JP2010091151A - 空調装置 - Google Patents

空調装置 Download PDF

Info

Publication number
JP2010091151A
JP2010091151A JP2008259479A JP2008259479A JP2010091151A JP 2010091151 A JP2010091151 A JP 2010091151A JP 2008259479 A JP2008259479 A JP 2008259479A JP 2008259479 A JP2008259479 A JP 2008259479A JP 2010091151 A JP2010091151 A JP 2010091151A
Authority
JP
Japan
Prior art keywords
heat exchanger
air
refrigerant
oxidant gas
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008259479A
Other languages
English (en)
Inventor
Masanori Uehara
昌徳 上原
Takashi Koyama
貴志 小山
Takashi Yamada
貴史 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008259479A priority Critical patent/JP2010091151A/ja
Publication of JP2010091151A publication Critical patent/JP2010091151A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】燃料電池が排出した酸化剤ガスに含まれる生成水の潜熱を熱交換器で利用することで、冷房および暖房の効率を向上させる技術において、生成水の捕集率を高める、燃料電池システムと空調用ヒートポンプシステムを熱的に結合したシステムを提供する。
【解決手段】帯電した酸化剤ガス中の水が第4熱交換器44を通るとき、第4熱交換器44の伝熱面が静電誘電により分極化する。それにより、伝熱面と水との間に静電引力が発生し、水が伝熱面に引き寄せられ、第4熱交換器44において燃料電池10からの生成水の捕集率を高める。
【選択図】図1

