JP2010092636A - Storage battery - Google Patents

Storage battery Download PDF

Info

Publication number
JP2010092636A
JP2010092636A JP2008259253A JP2008259253A JP2010092636A JP 2010092636 A JP2010092636 A JP 2010092636A JP 2008259253 A JP2008259253 A JP 2008259253A JP 2008259253 A JP2008259253 A JP 2008259253A JP 2010092636 A JP2010092636 A JP 2010092636A
Authority
JP
Japan
Prior art keywords
electrolyte
storage battery
negative electrode
positive electrode
electrode electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008259253A
Other languages
Japanese (ja)
Inventor
Akihiro Umeda
章広 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008259253A priority Critical patent/JP2010092636A/en
Publication of JP2010092636A publication Critical patent/JP2010092636A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a storage battery with improved charge and discharge characteristics through reduction of battery inner resistance by having electrolyte contain carbon materials. <P>SOLUTION: The storage battery includes a cathode 5, a cathode electrolyte 3 containing carbon materials in contact with the cathode 5, an anode 6, an anode electrolyte 4 containing carbon materials in contact with the anode 6, and a separating film 2 separating the cathode electrolyte 3 and the anode electrolyte 4. Charging and discharging of a load is carried out by reaction of bivalent and trivalent iron ions at the cathode electrolyte 3, and by reaction of bivalent iron ions and iron at the anode electrolyte 4. The electrolyte solution is enhanced in conductivity by mixing carbon materials with different average particle diameters, so that a storage battery with inner resistance reduced is realized. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、充電及び放電が繰り返し可能な2次電池に関するものであり、特に、電解質の鉄イオンの価数変化のみを電池反応として利用した蓄電池に関するものである。   The present invention relates to a secondary battery that can be repeatedly charged and discharged, and more particularly, to a storage battery that uses only a change in the valence of iron ions in an electrolyte as a battery reaction.

従来、この種の電解液中の金属イオンの価数変化のみを電池反応としたものとしてレドックスフロー型の電池があり、単一金属を用いたものにバナジウム系のレドックスフロー電池がある(例えば特許文献1)。   Conventionally, there is a redox flow type battery in which only a valence change of a metal ion in an electrolyte of this type is used as a battery reaction, and there is a vanadium type redox flow battery using a single metal (for example, a patent) Reference 1).

図2は、特許文献1に記載されたレドックスフロー電池の断面図である。当該電池は、電池反応セル21を分離膜22によって分離された正極電解質23と負極電解質24にそれぞれ正極25と負極26が挿入されており、電解液は正極液タンク27、負極液タンク28をポンプ29によって循環させることができるよう構成されている。正極電解質23、正極液タンク27には4価、5価のバナジウムイオンが蓄えられており、また負極電解質24、負極液タンク28には2価、3価のバナジウムイオンが蓄えられている。   FIG. 2 is a cross-sectional view of the redox flow battery described in Patent Document 1. In the battery, a positive electrode 25 and a negative electrode 26 are inserted into a positive electrode electrolyte 23 and a negative electrode electrolyte 24, respectively, in which a battery reaction cell 21 is separated by a separation membrane 22, and the electrolyte pumps a positive electrode liquid tank 27 and a negative electrode liquid tank 28. 29 is configured to be circulated. The positive electrode electrolyte 23 and the positive electrode liquid tank 27 store tetravalent and pentavalent vanadium ions, and the negative electrode electrolyte 24 and the negative electrode liquid tank 28 store divalent and trivalent vanadium ions.

バナジウムのレドックスフロー電池では、充電時に正極液タンク27に蓄えられた5価と4価のバナジウムイオンがポンプ29によって正極電解質23に送られて外部回路30から電子を受取り還元される。また、負極液タンク28に蓄えられた2価と3価のバナジウムイオンがポンプ29によって負極電解質24に送られ、外部回路30に電子を放出して3価に酸化される。そして放電時には、正極液タンク27、負極液タンク28においてそれぞれ充電時と逆の反応によって電子を取り出すものである。   In the vanadium redox flow battery, pentavalent and tetravalent vanadium ions stored in the cathode solution tank 27 at the time of charging are sent to the cathode electrolyte 23 by the pump 29 to receive and reduce electrons from the external circuit 30. In addition, divalent and trivalent vanadium ions stored in the negative electrode liquid tank 28 are sent to the negative electrode electrolyte 24 by the pump 29, discharge electrons to the external circuit 30, and are oxidized to trivalent. At the time of discharging, electrons are extracted from the positive electrode liquid tank 27 and the negative electrode liquid tank 28 by a reaction opposite to that at the time of charging.

