JP2010089550A - System stabilization system for electric propulsion ship - Google Patents

System stabilization system for electric propulsion ship Download PDF

Info

Publication number
JP2010089550A
JP2010089550A JP2008258896A JP2008258896A JP2010089550A JP 2010089550 A JP2010089550 A JP 2010089550A JP 2008258896 A JP2008258896 A JP 2008258896A JP 2008258896 A JP2008258896 A JP 2008258896A JP 2010089550 A JP2010089550 A JP 2010089550A
Authority
JP
Japan
Prior art keywords
wave
electric propulsion
propulsion ship
generator
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008258896A
Other languages
Japanese (ja)
Other versions
JP5272631B2 (en
Inventor
Kazunori Hashimura
計範 橋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2008258896A priority Critical patent/JP5272631B2/en
Publication of JP2010089550A publication Critical patent/JP2010089550A/en
Application granted granted Critical
Publication of JP5272631B2 publication Critical patent/JP5272631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To properly inhibit load fluctuation in a system for an electric propulsion ship and to avoid such a worst case as power interruption due to a generator trip and the like and a failure of a driving unit for the generator under an abnormal environment of the rough sea and the like. <P>SOLUTION: A system stabilization system is provided with: a motor 2 driving load equipment such as a propeller 1 and the like arranged in the electric propulsion ship; an inverter 9 converting the voltage and frequency of power supplied to the system from the generator 3 to desired ones and controlling the motor 2; a wave detector 13 detecting the height and period of the wave generated in the vicinity of the electric propulsion ship; and a system stabilization unit 10 presuming the abnormal environment such as the rough sea based on the wave height and wave period detected by the wave detector 13. When the abnormal environment is presumed, the system stabilization unit 10 imposes an operable upper speed limit on the inverter 9 and reduces the maximum load current of the motor 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、電気推進船に用いられる系統安定化システムに関するものである。   The present invention relates to a system stabilization system used for an electric propulsion ship.

電気推進船では、ラフシー等で波(水面)の変動が激しく、航行中に負荷設備であるプロペラが水面上に現れてしまうと、負荷低減(負荷抜け)となって負荷変動が発生してしまう。かかる場合、プロペラを駆動するために発電機が系統に供給していた電力に対し、系統で消費される電力量が急激に変化してそのバランスが崩れてしまい、この変化が、系統の電圧や発電機用駆動装置の速度を変動させてしまう。
なお、図5は水面位置と電気推進船のプロペラ負荷との関係を示す図である。
In electric propulsion vessels, fluctuations in the waves (water surface) are strong due to rough seas, etc., and if a propeller, which is a load facility, appears on the water surface during navigation, load fluctuations occur due to load reduction (load loss). . In such a case, the amount of power consumed in the system suddenly changes with respect to the power supplied to the system by the generator to drive the propeller, and the balance is lost. The speed of the generator drive device is fluctuated.
In addition, FIG. 5 is a figure which shows the relationship between a water surface position and the propeller load of an electric propulsion ship.

特に、発電容量と負荷消費容量とが近い値を示す系統システムにおいて、上述したような急激且つ過大な負荷変動が発生すると、系統の電圧や発電機の回転数が著しく変動する。かかる場合、発電機の電圧保護や発電機用駆動装置の速度保護が動作し、駆動装置や発電機のトリップ、或いは、停電や構内ブラックアウト等が発生する可能性があった。また、このような負荷変動が頻繁に発生する場合は、繰り返されるガバナ調節により、エンジン故障にまで至ってしまうこともあった。   In particular, in a grid system in which the power generation capacity and the load consumption capacity are close to each other, when the above-described sudden and excessive load fluctuation occurs, the grid voltage and the rotational speed of the generator fluctuate significantly. In such a case, the voltage protection of the generator and the speed protection of the generator drive device are activated, and there is a possibility that a trip of the drive device or the generator, a power failure, a premises blackout, or the like may occur. In addition, when such load fluctuations frequently occur, engine failure may occur due to repeated governor adjustment.