Description

本発明は、酸化剤ガスと燃料ガスを電気化学反応させて発電する燃料電池から排出される酸化剤ガスを熱交換に利用する空調装置に関するものである。
従来、燃料電池システムと空調用ヒートポンプシステムを熱的に結合したシステムが提案されている。例えば、特許文献1では、燃料電池が排出した酸化剤ガスに含まれる生成水の潜熱を冷媒に伝える熱交換器を備え、冷房時には生成水の蒸発潜熱によりあらかじめ冷媒を冷却し、暖房時には生成水の凝縮および凝固熱により予め冷媒を加熱することで、冷房および暖房の効率向上を図っている。
しかし、熱交換器における生成水の潜熱(凝縮および凝固熱も含む)の利用率を向上させるには、熱交換器の表面(以下、伝熱面という)で確実に生成水を蒸発させることで吸熱を行い、また、伝熱面で確実に生成水を凝縮または凝固させることで発熱を行う必要がある。したがって、熱交換器においていかにして生成水の素通りを回避し、伝熱面に生成水を捕集および保持するかが課題となる。
伝熱面に水を捕集および保持する方法として、ラジエータに水を噴霧して蒸発潜熱により放熱量を向上させる技術が提案されている(特許文献2参照)。この技術は、伝熱面に親水処理や水膜形成部材を施すことで、噴霧した水を保持し留まらせ、確実に伝熱面で蒸発させることで、潜熱利用率の向上を図っている。しかしながら、この技術は、伝熱面に付着した水に対しては効果があるが、伝熱面から離れて浮遊、移動する水分を捕集する効果はないため、燃料電池からの生成水の素通りを抑制することができない。
特開2008−153168号公報 特開2002−372385号公報
本発明は上記点に鑑み、燃料電池が排出した酸化剤ガスに含まれる生成水の潜熱を熱交換器で利用することで、冷房および暖房の効率を向上させる技術において、生成水の捕集率を高めることを目的とする。
上記目的を達成するための請求項1に記載の発明は、酸化剤ガスと燃料ガスを電気化学反応させて発電する燃料電池(10)から排出される酸化剤ガスを熱交換に利用する空調装置が、冷媒を圧縮する圧縮機(41)と、空調用空気と圧縮機(41)から吐出される冷媒とを熱交換させる第1熱交換器(34)と、外気と冷媒とを熱交換させる第2熱交換器(42)と、第2熱交換器(42)から流出した冷媒を減圧させる第1減圧器(46)と、第1減圧器(46)で減圧された冷媒を蒸発させて空調用空気を冷却する第3熱交換器(32)と、圧縮機(41)で圧縮された冷媒を減圧させる第2減圧器(43)と、燃料電池(10)から排出された酸化剤ガス中の水を帯電させる酸化剤ガス帯電化手段(50)と、酸化剤ガス帯電化手段(50)が帯電させた酸化剤ガス中の水を冷媒と熱交換させる第4熱交換器(44)と、空調用空気による冷房が行われる冷房運転時には、第4熱交換器(44)、第2熱交換器(42)の順に冷媒が流れるよう冷媒経路を切り替え、また、空調用空気による暖房が行われる暖房運転時には、第2減圧器(43)、第2熱交換器(42)、第4熱交換器(44)の順に冷媒が流れるよう冷媒経路を切り替える冷媒経路切替手段(45)と、を備え、冷房運転時には、圧縮機(41)から吐出される冷媒が、第4熱交換器(44)において、酸化剤ガス帯電化手段(50)によって帯電化された酸化剤ガス中の水により冷却され、そののち第2熱交換器(42)で外気により冷却され、そののち第1減圧器(46)で減圧され、そののち第3熱交換器(32)において蒸発して空調用空気を冷却し、圧縮機(41)の吸入口側に戻るようになっており、暖房運転時には、圧縮機(41)から吐出される冷媒が、第1熱交換器(34)で空調用空気を加熱し、第2減圧器(43)で減圧され、第2熱交換器(42)で外気により加熱され、第4熱交換器(44)において、酸化剤ガス帯電化手段(50)によって帯電化された酸化剤ガス中の水により加熱され、圧縮機(41)の吸入口側に戻るようになっていることを特徴とする。
このように、燃料電池(10)が排出した酸化剤ガスに含まれる生成水の潜熱を第4熱交換器(44)で利用することで、冷房および暖房の効率を向上させる技術において、酸化剤ガス帯電化手段(50)が、燃料電池(10)から排出された酸化剤ガスを帯電させるようになっている。
このように帯電した酸化剤ガス中の水が第4熱交換器(44)を通るとき、第4熱交換器(44)の伝熱面が静電誘電により分極化する。それにより、伝熱面と水との間に静電引力が発生し、水が伝熱面に引き寄せられる。したがって、第4熱交換器(44)において燃料電池(10)からの生成水の捕集率を高めることができ、ひいては、冷房および暖房の効率向上が実現する。
また、請求項2に記載のように、酸化剤ガス帯電化手段(50)は、燃料電池(10)から第4熱交換器(44)までの酸化剤ガスの流路に設置されており、酸化剤ガスと接触することで、接触帯電または摩擦帯電により酸化剤ガスを帯電させるようになっていてもよい。
この場合、接触帯電または摩擦帯電によって酸化剤ガス中の水が帯電することの反対作用として、酸化剤ガス帯電化手段(50)に電荷が蓄積される。したがって、請求項3に記載のように、空調装置は、接触帯電または摩擦帯電によって当該導電体に蓄積された電荷を放電させる放電手段(54)を備えていてもよい。
このようになっていることで、酸化剤ガス帯電化装置50の、生成水を帯電させる性能が持続する。
また、請求項4に記載のように、酸化剤ガス帯電化手段(50)は、燃料電池(10)から第4熱交換器(44)までの酸化剤ガスの流路に設置された複数の電極(56、57)を有し、それら複数の電極(56、57)間に電圧をかけることで、当該複数の電極(56、57)間を通る酸化剤ガス中の水を帯電させるようになっていてもよい。このようにすることでも、酸化剤ガス中の水を帯電させることができる。
また、本発明の目的を達成するための請求項5に記載の発明は、酸化剤ガスと燃料ガスを電気化学反応させて発電する燃料電池(10)から排出される酸化剤ガスを熱交換に利用する空調装置が、冷媒を圧縮する圧縮機(41)と、空調用空気と圧縮機(41)から吐出される冷媒とを熱交換させる第1熱交換器(34)と、外気と冷媒とを熱交換させる第2熱交換器(42)と、第2熱交換器(42)から流出した冷媒を減圧させる第1減圧器(46)と、第1減圧器(46)で減圧された冷媒を蒸発させて空調用空気を冷却する第3熱交換器(32)と、圧縮機(41)で圧縮された冷媒を減圧させる第2減圧器(43)と、燃料電池(10)から排出されたさ酸化剤ガスを冷媒と熱交換させる第4熱交換器(44)と、第4熱交換器(44)に帯電した電荷が第4熱交換器(44)外へ移動することを遮断する電荷遮断手段(61、62)と、空調用空気による冷房が行われる冷房運転時には、第4熱交換器(44)、第2熱交換器(42)の順に冷媒が流れるよう冷媒経路を切り替え、また、空調用空気による暖房が行われる暖房運転時には、第2減圧器(43)、第2熱交換器(42)、第4熱交換器(44)の順に冷媒が流れるよう冷媒経路を切り替える冷媒経路切替手段(45)と、を備え、冷房運転時には、圧縮機(41)から吐出される冷媒が、第4熱交換器(44)で燃料電池(10)の排出した酸化剤ガスにより冷却され、そののち第2熱交換器(42)で外気により冷却され、そののち第1減圧器(46)で減圧され、そののち第3熱交換器(32)において蒸発して空調用空気を冷却し、圧縮機(41)の吸入口側に戻るようになっており、暖房運転時には、圧縮機(41)から吐出される冷媒が、第1熱交換器(34)で空調用空気を加熱し、第2減圧器(43)で減圧され、第2熱交換器(42)で外気により加熱され、第4熱交換器(44)で燃料電池(10)の排出した酸化剤ガスにより加熱され、圧縮機(41)の吸入口側に戻るようになっていることを特徴とする。
このように、燃料電池(10)が排出した酸化剤ガスに含まれる生成水の潜熱を第4熱交換器(44)で利用することで、冷房および暖房の効率を向上させる技術において、電荷遮断手段(61、62)が、第4熱交換器(44)に帯電した電荷の第4熱交換器(44)外への移動を遮断することで、第4熱交換器(44)の伝熱面が帯電するようになっている。
このようにすることで、冷媒と第4熱交換器(44)との間の摩擦、および、電荷遮断手段(61、62)によって、第4熱交換器(44)の伝熱面が帯電する。そして、酸化剤ガス中の水が第4熱交換器(44)を通るとき、帯電した伝熱面の影響で、水が静電誘電分極する。それにより、伝熱面と水との間に静電引力が発生し、水が伝熱面に引き寄せられる。したがって、第4熱交換器(44)において燃料電池(10)からの生成水の捕集率を高めることができ、ひいては、冷房および暖房の効率向上が実現する。