また、電極として、グラファイト、カーボン、カーボン繊維、カーボンクロスなどが利用されている。
特許第2724817号公報
In addition, graphite, carbon, carbon fiber, carbon cloth, and the like are used as electrodes.
Japanese Patent No. 2724817

しかしながら、従来のレドックスフロー電池では、電極としてグラファイト、カーボン等利用するものの導電性が不十分であるという課題があった。   However, in the conventional redox flow battery, there is a problem that the conductivity is insufficient when graphite, carbon or the like is used as an electrode.

本発明は、上記従来の課題を解決するもので、電池内部抵抗を低下させ、充放電特性を改善した蓄電池を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the storage battery which reduced battery internal resistance and improved the charging / discharging characteristic.

上記目的を達成するために、本発明の蓄電池は、正極と、前記正極に接する炭素材料を含有する正極電解質と、負極と、前記負極に接する炭素材料を含有する負極電解質と、前記正極電解質と負極電解質を分離する分離膜とを有し、前記正極電解質では2価及び3価の鉄イオンの反応、前記負極電解質では2価の鉄イオン及び鉄の反応により電荷の充放電を行うことを特徴とするものである。   In order to achieve the above object, a storage battery of the present invention comprises a positive electrode, a positive electrode electrolyte containing a carbon material in contact with the positive electrode, a negative electrode, a negative electrode electrolyte containing a carbon material in contact with the negative electrode, and the positive electrode electrolyte. A separation membrane for separating the negative electrode electrolyte, and the positive electrode electrolyte charges and discharges by a reaction of divalent and trivalent iron ions, and the negative electrode electrolyte charges and discharges by a reaction of divalent iron ions and iron. It is what.

これにより、電池の内部抵抗を低下させることができるため、充放電効率を向上させることができる。   Thereby, since internal resistance of a battery can be reduced, charging / discharging efficiency can be improved.

本発明の蓄電池は、分離膜を隔てて、正極電解質では2価及び3価の鉄イオンの反応、負極電解質では2価の鉄イオン及び鉄の反応により電荷の充放電を行うに際して炭素材料を含有した電解質を使用することにより、充放電効率の向上した蓄電池を実現することができる。   The storage battery of the present invention contains a carbon material when charge / discharge is performed by the reaction of divalent and trivalent iron ions in the positive electrode electrolyte and the reaction of divalent iron ions and iron in the negative electrode electrolyte across the separation membrane. By using the electrolyte, a storage battery with improved charge / discharge efficiency can be realized.

第1の発明は、正極と、前記正極に接する炭素材料を含有する電解質を保持する正極電解質と、負極と、前記負極に接する炭素材料を含有する電解質を保持する負極電解質と、前記正極電解質と負極電解質を分離する分離膜とを有し、前記正極電解質では2価及び3価の鉄イオンの反応、前記負極電解質では2価の鉄イオン及び鉄の反応により電荷の充放電を行うものである。   The first invention includes a positive electrode, a positive electrode electrolyte holding an electrolyte containing a carbon material in contact with the positive electrode, a negative electrode, a negative electrode electrolyte holding an electrolyte containing a carbon material in contact with the negative electrode, and the positive electrode electrolyte. And a separation membrane that separates the negative electrode electrolyte. The positive electrode electrolyte charges and discharges by a reaction of divalent and trivalent iron ions, and the negative electrode electrolyte charges and discharges by a reaction of divalent iron ions and iron. .

電解質に導電性のカーボンを添加することにより、内部抵抗を低下させることができ、したがって、充電電荷量に対する放電電荷量の割合の低下を抑えることができる。   By adding conductive carbon to the electrolyte, the internal resistance can be reduced, and therefore the reduction in the ratio of the discharge charge amount to the charge amount can be suppressed.