このような問題に対し、従来では、電源系統の電圧や電流、周波数等を監視することにより、負荷変動等によってこれらの値が変化した際に、発電機AVR制御ユニットによって発電機の励磁電圧を制御したり、駆動装置のガバナ制御ユニットによって駆動装置のトルクを制御したりして上記変化を修正し、発電容量と負荷消費電力量とのバランス、並びに、駆動装置の速度一定化を図っていた。   In order to solve such problems, conventionally, by monitoring the voltage, current, frequency, etc. of the power supply system, when these values change due to load fluctuations, etc., the generator excitation voltage is set by the generator AVR control unit. The above change was corrected by controlling the torque of the drive device by the governor control unit of the drive device, and the balance between the power generation capacity and the load power consumption and the speed of the drive device were made constant. .

しかし、発電機AVR制御ユニットによる励磁電圧制御や、駆動装置のガバナ制御ユニットによるトルク制御は、その制御の応答が遅く、上述したような急激且つ過大な負荷変動が発生した際に、発電機の電圧保護や発電機用駆動装置の速度保護が動作してトリップすることがあった。
また、ラフシー等の異常環境下では、負荷変動の周期や変化率が特に激しく、電源系統の電圧等の検出結果に基づく制御だけでは制御応答が不十分で、変動頻度制御がハンチングを起こす可能性もあった。
However, the excitation voltage control by the generator AVR control unit and the torque control by the governor control unit of the drive device are slow in response of the control, and when the sudden and excessive load fluctuation as described above occurs, Voltage protection and generator drive speed protection may trip and trip.
Also, under abnormal circumstances such as rough seas, the load fluctuation cycle and rate of change are particularly severe, and control based on detection results such as the voltage of the power system is not sufficient, and fluctuation frequency control may cause hunting. There was also.

この発明は、上述のような課題を解決するためになされたもので、その目的は、ラフシー等の異常環境下においても、系統に対する負荷変動を適切に抑制することができ、発電機トリップ等に起因する停電や発電機用駆動装置の故障といった最悪のケースを確実に回避することができる電気推進船の系統安定化システムを提供することである。   The present invention has been made to solve the above-described problems, and its purpose is to appropriately suppress load fluctuations on the system even under abnormal environments such as rough seas, and to generator trips and the like. An object of the present invention is to provide an electric propulsion ship system stabilization system that can reliably avoid the worst cases such as power failure and failure of a generator drive device.

この発明に係る電気推進船の系統安定化システムは、電気推進船に設けられたプロペラ等の負荷設備を駆動する電動機と、発電機から系統に対して供給された電力を、所望の電圧及び周波数に変換して、電動機を制御するインバータと、電気推進船の近傍に発生している波の高さ及び周期を検出する波検出器と、波検出器によって検出された波高及び波周期に基づいて、ラフシー等の異常環境を予測する系統安定化装置と、を備え、系統安定化装置は、異常環境の発生を予測した場合に、インバータに対して運転上限速度の制限を課し、電動機の最大負荷電流を低減させるものである。   An electric propulsion ship system stabilization system according to the present invention includes an electric motor for driving load equipment such as a propeller provided in the electric propulsion ship, and electric power supplied from the generator to the system at a desired voltage and frequency. Based on the wave height and wave period detected by the wave detector, the inverter that controls the electric motor, the wave detector that detects the height and period of the wave generated in the vicinity of the electric propulsion ship A system stabilizing device that predicts an abnormal environment such as rough sea, and the system stabilizing device imposes a limit on the upper operating speed limit for the inverter when the occurrence of the abnormal environment is predicted, The load current is reduced.

この発明によれば、電気推進船において、ラフシー等の異常環境下においても、系統に対する負荷変動を適切に抑制することができ、発電機トリップ等に起因する停電や発電機用駆動装置の故障といった最悪のケースを確実に回避することができるようになる。   According to this invention, in an electric propulsion ship, even under an abnormal environment such as rough seas, load fluctuations on the system can be appropriately suppressed, such as a power failure caused by a generator trip or the like, or a failure of a generator drive device. The worst case can be reliably avoided.

