)に依存する。そこで、NO/NO2割合推定部20b(割合推定手段)では、DOC温度(厳密には、基材11bの温度又は酸化触媒11aの温度)に基づき、図3(a)のマップを用いてNO2変換率を算出する。このマップは、DOC温度が所定温度である時にNO2変換率が極大となるよう設定されている。NO2変換率の算出に用いるDOC温度は、DOC11上流側に設置された排気温度センサ24の検出値に基づき取得すればよい。なお、DOC11上流側以外の場所に配置された排気温度センサの検出値に基づき、応答遅れ時間を考慮してDOC温度を推定するようにしてもよい。
<NO / NO2 Ratio Estimator 20b at DOC>
The amount of NO converted to NO2 in the DOC 11 according to the above reaction formula (4) depends on the atmospheric temperature of the reaction, that is, the temperature of the DOC 11 (hereinafter referred to as “DOC temperature”). Therefore, the NO / NO2 ratio estimation unit 20b (ratio estimation means) converts NO2 using the map of FIG. 3A based on the DOC temperature (strictly, the temperature of the base material 11b or the temperature of the oxidation catalyst 11a). Calculate the rate. This map is set so that the NO2 conversion rate becomes maximum when the DOC temperature is a predetermined temperature. What is necessary is just to acquire the DOC temperature used for calculation of NO2 conversion rate based on the detected value of the exhaust temperature sensor 24 installed in the DOC11 upstream. Note that the DOC temperature may be estimated in consideration of the response delay time based on the detection value of the exhaust temperature sensor arranged at a place other than the upstream side of the DOC 11.

また、反応式(4)の反応速度は、吸気量(厳密には、単位時間当たりに流れる吸気流量又は1燃焼サイクル当たりに燃焼室に吸入される吸気量)が多いほど遅くなる。つまり、反応式(4)にしたがったDOC11でのNO2変換率は、吸気量(つまり排気量(厳密には排気流速))が多いほど小さくなる。そこで、NO/NO2割合推定部20bでは、図3(a)のマップに基づき算出したNO2変換率を、吸気量に応じて補正している。例えば、吸気量とNO2変換率補正値(NOx反応量補正値)との関係を予め試験により取得しておき、当該関係を記憶してなる図3(d)のマップを用いてNO2変換率を補正すればよい。   Further, the reaction rate of the reaction formula (4) becomes slower as the intake air amount (strictly speaking, the intake air flow rate per unit time or the intake air amount taken into the combustion chamber per one combustion cycle) increases. That is, the NO2 conversion rate in the DOC 11 according to the reaction formula (4) becomes smaller as the intake amount (that is, the exhaust amount (strictly, exhaust flow rate)) increases. Therefore, the NO / NO2 ratio estimation unit 20b corrects the NO2 conversion rate calculated based on the map of FIG. 3A according to the intake air amount. For example, the relationship between the intake air amount and the NO2 conversion rate correction value (NOx reaction amount correction value) is acquired in advance by a test, and the NO2 conversion rate is calculated using the map of FIG. It may be corrected.

換言すれば、DOC11でのNO2変換率は、DOC11に流入するNOx量(絶対量)が多いほど低くなる。そこで、図3(a)のマップに基づき算出したNO2変換率を、図3(e)に示すマップを用いてNOx量に応じて補正するようにしてもよい。   In other words, the NO2 conversion rate in the DOC 11 decreases as the amount of NOx (absolute amount) flowing into the DOC 11 increases. Therefore, the NO2 conversion rate calculated based on the map of FIG. 3A may be corrected according to the NOx amount using the map shown in FIG.

そして、NO/NO2割合推定部20bは、このように算出したNO2変換率と、NOx量推定部20aで算出したNOx量とに基づき、DOC11から流出してDPF12へ流入するNO量及びNO2量を算出する。   Then, the NO / NO2 ratio estimating unit 20b calculates the NO amount and NO2 amount flowing out from the DOC 11 and flowing into the DPF 12 based on the NO2 conversion rate calculated in this way and the NOx amount calculated by the NOx amount estimating unit 20a. calculate.

<DPFでのNO/NO2割合推定部20c>
上述した反応式(5)によりDPF12にてNO2がNOに変換される量は、当該反応の雰囲気温度つまりDPF12のフィルタ温度(以下「DPF温度」と記載)と、DPF12にて捕集されたPMの堆積量(厳密には、PM中に含まれる炭素成分の量)に依存する。そこで、NO/NO2割合推定部20c(割合推定手段)では、DPF12でのPM堆積量及びDPF温度に基づきNO変換率を算出している。
<NO / NO2 ratio estimation unit 20c in DPF>
The amount of NO2 converted to NO in the DPF 12 according to the above reaction formula (5) is the atmospheric temperature of the reaction, that is, the filter temperature of the DPF 12 (hereinafter referred to as “DPF temperature”) and the PM collected by the DPF 12. It depends on the amount of deposition (strictly speaking, the amount of carbon component contained in PM). Therefore, the NO / NO2 ratio estimation unit 20c (ratio estimation means) calculates the NO conversion rate based on the PM accumulation amount and the DPF temperature in the DPF 12.

