JP2010089484A - Injection molding method and injection molding apparatus - Google Patents

Injection molding method and injection molding apparatus Download PDF

Info

Publication number
JP2010089484A
JP2010089484A JP2009099202A JP2009099202A JP2010089484A JP 2010089484 A JP2010089484 A JP 2010089484A JP 2009099202 A JP2009099202 A JP 2009099202A JP 2009099202 A JP2009099202 A JP 2009099202A JP 2010089484 A JP2010089484 A JP 2010089484A
Authority
JP
Japan
Prior art keywords
mold
injection
temperature
pressure
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009099202A
Other languages
Japanese (ja)
Other versions
JP5087585B2 (en
Inventor
Toshihiko Kariya
俊彦 苅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
U MHI Platech Co Ltd
Original Assignee
Mitsubishi Heavy Industries Plastic Techonologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Plastic Techonologies Co Ltd filed Critical Mitsubishi Heavy Industries Plastic Techonologies Co Ltd
Priority to JP2009099202A priority Critical patent/JP5087585B2/en
Publication of JP2010089484A publication Critical patent/JP2010089484A/en
Application granted granted Critical
Publication of JP5087585B2 publication Critical patent/JP5087585B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an injection molding method and an injection molding apparatus, which can exhibit excellent reproducibility and stability, eliminating the need of severe selection of the position in a pressure sensor, without a substantial change in a conventional mold structure. <P>SOLUTION: The temperature of the mold is increased by heating prior to the injection of molten resin in the molds 2, 3 with the injection molding apparatus 1; a heating medium is finished to supply when the temperature of the mold measured with a temperature sensor 28 near a cavity 4 reaches a target heating temperature or when a timer from the heating-start expires; while the injecting molding apparatus starts filling the molten resin into the molds during heating or after the completion of heating the molds; the apparatus controls injection pressure so that the pressure in the molds measured with the pressure sensor 17 reaches the pressure value in the molds set with the input device; the temperature of the mold is lowered during the filling or after the filling of the molten resin into the molds; and the cooling of the molds is finished when the temperature of the mold measured with the temperature sensor provided near the cavity reaches a target cooling temperature or when the timer from the cooling-start expires. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、射出成形機の射出プランジャまたはスクリュの前進により金型のキャビティに溶融樹脂を射出成形するときの型内圧制御に関し、特に成形樹脂射出前に金型を加熱することにより金型内部における樹脂の流動を良好にして型内圧制御を容易にする成形方法と、この成形方法を用いることができる射出成形装置に関する。   The present invention relates to mold internal pressure control when a molten resin is injection-molded into a mold cavity by advancing an injection plunger or screw of an injection molding machine, and more particularly, by heating the mold before injection of the molding resin. The present invention relates to a molding method that facilitates the control of the internal pressure by improving the flow of resin, and an injection molding apparatus that can use this molding method.

特許文献1に示す従来例の射出成形方法は、射出成形機を用いて射出成形を行う場合、速度波形パターンに基づいた定常充填工程に間は、型内圧の変化量と射出圧力の変化量との比が所定範囲から逸脱して基準変動速度比を下回った際に、また、圧力波形パターンに基づいた型内圧制御工程の間は、型内圧が所定の型内圧下限値を下回った際に、それぞれ、型内圧センサの検出異常とみなして射出ユニットを停止させる。この射出成形方法を用いれば、型内圧の異常な上昇を簡易な構成方法で確実に防止可能であり、かつ、金型破損等のトラブルを未然に回避できる。   In the conventional injection molding method shown in Patent Document 1, when injection molding is performed using an injection molding machine, the amount of change in the mold pressure and the amount of change in the injection pressure during the steady filling process based on the speed waveform pattern When the ratio deviates from the predetermined range and falls below the reference fluctuation speed ratio, and during the mold pressure control process based on the pressure waveform pattern, when the mold pressure falls below a predetermined mold pressure lower limit value, Each of them is regarded as a detection abnormality of the mold pressure sensor, and the injection unit is stopped. By using this injection molding method, it is possible to reliably prevent an abnormal rise in the mold internal pressure with a simple configuration method, and to avoid troubles such as damage to the mold.

特許第4127339号公報(図6)Japanese Patent No. 4127339 (FIG. 6)

特許文献1に示された従来例の型内圧波形制御は、高速射出充填時のバリ防止、重量安定化を目的として使用されるが、通常、金型温度は冷却に十分なだけ低い温度(例えば、熱変形温度より低い温度)に設定されているため、射出充填中に樹脂の温度が下がる。結晶性樹脂での成形の場合は冷却により結晶化温度付近では結晶化により樹脂の粘度が急激に上昇する。また非晶性で且つ粘度が1×103Pa・S以上である高粘度な樹脂成形の場合は流動により圧力損失が大きい。このような樹脂を成形する場合で、成形品形状に局部的に薄肉部が在る場合は、その薄肉部分の固化が他の部分の固化より進み、樹脂流動が減少するなどして、流動圧損が大きくなるなどにより、金型内部の圧力分布が不均一になり成形品の厚さの変動や表面にフローマーク、凹凸、ウェルド等の欠陥を生じる虞がある。そのため、再現性の高い、安定した制御が可能な圧力センサの領域は非常に狭い。よって圧力センサの適正な位置を見つけるための長い時間や多大な労力を要するという問題点がある。   The mold pressure waveform control of the conventional example shown in Patent Document 1 is used for the purpose of preventing burrs at high-speed injection filling and stabilizing the weight. Usually, the mold temperature is low enough for cooling (for example, Therefore, the temperature of the resin decreases during injection filling. In the case of molding with a crystalline resin, the viscosity of the resin rapidly increases due to crystallization near the crystallization temperature due to cooling. In the case of resin molding that is amorphous and has a viscosity of 1 × 10 3 Pa · S or more, the pressure loss is large due to flow. When molding such a resin, if there is a thin part locally in the shape of the molded product, the solidification of the thin part proceeds more than the solidification of the other part, the resin flow decreases, etc. The pressure distribution inside the mold becomes non-uniform due to an increase in the thickness of the mold, which may cause variations in the thickness of the molded product and defects such as flow marks, unevenness, and welds on the surface. Therefore, the area of the pressure sensor with high reproducibility and capable of stable control is very narrow. Therefore, there is a problem that it takes a long time and a great amount of labor to find an appropriate position of the pressure sensor.

本発明は、圧力波形パターンに基づいた型内圧制御による射出成形方法において、圧力センサの位置を厳密に選定する必要なく従来の金型の構成を殆ど変えることなく、再現性、安定性の高い射出成形方法と装置を提供することを目的とする。   The present invention is an injection molding method based on in-mold pressure control based on a pressure waveform pattern, and it is not necessary to select the position of a pressure sensor strictly, and injection with high reproducibility and stability without changing the configuration of a conventional mold. An object is to provide a molding method and apparatus.

上記の問題点に対し、本発明は以下の各手段により課題の解決を図る。
(1)第1の手段の射出成形方法は、金型キャビティ内の樹脂圧力を測定可能な少なくとも1つの型内圧センサと、キャビティ近傍の温度を測定可能な温度センサを少なくとも1つ備えた金型と、前記金型内に射出プランジャまたはスクリュの前進により溶融樹脂を充填する射出装置と、所定のキャビティ内の型内圧力値を入力可能な入力装置と、前記圧力センサにより測定された圧力値が前記入力装置により入力された型内圧力値となるように、前記射出プランジャまたはスクリュの前進圧力である射出圧力を制御する射出圧力制御装置とを備えた射出成形機と、金型を加熱するための加熱媒体と金型を冷却するための冷却媒体をそれぞれ供給することが可能な金型加熱冷却装置とを備え、加熱媒体と冷却媒体を切換えるバルブを備え加熱媒体と冷却媒体を前記バルブにより切換えて共通の流路に供給し金型の温度を制御しながら前記射出成形機を操作して成形品を製造する射出成形方法において、前記射出装置が金型内に溶融樹脂を射出する前に、加熱媒体の供給を開始することにより金型の温度を加熱昇温し、前記キャビティ近傍に備えた前記温度センサにより測定された金型の温度が、所定の加熱目標温度に達した時点、または金型を加熱開始からスタートするタイマーがタイムアップした時点で加熱媒体の供給を終了し、一方、前記金型の加熱途中または加熱終了後に前記射出装置が金型内への溶融樹脂の充填を開始し、該充填工程において、前記圧力センサにより測定した金型内の圧力が、前記入力装置により設定された型内圧力値となるように、前記射出プランジャまたはスクリュの射出圧力を制御し、該充填工程の充填中または充填後に、冷却媒体の供給を開始することにより金型の温度を降温し、前記キャビティ近傍に備えた前記温度センサにより測定された金型の温度が、所定の冷却目標温度に達した時点、または金型を冷却開始からスタートするタイマーがタイムアップした時点で冷却媒体の供給を終了することを特徴とする。
With respect to the above problems, the present invention aims to solve the problems by the following means.
(1) The injection molding method of the first means is a mold comprising at least one mold pressure sensor capable of measuring the resin pressure in the mold cavity and at least one temperature sensor capable of measuring the temperature in the vicinity of the cavity. An injection device that fills the mold with molten resin by advancement of an injection plunger or screw, an input device that can input an in-mold pressure value in a predetermined cavity, and a pressure value measured by the pressure sensor An injection molding machine provided with an injection pressure control device for controlling an injection pressure, which is a forward pressure of the injection plunger or screw, so as to be an in-mold pressure value input by the input device, and for heating the mold A heating / cooling device that can supply a heating medium and a cooling medium for cooling the mold, respectively, and a valve that switches between the heating medium and the cooling medium are used for heating. In the injection molding method of manufacturing a molded product by operating the injection molding machine while controlling the temperature of the mold by switching the body and the cooling medium by the valve and supplying the same to the common flow path, the injection device is in the mold Before injecting the molten resin into the mold, the temperature of the mold is increased by starting the supply of the heating medium, and the temperature of the mold measured by the temperature sensor provided in the vicinity of the cavity When the target temperature is reached, or when the timer for starting the mold starts heating up, the supply of the heating medium is terminated. On the other hand, the injection device is placed in the mold during or after the mold heating. The injection plunger is started so that the pressure in the mold measured by the pressure sensor becomes an in-mold pressure value set by the input device in the filling process. Alternatively, the injection pressure of the screw is controlled, and during or after the filling process, the temperature of the mold is lowered by starting the supply of the cooling medium, and measured by the temperature sensor provided near the cavity. The supply of the cooling medium is ended when the temperature of the mold reaches a predetermined cooling target temperature or when the timer for starting the mold from the start of cooling expires.

第1の手段の射出成形方法により、樹脂の射出充填時の金型温度を高温に保つことにより、薄肉部でも樹脂の粘度上昇、および冷却固化を遅らせることができ、充填圧力伝搬を良好に保つことが出来るので、型内圧分布を単純一様にすることが可能となる。また、充填中の樹脂の固化速度が遅くなるので、万一、圧縮性流体である溶融樹脂に圧力伝播の遅れが生じて、型内圧フィードバック制御のための圧力検知が遅れても、圧力フィードバック補正制御指令は、樹脂の固化が進行する前に出すことができる。   By maintaining the mold temperature at the time of injection filling of the resin at a high temperature by the injection molding method of the first means, the increase in the viscosity of the resin and the cooling and solidification can be delayed even in the thin wall portion, and the filling pressure propagation is kept good. Therefore, the in-mold pressure distribution can be made simple and uniform. Also, since the resin solidification speed during filling slows down, even if pressure propagation delays in the molten resin, which is a compressible fluid, and pressure detection for in-mold pressure feedback control is delayed, pressure feedback correction The control command can be issued before the resin solidifies.

(2)第2の手段の射出成形方法は、上記(1)の射出成形方法において、前記金型が、樹脂流動圧が低下するような薄肉部を有する金型であることを特徴とする。 (2) The injection molding method of the second means is characterized in that, in the injection molding method of the above (1), the mold is a mold having a thin portion where the resin flow pressure is lowered.

(3)第3の手段の射出成形方法は、上記(2)の射出成形方法において、充填中または充填完了まで、少なくとも前記薄肉部の温度を、樹脂の流動開始温度以上に維持することを特徴とする。 (3) The injection molding method of the third means is characterized in that, in the injection molding method of (2), at least the temperature of the thin portion is maintained at a temperature equal to or higher than a resin flow start temperature during filling or until filling is completed. And

(4)第4の手段の射出成形方法は、上記(1)〜(3)のいずれか一つの射出成形方法において、前記射出プランジャまたはスクリュの前進が電動モータを駆動源とする射出装置であることを特徴とする。 (4) The injection molding method of the fourth means is an injection device in which the forward movement of the injection plunger or screw uses an electric motor as a drive source in any one of the above-described injection molding methods (1) to (3). It is characterized by that.