この発明をより詳細に説明するため、添付の図面に従ってこれを説明する。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化ないし省略する。   In order to explain the present invention in more detail, it will be described with reference to the accompanying drawings. In addition, in each figure, the same code | symbol is attached | subjected to the part which is the same or it corresponds, The duplication description is simplified or abbreviate | omitted suitably.

実施の形態1.
図1は、この発明の実施の形態1における電気推進船の系統安定化システムを示す構成図である。
図1において、1は水中で回転することによって推進力を得るためのプロペラである。即ち、プロペラ1は、船舶(電気推進船)に設けられた負荷設備を構成する。2はプロペラ1を回転駆動するための電動機、3は系統に対して所定の交流電力を供給するための発電機、4は発電機3を駆動するための駆動装置(発電機駆動用エンジン)である。また、5は駆動装置4の回転速度を検出する検出器、6は駆動装置4に対応して設けられたガバナである。上記ガバナ6は、駆動装置4の回転速度を自律的に調整する機能を有している。
Embodiment 1 FIG.
1 is a block diagram showing a system stabilization system for an electric propulsion ship according to Embodiment 1 of the present invention.
In FIG. 1, reference numeral 1 denotes a propeller for obtaining a propulsive force by rotating in water. That is, the propeller 1 constitutes load equipment provided in a ship (electric propulsion ship). 2 is an electric motor for rotationally driving the propeller 1, 3 is a generator for supplying predetermined AC power to the system, and 4 is a drive device (generator driving engine) for driving the generator 3. is there. Reference numeral 5 denotes a detector that detects the rotational speed of the driving device 4, and reference numeral 6 denotes a governor provided corresponding to the driving device 4. The governor 6 has a function of autonomously adjusting the rotational speed of the drive device 4.

7は発電機3の励磁電圧を制御するためのAVR(Automatic Voltage Regulator)制御ユニット、8はガバナ6を制御するガバナ制御ユニット、9は電動機2を制御するためのインバータである。インバータ9は、電動機2に対して発電機3側に接続されており、発電機3側から供給される電力を所望の値の電圧及び周波数に変換して電動機2に供給する。   7 is an AVR (Automatic Voltage Regulator) control unit for controlling the excitation voltage of the generator 3, 8 is a governor control unit for controlling the governor 6, and 9 is an inverter for controlling the electric motor 2. The inverter 9 is connected to the generator 3 side with respect to the electric motor 2, converts the electric power supplied from the generator 3 side into a voltage and frequency of a desired value, and supplies the electric voltage to the electric motor 2.

10は本発明の要部を構成する系統安定化装置である。この系統安定化装置10は、系統に対する負荷変動を抑制して系統を安定化させるために備えられたものであり、演算部11と偏差カウンタ12とによってその要部が構成される。また、系統安定化装置10は、必要なデータ収集や基準指令の出力を行うため、AVR制御ユニット7、ガバナ制御ユニット8、インバータ9、後述の波検出器13等の各機器とインターフェースしている。   Reference numeral 10 denotes a system stabilizing device constituting the main part of the present invention. This system stabilizing device 10 is provided to stabilize a system by suppressing load fluctuations on the system, and the calculation unit 11 and the deviation counter 12 constitute a main part thereof. In addition, the system stabilizing device 10 interfaces with various devices such as an AVR control unit 7, a governor control unit 8, an inverter 9, and a wave detector 13 described later in order to collect necessary data and output reference commands. .

図2は波検出器の機能を説明するための図、図3はプロペラと波検出器との位置関係を示す図である。図2及び図3に基づき、上記波検出器13について具体的に説明する。   FIG. 2 is a diagram for explaining the function of the wave detector, and FIG. 3 is a diagram showing the positional relationship between the propeller and the wave detector. The wave detector 13 will be specifically described with reference to FIGS.