また、本発明の目的を達成するための請求項6に記載の発明は、酸化剤ガスと燃料ガスを電気化学反応させて発電する燃料電池(10)から排出される酸化剤ガスを熱交換に利用する空調装置が、冷媒を圧縮する圧縮機(41)と、空調用空気と圧縮機(41)から吐出される冷媒とを熱交換させる第1熱交換器(34)と、外気と冷媒とを熱交換させる第2熱交換器(42)と、第2熱交換器(42)から流出した冷媒を減圧させる第1減圧器(46)と、第1減圧器(46)で減圧された冷媒を蒸発させて空調用空気を冷却する第3熱交換器(32)と、圧縮機(41)で圧縮された冷媒を減圧させる第2減圧器(43)と、燃料電池(10)から排出されたさ酸化剤ガスを冷媒と熱交換させる第4熱交換器(44)と、空調用空気による冷房が行われる冷房運転時には、第4熱交換器(44)、第2熱交換器(42)の順に冷媒が流れるよう冷媒経路を切り替え、また、空調用空気による暖房が行われる暖房運転時には、第2減圧器(43)、第2熱交換器(42)、第4熱交換器(44)の順に冷媒が流れるよう冷媒経路を切り替える冷媒経路切替手段(45)と、を備え、冷房運転時には、圧縮機(41)から吐出される冷媒が、第4熱交換器(44)で燃料電池(10)の排出した酸化剤ガスにより冷却され、そののち第2熱交換器(42)で外気により冷却され、そののち第1減圧器(46)で減圧され、そののち第3熱交換器(32)において蒸発して空調用空気を冷却し、圧縮機(41)の吸入口側に戻るようになっており、暖房運転時には、圧縮機(41)から吐出される冷媒が、第1熱交換器(34)で空調用空気を加熱し、第2減圧器(43)で減圧され、第2熱交換器(42)で外気により加熱され、第4熱交換器(44)で燃料電池(10)の排出した酸化剤ガスにより加熱され、圧縮機(41)の吸入口側に戻るようになっており、第4熱交換器(44)の伝熱面は、帯電する帯電材料(44d)を含んでいることを特徴とする。
このように、燃料電池(10)が排出した酸化剤ガスに含まれる生成水の潜熱を第4熱交換器(44)で利用することで、冷房および暖房の効率を向上させる技術において、第4熱交換器(44)の伝熱面は、帯電する帯電材料(44d)を含んでいる。
このようになっていることで、酸化剤ガス中の水が第4熱交換器(44)を通るとき、帯電材料(44d)を含む伝熱面の影響で、水が静電誘電分極する。それにより、伝熱面と水との間に静電引力が発生し、水が伝熱面に引き寄せられる。したがって、第4熱交換器(44)において燃料電池(10)からの生成水の捕集率を高めることができ、ひいては、冷房および暖房の効率向上が実現する。
なお、上記および特許請求の範囲における括弧内の符号は、特許請求の範囲に記載された用語と後述の実施形態に記載される当該用語を例示する具体物等との対応関係を示すものである。
(第1実施形態)
以下、本発明の第1実施形態について説明する。本実施形態は、本発明の空調用ヒートポンプシステム(空調装置に相当する)および燃料電池システムを、燃料電池を電源として走行する電気自動車(燃料電池車両)に適用した例であり、空調用ヒートポンプシステムの冷凍サイクルにより車室内の暖房および冷房を行うように構成されている。
図1は、本実施形態における空調用ヒートポンプシステムおよび燃料電池システムの構成図である。図1に示すように、本実施形態の燃料電池システムは、水素と酸素との電気化学反応を利用して電力を発生する燃料電池10を備えている。本実施形態では燃料電池10として固体高分子型燃料電池を用いており、基本単位となるセルが複数積層されて構成されている。なお、本発明は固体高分子型以外の燃料電池にも適用可能である。
燃料電池10では、以下の水素と酸素の電気化学反応が起こり発電する。なお、水素が本発明の燃料ガスに相当し、酸素(空気)が本発明の酸化剤ガスに相当している。
アノード(水素極) 2H→4H++4e-
カソード(酸素極) 4H++O+4e-→2H
全体 2H+O→2H
燃料電池システムには、燃料電池10の水素極(アノード)に供給される水素ガスが通過する水素供給経路11と、燃料電池10の水素極から排出される水素極側排ガスが通過する水素排出経路12とが設けられている。水素供給経路11の最上流部には、燃料電池10の水素極に水素ガスを供給するための水素供給装置(図示せず)が設けられている。水素供給装置として、例えば高圧の水素が充填された水素タンクを用いることができる。
燃料電池システムには、燃料電池10の酸素極(カソード)に供給される酸素ガス(空気)が通過する空気供給経路13と、燃料電池10の酸素極から排出される排出空気が通過する空気排出経路14が設けられている。空気供給経路13には、空気を供給するための空気供給装置(図示せず)が設けられている。空気供給装置として、例えば空気を圧送するコンプレッサ機を用いることができる。なお、空気排出経路14から排出される空気には、水(すなわち、液体誘電体)が多量に含まれている。
また、空気排出経路14における、燃料電池10の下流側においては、酸化剤ガス帯電化装置50(酸化剤ガス帯電化手段の一例に相当する)が配置されており、さらにその下流には、後述する排気熱交換器44が配置されている。
酸化剤ガス帯電化装置50は、排出された空気中の水を帯電させるための装置である。図2に、この酸化剤ガス帯電化装置50の構成を示す。この図2に示すように、酸化剤ガス帯電化装置50は、一方向に複数の(例えば10個以上の)貫通穴が空けられた形状(例えば、ハニカム形状)の部材である。ここで、貫通穴の方向は、空気排出経路14における排出空気の流れの方向に沿っている。
この酸化剤ガス帯電化装置50の本体は、樹脂等の電気絶縁体である。ただし、酸化剤ガス帯電化装置50の各貫通穴の内壁の全面には、導電体(例えば導電体51)が貼り付けられている。この導電体は、例えば各貫通穴の内壁に金属メッキにより貼り付けられてもよい。
この貫通穴のそれぞれに排出空気52が流れ込むと、排出空気52中に多量に含まれる水(水蒸気および液滴)が導電体に接触し、水と導電体との境界で電荷が分離する。例えば、導電体が金属メッキの場合、水が負に帯電し、導電体が正に帯電する。すなわち、導電体との接触帯電または摩擦帯電により、排出空気52中の水が帯電する。したがって、酸化剤ガス帯電化装置50の貫通穴を出た後の排出空気53中の水は、負に帯電している。
なお、接触帯電および摩擦帯電による帯電量は、水と導電体との接触面積に比例して増大する。したがって、貫通穴をできるだけ多数設けるために、貫通穴の断面形状を4角形、6角形等に統一し、それら貫通穴が、酸化剤ガス帯電化装置50の断面において規則的かつ最も高密度に配置されるようになっていてもよい。例えば、図2の例では、各貫通穴の断面形状が同じ大きさおよび同じ縦横比率の四角形に統一されており、酸化剤ガス帯電化装置50の断面においては、それら四角形が格子状に並んでいる。
燃料電池10は発電に伴い発熱する。このため、燃料電池システムには、燃料電池10を冷却して作動温度が効率の良い温度(80℃前後)となるよう冷却システムが設けられている。冷却システムには、燃料電池10に冷却水(熱媒体)を循環させる冷却水経路20、冷却水経路20に冷却水を圧送するウォータポンプ21、放熱器22が設けられている。冷却水としては、例えばエチレングリコール水溶液を用いることができる。
冷却水経路20には、冷却水を放熱器22をバイパスさせるためのバイパス経路23が設けられている。冷却水経路20とバイパス経路23との合流点には、バイパス経路23に流れる冷却水流量を調整するための流路切替弁24が設けられている。流路切替弁24は、電動制御弁を好適に用いることができるが、サーモスタットのような機械式弁を用いてもよい。燃料電池10で発生した熱は、冷却水を介して放熱器22で系外に排出される。このような冷却系によって、ウォータポンプ21による流量制御、流路切替弁24による放熱器22でのバイパス流量制御等により、燃料電池10の温度制御を行うことができる。
冷却水経路20には、後述の第1加熱用室内器33に冷却水を循環させる温調用冷却水経路25が設けられている。温調用冷却水経路25は、冷却水経路20における燃料電池10の下流側から分岐し、冷却水経路20におけるウォータポンプ21の上流側に合流している。ウォータポンプ21を作動させることで、燃料電池10から熱を受け取って昇温した冷却水が温調用冷却水経路25を介して第1加熱用室内器33に循環する。
また、車室内の空調を行うヒートポンプシステム(空調装置)は、車室内に供給される空調用空気が流れる送風路を構成する空調ケース30を備えている。空調ケース30内には、送風機31、室内熱交換器(以下、「室内器」という。)32〜34、エアミックスドア35が設けられている。室内器32〜34は、冷却用室内器32と第1加熱用室内器33と第2加熱用室内器34からなる。なお、冷却用室内器32が本発明の第3熱交換器に相当し、第1加熱用室内器33が本発明の第5熱交換器に相当し、第2加熱用室内器34が本発明の第1熱交換器に相当している。