具体的には、先ず、差圧センサ25,26の検出値に基づき、DPF12の上流側及び下流側の排気圧力の差(DPF差圧)を取得する。そして、取得したDPF差圧に基づき、図3(b)のマップを用いてPM堆積量を算出する。なお、DPF差圧が同じであってもその時の排気流量に応じてPM堆積量は異なってくるので、図3(b)のマップは排気流量に応じたPM堆積量を算出できるよう設定されている。   Specifically, first, based on the detection values of the differential pressure sensors 25 and 26, the difference between the upstream and downstream exhaust pressures (DPF differential pressure) of the DPF 12 is acquired. Then, based on the acquired DPF differential pressure, the PM deposition amount is calculated using the map of FIG. Even if the DPF differential pressure is the same, the PM accumulation amount differs depending on the exhaust flow rate at that time. Therefore, the map in FIG. 3B is set so that the PM accumulation amount can be calculated according to the exhaust flow rate. Yes.

次に、このように算出したPM堆積量及びDPF温度に基づき、図3(c)のマップを用いてNO変換率を算出する。このマップは、PM堆積量が多いほどNO変換率が大きくなるよう設定されるとともに、DPF温度が所定温度である時にNO変換率が極大となるよう設定されている。NO変換率の算出に用いるDPF温度は、DOC11上流側に配置された先述の排気温度センサ24の検出値に基づき、応答遅れ時間を考慮して推定される。なお、DOC11上流側以外の場所(例えばDPF12とDOC11の間、DPF12とSCR13の間、或いはSCR13の下流側)に排気温度センサを設置して、当該センサの検出値に基づきDPF温度を算出するようにしてもよい。   Next, based on the PM deposition amount and the DPF temperature calculated in this way, the NO conversion rate is calculated using the map of FIG. This map is set so that the NO conversion rate increases as the PM deposition amount increases, and the NO conversion rate becomes maximum when the DPF temperature is a predetermined temperature. The DPF temperature used for calculating the NO conversion rate is estimated in consideration of the response delay time based on the detected value of the exhaust gas temperature sensor 24 arranged on the upstream side of the DOC 11. An exhaust temperature sensor is installed in a place other than the upstream side of the DOC 11 (for example, between the DPF 12 and the DOC 11, between the DPF 12 and the SCR 13, or downstream of the SCR 13), and the DPF temperature is calculated based on the detection value of the sensor. It may be.

また、反応式(5)の反応速度は、吸気量(つまり排気量(厳密には排気流速))が多いほど遅くなる。つまり、反応式(5)にしたがったDPF12でのNO変換率は、吸気量が多いほど小さくなる。そこで、NO/NO2割合推定部20cでは、図3(b)(c)のマップに基づき算出したNO変換率を、吸気量に応じて補正している。例えば、吸気量とNO変換率補正値(NOx反応量補正値)との関係を予め試験により取得しておき、当該関係を記憶してなる図3(d)のマップを用いてNO変換率を補正すればよい。   Further, the reaction rate of the reaction formula (5) becomes slower as the intake air amount (that is, the exhaust gas amount (strictly, the exhaust gas flow rate)) increases. That is, the NO conversion rate in the DPF 12 according to the reaction formula (5) decreases as the intake air amount increases. Therefore, the NO / NO2 ratio estimating unit 20c corrects the NO conversion rate calculated based on the maps of FIGS. 3B and 3C in accordance with the intake air amount. For example, the relationship between the intake air amount and the NO conversion rate correction value (NOx reaction amount correction value) is acquired in advance by a test, and the NO conversion rate is calculated using the map of FIG. It may be corrected.

換言すれば、DPF12でのNO変換率は、DPF12に流入するNOx量(絶対量)が多いほど低くなる。そこで、図3(b)(c)のマップに基づき算出したNO変換率を、図3(e)に示すマップを用いてNOx量に応じて補正するようにしてもよい。   In other words, the NO conversion rate in the DPF 12 decreases as the amount of NOx (absolute amount) flowing into the DPF 12 increases. Therefore, the NO conversion rate calculated based on the maps shown in FIGS. 3B and 3C may be corrected according to the NOx amount using the map shown in FIG.

そして、NO/NO2割合推定部20cは、このように算出したNO変換率と、NO/NO2割合推定部20bで算出したNO量及びNO2量とに基づき、DPF12から流出してSCR13へ流入するNO量及びNO2量を算出する。   The NO / NO2 ratio estimation unit 20c then flows out from the DPF 12 and flows into the SCR 13 based on the NO conversion rate calculated in this way and the NO amount and NO2 amount calculated by the NO / NO2 ratio estimation unit 20b. Amount and NO2 amount are calculated.

