JP2010094096A - Cereal grain increased in content of functional component, and method for producing the same - Google Patents

Cereal grain increased in content of functional component, and method for producing the same Download PDF

Info

Publication number
JP2010094096A
JP2010094096A JP2008269208A JP2008269208A JP2010094096A JP 2010094096 A JP2010094096 A JP 2010094096A JP 2008269208 A JP2008269208 A JP 2008269208A JP 2008269208 A JP2008269208 A JP 2008269208A JP 2010094096 A JP2010094096 A JP 2010094096A
Authority
JP
Japan
Prior art keywords
temperature
moisture
content
grain
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008269208A
Other languages
Japanese (ja)
Inventor
Kosei Ryu
厚清 劉
Masaya Ochiai
眞也 落合
Toshinori Matsumoto
敏則 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Satake Corp
Original Assignee
Satake Engineering Co Ltd
Satake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd, Satake Corp filed Critical Satake Engineering Co Ltd
Priority to JP2008269208A priority Critical patent/JP2010094096A/en
Publication of JP2010094096A publication Critical patent/JP2010094096A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To widely increase the amounts of functional components such as γ-amino butyric acid which cereal grains contain in comparison with those (the amounts of functional components) of generally circulating cereal grains by restricting the amount of water to be added to cereal grains as the minimum necessary amount. <P>SOLUTION: The method includes: (1) a process of preparing cereal grains with hulls, dry processed to have at least ≤15% water content; (2) a water content-adjusting process of adjusting the water content to be 16.0% by spray watering or agitation watering the cereal grains with hulls; (3) a high temperature humidification process of humidifying the cereal grains after the water content-adjusting process at high temperature to have 16.0-18.5% water content by blowing high temperature humidified air having ≥50°C temperature and ≥90% relative humidity (RH); and (4) a drying process of drying the cereal grains after the high temperature humidification process at 40-50°C temperature and 15-35% RH. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、機能性成分の含有量を増加させた穀物及びその製造方法に関する。 The present invention relates to a grain having an increased content of functional components and a method for producing the same.

昨今、γ−アミノ酪酸(ギャバ)は、人体の血圧上昇を抑制するなどの健康維持又は疾患予防に有効な物質として注目されており、玄米などの穀物が含有するγ−アミノ酪酸の含有量を増加させる技術が存在する。例えば、玄米を発芽させると、酵素の作用によりグルタミン酸からγ−アミノ酪酸が胚芽中で合成され、該玄米中に含まれるγ−アミノ酪酸が大幅に増加されることが知られている。しかし、玄米を発芽させて得られる発芽玄米は、食味に言及すれば、通常の白米に比較すると劣ってしまう(例えば、特許文献1)。このため、玄米を発芽させることなく、又は玄米の胚芽部をなるべく膨大化させない短時間で、玄米が含有するγ−アミノ酪酸の量を通常の玄米よりも増加させることが望まれる。 Recently, γ-aminobutyric acid (GABA) has been attracting attention as an effective substance for health maintenance or disease prevention such as suppressing the increase in blood pressure of the human body, and the content of γ-aminobutyric acid contained in grains such as brown rice There are technologies to increase. For example, it is known that when brown rice is germinated, γ-aminobutyric acid is synthesized from glutamic acid in the germ by the action of an enzyme, and γ-aminobutyric acid contained in the brown rice is greatly increased. However, germinating brown rice obtained by germinating brown rice is inferior to ordinary white rice when referring to taste (for example, Patent Document 1). For this reason, it is desired to increase the amount of γ-aminobutyric acid contained in brown rice as compared with normal brown rice in a short time without germinating brown rice or without enlarging the germ part of brown rice as much as possible.

特開2005−168444号公報JP 2005-168444 A

本発明は上記問題点にかんがみ、穀物への加水を必要最小限に抑え、該穀物が有するγ−アミノ酪酸などの機能性成分の量を、一般に流通している穀物と比較して大幅に増加させる技術を提供することを技術的課題とする。 In view of the above problems, the present invention minimizes the amount of water added to cereals, and greatly increases the amount of functional components such as γ-aminobutyric acid in cereals as compared to cereals in general circulation. It is a technical problem to provide the technology to be performed.

上記課題を解決するため請求項1記載の発明は、機能性成分の含有量を増加させた穀物の製造方法であって、下記の工程、すなわち、1)少なくとも水分15%以下に乾燥処理を施した殻付の穀物を得る工程;2)該殻付の穀物を噴霧加水又は攪拌加水によって水分16.0%まで水分調整する水分調整工程;3)温度50℃以上、相対湿度90%以上の高温加湿空気の通風により、前記水分調整工程後の穀物を水分16.0〜18.5%の範囲となるように高温加湿する高温加湿工程;4)該高温加湿工程後の穀物を温度40〜50℃、相対湿度15〜35%の空気で乾燥を行う乾燥工程;を含むことを特徴とする。 In order to solve the above-mentioned problems, the invention according to claim 1 is a method for producing a grain having an increased content of functional ingredients, and includes the following steps: 1) subjecting at least 15% of moisture to a drying treatment. 2) a moisture adjustment step for adjusting moisture to 16.0% by spray or stirring water; 3) a temperature of 50 ° C. or higher and a relative humidity of 90% or higher. A high-temperature humidification step of humidifying the grain after the moisture adjustment step at a high temperature so as to be in the range of 16.0 to 18.5% moisture by ventilation of humidified air; 4) the temperature of the grain after the high-temperature humidification step is 40 to 50 A drying step of drying with air at 15 ° C. and a relative humidity of 15 to 35%.

請求項2記載の発明は、前記工程2)と前記工程3)との間に、下記の工程、すなわち、5)水分調整した穀物を常温にてテンパリングを行うテンパリング工程;を備えることを特徴とする。 The invention according to claim 2 comprises the following steps between the step 2) and the step 3): 5) a tempering step of tempering the moisture-adjusted grain at room temperature. To do.