これらの機器は、上流側から送風機31、冷却用室内器32、エアミックスドア35、第1加熱用室内器33、第2加熱用室内器34の順で配置されている。冷却用室内器32と第2加熱用室内器34は、後述する冷凍サイクル内に設けられており、冷媒と空調用空気との間で熱交換を行うように構成されている。第1加熱用室内器33は、上述のように燃料電池10の冷却系に設けられており、燃料電池10の冷却水と空調用空気との間で熱交換を行うように構成されている。エアミックスドア35は、加熱用室内器33、34の上流側に設けられており、図示しない電気モータ等によって作動するように構成されている。エアミックスドア35は、開度調整により加熱用室内器33、34を通過する風量割合を調整でき、後述の制御部100により開度制御が行われる。
車室内の暖房および冷房を行うためのヒートポンプシステムの冷凍サイクルには、冷媒が循環する冷媒循環経路40が設けられている。冷媒循環経路40は、内部に冷媒が封入された配管として構成されている。冷媒としては、例えばHFC−134aやCOなどの誘電体を用いることができる。
冷媒循環経路40の経路内には、圧縮機41、第2加熱用室内器34、暖房用減圧器43、室外用熱交換器(以下、「室外器」という。)42、排気熱交換器44、冷房用減圧器46、冷却用室内器32等が設けられている。圧縮機41は、気体状態の冷媒を圧縮して吐出するように構成されている。例えば暖房時は、第2加熱用室内器34には、圧縮機41により圧縮され高温となった冷媒が流入する。室外器42は冷媒と外気との間で熱交換を行い、冷媒を凝縮液化させるように構成されている。
冷媒循環経路40には、室外器42を挟んで暖房用減圧器43と排気熱交換器44とが設けられている。冷媒循環経路40には、室外器42に対する冷媒の流入方向を変更する冷媒経路切替弁45が設けられている。冷媒経路切替弁45は、室外器42への冷媒の流入方向を車室内の暖房時と冷房時で変更するように構成されており、例えば四方弁を用いることができる。冷媒経路切替弁45は、暖房時には冷媒の流れ方向を暖房用減圧器43→室外器42→排気熱交換器44(すなわち、暖房用減圧器43、室外器42、排気熱交換器44の順)に切り替え、冷房時には冷媒の流れ方向を排気熱交換器44→室外器42→暖房用減圧器43(排気熱交換器44、室外器42、暖房用減圧器43の順)に切り替えるように構成されている。なお、暖房用減圧器43が本発明の第2減圧器に相当し、冷房用減圧器46が本発明の第1減圧器に相当し、冷媒経路切替弁45が本発明の冷媒経路切替手段に相当している。
暖房用減圧器43は、開度調整が可能であり、全開機能を有する電動式膨張弁である。暖房時には、暖房用減圧器43が室外器42の上流側に位置し、室外器42に低温低圧の冷媒を流入させるために絞り弁として用いられる。一方、冷房時には、暖房用減圧器43が室外器42の下流側に位置し、室外器42から流出した高圧の冷媒を下流側の冷房用絞り弁46に供給するために全開状態で用いられる。
排気熱交換器44は、燃料電池10の酸素極から排出されて空気排出経路14および酸化剤ガス帯電化装置50を通過した排出空気と、冷媒循環経路40を通過する冷媒との間で熱交換を行うように構成されている。この排気熱交換器44は、アルミニウム等の導電性物質を主材料に樹脂等の誘電体が表面にコーティングされた構成としていてもよいし、樹脂等の誘電体を主材料としていてもよい。すなわち、排気熱交換器44は、その表面が誘電分極可能な材質を主材料としていればよい。
燃料電池10の排出空気は、燃料電池10の廃熱を受け取ることで例えば60〜80℃程度となっている。暖房時には、排気熱交換器44が室外器42の下流側に位置し、室外器42にて外気から熱を受け取って昇温した冷媒を、燃料電池10の排出空気によりさらに加熱する。冷房時には、排気熱交換器44が室外器42の上流側に位置し、圧縮機41から排出された高温の冷媒を燃料電池10の排出空気と熱交換して冷媒を冷却する。
冷媒循環経路40における冷却用室内器32の上流側には冷房用減圧器46が設けられている。冷房用減圧器46は、液体状態の冷媒を低圧に減圧し、低圧の気液2相状態とするように構成されている。冷房用減圧器46は機械式膨張弁であり、冷却用室内器32の出口冷媒温度に応じて冷媒流量を調整し、冷却用室内器32の出口冷媒の過熱度が所定の値に近づくようにしている。冷房用減圧器46からの低圧冷媒は冷却用室内器32に流入する。冷却用室内器32に流入した低圧冷媒は送風機31で圧送された空気から吸熱して蒸発する。
冷媒循環経路40には、冷却用室内器32をバイパスさせるための冷媒バイパス経路47が設けられている。冷媒の流路を冷却用室内器32側あるいは冷媒バイパス経路47側に切り替えるために、冷媒循環経路40における冷媒バイパス経路47との分岐点と冷房用減圧器46との間に第1冷媒流路切替弁48が設けられ、冷媒バイパス経路47に第2冷媒流路切替弁49が設けられている。暖房時には、第1冷媒流路切替弁48を開放し、第2冷媒流路切替弁49を閉鎖して、冷媒が冷媒バイパス経路47を流れるようにし、冷房時には、第1冷媒流路切替弁48を閉鎖し、第2冷媒流路切替弁49を開放して、冷媒が冷却用室内器32を流れるようにする。
図3は、燃料電池システムに設けられた制御部(ECU)100の入出力を示すブロック図である。図2に示すように、燃料電池システムには各種制御を行う制御手段としての制御部100が設けられている。制御部100は、CPU、ROM、RAM等からなる周知のマイクロコンピュータとその周辺回路にて構成されている。制御部100には、各種センサからのセンサ信号等が入力される。また、制御部100は、演算結果に基づいて、ウォータポンプ21、流路切替弁24、送風機31、エアミックスドア35、圧縮機41、暖房用減圧器43、冷媒経路切替弁45、冷媒流路切替弁48、49等に制御信号を出力する。なお、本実施形態では、燃料電池システムの制御および空調制御を同一の制御部100で制御しているが、それぞれ個別にECUを設けて異なるECU間で通信を行うようにしてもよい。
次に、暖房時と冷房時における燃料電池システムの作動を説明する。図4(a)は暖房時における冷凍サイクルの冷媒の流れを示し、図3(b)は冷房時における冷凍サイクルの冷媒の流れを示している。暖房モードと冷房モードを含む空調モード切替処理は、乗員が空調モード切替スイッチ(図示せず)を操作することにより行われる。あるいは、空調コントロールパネルに設けられた温度コントロールレバー(図示せず)の値、冷凍サイクルスイッチ(図示せず)の状態、検出した外気温度、内気温度等により、空調モードを演算により自動判定してもよい。なお、空調制御に先立って燃料電池10は運転開始されており、燃料電池10の冷却水が第2加熱用室内器34に循環しているものとする。
まず、図3(a)に示す暖房時について説明する。暖房時には、送風機31を駆動するとともに、エアミックスドア35の開度を目標空調温度に応じて制御し、加熱用熱交換器33、34を通過する空調用空気の割合を調整する。空調用空気が第1加熱用熱交換器33を通過することで、燃料電池10で発電に伴って発生した熱が冷却水を介して空調用空気に伝熱され空調用空気が加熱される。これにより、燃料電池10で発生した熱を利用して車室内の暖房を行うことができる。
第1加熱用熱交換器33にて放熱された冷却水は、温調用冷却水経路25を通って、冷却水経路20に戻る。このような作動を行うことで、燃料電池10の発電に伴い発生した廃熱を暖房に用いることができるので、暖房に必要な消費エネルギーを削減でき、結果として車両効率を向上できる。
また、暖房時には、冷媒経路切替弁45により、冷媒の流れ方向を暖房用減圧器43→室外器42→排気熱交換器44に切り替える。さらに、第1冷媒流路切替弁48を開放し、第2冷媒流路切替弁49を閉鎖して、冷媒が冷却用室内器32をバイパスして冷媒バイパス経路47を流れるようにする。圧縮機41にて圧縮された高圧かつ高温(例えば150℃程度)の冷媒は第2加熱用室内器34に流入し、冷媒の熱が第2加熱用室内器34を介して空調用空気に伝熱され空調用空気が加熱される。これにより、冷凍サイクルで発生した熱を利用して車室内の暖房を行うことができる。燃料電池10の冷却水は燃料電池10の発電開始から徐々に温度上昇するのに対し、圧縮機41にて圧縮された冷媒は直ちに高温になる。このため、冷凍サイクルの冷媒を用いた空調用空気の加熱は即効性を有しており、燃料電池10の運転開始直後から車室内の暖房を行うことができる。
第2加熱用室内器34から流出した冷媒は、暖房用減圧器43にて減圧され、低温(例えば−40℃程度)となる。暖房用減圧器43から流出した冷媒は、室外器42にて外気から熱を受け取って温度上昇する。室外器42から流出した冷媒は、排気熱交換器44にて燃料電池10の排出空気から熱を受け取りさらに昇温する。このとき、室外器42から流出した冷媒の温度が例えば−20℃程度とし、燃料電池10の排出空気の温度が60〜80℃程度とすると、これらの温度差は80〜100℃であり、冷媒を排出空気の顕熱によって効率よく温度上昇させることができる。