波検出器13は、船舶の極近傍に発生している波の高さh(以下、「波高h」という)及びその波の周期t(以下、「波周期t」という)を検出し、検出結果を上記系統安定化装置10に対して出力する機能を有している。ここで、図2は波検出器13による検出方式の一例を示したものである。波検出器13は、例えば、船体のすぐ外側に浮かべられた浮き13aの上下動を実測することにより、上記波高hと波周期tとを演算する。   The wave detector 13 detects and detects the height h (hereinafter referred to as “wave height h”) and the wave period t (hereinafter referred to as “wave period t”) generated in the immediate vicinity of the ship. It has a function of outputting the result to the system stabilizing device 10. Here, FIG. 2 shows an example of a detection method by the wave detector 13. The wave detector 13 calculates the wave height h and the wave period t, for example, by actually measuring the vertical movement of the float 13a floating just outside the hull.

なお、波検出器13は、波高h及び波周期tを検出するための位置が、例えば、図3に示すように船首側に配置される。一般に、推進力を得るためのプロペラ1は、図3に示すように船尾側に設けられている。このため、上記構成の電気推進船が航行する場合、波検出器13の検出位置が水面上のある位置(A点)を通過した後、所定時間経過後に、プロペラ1が上記A点に最も接近する。即ち、上記構成であれば、プロペラ1が受ける波の状態を、所定時間前に、波検出器13によって検出することができる。なお、当然のことながら、上記所定時間は、波検出器13の検出位置及びプロペラ1間の距離と船舶の速度とに基づき求めることができる。   The wave detector 13 is disposed at the bow side at a position for detecting the wave height h and the wave period t, for example, as shown in FIG. Generally, the propeller 1 for obtaining a propulsive force is provided on the stern side as shown in FIG. For this reason, when the electric propulsion ship having the above-described configuration is navigated, the propeller 1 is closest to the point A after a predetermined time has elapsed after the detection position of the wave detector 13 passes a certain position (point A) on the water surface. To do. That is, with the above configuration, the state of the wave received by the propeller 1 can be detected by the wave detector 13 a predetermined time before. As a matter of course, the predetermined time can be obtained based on the detection position of the wave detector 13, the distance between the propellers 1 and the speed of the ship.

次に、図4に基づき、上記構成を有する電気推進船の系統安定化システムの動作について説明する。なお、図4は、図1に示す電気推進船の系統安定化システムの制御フローを示す図である。   Next, based on FIG. 4, operation | movement of the system stabilization system of the electric propulsion ship which has the said structure is demonstrated. FIG. 4 is a diagram showing a control flow of the system stabilization system for the electric propulsion ship shown in FIG.

図4に示されているように、系統安定化装置10には、インバータ9から、その出力電流の変化率ΔIと周波数の変化率Δrpmとが入力される。また、波検出器13からは、検出された波高hと波周期tとが入力される。そして、系統安定化装置10は、波検出器13から入力された波高hと波周期tとに基づき、ラフシー等の異常環境を予測する。具体的に、系統安定化装置10では、偏差カウンタ12により、入力された波高hと波周期tとの偏差を算出し、算出された偏差を、予め設定されている偏差基準と比較する。そして、算出された偏差が上記偏差基準を超える回数を監視及び計上し、所定期間内に、偏差基準を超える偏差が許容回数以上算出された場合に、ラフシー等の異常環境が発生している、即ち、異常環境によって負荷運転異常が発生していると判断する。   As shown in FIG. 4, the output stabilizing rate ΔI and the frequency changing rate Δrpm are input from the inverter 9 to the system stabilizing device 10. Further, the detected wave height h and the wave period t are input from the wave detector 13. Then, the system stabilizing device 10 predicts an abnormal environment such as rough sea based on the wave height h and the wave period t input from the wave detector 13. Specifically, in the system stabilizing device 10, the deviation counter 12 calculates a deviation between the input wave height h and the wave period t, and compares the calculated deviation with a preset deviation criterion. And, when the calculated deviation exceeds the deviation standard is monitored and counted, and within a predetermined period, when the deviation exceeding the deviation standard is calculated more than the allowable number, an abnormal environment such as rough sea has occurred, That is, it is determined that an abnormal load operation has occurred due to the abnormal environment.