請求項3記載の発明は、前記工程3)と前記工程4)との間に、下記の工程、すなわち、6)水分調整した穀物を常温にてテンパリングを行うテンパリング工程;を備えることを特徴とする。   The invention according to claim 3 comprises the following step between the step 3) and the step 4): 6) a tempering step of tempering the grain whose moisture has been adjusted at room temperature. To do.

請求項4記載の発明は、前記工程3)が、高温加湿を開始してからの空気温度を徐除に上昇させ、最終的に50℃以上に制御することを特徴とする。 The invention according to claim 4 is characterized in that the step 3) gradually increases the air temperature after the start of the high-temperature humidification, and finally controls it to 50 ° C. or higher.

請求項5記載の発明は、前記穀物が、米、大麦、小麦、トウモロコシ、豆、蕎麦、胡麻、粟、黍及び稗などの植物種子であることを特徴とする。   The invention according to claim 5 is characterized in that the cereal is plant seeds such as rice, barley, wheat, corn, beans, buckwheat, sesame, straw, straw and straw.

請求項1記載の発明によれば、少なくとも水分15%以下に乾燥処理を施した殻付の穀物に対し、まず、穀物を噴霧加水又は攪拌加水によって水分16.0%まで水分調整を行うものである。これは、殻(例えば、籾殻)は表面が珪質化しており、吸水しにくい組織であり、また、内部の果皮、種皮の層(例えば、玄米であれば糠層)にあっても層厚は薄いが、比較的水を通しにくく、吸水抵抗性が強いためである。つまり、水分15%以下に乾燥処理を施した穀物に対し、いきなり高温加湿処理を施したとしても、γ−アミノ酪酸の前駆物質であるグルタミン酸をγ−アミノ酪酸に変換させる酵素の活性力は弱く、本発明者らは、穀物への適度な水分補給後に高温加湿処理を施すことにより、グルタミン酸をγ−アミノ酪酸に変換させる酵素の活性力を強力に発揮させ、ひいては一般の穀物と比較して大幅にγ−アミノ酪酸の含有量を増加させることができることを見出したのである。 According to the first aspect of the present invention, with respect to the grain with a shell which has been subjected to a drying treatment to at least 15% moisture, the moisture is first adjusted to 16.0% moisture by spray or stirring. is there. This is because the shell (for example, rice husk) has a siliceous surface and is difficult to absorb water, and even if it is in the inner skin or seed coat layer (for example, rice bran layer for brown rice), the layer thickness Is thin, but relatively difficult to pass water and has high water absorption resistance. In other words, even if a high-temperature humidification treatment is suddenly applied to grains that have been dried to a moisture content of 15% or less, the activity of the enzyme that converts glutamic acid, which is a precursor of γ-aminobutyric acid, to γ-aminobutyric acid is weak. The present inventors exerted a high-temperature humidification treatment after moderate hydration of the cereals, thereby exerting the activity of the enzyme that converts glutamic acid into γ-aminobutyric acid, and thus compared with general cereals. It has been found that the content of γ-aminobutyric acid can be greatly increased.

そして、十分な水分補給のもと、温度50℃以上、相対湿度90%以上の高温加湿空気の通風により、グルタミン酸をγ−アミノ酪酸に変換させる酵素の活性力が強力になり、穀物中のグルタミン酸がγ−アミノ酪酸に多量に変化するものと考えることができる。 And with sufficient hydration, the activity of the enzyme that converts glutamic acid to γ-aminobutyric acid becomes stronger by ventilation of high-temperature humidified air at a temperature of 50 ° C. or higher and a relative humidity of 90% or higher. Can be considered to change in a large amount to γ-aminobutyric acid.

また、高温加湿空気の通風により穀物を水分16.0〜18.5%の範囲となるように水分調整しているから、穀物に胴割れが生じることがなく、また、穀物が発芽することもなく、発芽の兆しなどの外的な形状変化が表れることもない。すなわち、発芽による食味低下が防止され、さらに、精穀を施すことにより通常の白米などのように主食として食することができる。 Moreover, since the moisture of the cereal is adjusted so that the moisture content is in the range of 16.0 to 18.5% by the ventilation of the high-temperature humidified air, the cereal is not cracked and the cereal may germinate. In addition, external shape changes such as signs of germination do not appear. That is, a decrease in taste due to germination can be prevented, and furthermore, the grain can be eaten as a staple food like ordinary white rice by applying cereal.

本発明を実施するための最良の形態を図面を参照しながら説明する。図1は本発明の製造方法における製造工程を示したフロー図であり、図2は攪拌加水法を実施するためのパドル式攪拌加水装置の概略縦断面図であり、図3は循環式穀物乾燥機の縦断面図である。   The best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a flow chart showing the manufacturing process in the manufacturing method of the present invention, FIG. 2 is a schematic longitudinal sectional view of a paddle type stirring and hydrostatic apparatus for carrying out the stirring and water adding method, and FIG. It is a longitudinal cross-sectional view of a machine.

本発明においては、変質の防止、貯蔵性の向上又は流通性の向上のために予め乾燥処理を施した穀物を出発原料とし、該出発原料よりも機能性成分の含有量が飛躍的に増加した穀物に加工する方法に係る。穀物としては、種子を食用して主食とする米、大麦、小麦のほか、トウモロコシ、豆、蕎麦(ソバ)、胡麻(ゴマ)、粟(アワ)、黍(キビ)及び稗(ヒエ)などの雑穀を使用することもできる。   In the present invention, the grain that has been dried in advance to prevent alteration, improve storage properties, or improve flowability is used as a starting material, and the content of functional components is dramatically increased compared to the starting material. It relates to the method of processing into grains. As cereals, rice, barley, wheat, which is a staple food by eating seeds, corn, beans, buckwheat, buckwheat, sesame, millet, millet and millet Millet can also be used.