さらに、燃料電池10の排出空気には、電気化学反応で発生した生成水が水蒸気として含まれている。排気熱交換器44で燃料電池10の排出空気が冷却される際に排出空気に含まれる水蒸気が凝縮するため、水蒸気の凝縮潜熱が冷媒に与えられる。
さらに、燃料電池10の排出空気には、電気化学反応で発生した生成水が液滴(ミスト)として含まれている。排気熱交換器44で燃料電池10の排出空気が冷却される際に排出空気に含まれる液滴が凝固するため、水蒸気の凝固潜熱が冷媒に与えられる。
さらに、上述した通り、排出空気中の水蒸気および液滴は帯電している。したがって、図5に示す通り、排気熱交換器44において、冷媒が通る管路を形成するチューブ44aの外側表面等の、排気熱交換器44の表面(すなわち、伝熱面)は、排出空気53中で帯電している水蒸気および液滴の影響により、静電誘電により分極化し、帯電した水蒸気および液滴とは逆の極性が表面に現れる。それにより、伝熱面と水蒸気および液滴との間に静電引力が発生し、水蒸気および液滴が伝熱面に引き寄せられる。したがって、排気熱交換器44において燃料電池10からの水蒸気および液滴(すなわち生成水)の捕集率を高めることができ、ひいては、暖房の効率向上が実現する。
また、室外器42と排気熱交換器44で昇温した冷媒は、冷媒バイパス経路47を介して圧縮機41に循環する。冷媒は、室外器42における外気との熱交換に加え、排気熱交換器44にて燃料電池10の排出空気との熱交換により温度上昇するので、冷媒圧力の上昇を促進でき、圧縮機41の負荷を低減することができる。これにより、燃料電池10の廃熱を有効利用することができる。
次に、図3(b)に示す冷房時について説明する。冷房時には、送風機31を駆動するとともに、エアミックスドア35の開度を目標空調温度に応じて制御し、加熱用熱交換器33、34を通過する空調用空気の割合を調整する。
また、冷媒経路切替弁45により、冷媒の流れ方向を排気熱交換器44→室外器42→暖房用減圧器43に切り替える。暖房用減圧器43は全開状態にする。さらに、第1冷媒流路切替弁48を閉鎖し、第2冷媒流路切替弁49を開放して、冷媒が冷却用室内器32を流れるようにする。
圧縮機41にて圧縮された高圧かつ高温の冷媒は第2加熱用室内器34を通過し、排気熱交換器44に供給される。排気熱交換器44に流入した冷媒は、燃料電池10の排出空気に熱を与えることで冷却される。このとき、第2加熱用室内器34から流出した冷媒の温度が例えば150℃程度とし、燃料電池10の排出空気の温度が60〜80℃程度とすると、これらの温度差は70〜90℃であり、冷媒を排出空気の顕熱によって効率よく温度低下させることができる。
さらに、燃料電池10の排出空気には、電気化学反応で発生した生成水が水蒸気に加えて、液滴として含まれている。このため、排気熱交換器44で燃料電池10の排出空気が昇温される際に排出空気に含まれる液滴状態の水が蒸発するため、水蒸気の蒸発潜熱により冷媒が冷却され、冷媒圧力が低下する。排気熱交換器44から流出した冷媒は、室外器42にて外気と熱交換することで凝縮液化する。
さらに、上述した通り、排出空気中の液滴は帯電している。したがって、図5に示す通り、排気熱交換器44において、冷媒が通る流路を形成するチューブ44aの外側表面(すなわち、伝熱面)は、排出空気53中で帯電している液滴の影響により、静電誘電により分極化する。それにより、伝熱面と液滴との間に静電引力が発生し、液滴が伝熱面に引き寄せられる。したがって、排気熱交換器44において燃料電池10からの液滴(生成水)の捕集率を高めることができ、ひいては、冷房の効率向上が実現する。
室外器42から流出した冷媒は、全開状態の暖房用減圧器43を通過し、冷房用減圧器46に供給される。冷房用減圧器46で減圧されて低温低圧となった冷媒は、冷却用室内器32に流入し、空調用空気を冷却する。空調用空気は必要に応じて加熱用熱交換器33、34にて目標温度に調整され、車室内に供給される。これにより、車室内の冷房を行うことができる。
以上のように、本実施形態の燃料電池システムによれば、暖房時には、圧縮機41にて圧縮され高温となった冷媒の熱を利用して空調用空気を加熱することで、燃料電池10の運転開始直後から車室内の暖房を行うことができる。これにより、暖房の即効性を向上させることができる。
また、室外器42の上流側または下流側で燃料電池10の排出空気と冷媒とを熱交換させる排気熱交換器44と、室外器42の冷媒経路を切り替える冷媒経路切替弁45とを設けるという簡易な構成で、燃料電池10の排出空気の顕熱と生成水の潜熱を冷媒に伝えることができ、暖房効率および冷房効率を向上させることができる。
つまり、暖房時には冷媒が室外器42から排気熱交換器44に流れるようにすることで、室外器42で加熱された冷媒を燃料電池10の排出空気による顕熱と生成水の凝縮・凝固潜熱によりさらに加熱することができる。これにより、冷媒圧力を上昇させ、圧縮機41の負荷を低減することができ、システム効率を向上させることができる。
一方、冷房時には、冷媒が排気熱交換器44から室外器42に流れるようにすることで、冷媒が室外器42で冷却される前に、冷媒を燃料電池10の排出空気の顕熱および生成水の蒸発潜熱により予め冷却することができる。これにより、効果的に冷媒温度を低下させ冷媒圧力を低減することができ、室外器42における凝縮液化を促進し、冷房効率を高めることができる。
また、冷房時および暖房時共に、酸化剤ガス帯電化装置50を通過することによって排出空気が帯電し、帯電した排出空気中の水が排気熱交換器44を通るとき、排気熱交換器44の伝熱面が静電誘電により分極化する。それにより、伝熱面と水との間に静電引力が発生し、水が伝熱面に引き寄せられる。排気熱交換器44において燃料電池10からの生成水の捕集率を高めることができ、ひいては、冷房および暖房の効率向上が実現する。
(第2実施形態)
次に、本発明の第2実施形態について、上記第1実施形態と異なる部分についてのみ説明する。図6は、本発明の第2実施形態における空調用ヒートポンプシステムおよび燃料電池システムの構成図である。本実施形態が第1実施形態と異なるのは、図6に示すように、放電装置54を備えたことである。
放電装置54は、接触帯電または摩擦帯電によって酸化剤ガス帯電化装置50の導電体(例えば導電体51)に蓄積された電荷を放電させるための装置である。なお、本実施形態における「放電」とは、電荷をグラウンドに逃がすことをいう。図7に示すように、放電装置54は、導体側配線54a、グラウンド側配線54b、およびスイッチ54cを有している。
導体側配線54aは、酸化剤ガス帯電化装置50の貫通穴のすべてについて、当該貫通穴内の導電体(例えば導電体51)と導通しており、さらに、酸化剤ガス帯電化装置50の外部に露出している。グラウンド側配線54bは、グラウンドに導通している。スイッチ54cは、制御部100からの制御信号に基づいて、導体側配線54aとグラウンド側配線54bとの間の導通のオン、オフを切り替える。
本実施形態においては、制御部100は、冷房時および暖房時において、スイッチ54cを制御することで、配線54a、54b間の導通を定期的にオンし、オンの後直ちに配線54a、54b間の導通をオフにする。このようにすることによって、酸化剤ガス帯電化装置50中の各導電体は、定期的に接地されることになる。
したがって、酸化剤ガス帯電化装置50において、摩擦帯電または接触帯電によって排出空気中の水が帯電することの反対作用として、導電体に正電荷が蓄積されるものの、導電体の定期的な接地によって、蓄積された電荷が放電される。このようになっていることで、酸化剤ガス帯電化装置50の、生成水を帯電させる性能が持続する。
(第3実施形態)
次に、本発明の第3実施形態について、上記第1実施形態と異なる部分についてのみ説明する。本実施形態が第1実施形態と異なるのは、酸化剤ガス帯電化装置50の構成である。図8に、本実施形態に係る酸化剤ガス帯電化装置50の構成を概略的に示す。
図8に示すように、本実施形態の酸化剤ガス帯電化装置50は、交流電源55、第1電極56、第2電極57、およびスイッチ58を有する電気回路である。
第1電極56と第2電極57の少なくとも1つには図示しない誘電体が被覆されており、その間を排出空気52が通り抜けるように、空気排出経路14中に配置されている。制御部100は、冷房時および暖房時において、スイッチ58を定期的にオンに制御することで、酸化剤ガス帯電化装置50の電気回路の作動を開始させ、その後スイッチ58をオフに制御すことで電気回路の作動を停止させる。
このようにすることによって、電気回路は定期的(例えば1秒毎)に作動し、その作動において、第1電極56と第2電極57との間に強い交流電圧がかけられる。このとき、第1電極56と第2電極57との間に、無声放電が発生する。この無声放電により、電極間の生成水が帯電する。