<尿素水の噴射量算出部20d>
SCR13において、O2及びNOx等の酸化物を含む排気成分の中からNOxを選択的に還元するにあたり、NO及びNO2は先述した反応式(1)〜(3)にしたがって還元される。そこで、尿素水の噴射量算出部20d(噴射量制御手段)では、NO/NO2割合推定部20cで算出したNO量及びNO2量に基づき、反応式(1)〜(3)にてNH3が過不足なく供給されることとなるよう、噴射弁14からの尿素水噴射量を算出する。
<Urea water injection amount calculation unit 20d>
In the SCR 13, when NOx is selectively reduced from exhaust components including oxides such as O2 and NOx, NO and NO2 are reduced according to the above-described reaction formulas (1) to (3). Therefore, in the urea water injection amount calculation unit 20d (injection amount control means), NH3 is excessive in the reaction equations (1) to (3) based on the NO amount and NO2 amount calculated by the NO / NO2 ratio estimation unit 20c. The urea water injection amount from the injection valve 14 is calculated so that it will be supplied without shortage.

以上により、本実施形態によれば以下の効果が得られるようになる。   As described above, according to the present embodiment, the following effects can be obtained.

(1)DOC11でNOがNO2に変換されることに加え、DPF12でNO2がNOに変換されることをも加味してSCR13へ流入するNO量及びNO2量を算出するので、DOC11でのNO2への変換のみを加味して算出した場合に比べ、NO量及びNO2量の算出精度を向上できる。よって、尿素水の噴射量過不足低減を促進でき、ひいては、NH3供給量の過不足低減を促進することができる。   (1) In addition to the fact that NO is converted to NO2 at DOC11 and the fact that NO2 is converted to NO at DPF12, the amount of NO flowing into SCR13 and the amount of NO2 are calculated, so NO2 at DOC11 The calculation accuracy of the NO amount and the NO2 amount can be improved as compared with the case where the calculation is performed by taking into account only the conversion. Therefore, it is possible to promote the reduction in excess and deficiency of the injection amount of urea water, and consequently promote the reduction in excess and deficiency of the NH 3 supply amount.

(2)具体的には、DOC11でのNO2変換率をDOC温度に基づき推定し、推定したNO2変換率に基づきDPF12へ流入するNO量及びNO2量を算出する。そして、DPF11でのNO変換率を、DPF温度及びPM堆積量に基づき推定し、推定したNO変換率に基づきSCR13へ流入するNO量及びNO2量を算出する。要するに、DOC温度、DPF温度及びPM堆積量に基づき、SCR13へ流入するNO量及びNO2量を算出する。   (2) Specifically, the NO2 conversion rate in the DOC 11 is estimated based on the DOC temperature, and the NO amount and NO2 amount flowing into the DPF 12 are calculated based on the estimated NO2 conversion rate. Then, the NO conversion rate in the DPF 11 is estimated based on the DPF temperature and the PM deposition amount, and the NO amount and NO 2 amount flowing into the SCR 13 are calculated based on the estimated NO conversion rate. In short, based on the DOC temperature, the DPF temperature, and the PM accumulation amount, the NO amount and NO2 amount flowing into the SCR 13 are calculated.

このように、NO2変換率をDOC温度に基づき推定するので、その推定について十分な精度を確保することを容易に実現できる。また、NO変換率をDPF温度及びPM堆積量に基づき推定するので、その推定について十分な精度を確保することを容易に実現できる。   Thus, since the NO2 conversion rate is estimated based on the DOC temperature, it is possible to easily realize sufficient accuracy for the estimation. Further, since the NO conversion rate is estimated based on the DPF temperature and the PM deposition amount, it is possible to easily realize sufficient accuracy for the estimation.

(3)NO変換率及びNO2変換率を推定するにあたり、吸気量が多いほど(つまり排気流速が速いほど)これらの変換率を小さくするよう補正して推定するので、推定精度の向上を促進できる。   (3) In estimating the NO conversion rate and the NO2 conversion rate, as the intake air amount increases (that is, the exhaust flow rate increases), the conversion rate is estimated to be reduced so that the estimation accuracy can be improved. .

(4)NO変換率及びNO2変換率は、DOC温度又はDPF温度が所定温度である時に極大となるとの知見に基づき、図3(a)及び図3(c)のマップを設定しているので、これら変換率の推定精度向上を促進できる。   (4) Since the NO conversion rate and the NO2 conversion rate are based on the knowledge that the DOC temperature or the DPF temperature is maximized when the temperature is a predetermined temperature, the maps of FIGS. 3A and 3C are set. Therefore, it is possible to improve the estimation accuracy of these conversion rates.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。また、上記各実施形態は、以下のように変更して実施してもよい。
(Other embodiments)
The present invention is not limited to the description of the above-described embodiments, and the characteristic configurations of the respective embodiments may be arbitrarily combined. In addition, each of the above embodiments may be modified as follows.