第2の発明は、第1の発明の炭素材料が、平均粒子径の異なる複数種のグラファイトの混合物であるものである。   In the second invention, the carbon material of the first invention is a mixture of a plurality of types of graphite having different average particle diameters.

平均粒子径の大きいグラファイトによって導電性を高め、そのグラファイトとグラファイトとの間を小さなグラファイトよって繋ぐことにより、全体として電解質の導電性を向上させることができる。   The conductivity of the electrolyte can be improved as a whole by increasing the conductivity by graphite having a large average particle diameter and connecting the graphite and the graphite by a small graphite.

第3の発明は、特に、第2の発明の2種のグラファイトの平均粒子径の比が10倍以上であるものである。   In the third invention, in particular, the ratio of the average particle diameters of the two types of graphite of the second invention is 10 times or more.

これにより、全体として電解質の導電性を向上させることができ、内部抵抗を低下させることができる。   Thereby, the electroconductivity of electrolyte can be improved as a whole and internal resistance can be reduced.

第4の発明は、第1の発明の炭素材料が、カーボンブラック及びグラファイトの混合物であるものである。   In a fourth invention, the carbon material of the first invention is a mixture of carbon black and graphite.

カーボンブラックは導電率がグラファイトと比べて小さいものの、導電方向に方向性が無いが、グラファイトは導電率がカーボンブラックと比べて大きいものの、導電方向に方向性がある。これは炭素材料の結晶構造に依存する特徴である。このカーボンブラックとグラファイトを組み合わせることによって、安定的に電解質の導電性を向上させることができ、内部抵抗を低下させることができる。   Although carbon black has a smaller conductivity than graphite, it has no directionality in the conduction direction, but graphite has a larger conductivity than carbon black, but has a directionality in the conduction direction. This is a feature that depends on the crystal structure of the carbon material. By combining the carbon black and graphite, the conductivity of the electrolyte can be stably improved, and the internal resistance can be reduced.

第5の発明は、特に、第4の発明のカーボンブラックの平均粒子径よりグラファイトの平均粒子径が50倍以上大きいことを特徴としたものである。   The fifth invention is particularly characterized in that the average particle diameter of graphite is 50 times or more larger than the average particle diameter of the carbon black of the fourth invention.

平均粒子径の大きいグラファイトによって導電性を高め、そのグラファイトとグラファイトとの間を小さなカーボンブラックによって繋ぐことにより、全体として電解質の導電性を向上させることができる。   By increasing the conductivity by graphite having a large average particle diameter and connecting the graphite and graphite by a small carbon black, the conductivity of the electrolyte as a whole can be improved.

第6の発明は、第1から第6の発明で、特に、正極の電解質と負極の電解質の体積比が2対1であるものである。   The sixth invention is the first to sixth inventions, and in particular, the volume ratio of the positive electrode electrolyte to the negative electrode electrolyte is 2: 1.

負極の電解質では2価の鉄イオン1個が電子2個を受け取り金属鉄となって析出する一方、正極の電解質では2価の鉄イオン1個が電子を1個放出して3価の鉄イオンとなる。すなわち、充電反応に関わる2価の鉄イオンのモル比は、正極と負極で2対1となり、それ以外のモル比であればどちらかのセル中のイオンが未反応となって残ってしまう。   In the negative electrode electrolyte, one divalent iron ion receives two electrons and deposits as metallic iron, while in the positive electrode electrolyte, one divalent iron ion emits one electron and trivalent iron ions. It becomes. That is, the molar ratio of the divalent iron ions involved in the charging reaction is 2 to 1 between the positive electrode and the negative electrode, and ions in either cell remain unreacted at other molar ratios.

したがって、本発明によれば、負極の体積を小さくすることができるため、電池の内部抵抗を低下させることができる。   Therefore, according to the present invention, since the volume of the negative electrode can be reduced, the internal resistance of the battery can be reduced.

以下、本発明の蓄電池の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1は、本発明の第1の実施の形態による蓄電池の断面図である。
Hereinafter, embodiments of the storage battery of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(Embodiment 1)
FIG. 1 is a cross-sectional view of a storage battery according to the first embodiment of the present invention.