一般にこれら穀物は、変質の防止、貯蔵性の向上又は流通性の向上のため、例えば、玄米であれば水分13〜15%の範囲に、小麦及び大麦であれば水分12.5%以下に、トウモロコシ(メイズ)であれば水分13%以下に、それぞれ乾燥・調製されている。すなわち、これ以上の水分になると、貯蔵中に酵素活性が高まって発熱し、カビの発生など品質を低下させる虞(おそれ)が生じるからである。 In general, these grains have a moisture content of 13 to 15% in the case of brown rice, and a moisture content of 12.5% or less in the case of wheat and barley, in order to prevent deterioration, improve storability, or improve circulation. In the case of corn (maize), it is dried and prepared to a moisture content of 13% or less. That is, when the water content exceeds this level, the enzyme activity increases during the storage, generates heat, and there is a risk (danger) that quality may be deteriorated such as generation of mold.

図1を参照すれば、少なくとも水分15%以下に乾燥処理を施した穀物が出発原料10となり、この出発原料10を水分16.0%まで水分調整するために水分調整工程11に入れられる。水分調整工程11においては、浸漬法(どぶ浸け)、水滴の平均粒径が100μm以下で噴霧・加水する噴霧加水法、又は穀物を攪拌しながら穀物重量の約2〜5%の水分を添加する攪拌加水法等、特に限定されることはない。これらの加水方法は穀物の種類及びその物性に応じて適宜選択するとよく、噴霧加水法を実施するための装置としては、回転ドラム内方に霧化機を備えた噴霧加水装置(特開2005−52073号公報参照)を採用することができる。また、攪拌加水法を実施するための装置としては、図2に示すようなパドル式攪拌加水装置を採用することができる。 Referring to FIG. 1, the grain that has been dried to a moisture content of at least 15% becomes the starting material 10, and is put into a moisture adjustment step 11 to adjust the moisture content of the starting material 10 to 16.0%. In the moisture adjustment step 11, a dipping method (deep soaking), a spray water addition method in which the average particle diameter of water droplets is sprayed / hydrated at an average particle size of 100 μm or less, or water of about 2 to 5% of the grain weight is added while stirring the grains. There is no particular limitation such as a stirring water method. These hydration methods may be appropriately selected according to the type of grain and its physical properties. As a device for carrying out the spray hydration method, a spray hydration device provided with an atomizer inside the rotating drum (Japanese Patent Laid-Open No. 2005-2005). 52073) can be employed. In addition, as an apparatus for carrying out the stirring water method, a paddle type stirring water apparatus as shown in FIG. 2 can be employed.

図2に示すパドル式攪拌加水装置20は、出発原料を注水ノズル21によって加水する水分添加部22と、該水分添加部22により加水された穀物を振動させる横型円筒部23と、該横型円筒部23内に供給された穀物を攪拌して搬送終端に移送する攪拌部24とによって主要部が構成される。そして、穀物が原料供給ホッパ25から水分添加部23に供給されると、注水ノズル21から水が供給され、穀物重量に対して約2〜5%加水されて供給口26から横型円筒部23に至る。横型円筒部23では攪拌パドル27による攪拌作用と、振動モータ28による振動作用とを受けながら排出口29側へ搬送される。このとき、閉鎖板30によって下部排出管31が閉鎖され、横型円筒部23には円筒部の容量の約7割の量が滞留し、穀物全体に水分が浸透されて上部排出管32からオーバーフローして排出樋33から機外に排出されることになる。 A paddle type stirring and hydrolyzing device 20 shown in FIG. 2 includes a water addition unit 22 for adding a starting material by a water injection nozzle 21, a horizontal cylindrical unit 23 for vibrating the grain hydrolyzed by the water addition unit 22, and the horizontal cylindrical unit. The main part is constituted by the agitation unit 24 that agitates the grain supplied into the unit 23 and transfers it to the end of conveyance. When the grain is supplied from the raw material supply hopper 25 to the moisture adding unit 23, water is supplied from the water injection nozzle 21, and about 2 to 5% of water is added to the weight of the grain, and then the supply port 26 enters the horizontal cylindrical unit 23. It reaches. The horizontal cylindrical portion 23 is conveyed toward the discharge port 29 while receiving the stirring action by the stirring paddle 27 and the vibration action by the vibration motor 28. At this time, the lower discharge pipe 31 is closed by the closing plate 30, and about 70% of the capacity of the cylindrical part stays in the horizontal cylindrical part 23, so that moisture penetrates the entire grain and overflows from the upper discharge pipe 32. Thus, it is discharged from the discharge basket 33 to the outside of the machine.

引き続き図1の製造工程について説明する。水分調整工程11によって出発原料10を水分16.0%まで水分調整された穀物は、次いで、調質(テンパリング)工程12に入り、タンクなど密閉容器内に投入して穀物を均質な状態に保つ操作を行う。この調質(テンパリング)工程12にあっては、加水終了後にタンクなどの容器に移し換え、時間条件として8時間以内、好ましくは2時間以内、環境条件としては温度16〜24℃、通気条件としてはタンク内へ外気を取り入れながらの換気とするのがよい。なお、水分調整工程11において、すでに穀物全体に水分が一様に浸透されている場合は、この調質(テンパリング)工程12を省略することも可能である。 Next, the manufacturing process of FIG. 1 will be described. Grains whose moisture content has been adjusted to 16.0% in the starting material 10 in the moisture adjustment step 11 are then entered into a tempering step 12 and placed in a closed container such as a tank to keep the grains homogeneous. Perform the operation. In this refining (tempering) step 12, it is transferred to a container such as a tank after the addition of water, and the time condition is within 8 hours, preferably within 2 hours, the environmental condition is a temperature of 16-24 ° C., and the aeration condition is Should be ventilated while taking outside air into the tank. In the moisture adjustment step 11, when the moisture has already penetrated uniformly throughout the grain, the tempering step 12 can be omitted.