(5)第5の手段の射出成形方法は、上記(4)の射出成形方法において、前記電動モータの減速時に発生する回生電力を前記金型加熱冷却装置に供給することを特徴とする。 (5) The injection molding method of the fifth means is characterized in that, in the injection molding method of (4), regenerative electric power generated when the electric motor is decelerated is supplied to the mold heating / cooling device.

(6)第6の手段の射出成形方法は、上記(1)〜(5)のいずれか一つの射出成形方法において、前記型内圧センサにより測定された型内圧プロファイルと前記キャビティ近傍に備えた温度センサにより測定された金型の温度プロファイルを表示装置に同一の画面で表示して、樹脂の射出充填により高温の樹脂が金型内に流入して金型温度が上昇するタイミングと温度上昇量を、型内圧力の変化と比較することにより、成形条件の妥当性を評価することを特徴とする。
特に前記比較のために、測定した前記型内圧プロファイルと、前記金型の温度プロファイルは、共有した時間軸を横軸とし、且つそれぞれの値を縦軸とした同一グラフ上に重ね書きすることが好ましい。
(6) The sixth means of the injection molding method is the injection molding method according to any one of the above (1) to (5), wherein the mold internal pressure profile measured by the mold internal pressure sensor and the temperature provided in the vicinity of the cavity. The temperature profile of the mold measured by the sensor is displayed on the same screen on the display device, and the timing and amount of temperature rise when the mold temperature rises due to high temperature resin flowing into the mold due to resin injection filling. The validity of the molding conditions is evaluated by comparing with the change in the pressure inside the mold.
In particular, for the comparison, the measured in-mold pressure profile and the temperature profile of the mold may be overwritten on the same graph with the shared time axis as the horizontal axis and the respective values as the vertical axis. preferable.

(7)第7の手段の射出成形方法は、上記(1)〜(6)のいずれか一つの射出成形方法において、前記樹脂が結晶性樹脂であることを特徴とする。
結晶性樹脂は冷却固化時に結晶化温度付近で急激に粘度上昇が発生し、流動状態を維持できなくなり、急激に圧力伝搬性が悪くなる。この為、金型の温度を結晶化温度よりも十分高温である流動開始温度以上にすることで、樹脂を流動状態に保つことができ、圧力伝搬を良好に保つことにより、型内の圧力分布を単純一様にできるので、冷却時の制御目標温度値の選定が容易となる利点がある。
(7) An injection molding method according to a seventh means is characterized in that, in the injection molding method according to any one of the above (1) to (6), the resin is a crystalline resin.
The crystalline resin suddenly increases in viscosity near the crystallization temperature when cooled and solidified, cannot maintain a fluid state, and the pressure propagation property deteriorates rapidly. For this reason, by setting the temperature of the mold to a flow start temperature that is sufficiently higher than the crystallization temperature, the resin can be kept in a fluid state, and the pressure distribution in the mold can be maintained by maintaining good pressure propagation. Therefore, there is an advantage that it becomes easy to select a control target temperature value during cooling.

(8)第8の手段の射出成形方法は、上記(1)〜(6)のいずれか一つの射出成形方法において、前記樹脂粘度が1×10Pa・S以上である高粘度の非晶性樹脂であることを特徴とする。
粘度が1×10Pa・S以上である高粘度の非晶性樹脂は、結晶性樹脂のように温度によって急激な粘度の変化はないが、高粘度であるので流動時に薄肉部などでは急激な圧力損失を発生し、圧力伝搬性が悪くなる。この為、金型の温度を樹脂が十分な流動状態が得られる流動開始温度以上にすることで、樹脂を流動状態に保つことができ、圧力伝搬を良好に保つことにより、型内の圧力分布を単純一様にできるので、冷却時の制御目標温度値の選定が容易となる利点がある。
(8) The injection molding method of the eighth means is the high viscosity amorphous material according to any one of the above (1) to (6), wherein the resin viscosity is 1 × 10 3 Pa · S or more. It is a characteristic resin.
A high-viscosity amorphous resin with a viscosity of 1 × 10 3 Pa · S or more does not change rapidly with temperature unlike a crystalline resin. Pressure loss is generated and the pressure propagation property is deteriorated. For this reason, by setting the temperature of the mold to be higher than the flow start temperature at which a sufficient flow state of the resin is obtained, the resin can be kept in a flow state, and the pressure distribution in the mold can be maintained by maintaining good pressure propagation Therefore, there is an advantage that it becomes easy to select a control target temperature value during cooling.

(9)第9の手段の射出成形方法は、金型キャビティ内の樹脂圧力を測定可能な少なくとも1つの型内圧センサと、キャビティ近傍の温度を測定可能な温度センサを少なくとも1つ備えた金型と、前記金型内に射出プランジャまたはスクリュの前進により溶融樹脂を充填する射出装置と、所定のキャビティ内の型内圧力値を入力可能な入力装置と、前記圧力センサにより測定された圧力値が前記入力装置により入力された型内圧力値となるように、前記射出プランジャまたはスクリュの前進圧力である射出圧力を制御する射出圧力制御装置とを備えた射出成形機と、金型を加熱するための加熱媒体と金型を冷却するための冷却媒体をそれぞれ供給することが可能な金型加熱冷却装置とを備え、加熱媒体と冷却媒体を切換えるバルブを備え加熱媒体と冷却媒体を前記バルブにより切換えて共通の流路に供給し金型の温度を制御しながら前記射出成形機を操作して成形品を製造する射出成形方法において、前記射出装置が金型内に溶融樹脂を射出する前に、加熱媒体の供給を開始することにより金型の温度を加熱昇温し、前記キャビティ近傍に備えた前記温度センサにより測定された金型の温度が、所定の加熱目標温度に達し、かつ、金型を加熱開始からスタートするタイマーがタイムアップした時点で加熱媒体の供給を終了し、一方、前記金型の加熱途中または加熱終了後に前記射出装置が金型内への溶融樹脂の充填を開始し、該充填工程において、前記圧力センサにより測定した金型内の圧力が、前記入力装置により入力された型内圧力値となるように、前記射出プランジャまたはスクリュの射出圧力を制御し、該充填工程の充填中または充填後に、冷却媒体の供給を開始することにより金型の温度を降温し、前記キャビティ近傍に備えた前記温度センサにより測定された金型の温度が、所定の冷却目標温度に達し、かつ、金型を冷却開始からスタートするタイマーがタイムアップした時点で冷却媒体の供給を終了することを特徴とする。 (9) A ninth means of an injection molding method is a mold comprising at least one mold pressure sensor capable of measuring a resin pressure in a mold cavity and at least one temperature sensor capable of measuring a temperature in the vicinity of the cavity. An injection device that fills the mold with molten resin by advancement of an injection plunger or screw, an input device that can input an in-mold pressure value in a predetermined cavity, and a pressure value measured by the pressure sensor An injection molding machine provided with an injection pressure control device for controlling an injection pressure, which is a forward pressure of the injection plunger or screw, so as to be an in-mold pressure value input by the input device, and for heating the mold A heating / cooling device that can supply a heating medium and a cooling medium for cooling the mold, respectively, and a valve that switches between the heating medium and the cooling medium are used for heating. In the injection molding method of manufacturing a molded product by operating the injection molding machine while controlling the temperature of the mold by switching the body and the cooling medium by the valve and supplying the same to the common flow path, the injection device is in the mold Before injecting the molten resin into the mold, the temperature of the mold is increased by starting the supply of the heating medium, and the temperature of the mold measured by the temperature sensor provided in the vicinity of the cavity When the target temperature is reached and the timer for starting the heating of the mold expires, the supply of the heating medium is terminated. On the other hand, the injection device is put into the mold during or after the heating of the mold. In the filling step, the injection plunger or the injection plunger or the mold so that the pressure in the mold measured by the pressure sensor becomes the in-mold pressure value input by the input device. The mold measured by the temperature sensor provided in the vicinity of the cavity is controlled by controlling the injection pressure of the screw and starting the supply of the cooling medium during or after the filling process. The supply of the cooling medium is terminated when the temperature reaches a predetermined cooling target temperature and a timer for starting the cooling of the mold has timed out.

(10)第10の手段の射出成形方法は、上記(1)〜(9)のいずれか一つの射出成形方法において、前記冷却媒体供給の開始のタイミングが、前記加熱媒体の供給終了時点または加熱媒体供給終了と同時にスタートするタイマーのカウントアップ時点と、射出プランジャまたはスクリュが所定の位置に到達した時点と、キャビティの所定位置の圧力が予め定めた所定の圧力値に達した時点の、少なくとも1つを選択して、前記冷却媒体供給の開始のタイミングとすることを特徴とする。 (10) The injection molding method of the tenth means is the injection molding method according to any one of the above (1) to (9), wherein the cooling medium supply start timing is the heating medium supply end time or heating. At least one of a count-up time of a timer that starts simultaneously with the end of the medium supply, a time when the injection plunger or screw reaches a predetermined position, and a time when the pressure at a predetermined position of the cavity reaches a predetermined pressure value One of them is selected as the start timing of the supply of the cooling medium.

(11)第11の手段の射出成形装置は、金型キャビティ内の樹脂圧力を測定可能な型内圧センサと、キャビティ近傍の温度を測定可能な温度センサを少なくとも1つ備えた金型と、前記金型内に射出プランジャまたはスクリュの前進により溶融樹脂を充填する射出装置と、所定のキャビティ内の型内圧力値を入力可能な入力装置と、前記圧力センサにより測定された圧力値が前記入力装置により入力された型内圧力値となるように、前記射出プランジャまたはスクリュの前進圧力である射出圧力を制御する射出圧力制御装置とを備えた射出成形機であって、更に、金型を加熱するための加熱媒体と金型を冷却するための冷却媒体をそれぞれ供給することが可能な金型加熱冷却装置と、加熱媒体と冷却媒体を切換えるバルブを備え加熱媒体と冷却媒体を前記バルブにより切換えて共通の流路に供給し金型の温度を制御する制御装置をも備え、上記(1)〜(10)のいずれか一つの射出成形方法を実施する制御装置を備えたことを特徴とする。 (11) An injection molding apparatus of an eleventh means includes a mold having at least one temperature sensor capable of measuring a resin pressure in a mold cavity, and a temperature sensor capable of measuring a temperature in the vicinity of the cavity. An injection device that fills the mold with molten resin by advancing the injection plunger or screw, an input device that can input an in-mold pressure value in a predetermined cavity, and a pressure value measured by the pressure sensor is the input device An injection molding machine comprising an injection pressure control device for controlling an injection pressure, which is a forward pressure of the injection plunger or screw, so that the in-mold pressure value input by the step is obtained, further heating the mold A heating / cooling device capable of respectively supplying a heating medium for cooling and a cooling medium for cooling the mold, and a heating medium provided with a valve for switching between the heating medium and the cooling medium, A control device for controlling the temperature of the mold by switching the rejection medium with the valve and supplying the same to a common flow path, and implementing the injection molding method according to any one of the above (1) to (10) It is characterized by having.

請求項1〜請求項3、請求項9〜10、請求項11に係わる発明は、上記第1〜第3、第10の手段の成形方法、第11の手段の成形装置であり、成形品の肉厚分布にかかわらず、充填中の金型内樹脂を溶融状態に保てるので、冷却によるスキン層(成形品表層の固化層)の成長により有効樹脂流路が狭くなることが無くなり、型内の樹脂圧力分布が単純になり、かつ、再現性の高い圧力分布が得られるため、適正な型内圧センサ位置の範囲が広くなるので、型内圧センサの取付け位置の決定が容易となる。特に流動圧力損失が大きくなる薄肉部を局部的に有する金型において有効である。また金型の温度センサを複数設けた場合は、温度が所定の温度に達していない箇所の有無など型内の温度ムラの有無を確認でき、樹脂流動の圧力損失に影響を与える箇所の温度が低い場合は、当該箇所を選定、かつ基準にして金型の加熱工程を制御することが出来る。   The inventions according to claims 1 to 3, claims 9 to 10, and 11 are the molding methods of the first to third and tenth means, and the molding apparatus of the eleventh means. Regardless of the wall thickness distribution, the resin in the mold during filling can be kept in a molten state, so that the effective resin flow path is not narrowed due to the growth of the skin layer (solidified layer of the molded product surface layer) due to cooling. Since the resin pressure distribution is simplified and a highly reproducible pressure distribution is obtained, the range of the appropriate mold pressure sensor position is widened, so that it is easy to determine the mounting position of the mold pressure sensor. This is particularly effective in a mold having locally a thin portion where the flow pressure loss increases. In addition, when multiple mold temperature sensors are provided, it is possible to confirm the presence or absence of temperature irregularities in the mold, such as the presence or absence of locations where the temperature does not reach the specified temperature, and the temperature at locations that affect the pressure loss of resin flow. In the case where the temperature is low, the heating process of the mold can be controlled based on the selection and the reference.