蓄電池は、電池反応セル1を分離膜2によって分離された正極電解質3と負極電解質4によって構成されており、それぞれのセルの壁面に正極5と負極6が配置され、外枠7によって固定されている。そして、それぞれの極と電源8及び負荷9とが導通されている。   The storage battery is composed of a positive electrode electrolyte 3 and a negative electrode electrolyte 4 separated from a battery reaction cell 1 by a separation membrane 2. A positive electrode 5 and a negative electrode 6 are arranged on the wall of each cell and fixed by an outer frame 7. Yes. Each pole is electrically connected to the power supply 8 and the load 9.

分離膜2は孔径0.1μm、厚み5μmの微細孔樹脂膜であり、正極5及び負極6は厚さ2mmの樹脂含浸黒鉛材、外枠7は厚さ2mmのチタン板を使用した。そして電源8と負荷9とはリード線によってチタン板の外枠7を介して電極と電気的に接続している。ここで、正極5と分離膜3との距離は3mmであり、負極6と分離膜3との距離は1.5mmである。   The separation membrane 2 is a microporous resin membrane having a pore diameter of 0.1 μm and a thickness of 5 μm, the positive electrode 5 and the negative electrode 6 are 2 mm thick resin-impregnated graphite materials, and the outer frame 7 is a 2 mm thick titanium plate. The power source 8 and the load 9 are electrically connected to the electrodes via lead frames 7 by means of lead wires. Here, the distance between the positive electrode 5 and the separation membrane 3 is 3 mm, and the distance between the negative electrode 6 and the separation membrane 3 is 1.5 mm.

正極電解質3と負極電解質4は、モル分率0.17の塩化第一鉄、モル分率0.17の塩化アンモニウムを水に溶かし、さらに炭素材料を全重量の10分の1添加して混合させた。正極電解質3と負極電解質4との体積比は2対1とした。   The positive electrode electrolyte 3 and the negative electrode electrolyte 4 are prepared by dissolving ferrous chloride having a molar fraction of 0.17 and ammonium chloride having a molar ratio of 0.17 in water, and further adding a carbon material to one tenth of the total weight. I let you. The volume ratio between the positive electrode electrolyte 3 and the negative electrode electrolyte 4 was 2: 1.

以上のような構成の蓄電池において、充電、放電の効率の評価法を述べる。   A method for evaluating the efficiency of charging and discharging in the storage battery configured as described above will be described.

まず、電源8によって電流が50mAの一定値となるように電圧を10分間印加する。そして電源8を短絡して2分間保持する。その後50Ωの抵抗を有した負荷9につなぎ変えて放電させる。このとき流れた電流を測定しておく。充電、放電によって移動した電荷は電流値より見積もることができる。ここで、充電した電荷量に対する放電した電荷量の割合を充放電効率とする。   First, a voltage is applied for 10 minutes by the power source 8 so that the current becomes a constant value of 50 mA. The power supply 8 is short-circuited and held for 2 minutes. Thereafter, it is connected to a load 9 having a resistance of 50Ω and discharged. The current flowing at this time is measured. The charge transferred by charging and discharging can be estimated from the current value. Here, the ratio of the discharged charge amount to the charged charge amount is defined as charge / discharge efficiency.

本実施の形態では、炭素材料を、平均粒子径が0.5μmのグラファイトと10μmのグラファイトを重量比で1対1の割合で混合した場合、平均粒子径が20nmのカーボンブラックと1μmのグラファイトを重量比で1対1の割合で混合した場合について、正極電解質と負極電解質の体積比を1対1とした場合と2対1とした場合について、充放電効率の値の大きさ計測した。この値を平均粒子径が20nmのカーボンブラックのみを混合した場合と比較すると、いずれの場合も本実施の形態の構成の蓄電池の方が、充電効率が高く、さらに繰り返しの充放電においても安定した効率を得ることがわかった。   In this embodiment, when carbon material is mixed with graphite having an average particle diameter of 0.5 μm and graphite having a particle diameter of 10 μm at a weight ratio of 1: 1, carbon black having an average particle diameter of 20 nm and graphite having a particle diameter of 1 μm are mixed. About the case where it mixed by the ratio of 1: 1 by weight ratio, the magnitude | size of the value of charging / discharging efficiency was measured about the case where the volume ratio of a positive electrode electrolyte and a negative electrode electrolyte is set to 1: 1, and 2: 1. Compared with the case where only this value is mixed with carbon black having an average particle diameter of 20 nm, in all cases, the storage battery having the configuration of the present embodiment has higher charging efficiency and is more stable even during repeated charging and discharging. It turns out to gain efficiency.