・上記実施形態では、差圧センサ25,26の検出値に基づき、NO変換率の算出に用いるPM堆積量を算出しているが、この差圧センサ25,26を廃止して、エンジン運転状態に基づきPM堆積量を算出するようにしてもよい。その算出手法の具体例を以下に説明する。   In the above embodiment, the PM accumulation amount used for calculating the NO conversion rate is calculated based on the detection values of the differential pressure sensors 25 and 26. However, the differential pressure sensors 25 and 26 are abolished and the engine operating state is calculated. The PM accumulation amount may be calculated based on the above. A specific example of the calculation method will be described below.

先ず、エンジン回転速度及び燃料噴射量に基づき、燃焼室から排出されるPMの量(PM排出量)を推定する。例えば、エンジン回転速度及び燃料噴射量とPM排出量との関係を予め試験により取得しておき、当該関係を記憶してなる図4(a)のマップを用いてPM排出量を推定すればよい。次に、DPF温度に基づきDPF12で燃焼して除去されるPMの量(PM燃焼量)を推定する。例えば、DPF温度とPM燃焼量との関係を予め試験により取得しておき、当該関係を記憶してなる図4(b)のマップを用いてPM燃焼量を推定すればよい。そして、推定したPM排出量からPM燃焼量を減算して得られた値をPM堆積量として算出する。   First, the amount of PM discharged from the combustion chamber (PM discharge amount) is estimated based on the engine speed and the fuel injection amount. For example, the relationship between the engine rotational speed, the fuel injection amount, and the PM emission amount may be acquired in advance by testing, and the PM emission amount may be estimated using the map of FIG. . Next, the amount of PM burned and removed by the DPF 12 (PM combustion amount) is estimated based on the DPF temperature. For example, the relationship between the DPF temperature and the PM combustion amount may be acquired in advance by a test, and the PM combustion amount may be estimated using the map of FIG. 4B in which the relationship is stored. Then, a value obtained by subtracting the PM combustion amount from the estimated PM emission amount is calculated as the PM accumulation amount.

・上記実施形態では、図1に示すようにDOC11とDPF12とをそれぞれ別々に構成した排気浄化システムに本発明を適用させているが、DOC11とDPF12とを一体化した構成、具体的には、DPF12のフィルタ上に酸化触媒11aを担持させた酸化触媒付DPFを備えた排気浄化システムに本発明を適用させてもよい。   In the above embodiment, the present invention is applied to the exhaust purification system in which the DOC 11 and the DPF 12 are separately configured as shown in FIG. 1, but the configuration in which the DOC 11 and the DPF 12 are integrated, specifically, The present invention may be applied to an exhaust purification system including a DPF with an oxidation catalyst in which an oxidation catalyst 11a is supported on a filter of the DPF 12.

・上記実施形態では、ディーゼルエンジンに本発明を適用させているが、点火式エンジン(ガソリンエンジン)であっても、理論空燃比よりもリーンの混合気で燃焼させるエンジン等、SCR13が搭載されたエンジンであれば本発明を適用させることができる。   In the above embodiment, the present invention is applied to a diesel engine. However, even an ignition engine (gasoline engine) is equipped with an SCR 13 such as an engine that burns with an air-fuel mixture that is leaner than the stoichiometric air-fuel ratio. The present invention can be applied to any engine.

本発明の一実施形態にかかる尿素水噴射量制御装置が適用された、排気浄化システムの概要を示す図。The figure which shows the outline | summary of the exhaust gas purification system to which the urea water injection amount control apparatus concerning one Embodiment of this invention was applied. 図1に示すECUが尿素水噴射量を算出するにあたり、その算出手順を示す機能ブロック図。FIG. 2 is a functional block diagram showing a calculation procedure when the ECU shown in FIG. 1 calculates a urea water injection amount. 図2の各種推定部で用いるマップ。The map used in the various estimation parts of FIG. 図2の推定部20cで用いるマップの変形例。The modification of the map used in the estimation part 20c of FIG.

符号の説明Explanation of symbols

11a…DOC11が有する酸化触媒、12…DPF(フィルタ)、13a…SCR13が有するNOx還元触媒、14…噴射弁、20…ECU(PM堆積量取得手段、フィルタ温度取得手段、排気流速取得手段、酸化触媒温度取得手段)、20b…NO/NO2割合推定部(割合推定手段)、20c…NO/NO2割合推定部(割合推定手段)、20d…尿素水噴射量算出部(噴射量制御手段)。   DESCRIPTION OF SYMBOLS 11a ... Oxidation catalyst which DOC11 has, 12 ... DPF (filter), 13a ... NOx reduction catalyst which SCR13 has, 14 ... Injection valve, 20 ... ECU (PM accumulation amount acquisition means, filter temperature acquisition means, exhaust gas flow rate acquisition means, oxidation Catalyst temperature acquisition means), 20b... NO / NO2 ratio estimation section (ratio estimation means), 20c... NO / NO2 ratio estimation section (ratio estimation means), 20d... Urea water injection amount calculation section (injection amount control means).