調質(テンパリング)工程12を経るか、又はこの工程12を省略して均質な状態に水分が保持された穀物は、さらに、高温加湿工程13に入り、温度50℃以上、相対湿度90%以上の高温加湿空気の通風により、水分16.0〜18.5%の範囲となるよう加水する操作を行う。このとき、高温加湿空気の温度条件は、50℃以上、好ましくは50℃〜70℃の範囲、より好ましくは60℃〜70℃の範囲とするのがよい。また、湿度条件は、相対湿度90%以上とするのがよい。時間条件は、2〜6時間とするのがよい。この高温加湿工程13について感覚的に表現すれば、温度50℃前後、相対湿度100%程度のスチームバス又はミストサウナの環境下に、穀物を2〜6時間保持させるということである。この高温加湿工程13を実施するための装置としては、後述の循環式穀物乾燥機を採用することができる。 Grains that have undergone a tempering step 12 or have been kept in a homogeneous state by omitting this step 12 further enter a high-temperature humidification step 13 where the temperature is 50 ° C. or higher and the relative humidity is 90% or higher. The operation of adding water to a range of 16.0 to 18.5% by performing ventilation with high-temperature humidified air is performed. At this time, the temperature condition of the high-temperature humidified air is 50 ° C. or higher, preferably 50 ° C. to 70 ° C., more preferably 60 ° C. to 70 ° C. The humidity condition is preferably 90% or higher relative humidity. The time condition is preferably 2 to 6 hours. Expressing this high temperature humidification step 13 sensibly, it means that the grains are held for 2 to 6 hours in a steam bath or mist sauna environment at a temperature of about 50 ° C. and a relative humidity of about 100%. As an apparatus for carrying out the high-temperature humidification step 13, a circulating grain dryer described later can be employed.

次に、穀物は、前述と同条件の調質(テンパリング)工程14に入り、タンクなど密閉容器内に投入して穀物を均質な状態に保つ操作を行う。なお、穀物全体に水分が一様に浸透されている場合は、この調質(テンパリング)工程14を省略することも可能である。 Next, the grain enters the refining (tempering) step 14 under the same conditions as described above, and is put into a sealed container such as a tank to perform an operation for keeping the grain in a homogeneous state. In the case where moisture is uniformly permeated throughout the grain, this tempering step 14 can be omitted.

そして、調質(テンパリング)工程14を経るか、又はこの工程14を省略して均質な状態に水分が保持された穀物は、乾燥工程15に入る。この乾燥工程15は乾燥条件として温度40〜50℃、相対湿度15〜35%の空気で乾燥を行い、最終的な穀物の水分を変質の防止、貯蔵性の向上又は流通性の向上のため15%以下に乾燥処理を施すとよい。この乾燥処理を実施するための装置としては、図3に示す循環式穀物乾燥機を採用することができる。 Then, the grain having passed through the tempering step 14 or omitting this step 14 and retaining moisture in a homogeneous state enters the drying step 15. This drying step 15 is performed by drying with air having a temperature of 40 to 50 ° C. and a relative humidity of 15 to 35% as drying conditions to prevent alteration of the moisture of the final grain, to improve storage properties, or to improve distribution. % Or less is preferable. As an apparatus for carrying out this drying treatment, a circulating grain dryer shown in FIG. 3 can be employed.

図3に示す循環式穀物乾燥機40は、前記高温加湿工程13及び乾燥工程15(図1参照)を実施するための装置であり、穀物の貯留部41と、貯留部41から流下する穀物に高温加湿空気を送給する高温加湿空気供給部42と、穀物を機外に取り出す排出部43とによって主要部が構成される。高温加湿空気供給部42には、その下部に灯油を燃料として燃焼する熱風発生バーナ44及び加湿装置45が設けてあり、高温加湿空気供給部42の後部に排風ファン53が設けてある。 A circulation type grain dryer 40 shown in FIG. 3 is an apparatus for carrying out the high-temperature humidification step 13 and the drying step 15 (see FIG. 1). The grain storage unit 41 and the grains flowing down from the storage unit 41 are used. The main part is constituted by a high-temperature humidified air supply unit 42 for supplying high-temperature humidified air and a discharge unit 43 for taking out grains from the machine. The hot humidified air supply unit 42 is provided with a hot air generating burner 44 and a humidifying device 45 that burns kerosene as fuel at the lower portion thereof, and an exhaust fan 53 is provided at the rear of the hot humidified air supply unit 42.

そして、熱風発生バーナ44から加湿装置45に向かう経路は管路を介して接続するとともに、加湿装置45から通風口46に向かう経路も管路を介して接続されている。そして、熱風発生バーナ44から加湿装置45を迂回して通風口46に向かう経路としてバイパス管47が併設されており、熱風発生バーナ44から加湿装置45に向かう管路にバイパス管47と分岐する流路切換弁48が、加湿装置45から通風口46に向かう管路にバイパス管47と連絡する流路切換弁49がそれぞれ接続されている。また、通風口46近傍には加湿風及び熱風の温度及び湿度を検出する温湿度センサ50が設けられ、排出部43の一側部には穀物の水分値を検出する水分計51が設けられる。 The path from the hot air generating burner 44 to the humidifier 45 is connected via a pipeline, and the path from the humidifier 45 to the ventilation port 46 is also connected via a pipeline. Further, a bypass pipe 47 is provided as a path from the hot air generating burner 44 to the ventilation port 46 by bypassing the humidifying apparatus 45, and a flow branching from the bypass pipe 47 to a pipe line from the hot air generating burner 44 to the humidifying apparatus 45. A flow path switching valve 49 that communicates with the bypass pipe 47 is connected to a pipe path from the humidifier 45 to the ventilation port 46. Further, a temperature / humidity sensor 50 that detects the temperature and humidity of the humidified air and hot air is provided in the vicinity of the ventilation port 46, and a moisture meter 51 that detects the moisture value of the grain is provided on one side of the discharge unit 43.

加湿装置45は、一般的な気化式のもの、スチーム式等の適宜選択することができ、熱風発生バーナ44には穀物乾燥機に一般に使用されているものを用いることができる。そして、灯油バーナのほか、穀物に灯油を燃焼したときに生じる悪臭が付着するのを防止するため、熱風ヒータ又は熱交換器等を用いることもできる。   The humidifying device 45 can be appropriately selected from a general vaporizing type, a steam type, and the like, and the hot air generating burner 44 can be one commonly used in grain dryers. In addition to the kerosene burner, a hot air heater or a heat exchanger or the like can be used in order to prevent the bad smell generated when kerosene is burned on the grain.