その結果、酸化剤ガス帯電化装置50を出て排気熱交換器44を通る排出空気53中の生成水は帯電している。したがって、第1実施形態と同様の効果を得ることができる。
(第4実施形態)
次に、本発明の第4実施形態について、上記第1実施形態と異なる部分についてのみ説明する。図9に、本実施形態における空調用ヒートポンプシステムおよび燃料電池システムの構成図を示す。本実施形態が第1実施形態と異なるのは、空気排出経路14中に酸化剤ガス帯電化装置50が存在しないこと、および、冷媒循環経路40における排気熱交換器44の前後に、それぞれ電気絶縁材61および62が設けられていることである。なお、電気絶縁材61および62が、本発明の電荷遮断手段の一例に相当する。
図10に、排気熱交換器44、電気絶縁材61、および電気絶縁材62およびの構成を概略的に示す。排気熱交換器44は、冷媒循環経路40と連結している2つの端部44b、それら端部の一方から流入した冷媒60を通して他方に排出するための配管である複数のチューブ44a、およびそれらチューブ44aのそれぞれに複数取り付けられているフィン44cを有している。端部44b、チューブ44a、およびフィン44cのそれぞれは、金属等の導電体を主成分としている。そして、チューブ44aとフィン44cとは、導通している。
電気絶縁材61、62は、それぞれ冷媒循環経路40と端部44bとの間に介在することで、排気熱交換器44と冷媒循環経路40との間の電気的導通を遮断している。これによって、仮に冷媒循環経路40の配管が導電性であったとしても、排気熱交換器44から冷媒循環経路40側に電荷が移動することはない。すなわち、排気熱交換器44に帯電した電荷が排気熱交換器44外へ移動することが遮断される。
この場合、冷房時および暖房時において、冷媒60がチューブ44aを通ると、冷媒60がチューブ44aの内壁に接触し、冷媒60と内壁の導電体との境界で電荷が分離する。その結果、チューブ44aの表面が帯電する。同時に、チューブ44aに導通する排気熱交換器44cの表面も帯電する。冷媒60との接触帯電または摩擦帯電により、チューブ44aの表面(すなわち伝熱面)および排気熱交換器44cの表面(すなわち伝熱面)が帯電する。このように、電気絶縁材61、62が、排気熱交換器44の伝熱面を帯電させるようになっている。
このような状況において、暖房時に、空気排出経路14からの排出空気53が排気熱交換器44を通ると、図11に示すように、排出空気中の水蒸気および液滴の水分子81が、静電誘電分極する。それにより、伝熱面と水分子81との間に静電引力が発生し、水蒸気および液滴が伝熱面に引き寄せられる。したがって、排気熱交換器44において燃料電池10からの水蒸気および液滴(生成水)の捕集率を高めることができ、ひいては、暖房の効率向上が実現する。
また冷房時に、空気排出経路14からの排出空気53が排気熱交換器44を通ると、図11に示すように、排出空気中の液滴の水分子81が、静電誘電分極する。それにより、伝熱面と水蒸気との間に静電引力が発生し、液滴が伝熱面に引き寄せられる。したがって、排気熱交換器44において燃料電池10からの液滴(生成水)の捕集率を高めることができ、ひいては、暖房の効率向上が実現する。
(第5実施形態)
次に、本発明の第5実施形態について、上記第1実施形態と異なる部分についてのみ説明する。図12に、本実施形態における空調用ヒートポンプシステムおよび燃料電池システムの構成図を示す。本実施形態が第1実施形態と異なるのは、空気排出経路14中に酸化剤ガス帯電化装置50が存在しないこと、および、排気熱交換器44の詳細構成である。
図13に、本実施形態の排気熱交換器44の構成を示す。本実施形態の排気熱交換器44は、冷媒循環経路40からの冷媒を通すための配管である複数のチューブ44a、および、それら44aに取り付けられた複数枚のフィン44cを備えている。さらにフィン44cのそれぞれの表面(すなわち伝熱面)には、帯電膜(エレクトレット)44dが配置されている。この帯電膜は、正に帯電するよう処理されていてもよいし、負に帯電するよう処理されていてもよい。このように、排気熱交換器44のフィン44cの表面(伝熱面の一例に相当する)は、帯電する帯電材料としての帯電膜44dを含んでいる。
このような状況において、暖房時に、空気排出経路14からの排出空気53が排気熱交換器44を通ると、排出空気中の水蒸気および液滴の水分子81が、静電誘電分極する。それにより、伝熱面と水分子81との間に静電引力が発生し、水蒸気および液滴が伝熱面に引き寄せられる。したがって、排気熱交換器44において燃料電池10からの水蒸気および液滴(生成水)の捕集率を高めることができ、ひいては、暖房の効率向上が実現する。
また冷房時に、空気排出経路14からの排出空気53が排気熱交換器44を通ると、排出空気中の液滴の水分子81が、静電誘電分極する。それにより、伝熱面と水蒸気との間に静電引力が発生し、液滴が伝熱面に引き寄せられる。したがって、排気熱交換器44において燃料電池10からの液滴(生成水)の捕集率を高めることができ、ひいては、暖房の効率向上が実現する。
(他の実施形態)
以上、本発明の実施形態について説明したが、本発明の範囲は、上記実施形態のみに限定されるものではなく、本発明の各発明特定事項の機能を実現し得る種々の形態を包含するものである。
例えば、第1実施形態においては、酸化剤ガス帯電化装置50が、燃料電池10からの排出空気中の水を、負ではなく正に帯電させるようになっていてもよい。このようになっていても、排出空気中で正に帯電した水は、排気熱交換器44の表面を誘電分極させ、その結果、排気熱交換器44に引き寄せられる。排出空気中の水を正に帯電させる場合は、酸化剤ガス帯電化装置50に設けられた貫通穴の内壁は、金属でなくとも、水より仕事関数の大きい材料から成っているようにすればよい。
また例えば、第4実施形態においても、空調用ヒートポンプシステムおよび燃料電池システムは、第1〜第3実施形態に示したような酸化剤ガス帯電化装置50および放電装置54を有していてもよい。ただしこの場合は、排出空気中の水の帯電の極性と、伝熱面の帯電の特性とは、逆である必要がある。このようになっていることで、排出空気中の水が負(または正)に帯電すると共に排気熱交換器44の伝熱面が正(または負)に帯電するので、燃料電池10から排出される排出空気中の水の捕集率を、排気熱交換器44において更に高めることができ、ひいては、冷暖房の効率向上が実現する。
また例えば、第2実施形態においては、無声放電の代わりに、コロナ放電を用いて排出空気中の生成水を帯電させるようになっていてもよい。すなわち、複数の電極間に電圧をかけることで、それら複数の電極間を通る排出空気中の水を帯電させるようになっていればよい。
また例えば、上記各実施形態では、冷媒循環経路40における圧縮機41の下流側に第2加熱用熱交換器34を設け、圧縮機41で圧縮され高温となった冷媒を空調用空気とを熱交換させるように構成したが、第2加熱用室内器34を省略してもよい。この場合には、例えば暖房時には圧縮機41から吐出された冷媒が冷却用室内器32に流入するように冷媒経路を変更し、冷却用室内器32が加熱用室内器として機能するように構成すればよい。
本発明の第1実施形態における空調用ヒートポンプシステムおよび燃料電池システムの構成図である。 酸化剤ガス帯電化装置50の構成を示す図である。 制御部(ECU)100の入出力を示すブロック図である。 (a)は暖房時における冷凍サイクルの冷媒の流れを示し、(b)は冷房時における冷凍サイクルの冷媒の流れを示す概念図である。 排出空気53中の水が排気熱交換器の伝熱面に引き寄せられる原理を示す概念図である。 本発明の第2実施形態における空調用ヒートポンプシステムおよび燃料電池システムの構成図である。 放電装置54および酸化剤ガス帯電化装置50の構成を示す模式図である。 本発明の第3実施形態における酸化剤ガス帯電化装置50の構成を示す概略図である。 本発明の第4実施形態における空調用ヒートポンプシステムおよび燃料電池システムの構成図である。 第4実施形態における排気熱交換器44、電気絶縁材61、62の構成を示す図である。 排出空気中の水分子81が排気熱交換器の伝熱面に引き寄せられる原理を示す概念図である。 本発明の第5実施形態における空調用ヒートポンプシステムおよび燃料電池システムの構成図である。 第5実施形態における排気熱交換器44の構成を示す図である。
符号の説明
10 燃料電池
14 空気排出経路
40 冷媒循環経路
42 室外器
44 排気熱交換器
44a チューブ
44b 端部
44c フィン
44d 帯電膜
50 酸化剤ガス帯電化装置
51 導電体
52、53 排出空気
54 放電装置
55 交流電源
56 第1電極
57 第2電極
60 冷媒
61、62 電気絶縁材