Claims (11)

内燃機関の排気管に配置され、尿素水から生成されるアンモニアを使用して排気中のNOxを還元するNOx還元触媒と、
前記NOx還元触媒の排気上流側にて尿素水を噴射供給する噴射弁と、
前記NOx還元触媒の排気上流側に配置され、排気中のNOをNO2に酸化しうる酸化触媒と、
前記NOx還元触媒の排気上流側に配置され、排気中の炭素系微粒子を捕集するフィルタと、
を備える内燃機関の排気浄化システムに適用され、
前記酸化触媒においてNOが酸素により酸化されてNO2に変換されるNO2変換率と、前記フィルタにおいて炭素がNO2により酸化されることに伴いNO2がNOへ変換されるNO変換率とに基づき、前記NOx還元触媒へ流入するNOとNO2との割合を推定する割合推定手段と、
前記割合推定手段により推定されたNOとNO2との割合に基づき、前記噴射弁から噴射される尿素水の噴射量を制御する噴射量制御手段と、
を備えることを特徴とする尿素水噴射量制御装置。
A NOx reduction catalyst that is disposed in the exhaust pipe of the internal combustion engine and reduces NOx in the exhaust using ammonia generated from urea water;
An injection valve that injects urea water on the exhaust upstream side of the NOx reduction catalyst;
An oxidation catalyst disposed upstream of the NOx reduction catalyst and capable of oxidizing NO in the exhaust to NO2;
A filter that is disposed upstream of the NOx reduction catalyst and collects carbon-based fine particles in the exhaust;
Applied to an exhaust gas purification system of an internal combustion engine comprising:
Based on the NO2 conversion rate at which NO is oxidized by oxygen in the oxidation catalyst and converted to NO2, and the NO conversion rate at which NO2 is converted to NO as the carbon is oxidized by NO2 in the filter, the NOx. A ratio estimating means for estimating a ratio of NO and NO2 flowing into the reduction catalyst;
An injection amount control means for controlling the injection amount of urea water injected from the injection valve based on the ratio of NO and NO2 estimated by the ratio estimation means;
A urea water injection amount control device comprising:
前記フィルタでの炭素系微粒子の堆積量を取得するPM堆積量取得手段を備え、
前記割合推定手段は、前記PM堆積量取得手段により取得した炭素系微粒子の堆積量に基づき前記NO変換率を推定することで、前記割合を推定することを特徴とする請求項1に記載の尿素水噴射量制御装置。
PM accumulation amount acquisition means for acquiring the accumulation amount of carbon-based fine particles in the filter,
2. The urea according to claim 1, wherein the ratio estimation unit estimates the ratio by estimating the NO conversion rate based on a deposition amount of carbon-based fine particles acquired by the PM deposition amount acquisition unit. Water injection amount control device.
前記割合推定手段は、前記堆積量が多いほど前記NO変換率が多くなるよう推定することを特徴とする請求項2に記載の尿素水噴射量制御装置。   The urea water injection amount control apparatus according to claim 2, wherein the ratio estimation unit estimates that the NO conversion rate increases as the accumulation amount increases. 前記フィルタの温度を取得するフィルタ温度取得手段を備え、
前記割合推定手段は、前記フィルタ温度取得手段により取得したフィルタ温度に基づき前記NO変換率を推定することで、前記割合を推定することを特徴とする請求項1〜3のいずれか1つに記載の尿素水噴射量制御装置。
Comprising a filter temperature acquisition means for acquiring the temperature of the filter;
The said ratio estimation means estimates the said ratio by estimating the said NO conversion rate based on the filter temperature acquired by the said filter temperature acquisition means, The ratio is any one of Claims 1-3 characterized by the above-mentioned. Urea water injection amount control device.
前記割合推定手段は、前記フィルタ温度に基づき前記NO変換率を推定するにあたり、前記フィルタ温度が所定温度である時に前記NO変換率が極大となるよう推定することを特徴とする請求項4に記載の尿素水噴射量制御装置。   The ratio estimation means estimates the NO conversion rate based on the filter temperature so that the NO conversion rate is maximized when the filter temperature is a predetermined temperature. Urea water injection amount control device. 排気の流速を取得する排気流速取得手段を備え、
前記割合推定手段は、前記酸化触媒温度取得手段により取得した排気流速が速いほど、前記NO変換率の推定値を少なく補正することを特徴とする請求項2〜5のいずれか1つに記載の尿素水噴射量制御装置。
An exhaust flow rate acquisition means for acquiring the exhaust flow rate is provided.
The said ratio estimation means correct | amends the estimated value of the said NO conversion rate fewly, so that the exhaust gas flow velocity acquired by the said oxidation catalyst temperature acquisition means is quick. Urea water injection amount control device.
前記酸化触媒の温度を取得する酸化触媒温度取得手段を備え、
前記割合推定手段は、前記酸化触媒温度取得手段により取得した酸化触媒温度に基づき前記NO2変換率を推定することで、前記割合を推定することを特徴とする請求項1〜6のいずれか1つに記載の尿素水噴射量制御装置。
An oxidation catalyst temperature acquisition means for acquiring the temperature of the oxidation catalyst;