循環式穀物乾燥機40は各部分の制御を制御部52が設けられており、熱風発生バーナ44、加湿装置45、流路切換弁48及び流路切換弁49を駆動制御し、加湿運転プログラムや乾燥運転プログラムなどを実行する構成となっている。   The circulation type grain dryer 40 is provided with a control unit 52 for controlling each part, and drives and controls the hot air generating burner 44, the humidifier 45, the flow path switching valve 48 and the flow path switching valve 49, and a humidifying operation program, It is configured to execute a drying operation program.

再度、図1に戻り、本発明の製造工程について説明する。乾燥工程15により乾燥された穀物は、搗精工程16に至る。乾燥工程15が出るときに、すでに穀物は出発原料よりもγ−アミノ酪酸などの機能性成分の含有量が飛躍的に増加したものとなっている。そして、この搗精工程16においては、機能性成分の含有量が増加した穀物の外皮を取り除いて精白粒に加工し、人間が食する際に、消化吸収、食味の向上を図ることを目的とする。したがって、出発原料と同様の取り扱うことができ、周知の精穀機などにより、玄米であれば分搗き米、胚芽米又は精白米に加工することができる。さらに、搗精工程15の後工程に製粉工程16を配設し、機能性成分の含有量が増加した穀物粉(米粉、小麦粉、大麦粉、その他の雑穀粉)を製造することもできる。また、周知の無洗化技術を用いて、無洗米、無洗穀物などを製造することもできる。   Returning to FIG. 1 again, the manufacturing process of the present invention will be described. The grain dried in the drying step 15 reaches the milling step 16. When the drying step 15 is finished, the cereal grains have already been greatly increased in the content of functional components such as γ-aminobutyric acid as compared with the starting material. And in this mashing process 16, it removes the outer skin of the grain which content of the functional ingredient increased, and it is processed into a refined grain, and when a human eats, it aims at improving digestion absorption and taste. . Therefore, it can be handled in the same manner as the starting material, and can be processed into sprinkled rice, germed rice, or polished rice if it is brown rice by a known cereal machine. Furthermore, the milling process 16 is arrange | positioned in the post process of the milling process 15, and the grain flour (rice flour, wheat flour, barley flour, other miscellaneous flour) which content of the functional component increased can also be manufactured. In addition, it is possible to produce non-washed rice, non-washed grains and the like using a well-known non-washing technique.

本発明の実施例の一つとして、大麦の品種である「サルート」を供試原料とし、出発原料の水分12%とし、「水分調整工程(11)を省略」して製造したときのγ−アミノ酪酸の含有量(図4のS0)と、「水分調整工程(11)を使用」して製造したときのγ−アミノ酪酸の含有量(図4のS16,S20)とを比較した。水分調整工程(11)には、浸漬法を適用した。すなわち、S16の場合、容器内に出発原料(水分12%)を100g投入し、原料水分が16%となるよう、水を5.4g加えて密封し、約1時間静置した(定量加水)。S20の場合、容器内に出発原料(水分12%)を100g投入し、原料水分が20%となるよう、水を11.4g加えて約1時間静置した(定量加水)。   As one of the examples of the present invention, γ− produced when barley cultivar “Salute” is used as a test raw material, the water content of the starting material is 12%, and “moisture adjustment step (11) is omitted”. The content of aminobutyric acid (S0 in FIG. 4) was compared with the content of γ-aminobutyric acid (S16, S20 in FIG. 4) when manufactured using “use water adjustment step (11)”. An immersion method was applied to the moisture adjustment step (11). That is, in the case of S16, 100 g of the starting material (water content 12%) was put into the container, 5.4 g of water was added and sealed so that the raw material water content was 16%, and left for about 1 hour (quantitative water addition). . In the case of S20, 100 g of the starting material (water content 12%) was put into the container, 11.4 g of water was added and the mixture was left to stand for about 1 hour (quantitative water addition) so that the water content of the material became 20%.

「高温加湿工程(13)」においては、循環式穀物乾燥機40により0.3%/h以下の加湿速度で加湿した。この加湿運転では、加湿風の相対湿度は90%以上とし、該加湿風の温度は、加湿開始後1時間は室温とし、次の1時間は20℃とし、以後、25℃、30℃、35℃、そして、40℃と、1時間毎に5℃ずつ温度を上げて行き、加湿開始から5時間後には加湿風の温度を40℃まで上げ、それ以降は、1時間毎に10℃ずつ温度を上げ、最終的に70℃の加湿風で4時間、加湿のための通風を行った。加湿運転終了後、循環式穀物乾燥機40の貯留タンク41内に最長で6時間静置し、γ−アミノ酪酸の量を増加させた。静置後、乾燥運転にて乾燥を行い、機能富化大麦を得た。   In the “high-temperature humidification step (13)”, the circulation type grain dryer 40 humidified at a humidification rate of 0.3% / h or less. In this humidification operation, the relative humidity of the humidified air is 90% or more, and the temperature of the humidified air is room temperature for 1 hour after the start of humidification, and is set to 20 ° C. for the next hour, and thereafter 25 ° C., 30 ° C., 35 ° C. ℃ and 40 ℃, increase the temperature by 5 ℃ every hour, raise the temperature of the humidified air to 40 ℃ 5 hours after the start of humidification, and then increase the temperature by 10 ℃ every hour Finally, ventilation was performed for 4 hours with humidified air at 70 ° C. for 4 hours. After the humidification operation was completed, the sample was left in the storage tank 41 of the circulation type grain dryer 40 for a maximum of 6 hours to increase the amount of γ-aminobutyric acid. After standing, drying was performed in a drying operation to obtain function-enriched barley.