請求項4及び請求項5に係わる発明は、上記第4及び第5の手段の成形方法であり、射出動作(射出スクリュの前進動作)の減速時、あるいは可塑化動作(射出スクリュの回転動作)の減速時に回生電力が発生するが、型内圧波形制御により型内樹脂流動状態の高い再現性が得られるので、ショット毎の回生電力のバラツキを抑制することができる。この回生電力をエネルギー消費の大きい加熱冷却媒体供給装置の使用電力に供給することによって、成形のために消費されるエネルギーを安定して低減させることができる。   The invention according to claim 4 and claim 5 is a molding method of the fourth and fifth means, and at the time of deceleration of the injection operation (advance operation of the injection screw) or plasticizing operation (rotation operation of the injection screw). Regenerative power is generated during deceleration, but since high reproducibility of the resin flow state in the mold can be obtained by controlling the in-mold pressure waveform, variations in the regenerative power from shot to shot can be suppressed. By supplying this regenerative power to the power used by the heating / cooling medium supply device that consumes a large amount of energy, the energy consumed for molding can be stably reduced.

請求項6に係わる発明は、上記第6の手段の発明であり、型内圧と金型温度が同じ成形工程の時系列で表示されるので、型内圧波形制御のための設定値と、加熱冷却制御の温度設定値、及び射出工程(射出速度または射出圧力)や金型の加熱工程と冷却工程の切り換えタイミングの選定の妥当性評価に有効であり、更に、外乱に強く、かつ、金型加熱エネルギー及び圧力充填エネルギーを低減できる設定値と、型内圧センサ位置を決定することが容易である。   The invention according to claim 6 is the invention of the sixth means, wherein the in-mold pressure and the mold temperature are displayed in time series of the same molding process. Effective for evaluating the control temperature setting value and the selection of the injection process (injection speed or injection pressure) and the timing of switching between the heating process and cooling process of the mold, and is resistant to disturbances and mold heating It is easy to determine the set value that can reduce the energy and pressure filling energy and the position of the mold pressure sensor.

請求項7及び8に係わる発明は、上記第7及び第8の手段の成形方法であり、温度低下によって樹脂の結晶化が起こり、圧力の伝搬性が急激に低下する結晶性樹脂、および流動圧力損失の大きい高粘度の非晶性樹脂に有効である。更に、充填中又は充填後に金型を強制的に冷却することにより、ハイサイクルな成形工程が可能である。また、型内圧制御により樹脂の固化前に樹脂圧を切換え、型内の樹脂にその圧力を充分に伝播させることが可能であり、型内圧のフィードバック制御がやり易くなる。   Inventions according to claims 7 and 8 are the molding methods of the seventh and eighth means, wherein the resin is crystallized due to a temperature drop and the pressure propagation property is drastically reduced, and the flow pressure It is effective for high viscosity amorphous resin with large loss. Furthermore, a high cycle molding process is possible by forcibly cooling the mold during or after filling. In addition, it is possible to switch the resin pressure before the resin is solidified by controlling the internal pressure of the mold so that the pressure is sufficiently propagated to the resin in the mold, and it is easy to perform feedback control of the internal pressure of the mold.

本発明の実施の形態に係わる成形方法を実施できる油圧射出ユニットを備えた射出成形装置と金型加熱冷却制御回路の模式図である。It is a schematic diagram of an injection molding apparatus provided with a hydraulic injection unit capable of performing a molding method according to an embodiment of the present invention, and a mold heating and cooling control circuit. 図1の金型加熱冷却制御回路に備えられた金型温度と型内圧制御装置の制御要素を示すブロック図である。FIG. 2 is a block diagram showing control elements of a mold temperature and mold internal pressure control device provided in the mold heating / cooling control circuit of FIG. 1. 図1の金型加熱冷却回路を用いた第1の実施の形態の成形手順を示す工程図である。It is process drawing which shows the shaping | molding procedure of 1st Embodiment using the metal mold | die heating / cooling circuit of FIG. 図1の金型加熱冷却回路を用いた第2の実施の形態の成形手順を示す工程図である。It is process drawing which shows the shaping | molding procedure of 2nd Embodiment using the metal mold | die heating / cooling circuit of FIG. 本発明の実施の形態に係わる成形方法を実施できる電動射出ユニットを備えた射出成形装置と金型加熱冷却制御回路の模式図である。It is a schematic diagram of an injection molding apparatus provided with an electric injection unit capable of performing a molding method according to an embodiment of the present invention, and a mold heating and cooling control circuit. 図1の金型加熱冷却回路を用いた第3の実施の形態の成形手順を示す工程図である。It is process drawing which shows the shaping | molding procedure of 3rd Embodiment using the metal mold | die heating / cooling circuit of FIG. 図2の制御要素を示すブロック図に備えられた表示装置に1サイクルの金型温度と射出時の型内圧とを同じ時系列で表示した一例である。FIG. 3 is an example in which a mold temperature of one cycle and an in-mold pressure at the time of injection are displayed in the same time series on the display device provided in the block diagram showing the control elements of FIG. 2. 従来の金型による型内圧力分布を示した模式図である。It is the schematic diagram which showed the in-mold pressure distribution by the conventional metal mold | die. 図8におけるA部の詳細を示した模式図である。It is the schematic diagram which showed the detail of the A section in FIG. 本発明による型内圧力分布を示した模式図である。It is the schematic diagram which showed the pressure distribution in a type | mold by this invention. 図10におけるB部の詳細を示した模式図である。It is the schematic diagram which showed the detail of the B section in FIG. 従来の金型において異なる箇所に配置された各型内圧センサが検知した型内圧プロファイルを示した模式図である。It is the schematic diagram which showed the mold internal pressure profile which each mold internal pressure sensor arrange | positioned in the different location in the conventional metal mold | die detected. 本発明において異なる箇所に配置された各型内圧センサが検知した型内圧プロファイルを示した模式図である。It is the schematic diagram which showed the type | mold internal pressure profile which each type | mold internal pressure sensor arrange | positioned in a different location in this invention detected.

金型の加熱冷却制御が可能な射出成形機を使用して、金型の加熱と冷却を行いながら射出充填後の保圧工程において型内圧が略一定になるように制御しながら成形する加熱冷却媒体回路の温度制御方法と、型内圧制御方法とを併用するときの温度制御方法を3形態説明する。この実施の形態で図示した金型は、型開閉と型締等の図は省き、射出ユニットと加熱媒体回路の構成と作用方法について図示説明する。   Heating / cooling using an injection molding machine capable of controlling the heating / cooling of the mold, and molding while controlling the mold pressure to be substantially constant during the pressure-holding process after injection filling while heating and cooling the mold. Three types of temperature control methods when the medium circuit temperature control method and the mold internal pressure control method are used together will be described. In the mold illustrated in this embodiment, illustrations of mold opening / closing and mold clamping are omitted, and the configuration and operation method of the injection unit and the heating medium circuit will be described.

(第1の実施の形態)
第1の実施の形態を図に基づいて説明する。図1は本発明の実施の形態に係わる成形方法を実施できる油圧射出ユニットを備えた射出成形装置と金型加熱冷却制御回路の模式図、図2は図1の金型加熱冷却制御回路に備えられた金型温度と型内圧制御装置の制御要素を示すブロック図、図3は図1の金型加熱冷却回路を用いた第1の実施の形態の成形手順を示す工程図、図5は本発明の実施の形態に係わる成形方法を実施できる電動射出ユニットを備えた射出成形装置と金型加熱冷却制御回路の模式図である。
(First embodiment)
A first embodiment will be described with reference to the drawings. FIG. 1 is a schematic diagram of an injection molding apparatus equipped with a hydraulic injection unit capable of performing a molding method according to an embodiment of the present invention, and a mold heating / cooling control circuit, and FIG. 2 is provided in the mold heating / cooling control circuit of FIG. FIG. 3 is a process diagram showing a molding procedure of the first embodiment using the mold heating and cooling circuit of FIG. 1, and FIG. It is a schematic diagram of an injection molding apparatus equipped with an electric injection unit capable of performing a molding method according to an embodiment of the present invention, and a mold heating and cooling control circuit.

図1において、射出成形装置1は、所望の形状の成形品を得るための可動金型2及び固定金型3を備える。可動金型2は、型締装置の可動盤(図示せず)に固定されており、固定金型3は、型締装置の固定盤(図示せず)に固定されている。この射出成形装置1を用いて樹脂製品を製造する際には、図示しない型締シリンダを作動させ、可動盤2と固定盤3を型締めする。これにより、可動金型2と固定金型3とでキャビティ4が形成される。   In FIG. 1, an injection molding apparatus 1 includes a movable mold 2 and a fixed mold 3 for obtaining a molded product having a desired shape. The movable mold 2 is fixed to a movable plate (not shown) of the mold clamping device, and the fixed mold 3 is fixed to a fixed plate (not shown) of the mold clamping device. When a resin product is manufactured using the injection molding apparatus 1, a mold clamping cylinder (not shown) is operated, and the movable platen 2 and the fixed platen 3 are clamped. Thereby, the cavity 4 is formed by the movable mold 2 and the fixed mold 3.

図1に示すように、固定金型3には、いわゆる、インラインスクリュ形式の射出ユニット5に含まれる射出シリンダ(加熱シリンダ)6が接続されている。可動金型2と固定金型3とで形成されるキャビティ4内には、射出ユニット5からゲートGを介して溶融樹脂を射出注入することができる。射出シリンダ6は、ユニット本体7から延出されており、その内部には、射出スクリュ8が配されている。射出スクリュ8には、連結軸9が接続されており、この連結軸9は、ユニット本体7の側方(図中右側)に配置されたスクリュ回転モータ10の回転軸に接続されている。スクリュ回転モータ10は、ユニット本体7に対してスライド自在に取り付けられている。   As shown in FIG. 1, an injection cylinder (heating cylinder) 6 included in a so-called inline screw type injection unit 5 is connected to the fixed mold 3. A molten resin can be injected and injected from the injection unit 5 through the gate G into the cavity 4 formed by the movable mold 2 and the fixed mold 3. The injection cylinder 6 is extended from the unit main body 7, and an injection screw 8 is disposed therein. A connecting shaft 9 is connected to the injection screw 8, and this connecting shaft 9 is connected to a rotating shaft of a screw rotating motor 10 disposed on the side (right side in the drawing) of the unit body 7. The screw rotation motor 10 is slidably attached to the unit body 7.

また連結軸9には、ピストン11が固定されており、このピストン11は、シリンダ7a内に位置する。シリンダ7aには、供給側と戻り側がそれぞれ油圧配管12を介してサーボバルブ14、油圧ポンプ15に接続されている。これにより、油圧ポンプ15からサーボバルブ14、油圧配管12を介してシリンダ7aに作動油を供給すれば、ピストン11を介して射出スクリュ8を前進又は後退させることができる。このように、ピストン11とシリンダ7aとは、射出用油圧シリンダとして機能する。サーボバルブ14と油圧ポンプ15との間には、リリーフ弁16が配されている。   A piston 11 is fixed to the connecting shaft 9, and the piston 11 is located in the cylinder 7a. A supply side and a return side of the cylinder 7a are connected to a servo valve 14 and a hydraulic pump 15 via a hydraulic pipe 12, respectively. Thus, if hydraulic oil is supplied from the hydraulic pump 15 to the cylinder 7 a via the servo valve 14 and the hydraulic pipe 12, the injection screw 8 can be moved forward or backward via the piston 11. Thus, the piston 11 and the cylinder 7a function as an injection hydraulic cylinder. A relief valve 16 is disposed between the servo valve 14 and the hydraulic pump 15.