本発明による蓄電池は、低コストの蓄電池である。この蓄電池は、変電所や工場に設置するための大容量の電池として利用できるだけでなく、安全性も高いため家庭用の電池、例えば夜間電力を蓄え、昼間使うための蓄電池に適用できる。   The storage battery according to the present invention is a low-cost storage battery. This storage battery can be used not only as a large-capacity battery for installation in a substation or factory, but also because of its high safety, it can be applied to a battery for home use, for example, a storage battery for storing nighttime power and using it in the daytime.

本発明の実施の形態1における蓄電池の断面図Sectional drawing of the storage battery in Embodiment 1 of this invention 従来の蓄電池の断面図Cross-sectional view of a conventional storage battery

符号の説明Explanation of symbols

2 分離膜
3 正極電解質
4 負極電解質
5 正極
6 負極
2 Separation membrane 3 Positive electrode electrolyte 4 Negative electrode electrolyte 5 Positive electrode 6 Negative electrode

Claims (6)

正極と、前記正極に接する炭素材料を含有する正極電解質と、負極と、前記負極に接する炭素材料を含有する負極電解質と、前記正極電解質と前記負極電解質を分離する分離膜とを有し、前記正極電解質では2価及び3価の鉄イオンの反応、前記負極電解質では2価の鉄イオン及び鉄の反応により電荷の充放電を行うことを特徴とする蓄電池。 A positive electrode, a positive electrode electrolyte containing a carbon material in contact with the positive electrode, a negative electrode, a negative electrode electrolyte containing a carbon material in contact with the negative electrode, and a separation membrane separating the positive electrode electrolyte and the negative electrode electrolyte, A storage battery characterized in that charge is charged and discharged by reaction of divalent and trivalent iron ions in the positive electrode electrolyte, and reaction of divalent iron ions and iron in the negative electrode electrolyte. 炭素材料は、平均粒子径の異なる複数種のグラファイトの混合物である請求項1に記載の蓄電池。 The storage battery according to claim 1, wherein the carbon material is a mixture of a plurality of types of graphite having different average particle diameters. 2種のグラファイトの平均粒子径の比が10倍以上である請求項2に記載の蓄電池。 The storage battery according to claim 2, wherein the ratio of the average particle diameter of the two types of graphite is 10 times or more. 炭素材料は、カーボンブラックとグラファイトの混合物である請求項1に記載の蓄電池。 The storage battery according to claim 1, wherein the carbon material is a mixture of carbon black and graphite. カーボンブラックの平均粒子径よりグラファイトの平均粒子径が50倍以上大きい請求項4に記載の蓄電池。 The storage battery according to claim 4, wherein the average particle diameter of graphite is 50 times or more larger than the average particle diameter of carbon black. 正極の電解質と負極の電解質の体積比が2対1であることを特徴とする請求項1から5のいずれか1記載の蓄電池。 The storage battery according to any one of claims 1 to 5, wherein the volume ratio of the positive electrode electrolyte to the negative electrode electrolyte is 2 to 1.
JP2008259253A 2008-10-06 2008-10-06 Storage battery Pending JP2010092636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008259253A JP2010092636A (en) 2008-10-06 2008-10-06 Storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008259253A JP2010092636A (en) 2008-10-06 2008-10-06 Storage battery

Publications (1)

Publication Number Publication Date
JP2010092636A true JP2010092636A (en) 2010-04-22

Family

ID=42255176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008259253A Pending JP2010092636A (en) 2008-10-06 2008-10-06 Storage battery

Country Status (1)