Claims (6)

  1. 酸化剤ガスと燃料ガスを電気化学反応させて発電する燃料電池(10)から排出される酸化剤ガスを熱交換に利用する空調装置であって、
    冷媒を圧縮する圧縮機(41)と、
    空調用空気と前記圧縮機(41)から吐出される冷媒とを熱交換させる第1熱交換器(34)と、
    外気と冷媒とを熱交換させる第2熱交換器(42)と、
    前記第2熱交換器(42)から流出した冷媒を減圧させる第1減圧器(46)と、
    前記第1減圧器(46)で減圧された冷媒を蒸発させて空調用空気を冷却する第3熱交換器(32)と、
    前記圧縮機(41)で圧縮された冷媒を減圧させる第2減圧器(43)と、
    前記燃料電池(10)から排出された酸化剤ガス中の水を帯電させる酸化剤ガス帯電化手段(50)と、
    前記酸化剤ガス帯電化手段(50)が帯電させた酸化剤ガス中の水を、冷媒と熱交換させる第4熱交換器(44)と、
    空調用空気による冷房が行われる冷房運転時には、前記第4熱交換器(44)、前記第2熱交換器(42)の順に冷媒が流れるよう冷媒経路を切り替え、また、空調用空気による暖房が行われる暖房運転時には、前記第2減圧器(43)、前記第2熱交換器(42)、前記第4熱交換器(44)の順に冷媒が流れるよう冷媒経路を切り替える冷媒経路切替手段(45)と、を備え、
    前記冷房運転時には、前記圧縮機(41)から吐出される冷媒が、前記第4熱交換器(44)において、前記酸化剤ガス帯電化手段(50)によって帯電化された酸化剤ガス中の水により冷却され、そののち前記第2熱交換器(42)で外気により冷却され、そののち前記第1減圧器(46)で減圧され、そののち前記第3熱交換器(32)において蒸発して空調用空気を冷却し、前記圧縮機(41)の吸入口側に戻るようになっており、
    前記暖房運転時には、前記圧縮機(41)から吐出される冷媒が、前記第1熱交換器(34)で空調用空気を加熱し、前記第2減圧器(43)で減圧され、前記第2熱交換器(42)で外気により加熱され、前記第4熱交換器(44)において、前記酸化剤ガス帯電化手段(50)によって帯電化された酸化剤ガス中の水により加熱され、前記圧縮機(41)の吸入口側に戻るようになっていることを特徴とする空調装置。
  2. 前記酸化剤ガス帯電化手段(50)は、前記燃料電池(10)から前記第4熱交換器(44)までの酸化剤ガスの流路に設置されており、酸化剤ガスと接触することで、接触帯電または摩擦帯電により酸化剤ガス中の水を帯電させることを特徴とする請求項1に記載の空調装置。
  3. 前記接触帯電または摩擦帯電によって前記酸化剤ガス帯電化手段(50)に蓄積された電荷を放電させる放電手段(54)を備えたことを特徴とする請求項2に記載の空調装置。
  4. 前記酸化剤ガス帯電化手段(50)は、前記燃料電池(10)から前記第4熱交換器(44)までの酸化剤ガスの流路に設置された複数の電極(56、57)を有し、前記複数の電極(56、57)間に電圧をかけることで、前記複数の電極(56、57)間を通る酸化剤ガス中の水を帯電させることを特徴とする請求項1に記載の空調装置。
  5. 酸化剤ガスと燃料ガスを電気化学反応させて発電する燃料電池(10)から排出される酸化剤ガスを熱交換に利用する空調装置であって、
    冷媒を圧縮する圧縮機(41)と、
    空調用空気と前記圧縮機(41)から吐出される冷媒とを熱交換させる第1熱交換器(34)と、
    外気と冷媒とを熱交換させる第2熱交換器(42)と、
    前記第2熱交換器(42)から流出した冷媒を減圧させる第1減圧器(46)と、
    前記第1減圧器(46)で減圧された冷媒を蒸発させて空調用空気を冷却する第3熱交換器(32)と、
    前記圧縮機(41)で圧縮された冷媒を減圧させる第2減圧器(43)と、
    前記燃料電池(10)から排出されたさ酸化剤ガスを冷媒と熱交換させる第4熱交換器(44)と、
    前記第4熱交換器(44)に帯電した電荷が前記第4熱交換器(44)外へ移動することを遮断する電荷遮断手段(61、62)と、
    空調用空気による冷房が行われる冷房運転時には、前記第4熱交換器(44)、前記第2熱交換器(42)の順に冷媒が流れるよう冷媒経路を切り替え、また、空調用空気による暖房が行われる暖房運転時には、前記第2減圧器(43)、前記第2熱交換器(42)、前記第4熱交換器(44)の順に冷媒が流れるよう冷媒経路を切り替える冷媒経路切替手段(45)と、を備え、
    前記冷房運転時には、前記圧縮機(41)から吐出される冷媒が、前記第4熱交換器(44)で前記燃料電池(10)の排出した酸化剤ガスにより冷却され、そののち前記第2熱交換器(42)で外気により冷却され、そののち前記第1減圧器(46)で減圧され、そののち前記第3熱交換器(32)において蒸発して空調用空気を冷却し、前記圧縮機(41)の吸入口側に戻るようになっており、
    前記暖房運転時には、前記圧縮機(41)から吐出される冷媒が、前記第1熱交換器(34)で空調用空気を加熱し、前記第2減圧器(43)で減圧され、前記第2熱交換器(42)で外気により加熱され、前記第4熱交換器(44)で前記燃料電池(10)の排出した酸化剤ガスにより加熱され、前記圧縮機(41)の吸入口側に戻るようになっていることを特徴とする空調装置。
  6. 酸化剤ガスと燃料ガスを電気化学反応させて発電する燃料電池(10)から排出される酸化剤ガスを熱交換に利用する空調装置であって、
    冷媒を圧縮する圧縮機(41)と、
    空調用空気と前記圧縮機(41)から吐出される冷媒とを熱交換させる第1熱交換器(34)と、
    外気と冷媒とを熱交換させる第2熱交換器(42)と、
    前記第2熱交換器(42)から流出した冷媒を減圧させる第1減圧器(46)と、
    前記第1減圧器(46)で減圧された冷媒を蒸発させて空調用空気を冷却する第3熱交換器(32)と、
    前記圧縮機(41)で圧縮された冷媒を減圧させる第2減圧器(43)と、
    前記燃料電池(10)から排出されたさ酸化剤ガスを冷媒と熱交換させる第4熱交換器(44)と、
    空調用空気による冷房が行われる冷房運転時には、前記第4熱交換器(44)、前記第2熱交換器(42)の順に冷媒が流れるよう冷媒経路を切り替え、また、空調用空気による暖房が行われる暖房運転時には、前記第2減圧器(43)、前記第2熱交換器(42)、前記第4熱交換器(44)の順に冷媒が流れるよう冷媒経路を切り替える冷媒経路切替手段(45)と、を備え、
    前記冷房運転時には、前記圧縮機(41)から吐出される冷媒が、前記第4熱交換器(44)で前記燃料電池(10)の排出した酸化剤ガスにより冷却され、そののち前記第2熱交換器(42)で外気により冷却され、そののち前記第1減圧器(46)で減圧され、そののち前記第3熱交換器(32)において蒸発して空調用空気を冷却し、前記圧縮機(41)の吸入口側に戻るようになっており、
    前記暖房運転時には、前記圧縮機(41)から吐出される冷媒が、前記第1熱交換器(34)で空調用空気を加熱し、前記第2減圧器(43)で減圧され、前記第2熱交換器(42)で外気により加熱され、前記第4熱交換器(44)で前記燃料電池(10)の排出した酸化剤ガスにより加熱され、前記圧縮機(41)の吸入口側に戻るようになっており、
    前記第4熱交換器(44)の伝熱面は、帯電する帯電材料(44d)を含んでいることを特徴とする空調装置。
JP2008259479A 2008-10-06 2008-10-06 空調装置 Withdrawn JP2010091151A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008259479A JP2010091151A (ja) 2008-10-06 2008-10-06 空調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008259479A JP2010091151A (ja) 2008-10-06 2008-10-06 空調装置