油圧配管12には、射出用油圧力を検出する圧力センサ17が備えられている。この圧力センサ17で検出された油圧力は射出シリンダ6における射出圧力Phに比例するものである。また、射出ユニット5には、射出スクリュ8の移動量を検出するスクリュ移動量センサ18が設けられている。スクリュ移動量センサ18は、連結軸9に固定された被検出体を介して、射出スクリュ8の原点位置からの移動量を電気的、磁気的又は光学的に検出するものである。   The hydraulic pipe 12 is provided with a pressure sensor 17 that detects the oil pressure for injection. The oil pressure detected by the pressure sensor 17 is proportional to the injection pressure Ph in the injection cylinder 6. Further, the injection unit 5 is provided with a screw movement amount sensor 18 for detecting the movement amount of the injection screw 8. The screw movement amount sensor 18 detects the movement amount of the injection screw 8 from the origin position electrically, magnetically, or optically via a detection object fixed to the connecting shaft 9.

更に、可動金型2にはゲートG近傍におけるキャビティ4内の溶融樹脂の型内圧PMを検出する型内圧センサ19が設けられている。即ち、可動金型2には片端がキャビティ4に連通する流路2bが形成され、型内圧センサ19はゲートGの近傍から流路2bに流入する溶融樹脂の圧力を型内圧PMとして検出する。また、可動金型2にはキャビティ4の壁の温度Tを検出する型内樹脂温度センサ28が設けられている。2a、3aはパイプマニホールドを示す。   Further, the movable mold 2 is provided with a mold internal pressure sensor 19 for detecting the mold internal pressure PM of the molten resin in the cavity 4 in the vicinity of the gate G. That is, the flow path 2b whose one end communicates with the cavity 4 is formed in the movable mold 2, and the mold internal pressure sensor 19 detects the pressure of the molten resin flowing into the flow path 2b from the vicinity of the gate G as the mold internal pressure PM. The movable mold 2 is provided with an in-mold resin temperature sensor 28 for detecting the temperature T of the wall of the cavity 4. Reference numerals 2a and 3a denote pipe manifolds.

上述した射出ユニット5の制御は、制御装置20によって行われる。制御装置20は、図2に示すように、入力装置26、出力装置27、型内圧波形パターン記憶手段22、設定圧力、設定温度などの基準データ記憶手段23、各タイマーt1〜t4、CPU21を含み、CPU21は制御・演算処理のためのプログラムと、制御・演算の際の各種データを記憶する記憶回路を有している。CPU21は、射出ユニット5のスクリュ回転モータ10及びサーボバルブ14と、それぞれ、電力ライン、信号ラインを介して接続されており、所定のプログラムに従って、両者を制御する。同様に、このCPU21には、圧力センサ17、スクリュ移動量センサ18、型内圧センサ19及び型内樹脂温度センサ28がそれぞれ信号ラインを介して接続されている。各センサ17〜19、28はそれぞれ、検出値を示す信号をCPU21に与える。   The above-described control of the injection unit 5 is performed by the control device 20. As shown in FIG. 2, the control device 20 includes an input device 26, an output device 27, a mold internal pressure waveform pattern storage means 22, a reference data storage means 23 such as a set pressure and a set temperature, timers t1 to t4, and a CPU 21. The CPU 21 has a storage circuit for storing a program for control / arithmetic processing and various data at the time of control / arithmetic operation. The CPU 21 is connected to the screw rotation motor 10 and the servo valve 14 of the injection unit 5 via a power line and a signal line, respectively, and controls both according to a predetermined program. Similarly, a pressure sensor 17, a screw movement amount sensor 18, an in-mold pressure sensor 19, and an in-mold resin temperature sensor 28 are connected to the CPU 21 via signal lines. Each of the sensors 17 to 19 and 28 gives a signal indicating a detection value to the CPU 21.

次に、図1中の金型加熱冷却制御回路の模式図により、可動金型2と固定金型3の加熱手段と冷却手段の構成について説明する。前記金型2,3を加熱する手段として、水蒸気発生器(水蒸気発生手段)31を用い、前記金型2、3を冷却する手段として、冷却装置(冷却水発生手段)41を用いた構成とした。   Next, the structure of the heating means and the cooling means of the movable mold 2 and the fixed mold 3 will be described with reference to the schematic diagram of the mold heating and cooling control circuit in FIG. A structure using a steam generator (steam generating means) 31 as means for heating the molds 2 and 3 and a cooling device (cooling water generating means) 41 as means for cooling the molds 2 and 3 did.

水蒸気発生器31は、貯水タンク36に貯留している加熱用水を高圧ポンプ32で吸い上げて水蒸気発生器31の本体の圧力容器内に押し込み、加熱用水を加熱し水蒸気を発生させる構成である。貯水タンク36は加熱用水供給兼回収タンクである。29は液面レベル計で、液面が設定高さ範囲を超えて低下したとき、水源に接続する図示せぬ切換弁を開いて水を補給する。また本実施の形態では加熱用水蒸気を貯水タンク36に回収する例を示したが、水蒸気は回収せずに大気に解放しても良い。   The steam generator 31 is configured to suck up the heating water stored in the water storage tank 36 with a high-pressure pump 32 and push it into the pressure vessel of the main body of the steam generator 31 to heat the heating water and generate steam. The water storage tank 36 is a heating water supply / recovery tank. 29 is a liquid level meter, and when the liquid level falls below the set height range, a switching valve (not shown) connected to the water source is opened to supply water. Moreover, although the example which collect | recovers the steam for heating in the water storage tank 36 was shown in this Embodiment, you may open | release to the air | atmosphere, without collect | recovering steam.

図1では、水蒸気発生器31は、加熱用媒体との熱交換により水蒸気を発生させる装置で示したが、一般的には水蒸気発生器31は、ボイラーを用いる場合が多い。水蒸気発生器31で発生した水蒸気を送出配管35に繋がった切換弁45を切換えて水蒸気を前記金型2、3に放出する。T1は水蒸気の温度検出センサである。温度検出センサT1で検出された水蒸気温度は、制御装置20において、制御装置20にメモリーされた水蒸気設定温度と比較し、切換弁46を開閉して加熱媒体をヒーター31aに通し設定温度になるように制御している。   In FIG. 1, the water vapor generator 31 is shown as a device that generates water vapor by heat exchange with the heating medium, but in general, the water vapor generator 31 often uses a boiler. The water vapor generated in the water vapor generator 31 is switched to the switching valve 45 connected to the delivery pipe 35 to release the water vapor to the molds 2 and 3. T1 is a water vapor temperature detection sensor. The water vapor temperature detected by the temperature detection sensor T1 is compared with the water vapor set temperature stored in the control device 20 in the control device 20, and the switching valve 46 is opened and closed so that the heating medium is passed through the heater 31a to the set temperature. Is controlling.

また、図1では、水蒸気発生器31のヒータ−31aは、電気抵抗ヒーター、高周波の電流による誘導加熱ヒータ−、不活性ガスの断熱圧縮を利用したヒートポンプ等の加熱手段でもよい。   In FIG. 1, the heater 31 a of the water vapor generator 31 may be a heating means such as an electric resistance heater, an induction heater using a high frequency current, or a heat pump using adiabatic compression of an inert gas.

冷却装置41は、冷却水タンク43に貯留している冷却水をポンプ42で吸い上げて冷却装置41へ押し込む。冷却水の温度は、金型のキャビティ4内に充填された成形品温度が成形品の材料の固化温度以下になるような低温とする。冷却水配管39に切換弁49と温度検出センサT2を設置する。冷媒配管48に設置された切換弁47を開閉して冷却媒体を冷却装置41に通し冷却水が設定温度になるように制御される。また本実施の形態では所定温度に調整した冷却水の冷却装置を冷却水の供給側に設けているが、代わりにクーリングタワーなどの冷却装置を冷却水の回収側に設け、冷却水を所定温度に調整せずに用いても支障ない。34,37は排出管、51,52は切換弁を夫々示す。   The cooling device 41 sucks the cooling water stored in the cooling water tank 43 with the pump 42 and pushes it into the cooling device 41. The temperature of the cooling water is set to such a low temperature that the temperature of the molded product filled in the cavity 4 of the mold becomes equal to or lower than the solidification temperature of the material of the molded product. A switching valve 49 and a temperature detection sensor T2 are installed in the cooling water pipe 39. The switching valve 47 installed in the refrigerant pipe 48 is opened and closed, and the cooling medium is controlled to pass through the cooling device 41 so that the cooling water reaches the set temperature. In this embodiment, the cooling water cooling device adjusted to a predetermined temperature is provided on the cooling water supply side. Instead, a cooling device such as a cooling tower is provided on the cooling water recovery side, and the cooling water is set to the predetermined temperature. It can be used without adjustment. Reference numerals 34 and 37 denote discharge pipes, and 51 and 52 denote switching valves.

制御装置20には、水蒸気を切換えて、金型を急速に加熱するように制御する加熱媒体の供給を停止するタイミングを設定するタイマー1(t1)、冷却水の供給を停止するタイミングを設定するタイマー2(t2)、加熱媒体供給停止から冷却媒体供給開始を遅延させるタイマー3(t3)、冷却媒体供給停止から加熱媒体供給開始を遅延させるタイマー4(t4)を備えている。   In the control device 20, the timer 1 (t1) for setting the timing for stopping the supply of the heating medium for switching the water vapor and controlling the mold to be heated rapidly, and the timing for stopping the supply of the cooling water are set. A timer 2 (t2), a timer 3 (t3) that delays the start of the supply of the cooling medium from the stop of the supply of the heating medium, and a timer 4 (t4) that delays the start of the supply of the heating medium from the stop of the supply of the cooling medium are provided.

続いて、図5により、上記の成形方法を実施できる電動射出ユニットを備えた射出成形装置120を説明する。この射出成形装置120は射出ユニット30以外は図1の射出成形装置1と殆ど同じ構成である。従って、同じ構成部分については、追加説明を要するものを除いて説明を省略する。   Subsequently, an injection molding apparatus 120 including an electric injection unit capable of performing the above molding method will be described with reference to FIG. The injection molding apparatus 120 has almost the same configuration as the injection molding apparatus 1 of FIG. Therefore, the description of the same components is omitted except for those requiring additional description.

射出成形装置120の射出ユニット30は、上述の射出成形装置1の射出シリンダ6と同じ構成の射出シリンダに一体の両側に直角に延びた一対のアーム57a、57aを備えた射出シリンダ57と、射出スクリュ部が上述の射出成形装置1の連結軸9と同じ形状でピストン11を有せず、回転駆動モータ60と直結する射出スクリュ58と、回転駆動モータ60のハウジング両側に延びたアームに対称にボールねじナット63,63を固定している移動アーム部材62と、射出シリンダ57のアーム57a、57aに取付けられた一対のモータ61,61に直結し、ボールねじナット63,63に螺合するボールねじ軸59、59とにより構成されている。   The injection unit 30 of the injection molding apparatus 120 includes an injection cylinder 57 having a pair of arms 57a and 57a extending at right angles to both sides integral with the injection cylinder having the same configuration as the injection cylinder 6 of the injection molding apparatus 1, and an injection cylinder. The screw part has the same shape as the connecting shaft 9 of the injection molding apparatus 1 described above, does not have the piston 11, and is symmetrical to the injection screw 58 directly connected to the rotary drive motor 60 and the arms extending on both sides of the housing of the rotary drive motor 60. A ball that is directly connected to the moving arm member 62 that fixes the ball screw nuts 63 and 63 and a pair of motors 61 and 61 that are attached to the arms 57 a and 57 a of the injection cylinder 57, and is screwed into the ball screw nuts 63 and 63. The screw shafts 59 and 59 are configured.

図示しないヒーターにより射出シリンダ57を加熱し、回転駆動モータ60を回転駆動することにより射出シリンダ57内に送り込まれた樹脂材料を可塑化溶融し、モータ61,61を回転して溶融樹脂を金型のキャビティ4へ送り出す手順は、射出充填に油のシリンダ7aと油圧のピストン11の代わりに、電動のモータ61、61を使用したこと以外は、上述の射出成形装置1の場合と同じである。   The injection cylinder 57 is heated by a heater (not shown), and the rotational drive motor 60 is rotationally driven to plasticize and melt the resin material fed into the injection cylinder 57, and the motors 61 and 61 are rotated to mold the molten resin into the mold. The procedure of feeding to the cavity 4 is the same as that of the above-described injection molding apparatus 1 except that the electric motors 61 and 61 are used instead of the oil cylinder 7a and the hydraulic piston 11 for injection filling.