The said ratio estimation means estimates the said ratio by estimating the said NO2 conversion rate based on the oxidation catalyst temperature acquired by the said oxidation catalyst temperature acquisition means, The said ratio is any one of Claims 1-6 characterized by the above-mentioned. The urea water injection amount control device described in 1.
前記割合推定手段は、前記酸化触媒温度に基づき前記NO2変換率を推定するにあたり、前記酸化触媒温度が所定温度である時に前記NO2変換率が極大となるよう推定することを特徴とする請求項7に記載の尿素水噴射量制御装置。   8. The ratio estimating means estimates the NO2 conversion rate based on the oxidation catalyst temperature so that the NO2 conversion rate is maximized when the oxidation catalyst temperature is a predetermined temperature. The urea water injection amount control device described in 1. 排気の流速を取得する排気流速取得手段を備え、
前記割合推定手段は、前記酸化触媒温度取得手段により取得した排気流速が速いほど、前記NO2変換率の推定値を少なく補正することを特徴とする請求項7又は8に記載の尿素水噴射量制御装置。
An exhaust flow rate acquisition means for acquiring the exhaust flow rate is provided,
9. The urea water injection amount control according to claim 7, wherein the ratio estimating unit corrects the estimated value of the NO 2 conversion rate to be smaller as the exhaust flow rate acquired by the oxidation catalyst temperature acquiring unit is faster. apparatus.
内燃機関の排気管に配置され、尿素水から生成されるアンモニアを使用して排気中のNOxを還元するNOx還元触媒と、
前記NOx還元触媒の排気上流側にて尿素水を噴射供給する噴射弁と、
前記NOx還元触媒の排気上流側に配置され、排気中のNOをNO2に酸化しうる酸化触媒と、
前記NOx還元触媒の排気上流側に配置され、排気中の炭素系微粒子を捕集するフィルタと、
を備える内燃機関の排気浄化システムに適用され、
前記フィルタでの炭素系微粒子の堆積量を取得するPM堆積量取得手段と、
前記PM堆積量取得手段により取得した炭素系微粒子の堆積量に基づき前記NOx還元触媒に流入するNOとNO2との割合を推定する割合推定手段と、
前記割合推定手段により推定されたNOとNO2との割合に基づき、前記噴射弁から噴射される尿素水の噴射量を制御する噴射量制御手段と、
を備えることを特徴とする尿素水噴射量制御装置。
A NOx reduction catalyst that is disposed in the exhaust pipe of the internal combustion engine and reduces NOx in the exhaust using ammonia generated from urea water;
An injection valve that injects urea water on the exhaust upstream side of the NOx reduction catalyst;
An oxidation catalyst disposed upstream of the NOx reduction catalyst and capable of oxidizing NO in the exhaust to NO2;
A filter that is disposed upstream of the NOx reduction catalyst and collects carbon-based fine particles in the exhaust;
Applied to an exhaust gas purification system of an internal combustion engine comprising:
PM accumulation amount acquisition means for acquiring the accumulation amount of carbon-based fine particles in the filter;
A ratio estimating means for estimating a ratio of NO and NO2 flowing into the NOx reduction catalyst based on a deposition amount of carbon-based fine particles obtained by the PM deposition amount obtaining means;
An injection amount control means for controlling the injection amount of urea water injected from the injection valve based on the ratio of NO and NO2 estimated by the ratio estimation means;
A urea water injection amount control device comprising:
請求項1〜10のいずれか1つに記載の尿素水噴射量制御装置と、
前記NOx還元触媒、前記噴射弁、前記酸化触媒及び前記フィルタの少なくとも1つと、
を備えることを特徴とする尿素水噴射制御システム。
A urea water injection amount control device according to any one of claims 1 to 10,
At least one of the NOx reduction catalyst, the injection valve, the oxidation catalyst, and the filter;
A urea water injection control system comprising:
JP2008265881A 2008-10-15 2008-10-15 Urea water injection amount control device and urea water injection control system Pending JP2010096039A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008265881A JP2010096039A (en) 2008-10-15 2008-10-15 Urea water injection amount control device and urea water injection control system
CN2009101763714A CN101725392B (en) 2008-10-15 2009-09-28 Urea water injection amount controller and urea water injection control system
DE102009049521A DE102009049521A1 (en) 2008-10-15 2009-10-15 An apparatus for controlling the quantity of aqueous urea solution injection and injection control system for an aqueous urea solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008265881A JP2010096039A (en) 2008-10-15 2008-10-15 Urea water injection amount control device and urea water injection control system