Publications (1)

Publication Number Publication Date
JP2010091151A true JP2010091151A (ja) 2010-04-22

Family

ID=42254051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008259479A Withdrawn JP2010091151A (ja) 2008-10-06 2008-10-06 空調装置

Country Status (1)

Country Link
JP (1) JP2010091151A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014000571A1 (de) 2014-01-18 2015-07-23 Daimler Ag Brennstoffzellensystem

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014000571A1 (de) 2014-01-18 2015-07-23 Daimler Ag Brennstoffzellensystem

Similar Documents

Publication Publication Date Title
EP2699432B1 (en) Cooling apparatus
CN109983287B (zh) 制冷循环装置
US9810456B2 (en) Heat pump apparatus
US10400662B2 (en) Vehicular heat management device
EP2694303B1 (en) Cooling apparatus
He et al. Review of thermal management system for battery electric vehicle
JP2011049137A (ja) 組電池
US20080152976A1 (en) Fuel cell system
KR20110103999A (ko) 냉각 방법 및 장치
CN108317766A (zh) 一种电动大巴的空调系统及电动大巴
CN110217070A (zh) 一种新能源汽车热管理空调系统
JP2002313383A (ja) 燃料電池システム
WO2012160426A1 (en) Cooling system
JP6524982B2 (ja) 車両用熱管理装置
JP2010091151A (ja) 空調装置
KR20190027210A (ko) 공기열원 축냉운전 또는 축열운전과 수열원 축냉축열 동시운전 또는 축열축냉 동시운전을 갖는 다중열원 멀티 히트펌프 시스템
KR101961170B1 (ko) 공기열원 축냉운전 또는 축열운전과 수열원 축냉축열 동시운전 또는 축열축냉 동시운전을 갖는 다중열원 멀티 히트펌프 시스템의 제어방법
CN1469091A (zh) 蒸汽压缩制冷剂循环系统
JP2004168187A (ja) 自動車用空調システム
JP2004177020A (ja) 給湯器
KR102630129B1 (ko) 공조 시스템
JP3941488B2 (ja) 冷却装置
KR100527500B1 (ko) 연료전지 자동차용 냉각장치
CN206231391U (zh) 一种轨道交通车辆空调冷凝器并联系统
KR20200144801A (ko) 공조 시스템

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111206