この射出ユニット30は、溶融樹脂の射出充填時の射出スクリュ58の前進後の電動モータ61の減速時に発生する回生電力を、蓄電装置70、電気加熱手段38からなる金型加熱用の電力回路64へ制御装置40より回流回路65を介し、或いは、蓄電装置56、電気加熱手段55からなる冷却装置41を駆動する電力回路66へ回流回路54を介して回生することができる。(例えば、特公昭64−4896号公報)   The injection unit 30 uses a power circuit 64 for heating a mold, which includes a power storage device 70 and an electric heating means 38, to generate regenerative electric power generated when the electric motor 61 is decelerated after the injection screw 58 is advanced during injection filling with molten resin. The control device 40 can regenerate through the circulation circuit 65 or through the circulation circuit 54 to the power circuit 66 that drives the cooling device 41 including the power storage device 56 and the electric heating means 55. (For example, Japanese Examined Patent Publication No. 64-4896)

射出成形装置1を使用して樹脂製品を製造する射出成形方法について、図3の成形手順(s1〜s14)を示す工程図に従って説明する。先ず、図示しない型締装置を作動させて可動金型2と固定金型3を型締めし、キャビティ4を形成する。また、射出シリンダ6内に所定の樹脂材料を供給する。   An injection molding method for manufacturing a resin product using the injection molding apparatus 1 will be described with reference to process diagrams showing molding procedures (s1 to s14) in FIG. First, a mold clamping device (not shown) is operated to clamp the movable mold 2 and the fixed mold 3 to form the cavity 4. A predetermined resin material is supplied into the injection cylinder 6.

s1:加熱媒体供給バルブである切換弁45を開いて水蒸気を金型2,3へ送る。
s2:金型を加熱する。
s3:金型温度TMと金型の高温側の設定温度(設定金型上限温度)TSを比較しTM<TSのときは金型の加熱を続け、TM=TSになったら次工程s4へ進む。(金型の高温側設定温度TSは、金型キャビティ内に充填された樹脂が溶融状態を保持できる温度である。)
s4:加熱媒体供給バルブである切換弁45を閉じ、熱媒体の供給を止める。
s1: The switching valve 45, which is a heating medium supply valve, is opened to send water vapor to the molds 2 and 3.
s2: The mold is heated.
s3: The mold temperature TM is compared with a set temperature (set mold upper limit temperature) TS on the high temperature side of the mold. When TM <TS, the mold is continuously heated. When TM = TS, the process proceeds to the next step s4. . (The high temperature side set temperature TS of the mold is a temperature at which the resin filled in the mold cavity can maintain a molten state.)
s4: The switching valve 45, which is a heating medium supply valve, is closed to stop the supply of the heating medium.

s5:シリンダ7aに作動油を送って、射出スクリュ8を前進させて溶融樹脂を金型キャビティ4に、主に射出工程を速度制御にて制御しながら射出充填する。
s6:作動油の油圧を上昇させて型内圧制御工程に移行する。
s7:型内圧(キャビティ内の樹脂圧)PMと設定型内圧PSを比較し、PM<PSのときは作動油の圧力を上昇させ、PM=PSとなった瞬間から、射出速度制御から射出圧力制御に切り換えて、所定の型内圧プロファイルに沿うように射出圧力を制御しつつ射出を行い、次工程s8へ進む。
s8:溶融樹脂充填。
s9:作動油圧保持のまま溶融樹脂充填完了。
s5: The hydraulic oil is sent to the cylinder 7a, the injection screw 8 is advanced, and the molten resin is injected and filled into the mold cavity 4 while mainly controlling the injection process by speed control.
s6: The hydraulic pressure of the hydraulic oil is increased and the process proceeds to the mold internal pressure control process.
s7: The mold internal pressure (resin pressure in the cavity) PM and the set mold internal pressure PS are compared. When PM <PS, the hydraulic oil pressure is increased, and from the moment when PM = PS, the injection pressure is controlled from the injection speed control. Switching to the control, injection is performed while controlling the injection pressure so as to follow a predetermined mold pressure profile, and the process proceeds to the next step s8.
s8: Filling with molten resin.
s9: Filling with molten resin is completed while maintaining the hydraulic pressure.

s10:冷却媒体供給バルブである切換弁49を開いて金型内のパイプマニホールド2a、3aの熱媒体を冷却媒体に置き換える。
s11:金型温度TMと金型の低温側設定温度(設定金型下限温度)TCを比較しTM>TCのときは金型の冷却を続け、TM=TCになったら次工程s12へ進む。(金型の低温側設定温度TCは、金型キャビティ内に充填された樹脂が固化する温度である。)
s12:冷却媒体供給バルブである切換弁49を閉じて冷却媒体の供給を止める。
s13:放冷する。
s14:成形品が取出し可能な温度まで冷えたとき、型を開いて成形品を取出す。
s10: The switching valve 49, which is a cooling medium supply valve, is opened to replace the heat medium in the pipe manifolds 2a and 3a in the mold with the cooling medium.
s11: The mold temperature TM is compared with the low temperature side set temperature (set mold lower limit temperature) TC of the mold, and when TM> TC, the mold is continuously cooled, and when TM = TC, the process proceeds to the next step s12. (The low temperature side set temperature TC of the mold is a temperature at which the resin filled in the mold cavity is solidified.)
s12: The switching valve 49, which is a cooling medium supply valve, is closed to stop the supply of the cooling medium.
s13: Allow to cool.
s14: When the molded product cools to a temperature at which it can be taken out, the mold is opened and the molded product is taken out.

制御装置20のCPU21には表示装置50が備えられている。図7は成形1サイクルの金型温度と、射出時の射出圧と型内圧とを同じ時系列で表示した一例である。図7の上段に成形工程を示し、その下側に成形工程のタイミングに合わせて射出圧力Ph(射出油圧)、型内圧PM、スクリュ位置を表示し、その下段に金型の温度TMを表示している。   The CPU 21 of the control device 20 is provided with a display device 50. FIG. 7 shows an example in which the mold temperature of one molding cycle, the injection pressure at the time of injection, and the pressure inside the mold are displayed in the same time series. The upper part of FIG. 7 shows the molding process, the lower part displays the injection pressure Ph (injection hydraulic pressure), the mold pressure PM, and the screw position in accordance with the timing of the molding process, and the lower part displays the mold temperature TM. ing.

図の射出圧力Ph(射出油圧)と型内圧PMの線図において、樹脂の射出が開始してt0時間後に定常充填工程Kaが始まり、射出スクリュ8は一定速度で定常充填工程Kaを経過し、型内圧制御工程K2へ移行後、型内圧制御工程K2を終了する。   In the diagram of the injection pressure Ph (injection hydraulic pressure) and the in-mold pressure PM in the figure, the steady filling process Ka starts t0 hours after the start of resin injection, and the injection screw 8 passes through the steady filling process Ka at a constant speed. After shifting to the mold internal pressure control process K2, the mold internal pressure control process K2 is terminated.

金型温度TMが所定冷却下限温度である設定金型下限温度TCに到達した時点で、金型の熱媒体と冷却媒体の入れ替えが開始され、金型温度が設定金型上限温度TSに達したことを確認したとき、次の成形サイクルの射出が開始される。次の成形サイクルの射出開始は、金型温度が設定金型上限温度TSに達する前でもタイマーなどにより任意のタイミングで行っても良い。   When the mold temperature TM reaches the set mold lower limit temperature TC, which is the predetermined cooling lower limit temperature, the replacement of the mold heat medium and the cooling medium is started, and the mold temperature reaches the set mold upper limit temperature TS. When this is confirmed, injection of the next molding cycle is started. The injection of the next molding cycle may be started at an arbitrary timing by a timer or the like even before the mold temperature reaches the set mold upper limit temperature TS.

前記のように金型温度と射出圧力を連携して制御することにより得られる効果を図8〜図13を用いて説明する。図8と図9に従来成形におけるキャビティ段付き部の流動、圧力状態を示す。図12に従来成形における型内圧のプロファイルを示す。実線は低圧射出時の型内圧のプロファイルであり、二点破線は高圧射出時の型内圧のプロファイルである。図10と図11に本発明におけるキャビティ段付き部の流動、圧力状態を示す。図13に本発明における型内圧のプロファイルを示す。実線は低圧射出時の型内圧のプロファイルであり、二点破線は高圧射出時の型内圧のプロファイルである。   The effect obtained by controlling the mold temperature and the injection pressure in cooperation as described above will be described with reference to FIGS. 8 and 9 show the flow and pressure states of the cavity step portion in the conventional molding. FIG. 12 shows a profile of in-mold pressure in conventional molding. The solid line is the profile of the mold pressure at the time of low pressure injection, and the two-dot broken line is the profile of the mold pressure at the time of high pressure injection. 10 and 11 show the flow and pressure states of the cavity step portion in the present invention. FIG. 13 shows a profile of the mold internal pressure in the present invention. The solid line is the profile of the mold pressure at the time of low pressure injection, and the two-dot broken line is the profile of the mold pressure at the time of high pressure injection.

図8及び図9では金型温度が通常、熱変形温度以下の樹脂固化温度であるため、充填中にスキン層が発生し、樹脂の流動可能領域が狭くなり、特に薄肉部では大きな圧力損失が発生し、局部的に樹脂圧が低い領域が発生してしまう。これに対し、例えば型内圧センサ19aが検知する型内圧値は、他部に設けられた型内圧センサ、例えばゲート直近に設けられた型内圧センサ19bや、ゲートから離れた部分に設けられた型内圧センサ19cが検知する型内圧変化度合いに対し、極端に小さな型内圧値の変化しか発生しない。   In FIGS. 8 and 9, since the mold temperature is usually a resin solidification temperature equal to or lower than the heat distortion temperature, a skin layer is generated during filling, the resin flowable region is narrowed, and a large pressure loss occurs particularly in a thin portion. And a region where the resin pressure is locally low is generated. On the other hand, for example, the mold internal pressure value detected by the mold internal pressure sensor 19a is the mold internal pressure sensor provided in the other part, for example, the mold internal pressure sensor 19b provided in the immediate vicinity of the gate, or the mold provided in a part away from the gate. Only a very small change in the mold internal pressure value occurs with respect to the mold internal pressure change degree detected by the internal pressure sensor 19c.

このため、図12に示すように型内圧センサ19aが検知した型内圧値によって、射出圧力を制御すると、目標型内圧値を大きく変化させても、型内圧センサ19aのような型内圧力値が小さく樹脂の充填量が小さい箇所に発生する圧力値は期待ほど大きくは変化せず、充填不良、充填不足が発生してしまう。また充填不良、充填不足が無く、成形不良が発生しない型内圧センサ位置を見出すのは多数回にわたる試行錯誤が必要となり、作業効率が悪い。   For this reason, as shown in FIG. 12, when the injection pressure is controlled by the mold internal pressure value detected by the mold internal pressure sensor 19a, the mold internal pressure value such as the mold internal pressure sensor 19a is changed even if the target mold internal pressure value is greatly changed. The pressure value generated at a small and small amount of resin filling does not change as much as expected, resulting in poor filling and insufficient filling. In addition, finding the position of the in-mold pressure sensor where there is no defective filling or insufficient filling and no defective molding is required requires many trials and errors, resulting in poor work efficiency.

図10及び図11は本発明により射出充填中の金型の温度が樹脂の流動開始温度以上に保たれている為、スキン層が発生せず樹脂の流動可能領域が金型のキャビティ幅全域をとなり、樹脂の流動圧力損失を最小限となり型内圧力の差を緩やかにすることが出来る。よって薄肉部の型内圧センサ19cが検知する型内圧値は、他部の型内圧センサ19b、19cが検知する型内圧値との差が小さくなる。   FIG. 10 and FIG. 11 show that the mold temperature during injection filling is maintained at a temperature equal to or higher than the resin flow start temperature according to the present invention, so that no skin layer is generated and the resin flowable region covers the entire cavity width of the mold. Thus, the flow pressure loss of the resin is minimized, and the difference in the mold pressure can be made gentle. Therefore, the mold internal pressure value detected by the mold internal pressure sensor 19c in the thin portion is less different from the mold internal pressure values detected by the mold internal pressure sensors 19b and 19c in the other parts.