このようにして得た大麦「サルート」において、水分12%の出発原料から水分調整工程を経ることなく高温加湿処理したもの(S0)と、水分調整工程を経て水分16%から高温加湿処理したもの(S16)と、水分調整工程を経て水分20%から高温加湿処理したもの(S20)との、それぞれのγ−アミノ酪酸含有量を図4に示す。また、γ−アミノ酪酸の測定は高速液体クロマトグラフ(株式会社島津製作所、LC−VP)で行った。   In the barley “Salute” obtained in this way, high-temperature humidification treatment (S0) from a starting material having a moisture content of 12% without passing through a moisture adjustment step, and high-temperature humidification treatment from a moisture content of 16% through a moisture adjustment step FIG. 4 shows the respective γ-aminobutyric acid contents of (S16) and those subjected to high-temperature humidification treatment from 20% moisture through the moisture adjustment step (S20). Moreover, the measurement of (gamma) -aminobutyric acid was performed with the high performance liquid chromatograph (Shimadzu Corporation, LC-VP).

図4において、S0と、S20とは、γ−アミノ酪酸の含有量が23.0〜24.0mg/100gに止まっているのに対し、S16は、γ−アミノ酪酸の含有量が25.0mg/100gと一番含有量が高くなることが分かった。   In FIG. 4, S0 and S20 have a content of γ-aminobutyric acid of 23.0 to 24.0 mg / 100 g, whereas S16 has a content of γ-aminobutyric acid of 25.0 mg. / 100g, the highest content was found.

大麦の品種として「ファイバースノウ」を供試原料とし、出発原料の水分12%とし、実施例1と同様に「水分調整工程(11)を省略」して製造したときのγ−アミノ酪酸の含有量(図5のS0)と、「水分調整工程(11)を使用」して製造したときのγ−アミノ酪酸の含有量(図5のS16,S20)とを比較した。   The content of γ-aminobutyric acid when manufactured by using “Fiber Snow” as the test raw material as the barley variety, with the moisture content of the starting material being 12%, and “producing the moisture adjustment step (11)” in the same manner as in Example 1. The amount (S0 in FIG. 5) was compared with the content of γ-aminobutyric acid (S16, S20 in FIG. 5) when manufactured using “use water adjustment step (11)”.

図5において、S0はγ−アミノ酪酸の含有量が12.0mg/100g、S20はγ−アミノ酪酸の含有量が14.0mg/100g近辺に止まっているのに対し、S16は、γ−アミノ酪酸の含有量が15.0mg/100gと一番含有量が高くなることが分かった。   In FIG. 5, S0 has a content of γ-aminobutyric acid of 12.0 mg / 100 g, S20 has a content of γ-aminobutyric acid remaining around 14.0 mg / 100 g, whereas S16 has a content of γ-aminobutyric acid. The content of butyric acid was found to be the highest at 15.0 mg / 100 g.

大麦の品種として「ニシノホシ」を供試原料とし、出発原料の水分12%とし、実施例1と同様に「水分調整工程(11)を省略」して製造したときのγ−アミノ酪酸の含有量(図6のS0)と、「水分調整工程(11)を使用」して製造したときのγ−アミノ酪酸の含有量(図6のS16,S20)とを比較した。   Content of γ-aminobutyric acid when manufactured by using “Nishinohoshi” as a test raw material as a barley variety, with a moisture content of the starting material of 12%, and “producing the moisture adjustment step (11)” in the same manner as in Example 1. (S0 in FIG. 6) was compared with the content of γ-aminobutyric acid (S16, S20 in FIG. 6) when manufactured using “use moisture adjustment step (11)”.

図6において、S0はγ−アミノ酪酸の含有量が13.0mg/100g、S20はγ−アミノ酪酸の含有量が12.0mg/100g近辺に止まっているのに対し、S16は、γ−アミノ酪酸の含有量が14.0mg/100gと一番含有量が高くなることが分かった。   In FIG. 6, S0 has a content of γ-aminobutyric acid of 13.0 mg / 100 g, S20 has a content of γ-aminobutyric acid remaining around 12.0 mg / 100 g, whereas S16 has a content of γ-aminobutyric acid. It was found that the content of butyric acid was the highest at 14.0 mg / 100 g.

本発明の実施例の一つとして、殻付きの蕎麦を本発明の製造方法にて加工した。蕎麦の場合でも水分が18.5%を越えないように循環式穀物乾燥機40により加湿した。この加湿では、相対湿度が90%以上で、かつ70℃の温度の加湿風で3時間、加湿のための通風を行った。前記蕎麦の加工においては、静置工程は行わず、加湿運転終了後に乾燥運転にて前記蕎麦の乾燥を行った。この乾燥運転では、乾燥開始から6時間は、相対湿度が30%で温度が35℃の乾燥空気の通風を行い、その後は徐々に乾燥空気の温度を下げ、最終的には室温まで下げ、前記蕎麦の水分が約15%になるまで乾燥を行い、γ−アミノ酪酸の含有量を増加させた蕎麦(以下、「機能富化蕎麦」という)を得た。   As one example of the present invention, shelled buckwheat noodles were processed by the production method of the present invention. Even in the case of buckwheat, it was humidified by the circulating grain dryer 40 so that the water content did not exceed 18.5%. In this humidification, ventilation for humidification was performed for 3 hours with humidified air having a relative humidity of 90% or more and a temperature of 70 ° C. In the processing of the soba noodles, the standing step was not performed, and the soba noodles were dried in the drying operation after the humidification operation. In this drying operation, for 6 hours from the start of drying, dry air having a relative humidity of 30% and a temperature of 35 ° C. is ventilated, and then the temperature of the dry air is gradually lowered and finally lowered to room temperature. Drying was performed until the moisture content of the buckwheat was about 15%, so that buckwheat (hereinafter referred to as “function-enriched buckwheat”) having an increased content of γ-aminobutyric acid was obtained.

このようにして得た機能富化蕎麦が含有するγ−アミノ酪酸の量を表1に示す。なお、γ−アミノ酪酸の測定は高速液体クロマトグラフ(株式会社島津製作所、LC−VP)で行った。   Table 1 shows the amount of γ-aminobutyric acid contained in the function-enriched buckwheat so obtained. In addition, the measurement of (gamma) -aminobutyric acid was performed with the high performance liquid chromatograph (Shimadzu Corporation, LC-VP).