系統安定化装置10は、ラフシー等の異常環境の発生を予測すると、負荷変動による発電機3とその駆動装置4とへの影響を減少させるため、インバータ9に対して速度上限リミットを出力し、迅速に運転上限速度に制限を掛ける。これにより、回転速度とトルク特性とが比例する電動機2では、最大負荷電流が低減する。即ち、負荷変動幅が狭まり、最大変動率が低くなる。   When the occurrence of an abnormal environment such as rough sea is predicted, the system stabilizing device 10 outputs a speed upper limit to the inverter 9 in order to reduce the influence on the generator 3 and its driving device 4 due to load fluctuations, Immediately limit the upper speed limit. Thereby, in the electric motor 2 in which the rotational speed and the torque characteristic are proportional, the maximum load current is reduced. That is, the load fluctuation range is narrowed and the maximum fluctuation rate is lowered.

なお、系統安定化装置10は、インバータ9から入力された出力電流の変化率ΔIと周波数の変化率Δrpmとに基づいてラフシー等の異常環境を予測する機能を、上記機能と共に備えても良い。即ち、系統安定化装置10は、入力された出力電流の変化率ΔIと周波数の変化率Δrpmとの偏差を算出し、算出された偏差を、予め設定されている偏差基準と比較する。そして、算出された偏差が上記偏差基準を超える回数を監視及び計上し、所定期間内に、偏差基準を超える偏差が許容回数以上算出された場合に、ラフシー等の異常環境が発生している、即ち、異常環境によって負荷運転異常が発生していると判断する。
なお、上記機能によってラフシー等の異常環境の発生を予測した後のインバータ9に対する動作は、上述の動作と同様である。
The system stabilizing device 10 may include a function of predicting an abnormal environment such as rough sea based on the output current change rate ΔI and the frequency change rate Δrpm input from the inverter 9 together with the above function. That is, the system stabilizing device 10 calculates a deviation between the input output current change rate ΔI and the frequency change rate Δrpm, and compares the calculated deviation with a preset deviation criterion. And, when the calculated deviation exceeds the deviation standard is monitored and counted, and within a predetermined period, when the deviation exceeding the deviation standard is calculated more than the allowable number, an abnormal environment such as rough sea has occurred, That is, it is determined that an abnormal load operation has occurred due to the abnormal environment.
In addition, the operation | movement with respect to the inverter 9 after estimating generation | occurrence | production of abnormal environments, such as rough sea, by the said function is the same as the above-mentioned operation | movement.

そして、系統安定化装置10は、ラフシー等の異常環境の発生を予測すると、インバータ9から入力された出力電流の変化率ΔIと周波数の変化率Δrpmとに基づき、発電機3に対する電圧調整率を演算し、その演算結果(電圧調整基準)をAVR制御ユニット7に対して出力する。発電機3では、この基準指令によってAVR制御ユニット7が動作することにより、その励磁電圧が適切に調整される。   Then, when the occurrence of an abnormal environment such as rough sea is predicted, the system stabilizing device 10 determines the voltage adjustment rate for the generator 3 based on the output current change rate ΔI and the frequency change rate Δrpm input from the inverter 9. The calculation result (voltage adjustment reference) is output to the AVR control unit 7. In the generator 3, the excitation voltage is appropriately adjusted by the operation of the AVR control unit 7 according to the reference command.

同様に、系統安定化装置10は、ラフシー等の異常環境の発生を予測すると、インバータ9から入力された出力電流の変化率ΔIと周波数の変化率Δrpmとに基づき、駆動装置4に対するガバナ調整率を演算し、その演算結果(ガバナ調整基準)をガバナ制御ユニット8に対して出力する。駆動装置4では、この基準指令によってガバナ制御ユニット8が動作することにより、そのトルクが適切に調整される。
そして、電圧調整基準とガバナ調整基準とによるガバナ6及びAVRの上記調整により、系統の電圧と周波数が安定化される。
Similarly, when the occurrence of an abnormal environment such as rough sea is predicted, the system stabilizing device 10 determines the governor adjustment rate for the driving device 4 based on the output current change rate ΔI and the frequency change rate Δrpm input from the inverter 9. And the calculation result (governor adjustment reference) is output to the governor control unit 8. In the drive device 4, the governor control unit 8 is operated according to the reference command, so that the torque is appropriately adjusted.
And the voltage and frequency of a system | strain are stabilized by the said adjustment of the governor 6 and AVR by a voltage adjustment reference | standard and a governor adjustment reference | standard.