Publications (1)

Publication Number Publication Date
JP2010096039A true JP2010096039A (en) 2010-04-30

Family

ID=42221038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008265881A Pending JP2010096039A (en) 2008-10-15 2008-10-15 Urea water injection amount control device and urea water injection control system

Country Status (3)

Country Link
JP (1) JP2010096039A (en)
CN (1) CN101725392B (en)
DE (1) DE102009049521A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092159A1 (en) * 2012-12-13 2014-06-19 トヨタ自動車株式会社 Fault diagnosis device for exhaust purification system
JP2015528737A (en) * 2012-06-27 2015-10-01 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Exhaust gas purification device and method for reducing nitrogen oxides from fossil fuel combustion power plant exhaust
CN107989675A (en) * 2017-12-04 2018-05-04 潍柴动力股份有限公司 Integrated form DOC-DPF-SCR assembly apparatus for After-treatment technics
JP2018087497A (en) * 2016-11-28 2018-06-07 パナソニックIpマネジメント株式会社 Exhaust gas purifying apparatus
JP2018525565A (en) * 2015-08-27 2018-09-06 スカニア シーブイ アクチボラグ Method and system for exhaust gas treatment
JP2018532925A (en) * 2015-08-27 2018-11-08 スカニア シーブイ アクチボラグ Exhaust treatment system and method for treatment of exhaust gas streams
CN109339911A (en) * 2018-09-30 2019-02-15 广西玉柴机器股份有限公司 A kind of control method and system improving SCR urea crystals or decrease in efficiency
CN112324544A (en) * 2020-10-29 2021-02-05 同济大学 Based on NO2Control method of tail gas aftertreatment system regulated and controlled by medium
JP2021095889A (en) * 2019-12-18 2021-06-24 日野自動車株式会社 Exhaust emission control device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102022162A (en) * 2010-12-15 2011-04-20 中国第一汽车集团公司 Urea system with urea pump inside and filter outside urea box
DE102011009179A1 (en) * 2011-01-21 2012-07-26 Huber Fahrzeugtechnik Processing system for exhaust after treatment system of internal combustion engine, has processing device with two interfaces, where former interface is formed for receiving multiple input signals supplied by sensors
CN103256102B (en) * 2013-04-24 2015-05-13 河南科技大学 Diesel engine SCR urea solution jet device and jet amount control method thereof
DE102014008056B4 (en) * 2014-05-28 2021-12-30 Daimler Ag Method for operating an exhaust system of an internal combustion engine, in particular for a motor vehicle
SE539131C2 (en) 2015-08-27 2017-04-11 Scania Cv Ab Process and exhaust treatment system for treating an exhaust stream
WO2017034470A1 (en) 2015-08-27 2017-03-02 Scania Cv Ab Method and exhaust treatment system for treatment of an exhaust gas stream
SE539130C2 (en) 2015-08-27 2017-04-11 Scania Cv Ab Process and exhaust treatment system for treating an exhaust stream
SE539133C2 (en) 2015-08-27 2017-04-11 Scania Cv Ab Exhaust gas treatment system and method for treating an exhaust gas stream
US20200123951A1 (en) * 2018-10-23 2020-04-23 GM Global Technology Operations LLC Method and system for controlling injection of a reducing agent into an exhaust gas stream
CN114278413B (en) * 2020-09-28 2022-11-29 长城汽车股份有限公司 Urea injection system, method and vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532495A (en) * 2002-05-07 2005-10-27 ボルボ ラストバグナー アーベー Method for regeneration of particle filter and vehicle in which this method is used
JP2007255345A (en) * 2006-03-24 2007-10-04 Isuzu Motors Ltd Control method of exhaust gas cleaning system and exhaust gas cleaning system
JP2007289844A (en) * 2006-04-24 2007-11-08 Toyota Motor Corp Exhaust gas cleaning device of internal combustion engine
WO2008103109A1 (en) * 2007-02-21 2008-08-28 Volvo Lastvagnar Ab Control method for controlling an exhaust aftertreatment system and exhaust aftertreatment system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3899534B2 (en) * 1995-08-14 2007-03-28 トヨタ自動車株式会社 Exhaust gas purification method for diesel engine
JP4186422B2 (en) 2001-02-23 2008-11-26 いすゞ自動車株式会社 Exhaust gas purification equipment for diesel engines
US6701707B1 (en) * 2002-09-04 2004-03-09 Ford Global Technologies, Llc Exhaust emission diagnostics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532495A (en) * 2002-05-07 2005-10-27 ボルボ ラストバグナー アーベー Method for regeneration of particle filter and vehicle in which this method is used
JP2007255345A (en) * 2006-03-24 2007-10-04 Isuzu Motors Ltd Control method of exhaust gas cleaning system and exhaust gas cleaning system
JP2007289844A (en) * 2006-04-24 2007-11-08 Toyota Motor Corp Exhaust gas cleaning device of internal combustion engine
WO2008103109A1 (en) * 2007-02-21 2008-08-28 Volvo Lastvagnar Ab Control method for controlling an exhaust aftertreatment system and exhaust aftertreatment system
JP2010519458A (en) * 2007-02-21 2010-06-03 ボルボ ラストバグナー アーベー Control method for controlling exhaust aftertreatment system and exhaust aftertreatment system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015528737A (en) * 2012-06-27 2015-10-01 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Exhaust gas purification device and method for reducing nitrogen oxides from fossil fuel combustion power plant exhaust
JP5907286B2 (en) * 2012-12-13 2016-04-26 トヨタ自動車株式会社 Failure diagnosis device for exhaust purification system
WO2014092159A1 (en) * 2012-12-13 2014-06-19 トヨタ自動車株式会社 Fault diagnosis device for exhaust purification system
US10807041B2 (en) 2015-08-27 2020-10-20 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust gas stream
JP2018525565A (en) * 2015-08-27 2018-09-06 スカニア シーブイ アクチボラグ Method and system for exhaust gas treatment
JP2018532925A (en) * 2015-08-27 2018-11-08 スカニア シーブイ アクチボラグ Exhaust treatment system and method for treatment of exhaust gas streams
JP2018087497A (en) * 2016-11-28 2018-06-07 パナソニックIpマネジメント株式会社 Exhaust gas purifying apparatus
CN107989675A (en) * 2017-12-04 2018-05-04 潍柴动力股份有限公司 Integrated form DOC-DPF-SCR assembly apparatus for After-treatment technics
CN109339911A (en) * 2018-09-30 2019-02-15 广西玉柴机器股份有限公司 A kind of control method and system improving SCR urea crystals or decrease in efficiency
JP2021095889A (en) * 2019-12-18 2021-06-24 日野自動車株式会社 Exhaust emission control device
JP7280175B2 (en) 2019-12-18 2023-05-23 日野自動車株式会社 Exhaust purification device
CN112324544A (en) * 2020-10-29 2021-02-05 同济大学 Based on NO2Control method of tail gas aftertreatment system regulated and controlled by medium
CN112324544B (en) * 2020-10-29 2021-10-08 同济大学 Based on NO2Control method of tail gas aftertreatment system regulated and controlled by medium