Figure 2010094096
Figure 2010094096

表1においては、機能富化蕎麦のγ−アミノ酪酸の増加割合を示すために、原料に使用した蕎麦(本発明の製造方法で加工する前の蕎麦)を「原料蕎麦」として表示している。原料蕎麦と機能富化蕎麦とでは、機能富化蕎麦のγ−アミノ酪酸の含有量が原料蕎麦の11.6倍以上となった。   In Table 1, in order to show the increase rate of γ-aminobutyric acid in the function-enriched buckwheat, the buckwheat used for the raw material (the buckwheat before being processed by the production method of the present invention) is indicated as “raw buckwheat”. . In the raw buckwheat and the functional enriched buckwheat, the content of γ-aminobutyric acid in the functional enriched buckwheat became 11.6 times or more that of the raw buckwheat.

本発明の製造方法における製造工程を示したフロー図である。It is the flowchart which showed the manufacturing process in the manufacturing method of this invention. 攪拌加水法を実施するためのパドル式攪拌加水装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the paddle type stirring and hydrolyzing apparatus for implementing the stirring and stirring method. 循環式穀物乾燥機の縦断面図である。It is a longitudinal cross-sectional view of a circulation type grain dryer. 大麦「サルート」において、水分12%の出発原料から水分調整工程を経ることなく高温加湿処理したもの(S0)と、水分調整工程を経て水分16%から高温加湿処理したもの(S16)と、水分調整工程を経て水分20%から高温加湿処理したもの(S20)との、γ−アミノ酪酸含有量の比較図である。In barley “Salute”, high-temperature humidification treatment from a starting material with a moisture content of 12% without passing through a moisture adjustment step (S0), one that has undergone a moisture adjustment step with a moisture content from 16% (S16), and moisture It is a comparison figure of (gamma) -aminobutyric acid content with what carried out the high temperature humidification process from the moisture 20% through the adjustment process (S20). 大麦「ファイバースノウ」において、水分12%の出発原料から水分調整工程を経ることなく高温加湿処理したもの(S0)と、水分調整工程を経て水分16%から高温加湿処理したもの(S16)と、水分調整工程を経て水分20%から高温加湿処理したもの(S20)との、γ−アミノ酪酸含有量の比較図である。In barley “Fiber Snow”, high-temperature humidification treatment from a starting material having a moisture content of 12% without passing through a moisture adjustment step (S0), and one that has been subjected to a moisture adjustment step from a moisture content of 16% (S16), It is a comparison figure of (gamma) -aminobutyric acid content with what carried out the high temperature humidification process from the moisture 20% through the moisture adjustment process (S20). 大麦「ニシノホシ」において、水分12%の出発原料から水分調整工程を経ることなく高温加湿処理したもの(S0)と、水分調整工程を経て水分16%から高温加湿処理したもの(S16)と、水分調整工程を経て水分20%から高温加湿処理したもの(S20)との、γ−アミノ酪酸含有量の比較図である。In barley “Nishinohoshi”, a raw material having a moisture content of 12% was subjected to a high-temperature humidification treatment without passing through a moisture adjustment step (S0), a moisture product having been subjected to a moisture adjustment step from a moisture content of 16% (S16), and moisture It is a comparison figure of (gamma) -aminobutyric acid content with what carried out the high temperature humidification process from the moisture 20% through the adjustment process (S20).

符号の説明Explanation of symbols

10 出発原料
11 水分調整工程
12 テンパリング工程
13 高温加湿工程
14 テンパリング工程
15 乾燥工程
16 搗精工程
17 製粉工程
20 パドル式攪拌加水装置
21 注水ノズル
22 水分添加部
23 横型円筒部
24 攪拌部
25 原料供給ホッパ
26 供給口
27 攪拌パドル
28 振動モータ
29 排出口
30 閉鎖板
31 下部排出管
32 上部排出管
33 排出樋
40 循環式穀物乾燥機
41 貯留部
42 高温加湿空気供給部
43 排出部
44 熱風発生バーナ
45 加湿装置
46 通風口
47 バイパス管
48 流路切換弁
49 流路切換弁
50 温湿度センサ
51 水分計
52 制御部
53 排風ファン
DESCRIPTION OF SYMBOLS 10 Starting material 11 Water | moisture-content adjustment process 12 Tempering process 13 High temperature humidification process 14 Tempering process 15 Drying process 16 Refinement process 17 Milling process 20 Paddle-type stirring and water addition apparatus 21 Water injection nozzle 22 Water addition part 23 Horizontal cylindrical part 24 Stirring part 25 Raw material supply hopper 26 Supply port 27 Stirring paddle 28 Vibration motor 29 Discharge port 30 Closure plate 31 Lower discharge tube 32 Upper discharge tube 33 Discharge basket 40 Circulating grain dryer 41 Storage unit 42 High-temperature humidified air supply unit 43 Discharge unit 44 Hot air generating burner 45 Humidification Device 46 Ventilation port 47 Bypass pipe 48 Channel switching valve 49 Channel switching valve 50 Temperature / humidity sensor 51 Moisture meter 52 Control unit 53 Ventilation fan

Claims (6)