この発明の実施の形態1によれば、ラフシー等の異常環境下においても、系統に対する負荷変動を適切に抑制することができ、発電機トリップ等に起因する停電や発電機用駆動装置の故障といった最悪のケースを確実に回避することができるようになる。   According to Embodiment 1 of the present invention, even under an abnormal environment such as rough sea, load fluctuations on the system can be appropriately suppressed, such as a power failure caused by a generator trip or the like, or a failure of a generator drive device. The worst case can be reliably avoided.

即ち、船体の側面等に取り付けられた水面検出回路によって負荷変動の原因となる波の動作を事前に検出することができ、その検出結果から、航行中にプロペラ1が水面上に出てしまうようなラフシー等の異常環境が発生するか否かを判断することができる。このため、レーシングといった負荷異常状態の発生を事前に把握することができ、負荷変動が実際に発生する前、或いは、急激な負荷変動が継続して不具合が発生する前に、運転速度範囲を狭めて最大負荷変動率を低減させることができるようになる。即ち、ラフシー等の異常環境下においても、発電機トリップ等に起因する停電や発電機用駆動装置の故障等を確実に回避することが可能となる。   That is, it is possible to detect in advance the wave action that causes the load fluctuation by the water level detection circuit attached to the side surface of the hull and the like, so that the propeller 1 comes out on the water surface during navigation from the detection result. It can be determined whether or not an abnormal environment such as a rough sea occurs. For this reason, the occurrence of abnormal load conditions such as racing can be grasped in advance, and the operating speed range can be narrowed before a load change actually occurs or before a sudden load change continues and a failure occurs. Thus, the maximum load fluctuation rate can be reduced. That is, even under an abnormal environment such as rough sea, it is possible to reliably avoid a power failure due to a generator trip or the like, a failure of a generator drive device, or the like.

なお、実施の形態1では、電気推進船における電源系統システムについて説明したが、上記と同様の構成を有する電源系統システムを有していれば、他の産業プラントに対して応用することも可能である。   In the first embodiment, the power supply system in the electric propulsion ship has been described. However, if the power supply system has the same configuration as described above, the power supply system can be applied to other industrial plants. is there.

この発明の実施の形態1における電気推進船の系統安定化システムを示す構成図である。It is a block diagram which shows the system | strain stabilization system of the electric propulsion ship in Embodiment 1 of this invention. 波検出器の機能を説明するための図である。It is a figure for demonstrating the function of a wave detector. プロペラと波検出器との位置関係を示す図である。It is a figure which shows the positional relationship of a propeller and a wave detector. 図1に示す電気推進船の系統安定化システムの制御フローを示す図である。It is a figure which shows the control flow of the system | strain stabilization system of the electric propulsion ship shown in FIG. 水面位置と電気推進船のプロペラ負荷との関係を示す図である。It is a figure which shows the relationship between a water surface position and the propeller load of an electric propulsion ship.