Also Published As

Publication number Publication date
CN101725392B (en) 2012-07-04
CN101725392A (en) 2010-06-09
DE102009049521A1 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
JP2010096039A (en) Urea water injection amount control device and urea water injection control system
JP4438828B2 (en) Exhaust gas purification device for internal combustion engine
US7950224B2 (en) Method for controlling exhaust gas purification system
CN101646846B (en) Method of estimating rate of n2o formation on ammonia oxidation catalyst and exhaust purification system for internal combustion engine
JP2008157136A (en) Exhaust emission control device for internal combustion engine
US20100058741A1 (en) Exhaust purification device of internal combustion engine
JP2008163856A (en) Exhaust emission control device of internal combustion engine
JP5910759B2 (en) Exhaust gas purification system for internal combustion engine
JP2008240577A (en) Deterioration diagnosis device and deterioration diagnosis method for oxidation catalyst
JP5251711B2 (en) Exhaust gas purification device for internal combustion engine
JP6358191B2 (en) Control device for internal combustion engine
US10060318B2 (en) Method for operating a driving system and corresponding driving system
JP3620291B2 (en) Exhaust gas purification device for internal combustion engine
JP6149940B2 (en) Exhaust gas purification device for internal combustion engine
JP2020029818A (en) Exhaust emission control device of internal combustion engine
JP4375311B2 (en) Exhaust gas purification system for internal combustion engine
CN110872965B (en) Exhaust gas purification device for internal combustion engine
JP2010249076A (en) Exhaust emission control device of internal combustion engine
JP4729990B2 (en) Exhaust gas purification device for internal combustion engine
JP2015194120A (en) Exhaust emission control system
JP4893493B2 (en) Exhaust gas purification device for internal combustion engine
JP2016200111A (en) Exhaust emission control system
JP5090187B2 (en) Exhaust gas purification device for internal combustion engine
JP6372248B2 (en) Internal combustion engine and exhaust gas purification method for internal combustion engine
JP2016200110A (en) Exhaust emission control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120117