このため図13に示すように型内圧センサ19bが検知する型内圧値によって射出圧力を制御し、目標型内圧値を変化させれば、型内圧センサ19aが設けられた薄肉の部分でも、期待通りの型内圧変化を得ることが出来ることから、充填不良、充填不足が無く、成形不良が発生しない型内圧センサ位置を見出すことが容易になる。また、どの位置に型内圧センサを備えても、制御性が高い適正な型内圧値の選定が容易にできるので、型内圧センサの設置位置の選定も短時間で行うことができる。   Therefore, as shown in FIG. 13, if the injection pressure is controlled by the mold internal pressure value detected by the mold internal pressure sensor 19b and the target mold internal pressure value is changed, the thin portion provided with the mold internal pressure sensor 19a is expected as expected. Therefore, it is easy to find the position of the mold pressure sensor where there is no filling failure and insufficient filling, and no molding failure occurs. In addition, regardless of the position where the mold pressure sensor is provided, it is possible to easily select an appropriate mold pressure value with high controllability, and therefore, the position where the mold pressure sensor is installed can be selected in a short time.

(第2の実施の形態)
第2の実施の形態として、図1の射出成形装置1、又は、図5の射出成形装置120を用いた成形手順を示す工程図(図4)により説明する。この第2の実施の形態の成形方法が上述の第1の実施の形態の成形方法と異なる点は、工程s3の金型温度の比較制御工程をタイマー1(t1)の工程s15に、同様に、金型冷却時の工程s11の金型温度の比較制御工程をタイマー2(t2)の工程s16に置き換えたことであり、その他の工程と順序に変わりは無い。
(Second Embodiment)
As a second embodiment, a process diagram (FIG. 4) showing a molding procedure using the injection molding apparatus 1 of FIG. 1 or the injection molding apparatus 120 of FIG. 5 will be described. The molding method of the second embodiment is different from the molding method of the first embodiment described above in that the mold temperature comparison control step in step s3 is similarly performed in step s15 of timer 1 (t1). In this case, the mold temperature comparison and control process in the process s11 during mold cooling is replaced with the process s16 of the timer 2 (t2), and the order of the other processes is not changed.

射出成形装置1を使用して第2の実施の形態の樹脂製品を製造する射出成形方法について、図4の成形手順(s1〜s16)を示す工程図に従って説明する。先ず、図示しない型締装置を作動させて可動金型2と固定金型3を型締めし、キャビティ4を形成する。また、射出シリンダ6内に所定の樹脂材料を供給する。   The injection molding method for manufacturing the resin product of the second embodiment using the injection molding apparatus 1 will be described according to the process chart showing the molding procedure (s1 to s16) in FIG. First, a mold clamping device (not shown) is operated to clamp the movable mold 2 and the fixed mold 3 to form the cavity 4. A predetermined resin material is supplied into the injection cylinder 6.

s1:加熱媒体供給バルブである切換弁45を開いて水蒸気を金型2,3へ送る。
s2:金型を加熱する。
s15:タイマー1(t1)のカウントアップ
s4:加熱媒体供給バルブである切換弁45を閉じ、熱媒体の供給を止める。
s1: The switching valve 45, which is a heating medium supply valve, is opened to send water vapor to the molds 2 and 3.
s2: The mold is heated.
s15: Count up of timer 1 (t1) s4: The switching valve 45, which is a heating medium supply valve, is closed, and supply of the heat medium is stopped.

s5:シリンダ7aに作動油を送って、射出スクリュ8を前進させて溶融樹脂を金型キャビティ4に射出充填する。
s6:作動油の油圧を上昇させて型内圧保持制御工程に移行する。
s7:型内圧(キャビティ内の樹脂圧)PMと設定型内圧PSを比較し、PM<PSのときは作動油の圧力を上昇させ、PM=PSのときは作動油圧を保持し、次工程s8へ進む。
s8:溶融樹脂充填。
s9:作動油圧保持のまま溶融樹脂充填完了。
s5: The hydraulic oil is sent to the cylinder 7a, and the injection screw 8 is advanced to inject and fill the mold cavity 4 with the molten resin.
s6: The hydraulic pressure of the hydraulic oil is increased and the process proceeds to the mold internal pressure holding control process.
s7: The mold internal pressure (resin pressure in the cavity) PM and the set mold internal pressure PS are compared. When PM <PS, the hydraulic oil pressure is increased. When PM = PS, the hydraulic pressure is maintained, and the next step s8 Proceed to
s8: Filling with molten resin.
s9: Filling with molten resin is completed while maintaining the hydraulic pressure.

s10:冷却媒体供給バルブである切換弁49を開いて金型内のパイプマニホールド2a、3aの熱媒体を冷却媒体に置き換える。
s16:タイマー2(t2)のカウントアップ
s12:冷却媒体供給バルブである切換弁49を閉じて冷却媒体の供給を止める。
s13:放冷する。
s14:成形品が取出し可能な温度まで冷えたとき、型を開いて成形品を取出す。
s10: The switching valve 49, which is a cooling medium supply valve, is opened to replace the heat medium in the pipe manifolds 2a and 3a in the mold with the cooling medium.
s16: Count up of timer 2 (t2) s12: The switching valve 49, which is a cooling medium supply valve, is closed to stop the supply of the cooling medium.
s13: Allow to cool.
s14: When the molded product is cooled to a temperature at which it can be taken out, the mold is opened and the molded product is taken out.

型内圧制御工程K2が開始した時点でカウント開始し始めたタイマー2(t2)がカウントアップした時点で、金型の熱媒体と冷却媒体の入れ替えが開始され、金型温度が上昇を始めた時点K3においてタイマー1(t1)がカウント開始する。t1がカウントアップした時点で、次の成形サイクルの射出が開始される。   When timer 2 (t2), which started counting when mold internal pressure control process K2 is started, starts to replace mold heat medium and cooling medium, and mold temperature starts to rise. At K3, timer 1 (t1) starts counting. When t1 is counted up, injection of the next molding cycle is started.

タイマー1(t1)、タイマー2(t2)は、いずれも、始点と時間の調整が可能であり、金型の昇温、降温のオーバーシュートを考慮して早め、遅めにセットを調整して、最適な始点のタイミングとタイムアップ時点を決めることができる。   Both the timer 1 (t1) and timer 2 (t2) can be adjusted for the start point and time. Adjust the set early and late in consideration of overshooting of mold temperature rise and fall. The optimal start point timing and time up point can be determined.

金型の加熱時間、或いは、冷却の時間は、熱媒体又は、冷却媒体の温度と供給速度が同じであれば、各成形サイクル毎に殆ど変わることは無いので、多少の余裕をとってタイマー1(t1)又は、タイマー2(t2)の時間を設定して置けば、加熱媒体又は、冷却媒体の切換を行っても成形条件から外れることはない。   The heating time or cooling time of the mold hardly changes with each molding cycle if the temperature of the heat medium or the cooling medium is the same as the supply speed. If the time of (t1) or timer 2 (t2) is set and set, even if the heating medium or the cooling medium is switched, it does not deviate from the molding conditions.

(第3の実施の形態)
第3の実施の形態として、図1の射出成形装置1、又は、図5の射出成形装置120を用いた成形手順を示す工程図(図6)により説明する。この第3の実施の形態の成形方法が上述の第1の実施の形態の成形方法と異なる点は、工程s4の熱媒体供給バルブ閉と、工程s10の冷却媒体供給バルブ開との間にs17のタイマー3(t3)の工程を挿入し、また、工程s12の冷却媒体供給停止と、工程s1の加熱媒体供給開始との間にs18のタイマー4(t4)の工程を挿入したことであり、その他の工程と順序に変わりは無い。
(Third embodiment)
A third embodiment will be described with reference to a process diagram (FIG. 6) showing a molding procedure using the injection molding apparatus 1 of FIG. 1 or the injection molding apparatus 120 of FIG. The molding method of the third embodiment is different from the molding method of the first embodiment described above in that s17 is between the heat medium supply valve closing in step s4 and the cooling medium supply valve opening in step s10. The process of timer 3 (t3) is inserted, and the process of timer 4 (t4) of s18 is inserted between the cooling medium supply stop of process s12 and the heating medium supply start of process s1. There is no change in other processes and order.

射出成形装置1を使用して樹脂製品を製造する射出成形方法について、図6の成形手順(s1〜s14)を示す工程図に従って説明する。先ず、図示しない型締装置を作動させて可動金型2と固定金型3を型締めし、キャビティ4を形成する。また、射出シリンダ6内に所定の樹脂材料を供給する。   An injection molding method for manufacturing a resin product using the injection molding apparatus 1 will be described with reference to process diagrams showing molding procedures (s1 to s14) in FIG. First, a mold clamping device (not shown) is operated to clamp the movable mold 2 and the fixed mold 3 to form the cavity 4. A predetermined resin material is supplied into the injection cylinder 6.

s1:加熱媒体供給バルブである切換弁45を開いて水蒸気を金型2,3へ送る。
s2:金型を加熱する。
s3:金型温度TMと金型の高温側設定温度(設定金型上限温度)TSを比較しTM<TSのときは金型の加熱を続け、TM=TSになったら次工程s4へ進む。(金型の高温側設定温度TSは、金型キャビティ内に充填された樹脂が溶融状態を保持できる温度である。)
s4:加熱媒体供給バルブである切換弁45を閉じ、熱媒体の供給を止める。
s17:タイマー3(t3)カウントスタート。タイマー3(t3)カウントアップにより工程s10:冷却媒体供給開始に移行する。
s1: The switching valve 45, which is a heating medium supply valve, is opened to send water vapor to the molds 2 and 3.
s2: The mold is heated.
s3: The mold temperature TM is compared with the high temperature side set temperature (set mold upper limit temperature) TS of the mold, and when TM <TS, the mold is continuously heated, and when TM = TS, the process proceeds to the next step s4. (The high temperature side set temperature TS of the mold is a temperature at which the resin filled in the mold cavity can maintain a molten state.)
s4: The switching valve 45, which is a heating medium supply valve, is closed to stop the supply of the heating medium.
s17: Timer 3 (t3) count start. When the timer 3 (t3) counts up, the process proceeds to step s10: start of cooling medium supply.

s5:シリンダ7aに作動油を送って、射出スクリュ8を前進させて溶融樹脂を金型キャビティ4に射出充填する。
s6:作動油の油圧を上昇させて型内圧保持制御工程に移行する。
s7:型内圧(キャビティ内の樹脂圧)PMと設定型内圧PSを比較し、PM<PSのときは作動油の圧力を上昇させ、PM=PSのときは作動油圧を保持し、次工程s8へ進む。
s8:溶融樹脂充填。
s9:作動油圧保持のまま溶融樹脂充填完了。
s5: The hydraulic oil is sent to the cylinder 7a, and the injection screw 8 is advanced to inject and fill the mold cavity 4 with the molten resin.
s6: The hydraulic pressure of the hydraulic oil is increased and the process proceeds to the mold internal pressure holding control process.
s7: The mold internal pressure (resin pressure in the cavity) PM and the set mold internal pressure PS are compared. When PM <PS, the hydraulic oil pressure is increased. When PM = PS, the hydraulic pressure is maintained, and the next step s8 Proceed to
s8: Filling with molten resin.
s9: Filling with molten resin is completed while maintaining the hydraulic pressure.

s10:冷却媒体供給バルブである切換弁49を開いて金型内のパイプマニホールド2a、3aの熱媒体を冷却媒体に置き換える。
s18:タイマー4(t4)カウント開始。タイマー4(t4)カウントアップにて、工程s1の加熱媒体供給開始に移行する。
s11:金型温度TMと金型の低温側設定温度(設定金型下限温度)TCを比較しTM>TCのときは金型の冷却を続け、TM=TCになったら次工程s12へ進む。(金型の低温側設定温度TCは、金型キャビティ内に充填された樹脂が固化する温度である。)
s12:冷却媒体供給バルブである切換弁49を閉じて冷却媒体の供給を止める。
s13:放冷する。
s14:成形品が取出し可能な温度まで冷えたとき、型を開いて成形品を取出す。
s10: The switching valve 49, which is a cooling medium supply valve, is opened to replace the heat medium in the pipe manifolds 2a and 3a in the mold with the cooling medium.
s18: Timer 4 (t4) starts counting. When the timer 4 (t4) counts up, the process proceeds to the heating medium supply start in step s1.
s11: The mold temperature TM is compared with the low temperature side set temperature (set mold lower limit temperature) TC of the mold, and when TM> TC, the mold is continuously cooled, and when TM = TC, the process proceeds to the next step s12. (The low temperature side set temperature TC of the mold is a temperature at which the resin filled in the mold cavity is solidified.)
s12: The switching valve 49, which is a cooling medium supply valve, is closed to stop the supply of the cooling medium.
s13: Allow to cool.
s14: When the molded product cools to a temperature at which it can be taken out, the mold is opened and the molded product is taken out.