符号の説明Explanation of symbols

1 プロペラ(負荷設備)
2 電動機
3 発電機
4 駆動装置
5 検出器
6 ガバナ
7 AVR制御ユニット
8 ガバナ制御ユニット
9 インバータ
10 系統安定化装置
11 演算部
12 偏差カウンタ
13 波検出器
13a 浮き
1 Propeller (load equipment)
DESCRIPTION OF SYMBOLS 2 Electric motor 3 Generator 4 Drive device 5 Detector 6 Governor 7 AVR control unit 8 Governor control unit 9 Inverter 10 System stabilizer 11 Computation part 12 Deviation counter 13 Wave detector 13a Floating

Claims (4)

電気推進船に設けられたプロペラ等の負荷設備を駆動する電動機と、
発電機から系統に対して供給された電力を、所望の電圧及び周波数に変換して、前記電動機を制御するインバータと、
前記電気推進船の近傍に発生している波の高さ及び周期を検出する波検出器と、
前記波検出器によって検出された波高及び波周期に基づいて、ラフシー等の異常環境を予測する系統安定化装置と、
を備え、
前記系統安定化装置は、異常環境の発生を予測した場合に、前記インバータに対して運転上限速度の制限を課し、前記電動機の最大負荷電流を低減させることを特徴とする電気推進船の系統安定化システム。
An electric motor for driving load equipment such as a propeller provided in the electric propulsion ship;
An inverter for controlling the electric motor by converting the electric power supplied from the generator to the system into a desired voltage and frequency;
A wave detector for detecting the height and period of a wave generated in the vicinity of the electric propulsion ship;
Based on the wave height and wave period detected by the wave detector, a system stabilization device that predicts an abnormal environment such as rough sea,
With
The system stabilizing device imposes a limitation on an upper limit speed of operation for the inverter and reduces the maximum load current of the electric motor when an abnormal environment is predicted to occur. Stabilization system.
系統安定化装置は、波検出器によって検出された波高及び波周期の偏差を算出し、所定期間内に、所定の偏差基準を超える偏差が許容回数以上算出された場合に、異常環境の発生を検出することを特徴とする請求項1に記載の電気推進船の系統安定化システム。   The system stabilization device calculates the deviation of the wave height and wave period detected by the wave detector, and if the deviation exceeding the predetermined deviation standard is calculated more than the allowable number within the predetermined period, the abnormal system is generated. The system stabilization system for an electric propulsion ship according to claim 1, wherein the system is detected. 発電機の励磁電圧を制御するAVR制御ユニットと、
前記発電機用の駆動装置に対応して設けられたガバナを制御するガバナ制御ユニットと、
を更に備え、
系統安定化装置は、異常環境の発生を予測した場合に、インバータの出力電流及び周波数の各変化率に基づいて、前記発電機に対する電圧調整率と前記駆動装置に対するガバナ調整率とを演算するとともに、その演算結果を前記AVR制御ユニットと前記ガバナ制御ユニットとに出力して、系統の電圧と周波数とを安定化させることを特徴とする請求項1又は請求項2に記載の電気推進船の系統安定化システム。
An AVR control unit that controls the excitation voltage of the generator;
A governor control unit for controlling a governor provided corresponding to the generator drive device;
Further comprising
When the occurrence of an abnormal environment is predicted, the system stabilizing device calculates a voltage adjustment rate for the generator and a governor adjustment rate for the drive device based on the change rates of the output current and frequency of the inverter. 3. The electric propulsion ship system according to claim 1 or 2, wherein the calculation result is output to the AVR control unit and the governor control unit to stabilize the voltage and frequency of the system. Stabilization system.
波検出器は、電気推進船の船首側に設けられ、
負荷設備は、前記電気推進船の船尾側に設けられた
ことを特徴とする請求項1から請求項3の何れかに記載の電気推進船の系統安定化システム。
The wave detector is installed on the bow side of the electric propulsion ship,
The system for stabilizing an electric propulsion ship according to any one of claims 1 to 3, wherein the load facility is provided on a stern side of the electric propulsion ship.
JP2008258896A 2008-10-03 2008-10-03 System stabilization system for electric propulsion ship Active JP5272631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008258896A JP5272631B2 (en) 2008-10-03 2008-10-03 System stabilization system for electric propulsion ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008258896A JP5272631B2 (en) 2008-10-03 2008-10-03 System stabilization system for electric propulsion ship

Publications (2)

Publication Number Publication Date
JP2010089550A true JP2010089550A (en) 2010-04-22
JP5272631B2 JP5272631B2 (en) 2013-08-28