Country Link
JP (1) JP2010092636A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035579A1 (en) * 2010-09-15 2012-03-22 トヨタ自動車株式会社 Membrane electrode assembly and manufacturing method for same, and fuel cell using same
JP2014519168A (en) * 2011-06-01 2014-08-07 ケース ウエスタン リザーブ ユニバーシティ Iron-based fluid battery
EP2876712A1 (en) * 2013-11-22 2015-05-27 DWI an der RWTH Aachen e.V. Oxygen-vanadium redox flow battery with vanadium electrolyte having carbon particles dispersed therein
JP2016192255A (en) * 2015-03-30 2016-11-10 古河電池株式会社 Vanadium redox battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035579A1 (en) * 2010-09-15 2012-03-22 トヨタ自動車株式会社 Membrane electrode assembly and manufacturing method for same, and fuel cell using same
JP5190610B2 (en) * 2010-09-15 2013-04-24 トヨタ自動車株式会社 Membrane electrode assembly, method for producing the same, and fuel cell
US9023552B2 (en) 2010-09-15 2015-05-05 Toyota Jidosha Kabushiki Kaisha Membrane electrode assembly, manufacturing method thereof, and fuel cells
JP2014519168A (en) * 2011-06-01 2014-08-07 ケース ウエスタン リザーブ ユニバーシティ Iron-based fluid battery
EP2876712A1 (en) * 2013-11-22 2015-05-27 DWI an der RWTH Aachen e.V. Oxygen-vanadium redox flow battery with vanadium electrolyte having carbon particles dispersed therein
WO2015074764A1 (en) * 2013-11-22 2015-05-28 Dwi An Der Rwth Aachen E.V. Oxygen-vanadium redox flow battery with vanadium electrolyte having carbon particles dispersed therein
CN106463750A (en) * 2013-11-22 2017-02-22 DWI莱布尼茨互动材料研究所e.V. Oxygen-vanadium redox flow battery with vanadium electrolyte having carbon particles dispersed therein
JP2016192255A (en) * 2015-03-30 2016-11-10 古河電池株式会社 Vanadium redox battery

Similar Documents

Publication Publication Date Title
Zhao et al. High‐performance lithium‐iodine flow battery
US20180316064A1 (en) Additive for Increasing Lifespan of Rechargeable Zinc-Anode Batteries
US9178207B2 (en) Electrochemical cell system with a progressive oxygen evolving electrode / fuel electrode
Nikiforidis et al. Impact of electrolyte composition on the performance of the zinc–cerium redox flow battery system
JP2008519399A5 (en)
Senthilkumar et al. Enhancing capacity performance by utilizing the redox chemistry of the electrolyte in a dual‐electrolyte sodium‐ion battery
US20150255792A1 (en) Rechargeable zinc ion battery based on carbon cathode
Dai et al. The emerging of aqueous zinc‐based dual electrolytic batteries
JP5864563B2 (en) Magnesium battery
Zhu et al. A high-performance aqueous iron–hydrogen gas battery
US20190131620A1 (en) Electrode solutions and electrochemical cells and batteries therefrom
JP2010092636A (en) Storage battery
KR102379200B1 (en) Zinc-bromide flow battery comprising conductive interlayer
JP6211800B2 (en) Electrolyte flow type secondary battery
Liu et al. High‐Voltage Aqueous Zinc Batteries Achieved by Tri‐functional Metallic Bipolar Electrodes
Liu et al. Stabilizing zinc anodes for long-lifespan zinc–nickel battery through the in-situ construction of zincophilic interface layer
JP2010092635A (en) Storage battery
US20210143437A1 (en) Redox flow battery
Rana et al. Scientific issues of zinc‐bromine flow batteries and mitigation strategies
JP5979551B2 (en) Vanadium redox battery
US20140038000A1 (en) Flow-Through Metal Battery with Ion Exchange Membrane
US10211464B2 (en) Electrochemical cell aluminum-manganese
Chun et al. Reversibility of Lithium‐Ion–Air Batteries Using Lithium Intercalation Compounds as Anodes
US10476103B2 (en) Electrode containing silicon and copolymer having ionic ally conductive polymer and electrically conductive polymer, and battery cell using same
JP2015153490A (en) air battery