金型温度TMが所定の低温側設定温度(設定金型下限温度)TCに到達した時点、又は、型内圧制御工程K2が開始した時点でカウント開始し始めたタイマーt4がカウントアップした時点で、冷却から加熱に切り換え、次サイクルのタイマーt1がカウント開始する。   When the mold temperature TM reaches a predetermined low temperature side set temperature (set mold lower limit temperature) TC, or when the timer t4 that starts counting when the mold internal pressure control step K2 starts, counts up, Switching from cooling to heating, the timer t1 of the next cycle starts counting.

成形作業の初期においての温度比較制御が不安定なときは、加熱媒体と冷却媒体の切換えタイミングを温度とタイマーの2つの条件が成立したタイミングとしても良い。   When the temperature comparison control in the initial stage of the molding operation is unstable, the switching timing of the heating medium and the cooling medium may be a timing when two conditions of temperature and timer are satisfied.

前記実施の形態における加熱媒体と冷却媒体の切換えタイミングを適正に選定する為に、表示装置50に表示された温度と型内圧のグラフでビジュアルに確認することにより、工程の切り換えタイミングの選定をイメージし易くなり、適正な加熱媒体と冷却媒体の切換えタイミングの選定が容易になる。   In order to properly select the timing for switching between the heating medium and the cooling medium in the embodiment, the selection of the process switching timing is visually confirmed by visually confirming the graph of the temperature and the mold pressure displayed on the display device 50. This makes it easy to select an appropriate heating medium and cooling medium switching timing.

また前記実施の形態1〜3では、冷却開始のタイミングを充填完了時またはタイマーのカウントアップとしているが、キャビティの所定位置の圧力が予め定めた所定の圧力値に達した時点で冷却を開始しても良い。当該キャビティの所定位置を高外観、高転写性が必要な箇所に選定すれば、射出工程中に高外観、高転写性が必要な箇所の圧力が、転写に有効な圧力値に達したことを確認して冷却を開始できるので、確実な転写性を得ることが出来る上、成形サイクルの短縮に有効である。   In the first to third embodiments, the cooling start timing is set to the completion of filling or the timer is counted up, but the cooling is started when the pressure at a predetermined position of the cavity reaches a predetermined pressure value. May be. If the predetermined position of the cavity is selected at a location that requires high appearance and high transferability, the pressure at the location that requires high appearance and high transferability during the injection process has reached the pressure value effective for transfer. Since cooling can be started after confirmation, reliable transferability can be obtained and it is effective for shortening the molding cycle.

更には、冷却開始は射出スクリュ8または58が予め設定された所定の位置に達した時点で冷却開始としても良い。型内圧PMが設定型内圧PSに到達後は、射出工程は圧力制御にて行う為、予め設定された設定型内圧PSが充填に不十分であった場合、射出スクリュ8または58はキャビティ4を充満させる前に前進が出来なくなり停止してしまう。この状態で、制御装置20、40が充填完了を判断し冷却を開始させた場合、充填不足のままキャビティ4内の樹脂が固化してしまい成形不良が発生する。この場合に対して、射出スクリュ8または58が予め設定されたキャビティ4内が樹脂で十分充満可能なスクリュ位置まで達していることが冷却開始の必要条件であれば、充填不足のままキャビティ4内の樹脂が固化してしまい成形不良の発生を防止できる。   Furthermore, the cooling start may be started when the injection screw 8 or 58 reaches a predetermined position set in advance. After the mold internal pressure PM reaches the set mold internal pressure PS, the injection process is carried out by pressure control. Therefore, if the preset mold internal pressure PS is insufficient for filling, the injection screw 8 or 58 will move the cavity 4 into the cavity 4. You can't move forward before it fills up and you stop. In this state, when the control devices 20 and 40 determine completion of filling and start cooling, the resin in the cavity 4 is solidified with insufficient filling, and molding defects occur. On the other hand, if the injection screw 8 or 58 has reached the screw position where the preset cavity 4 can be sufficiently filled with the resin, it is necessary to start cooling. The resin is solidified, and the occurrence of molding defects can be prevented.

また冷却開始は、前記加熱媒体供給終了と同時または加熱熱媒体供給終了とともにスタートするタイマーのカウントアップ時点と、前記キャビティ4の所定位置の圧力の予め定めた所定の圧力値への到達と、射出スクリュ8または58が予め設定された所定の位置に達した時点の、少なくとも1つを選択して、前記冷却媒体供給の開始のタイミングとしても良い。タイマーとキャビティ内圧力とスクリュ位置のいずれか1つ乃至2つ、あるいは全ての条件を選定できることから、成形条件の設定幅を大きくでき成形性を向上できる。当該条件の選定要領としては、選定した条件が全て満足すること、選定した条件の内1つが成立することなど種々の方法が可能である。   Further, the cooling start is performed when the timer counts up at the same time when the heating medium supply ends or when the heating heat medium supply ends, when the pressure at a predetermined position of the cavity 4 reaches a predetermined pressure value, and injection At least one when the screw 8 or 58 reaches a predetermined position set in advance may be selected as the start timing of the cooling medium supply. Since any one or two of the timer, the pressure in the cavity, and the screw position, or all the conditions can be selected, the setting range of the molding conditions can be increased and the moldability can be improved. As a procedure for selecting the conditions, various methods such as satisfying all the selected conditions and satisfying one of the selected conditions are possible.

本発明の射出成形サイクル中における温度制御については、金型加熱回路の各部の構成、成形手順については、上記したものに何ら限定する意図は無く、適宜に変更されることを許容する。これ以外にも本発明の意図を逸脱しない限り、上記実施の形態に挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。   Regarding the temperature control during the injection molding cycle of the present invention, the configuration of each part of the mold heating circuit and the molding procedure are not intended to be limited to those described above, and are allowed to be changed as appropriate. In addition to this, as long as it does not deviate from the intention of the present invention, the configuration described in the above embodiment can be selected or changed to another configuration as appropriate.

1、120 射出成形装置
2 可動金型
3 固定金型
4 キャビティ
5、30 射出ユニット
6、57 射出シリンダ
8、58 射出スクリュ
10 スクリュ回転モータ
60 回転駆動モータ
14 サーボバルブ
17 圧力センサ
20、40 制御装置
21 CPU
31 水蒸気発生装置
41 冷却装置
50 表示装置
DESCRIPTION OF SYMBOLS 1,120 Injection molding apparatus 2 Movable mold 3 Fixed mold 4 Cavity 5, 30 Injection unit 6, 57 Injection cylinder 8, 58 Injection screw 10 Screw rotation motor 60 Rotation drive motor 14 Servo valve 17 Pressure sensor 20, 40 Control apparatus 21 CPU
31 Water Vapor Generator 41 Cooling Device
50 Display device

Claims (11)