機能性成分の含有量を増加させた穀物の製造方法であって、下記の工程、すなわち、
1)少なくとも水分15%以下に乾燥処理を施した殻付の穀物を得る工程;
2)該殻付の穀物を噴霧加水又は攪拌加水によって水分16.0%まで水分調整する水分調整工程;
3)温度50℃以上、相対湿度90%以上の高温加湿空気の通風により、前記水分調整工程後の穀物を水分16.0〜18.5%の範囲となるように高温加湿する高温加湿工程;
4)該高温加湿工程後の穀物を温度40〜50℃、相対湿度15〜35%の空気で乾燥を行う乾燥工程;
を含むことを特徴とする機能性成分の含有量を増加させた穀物の製造方法。
A method for producing a cereal having an increased content of functional ingredients, the following steps:
1) A step of obtaining a shelled grain that has been subjected to a drying treatment to at least 15% moisture;
2) a moisture adjusting step of adjusting moisture to 16.0% by spray or stirring water on the cereal grains;
3) A high-temperature humidification step in which the grain after the moisture adjustment step is humidified at a high temperature so that the moisture content is in the range of 16.0 to 18.5% by ventilation of high-temperature humidified air having a temperature of 50 ° C. or higher and a relative humidity of 90% or higher;
4) A drying step of drying the grain after the high-temperature humidification step with air having a temperature of 40 to 50 ° C. and a relative humidity of 15 to 35%;
A method for producing cereals, wherein the content of the functional component is increased.
前記工程2)と前記工程3)との間に、下記の工程、すなわち、
5)水分調整した穀物を常温にてテンパリングを行うテンパリング工程;
を備えてなる請求項1記載の機能性成分の含有量を増加させた穀物の製造方法。
Between the step 2) and the step 3), the following steps:
5) Tempering step of tempering the grain with moisture adjusted at room temperature;
A method for producing a cereal having an increased content of the functional ingredient according to claim 1.
前記工程3)と前記工程4)との間に、下記の工程、すなわち、
6)水分調整した穀物を常温にてテンパリングを行うテンパリング工程;
を備えてなる請求項1又は2記載の機能性成分の含有量を増加させた穀物の製造方法。
Between the step 3) and the step 4), the following steps:
6) Tempering step of tempering the grain with moisture adjusted at room temperature;
A method for producing a cereal having an increased content of the functional ingredient according to claim 1 or 2.
前記工程3)は、高温加湿を開始してからの空気温度を徐除に上昇させ、最終的に50℃以上に制御してなる請求項1〜3のいずれかに記載の機能性成分の含有量を増加させた穀物の製造方法。 The functional step according to any one of claims 1 to 3, wherein the step 3) is performed by gradually increasing the air temperature after starting high-temperature humidification and finally controlling the temperature to 50 ° C or higher. A method for producing grains with increased amounts. 前記穀物が、米、大麦、小麦、トウモロコシ、豆、蕎麦、胡麻、粟、黍及び稗などの植物種子であることを特徴とする請求項1〜4のいずれかに記載の機能性成分の含有量を増加させた穀物の製造方法。   The functional grain component according to any one of claims 1 to 4, wherein the cereal is plant seeds such as rice, barley, wheat, corn, beans, buckwheat, sesame, straw, straw and straw. A method for producing grains with increased amounts. 請求項1〜5のいずれかに記載の製造方法によって製造された機能性成分の含有量を増加させた穀物。 Grain which increased content of the functional component manufactured by the manufacturing method in any one of Claims 1-5.
JP2008269208A 2008-10-17 2008-10-17 Cereal grain increased in content of functional component, and method for producing the same Pending JP2010094096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008269208A JP2010094096A (en) 2008-10-17 2008-10-17 Cereal grain increased in content of functional component, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008269208A JP2010094096A (en) 2008-10-17 2008-10-17 Cereal grain increased in content of functional component, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010094096A true JP2010094096A (en) 2010-04-30

Family

ID=42256234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008269208A Pending JP2010094096A (en) 2008-10-17 2008-10-17 Cereal grain increased in content of functional component, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010094096A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247932A (en) * 2012-06-01 2013-12-12 Hisaka Works Ltd Moisture adjustment method of cereals, and moisture accommodation system of cereals
JP2014155450A (en) * 2013-02-15 2014-08-28 Satake Corp Production method of leaven rice flour and leaven rice flour obtained by the same method
JP2015159738A (en) * 2014-02-26 2015-09-07 株式会社サタケ Flour milling pretreatment method and apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247932A (en) * 2012-06-01 2013-12-12 Hisaka Works Ltd Moisture adjustment method of cereals, and moisture accommodation system of cereals
JP2014155450A (en) * 2013-02-15 2014-08-28 Satake Corp Production method of leaven rice flour and leaven rice flour obtained by the same method
KR20150118983A (en) * 2013-02-15 2015-10-23 가부시끼가이샤 사따께 Process for manufacturing whole rice flour and whole rice flour obtained by said process
KR102104696B1 (en) * 2013-02-15 2020-04-24 가부시끼가이샤 사따께 Process for manufacturing whole rice flour and whole rice flour obtained by said process
JP2015159738A (en) * 2014-02-26 2015-09-07 株式会社サタケ Flour milling pretreatment method and apparatus

Similar Documents

Publication Publication Date Title
JP4409879B2 (en) Method for enriching γ-aminobutyric acid and grains obtained by the method
KR100746937B1 (en) Manufacture apparatus and it&#39;s method of unpolished rice
JP4417433B1 (en) Nutrient-enriched rice production method
KR101180193B1 (en) Germinating brown rice
US20080286435A1 (en) Grain or legume having increased content of functional component and a manufacturing method thereof
JP2009207488A (en) Method for preparing nutrient enriched rice
JP2010094096A (en) Cereal grain increased in content of functional component, and method for producing the same
CN202587803U (en) Automatic production device based on biological germination process technology
WO2019107277A1 (en) Method for producing quick-cooking rice
CN101642214B (en) Complete equipment for preparing germinating plant seeds
BG106921A (en) Method for malting seeds
US10798954B2 (en) Removal of phytate
JP4658836B2 (en) Saccharified liquid for cereal coating and coating method of the saccharified liquid
AU2013101803A4 (en) Method and apparatus for treating grain
JP2009055864A (en) Leguminous plant having increased content of functional component and method for producing the same
CN109673797A (en) The preparation method of grain germination rice tea
JP3423927B2 (en) Method for producing germinated brown rice
JP2004261006A (en) Method for soaking grain and apparatus used in the same
JP2003052322A (en) Method for modifying boiled rice to be dough of rice- processed food such as rice cakes, rice boiled together with red beans, dumpling, rice-dumpling wrapped in bamboo leaves or the like
JP2008131912A (en) Method for producing germinated cereal crop rice
SU1658974A1 (en) Process for preparing fast cooking product from barley
KR101185752B1 (en) The method for producing brown rice or cereals that has a lot of physiologically Active Substances and cook quickly
CN114586938A (en) Germinated brown rice suitable for grinding and preparation method thereof
KR101367730B1 (en) Germinated brown rice producting apparatus, producting method of germinated brown rice and germinated brown rice
CN115301311A (en) Method for reducing saponin in chenopodium quinoa