Family

ID=42252701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008258896A Active JP5272631B2 (en) 2008-10-03 2008-10-03 System stabilization system for electric propulsion ship

Country Status (1)

Country Link
JP (1) JP5272631B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018192838A (en) * 2017-05-12 2018-12-06 国立大学法人東京海洋大学 Load state estimating device of propeller, load state estimating method of propeller and load state estimating program of propeller
JP2019014409A (en) * 2017-07-10 2019-01-31 川崎重工業株式会社 Monitoring system
US11904988B2 (en) 2020-12-08 2024-02-20 Yamaha Hatsudoki Kabushiki Kaisha Watercraft

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340289A (en) * 1993-05-31 1994-12-13 Mitsubishi Heavy Ind Ltd Hull posture control gain scheduling apparatus
JPH11285291A (en) * 1998-03-27 1999-10-15 Hitachi Zosen Corp Electrical propulsion facility of ship
JP2000326891A (en) * 1999-05-21 2000-11-28 Hitachi Zosen Corp Notification device in vessel
JP2007336669A (en) * 2006-06-14 2007-12-27 Toshiba Mitsubishi-Electric Industrial System Corp Power supply system stabilization method and power supply system stabilization system using method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340289A (en) * 1993-05-31 1994-12-13 Mitsubishi Heavy Ind Ltd Hull posture control gain scheduling apparatus
JPH11285291A (en) * 1998-03-27 1999-10-15 Hitachi Zosen Corp Electrical propulsion facility of ship
JP2000326891A (en) * 1999-05-21 2000-11-28 Hitachi Zosen Corp Notification device in vessel
JP2007336669A (en) * 2006-06-14 2007-12-27 Toshiba Mitsubishi-Electric Industrial System Corp Power supply system stabilization method and power supply system stabilization system using method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018192838A (en) * 2017-05-12 2018-12-06 国立大学法人東京海洋大学 Load state estimating device of propeller, load state estimating method of propeller and load state estimating program of propeller
JP2019014409A (en) * 2017-07-10 2019-01-31 川崎重工業株式会社 Monitoring system
US11904988B2 (en) 2020-12-08 2024-02-20 Yamaha Hatsudoki Kabushiki Kaisha Watercraft

Also Published As

Publication number Publication date
JP5272631B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
EP2178745B1 (en) Efficiency optimizing propeller speed control for ships
JP2003517394A (en) Ship propulsion drive system
US8933658B2 (en) Thermal protection method and system to maximize availability of electric drive system
US11035300B2 (en) Control of a gas turbine driving a generator of an electrical system based on faults detected in the electrical system
EP4019394A1 (en) Electric marine propulsion systems and methods of control
JP5272631B2 (en) System stabilization system for electric propulsion ship
JP6271410B2 (en) Ship equipment maintenance judgment device
JP4685715B2 (en) Power system stabilization method and power system stabilization system using the method
WO2017149590A1 (en) Motor control method and control device
NO335860B1 (en) Power Plant Protection
KR20100111706A (en) Apparatus, system and method for electric power supply
JP2006297977A (en) Automatic ship position holding and controlling method and automatic ship position holding and controlling device
EP3199809B1 (en) Control method for a compressor system
EP3798111B1 (en) Ship speed control device, ship speed controlling method, and ship speed control program
EP3892530B1 (en) Marine propulsion system and control method
JP2019148212A (en) Control system of marine main engine
JP5218938B2 (en) Ship motor drive system
US20080031394A1 (en) Feedwater controller, nuclear power plant and method for controlling feedwater
JP2012245887A (en) Hybrid propulsion system for ship
JP2021116057A (en) Steering control device and marine vessel
JP2008022660A (en) Control apparatus for electric propulsion ship
CN112339937B (en) Propulsion system for ship
EP3263441A1 (en) Control of propeller shaft movement
Kim et al. Suppression of thrust loss for the maximum thrust operation in the electric propulsion ship
JP5561468B2 (en) Inverter system for marine electric propulsion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5272631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250