金型キャビティ内の樹脂圧力を測定可能な少なくとも1つの型内圧センサと、キャビティ近傍の温度を測定可能な温度センサを少なくとも1つ備えた金型と、前記金型内に射出プランジャまたはスクリュの前進により溶融樹脂を充填する射出装置と、所定のキャビティ内の型内圧力値を入力可能な入力装置と、前記圧力センサにより測定された圧力値が前記入力装置により入力された型内圧力値となるように、前記射出プランジャまたはスクリュの前進圧力である射出圧力を制御する射出圧力制御装置とを備えた射出成形機と、
金型を加熱するための加熱媒体と金型を冷却するための冷却媒体をそれぞれ供給することが可能な金型加熱冷却装置とを備え、加熱媒体と冷却媒体を切換えるバルブを備え加熱媒体と冷却媒体を前記バルブにより切換えて共通の流路に供給し金型の温度を制御しながら前記射出成形機を操作して成形品を製造する射出成形方法において、
前記射出装置が金型内に溶融樹脂を射出する前に、加熱媒体の供給を開始することにより金型の温度を加熱昇温し、前記キャビティ近傍に備えた前記温度センサにより測定された金型の温度が、所定の加熱目標温度に達した時点、または金型を加熱開始からスタートするタイマーがタイムアップした時点で加熱媒体の供給を終了し、
一方、前記金型の加熱途中または加熱終了後に前記射出装置が金型内への溶融樹脂の充填を開始し、該充填工程において、前記圧力センサにより測定した金型内の圧力が、前記入力装置により設定された型内圧力値となるように、前記射出プランジャまたはスクリュの射出圧力を制御し、該充填工程の充填中または充填後に、冷却媒体の供給を開始することにより金型の温度を降温し、前記キャビティ近傍に備えた前記温度センサにより測定された金型の温度が、所定の冷却目標温度に達した時点、または金型を冷却開始からスタートするタイマーがタイムアップした時点で冷却媒体の供給を終了することを特徴とする射出成形方法。
A mold having at least one mold pressure sensor capable of measuring the resin pressure in the mold cavity, at least one temperature sensor capable of measuring a temperature in the vicinity of the cavity, and an advance of an injection plunger or screw in the mold; The injection device for filling the molten resin by the above, the input device capable of inputting the in-mold pressure value in the predetermined cavity, and the pressure value measured by the pressure sensor becomes the in-mold pressure value input by the input device An injection molding machine equipped with an injection pressure control device that controls an injection pressure that is a forward pressure of the injection plunger or screw,
A heating medium for heating the mold and a mold heating / cooling device capable of supplying a cooling medium for cooling the mold, respectively, and a valve for switching between the heating medium and the cooling medium are provided. In an injection molding method of manufacturing a molded product by operating the injection molding machine while controlling the temperature of a mold by switching a medium by the valve and supplying a common flow path,
Before the injection device injects the molten resin into the mold, the temperature of the mold is increased by starting the supply of the heating medium, and the mold is measured by the temperature sensor provided near the cavity. When the temperature of reaches the predetermined heating target temperature, or when the timer for starting the mold starts heating up, the supply of the heating medium is terminated,
On the other hand, the injection device starts filling the molten resin into the mold during or after the heating of the mold, and the pressure in the mold measured by the pressure sensor in the filling step is the input device. The injection pressure of the injection plunger or the screw is controlled so that the in-mold pressure value set by the above is established, and the temperature of the mold is lowered by starting the supply of the cooling medium during or after the filling process. When the temperature of the mold measured by the temperature sensor provided in the vicinity of the cavity reaches a predetermined cooling target temperature, or when the timer that starts the mold from the start of cooling expires, An injection molding method characterized by terminating the supply.
請求項1に記載する射出成形方法において、
前記金型が、樹脂流動圧が低下するような薄肉部を有する金型であることを特徴とする射出成形方法。
In the injection molding method according to claim 1,
An injection molding method characterized in that the mold is a mold having a thin portion where the resin flow pressure decreases.
請求項2に記載する射出成形方法において、
充填工程の充填中または充填完了まで、少なくとも前記薄肉部の温度を、樹脂の流動開始温度以上に維持することを特徴とする射出成形方法。
In the injection molding method according to claim 2,
An injection molding method characterized in that at least the temperature of the thin-walled portion is maintained at a temperature equal to or higher than the flow start temperature of the resin during filling or until completion of filling.
請求項1〜3のいずれか1項に記載する射出成形方法において、
前記射出プランジャまたはスクリュの前進が電動モータを駆動源とする射出装置であることを特徴とする射出成形方法。
In the injection molding method according to any one of claims 1 to 3,
An injection molding method wherein the forward movement of the injection plunger or screw is an injection device using an electric motor as a drive source.
請求項4に記載する射出成形方法において、
前記電動モータの減速時に発生する回生電力を前記金型加熱冷却装置に供給することを特徴とする射出成形方法。
In the injection molding method according to claim 4,
An injection molding method, wherein regenerative electric power generated during deceleration of the electric motor is supplied to the mold heating / cooling device.
請求項1〜5のいずれか1項に記載する射出成形方法において、
前記型内圧センサにより測定された型内圧プロファイルと前記キャビティ近傍に備えた温度センサにより測定された金型の温度プロファイルを表示装置に同一の画面で表示して成形条件の妥当性を評価することを特徴とする射出成形方法。
In the injection molding method according to any one of claims 1 to 5,
The mold pressure profile measured by the mold pressure sensor and the temperature profile of the mold measured by the temperature sensor provided near the cavity are displayed on the same screen on the display device to evaluate the validity of the molding conditions. A featured injection molding method.
請求項1〜6のいずれか1項に記載する射出成形方法において、
前記樹脂が結晶性樹脂であることを特徴とする射出成形方法。
In the injection molding method according to any one of claims 1 to 6,
An injection molding method, wherein the resin is a crystalline resin.
請求項1〜6のいずれか1項に記載する射出成形方法において、
前記樹脂が高粘度の非晶性樹脂であることを特徴とする射出成形方法。
In the injection molding method according to any one of claims 1 to 6,
An injection molding method, wherein the resin is an amorphous resin having a high viscosity.
金型キャビティ内の樹脂圧力を測定可能な少なくとも1つの型内圧センサと、キャビティ近傍の温度を測定可能な温度センサを少なくとも1つ備えた金型と、前記金型内に射出プランジャまたはスクリュの前進により溶融樹脂を充填する射出装置と、所定のキャビティ内の型内圧力値を入力可能な入力装置と、前記圧力センサにより測定された圧力値が前記入力装置により入力された型内圧力値となるように、前記射出プランジャまたはスクリュの前進圧力である射出圧力を制御する射出圧力制御装置とを備えた射出成形機と、
金型を加熱するための加熱媒体と金型を冷却するための冷却媒体をそれぞれ供給することが可能な金型加熱冷却装置とを備え、加熱媒体と冷却媒体を切換えるバルブを備え加熱媒体と冷却媒体を前記バルブにより切換えて共通の流路に供給し金型の温度を制御しながら前記射出成形機を操作して成形品を製造する射出成形方法において、
前記射出装置が金型内に溶融樹脂を射出する前に、加熱媒体の供給を開始することにより金型の温度を加熱昇温し、前記キャビティ近傍に備えた前記温度センサにより測定された金型の温度が、所定の加熱目標温度に達し、かつ、金型を加熱開始からスタートするタイマーがタイムアップした時点で加熱媒体の供給を終了し、
一方、前記金型の加熱途中または加熱終了後に前記射出装置が金型内への溶融樹脂の充填を開始し、該充填工程において、前記圧力センサにより測定した金型内の圧力が、前記入力装置により入力された型内圧力値となるように、前記射出プランジャまたはスクリュの射出圧力を制御し、該充填工程の充填中または充填後に、冷却媒体の供給を開始することにより金型の温度を降温し、前記キャビティ近傍に備えた前記温度センサにより測定された金型の温度が、所定の冷却目標温度に達し、かつ、金型を冷却開始からスタートするタイマーがタイムアップした時点で冷却媒体の供給を終了することを特徴とする射出成形方法。
A mold having at least one mold pressure sensor capable of measuring the resin pressure in the mold cavity, at least one temperature sensor capable of measuring a temperature in the vicinity of the cavity, and an advance of an injection plunger or screw in the mold; The injection device for filling the molten resin by the above, the input device capable of inputting the in-mold pressure value in the predetermined cavity, and the pressure value measured by the pressure sensor becomes the in-mold pressure value input by the input device An injection molding machine equipped with an injection pressure control device that controls an injection pressure that is a forward pressure of the injection plunger or screw,
A heating medium for heating the mold and a mold heating / cooling device capable of supplying a cooling medium for cooling the mold, respectively, and a valve for switching between the heating medium and the cooling medium are provided. In an injection molding method of manufacturing a molded product by operating the injection molding machine while controlling the temperature of a mold by switching a medium by the valve and supplying a common flow path,
Before the injection device injects the molten resin into the mold, the temperature of the mold is increased by starting the supply of the heating medium, and the mold is measured by the temperature sensor provided near the cavity. When the temperature reaches the predetermined heating target temperature and the timer that starts the mold from the start of heating times up, the supply of the heating medium is terminated,
On the other hand, the injection device starts filling the molten resin into the mold during or after the heating of the mold, and the pressure in the mold measured by the pressure sensor in the filling step is the input device. The injection pressure of the injection plunger or the screw is controlled so that the in-mold pressure value input by the above is controlled, and the temperature of the mold is lowered by starting the supply of the cooling medium during or after the filling process. Then, when the temperature of the mold measured by the temperature sensor provided in the vicinity of the cavity reaches a predetermined cooling target temperature and the timer for starting the cooling of the mold starts up, the cooling medium is supplied. The injection molding method characterized by ending.
請求項1〜9のいずれか1項に記載する射出成形方法において、
前記冷却媒体供給の開始のタイミングを、前記加熱媒体の供給終了時点または加熱媒体供給終了と同時にスタートするタイマーのカウントアップ時点と、射出プランジャまたはスクリュが所定の位置に到達した時点と、キャビティの所定位置の圧力が予め定めた所定の圧力値に達した時点の、少なくとも1つを選択して、前記冷却媒体供給の開始のタイミングとすることを特徴とする射出成形方法。
In the injection molding method according to any one of claims 1 to 9,
The cooling medium supply is started at the end of supply of the heating medium or when the timer starts counting up simultaneously with the end of supply of the heating medium, when the injection plunger or screw reaches a predetermined position, An injection molding method characterized in that at least one of the points in time when the pressure at the position reaches a predetermined pressure value is selected as the start timing of the cooling medium supply.
金型キャビティ内の樹脂圧力を測定可能な型内圧センサと、キャビティ近傍の温度を測定可能な温度センサを少なくとも1つ備えた金型と、前記金型内に射出プランジャまたはスクリュの前進により溶融樹脂を充填する射出装置と、所定のキャビティ内の型内圧力値を入力可能な入力装置と、前記圧力センサにより測定された圧力値が前記入力装置により入力された型内圧力値となるように、前記射出プランジャまたはスクリュの前進圧力である射出圧力を制御する射出圧力制御装置とを備えた射出成形装置であって、更に、金型を加熱するための加熱媒体と金型を冷却するための冷却媒体をそれぞれ供給することが可能な金型加熱冷却装置と、加熱媒体と冷却媒体を切換えるバルブを備え加熱媒体と冷却媒体を前記バルブにより切換えて共通の流路に供給し金型の温度を制御する制御装置をも備え、
請求項1〜10のいずれか1項に記載する射出成形方法を実施する制御装置を備えたことを特徴とする射出成形装置。
A mold internal pressure sensor capable of measuring the resin pressure in the mold cavity, a mold including at least one temperature sensor capable of measuring the temperature in the vicinity of the cavity, and a molten resin by an advance of an injection plunger or a screw in the mold An injection device that fills the mold, an input device that can input an in-mold pressure value in a predetermined cavity, and a pressure value measured by the pressure sensor becomes an in-mold pressure value input by the input device. An injection molding apparatus comprising an injection pressure control device for controlling an injection pressure which is a forward pressure of the injection plunger or screw, and further a heating medium for heating the mold and a cooling for cooling the mold A mold heating / cooling device capable of supplying each medium, and a valve for switching between the heating medium and the cooling medium are provided, and the heating medium and the cooling medium are switched by the valve. Also comprises a control device for controlling the temperature of the flow path supplying molds,
An injection molding apparatus comprising a control device for performing the injection molding method according to any one of claims 1 to 10.
JP2009099202A 2009-04-15 2009-04-15 Injection molding method and injection molding apparatus Expired - Fee Related JP5087585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009099202A JP5087585B2 (en) 2009-04-15 2009-04-15 Injection molding method and injection molding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009099202A JP5087585B2 (en) 2009-04-15 2009-04-15 Injection molding method and injection molding apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008262573 Division 2008-10-09 2008-10-09

Publications (2)

Publication Number Publication Date
JP2010089484A true JP2010089484A (en) 2010-04-22
JP5087585B2 JP5087585B2 (en) 2012-12-05

Family

ID=42252663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009099202A Expired - Fee Related JP5087585B2 (en) 2009-04-15 2009-04-15 Injection molding method and injection molding apparatus

Country Status (1)

Country Link
JP (1) JP5087585B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015189212A (en) * 2014-03-28 2015-11-02 住友重機械工業株式会社 Injection molding machine, and apparatus and method for setting injection molding machine
CN108748846A (en) * 2017-04-04 2018-11-06 英格拉斯股份公司 Injection molding method, equipment and press for plastic material
CN112805133A (en) * 2018-10-05 2021-05-14 基斯特勒控股公司 Method for controlling an injection molding system

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141953U (en) * 1984-02-24 1985-09-20 宇部興産株式会社 injection mold
JPS6189820A (en) * 1984-10-09 1986-05-08 Inoue Japax Res Inc Controlling method of temperature and pressure in resin treating device
JPS61132319A (en) * 1984-11-30 1986-06-19 Sanyo Denki Kk Injection molding machine
JPS62261419A (en) * 1986-05-08 1987-11-13 Mitsubishi Heavy Ind Ltd Control device for injection holding pressure
JPS62294525A (en) * 1986-06-13 1987-12-22 Mitsubishi Heavy Ind Ltd Control of injection
JPS63236616A (en) * 1987-03-25 1988-10-03 Inoue Japax Res Inc Resin molding apparatus
JPH03219936A (en) * 1990-01-26 1991-09-27 Nissei Plastics Ind Co Injection molding method and mold for plastic lens
JP2001205656A (en) * 2000-01-26 2001-07-31 Mitsubishi Heavy Ind Ltd Injection molding method
JP2004276288A (en) * 2003-03-13 2004-10-07 Sumitomo Heavy Ind Ltd Injection molding machine and temperature control method therefor
JP2004314494A (en) * 2003-04-17 2004-11-11 Sekisui Chem Co Ltd Injection molding method
JP2005329577A (en) * 2004-05-19 2005-12-02 Mitsubishi Heavy Ind Ltd Method and apparatus for adjusting temperature of mold
JP2006110905A (en) * 2004-10-15 2006-04-27 Mitsubishi Heavy Industries Plastic Technology Co Ltd Injection molding method and mold temperature adjusting apparatus of injection molding machine
WO2007034815A1 (en) * 2005-09-21 2007-03-29 Mitsubishi Heavy Industries, Ltd. Mold, mold temperature regulation method, mold temperature regulation device, injection molding method, injection molding machine, and thermoplastic resin sheet
JP2007083502A (en) * 2005-09-21 2007-04-05 Mitsubishi Heavy Industries Plastic Technology Co Ltd Molding machine system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141953U (en) * 1984-02-24 1985-09-20 宇部興産株式会社 injection mold
JPS6189820A (en) * 1984-10-09 1986-05-08 Inoue Japax Res Inc Controlling method of temperature and pressure in resin treating device
JPS61132319A (en) * 1984-11-30 1986-06-19 Sanyo Denki Kk Injection molding machine
JPS62261419A (en) * 1986-05-08 1987-11-13 Mitsubishi Heavy Ind Ltd Control device for injection holding pressure
JPS62294525A (en) * 1986-06-13 1987-12-22 Mitsubishi Heavy Ind Ltd Control of injection
JPS63236616A (en) * 1987-03-25 1988-10-03 Inoue Japax Res Inc Resin molding apparatus
JPH03219936A (en) * 1990-01-26 1991-09-27 Nissei Plastics Ind Co Injection molding method and mold for plastic lens
JP2001205656A (en) * 2000-01-26 2001-07-31 Mitsubishi Heavy Ind Ltd Injection molding method
JP2004276288A (en) * 2003-03-13 2004-10-07 Sumitomo Heavy Ind Ltd Injection molding machine and temperature control method therefor
JP2004314494A (en) * 2003-04-17 2004-11-11 Sekisui Chem Co Ltd Injection molding method
JP2005329577A (en) * 2004-05-19 2005-12-02 Mitsubishi Heavy Ind Ltd Method and apparatus for adjusting temperature of mold
JP2006110905A (en) * 2004-10-15 2006-04-27 Mitsubishi Heavy Industries Plastic Technology Co Ltd Injection molding method and mold temperature adjusting apparatus of injection molding machine
WO2007034815A1 (en) * 2005-09-21 2007-03-29 Mitsubishi Heavy Industries, Ltd. Mold, mold temperature regulation method, mold temperature regulation device, injection molding method, injection molding machine, and thermoplastic resin sheet
JP2007083502A (en) * 2005-09-21 2007-04-05 Mitsubishi Heavy Industries Plastic Technology Co Ltd Molding machine system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015189212A (en) * 2014-03-28 2015-11-02 住友重機械工業株式会社 Injection molding machine, and apparatus and method for setting injection molding machine
CN108748846A (en) * 2017-04-04 2018-11-06 英格拉斯股份公司 Injection molding method, equipment and press for plastic material
CN112805133A (en) * 2018-10-05 2021-05-14 基斯特勒控股公司 Method for controlling an injection molding system
CN112805133B (en) * 2018-10-05 2022-11-22 基斯特勒控股公司 Method for controlling an injection molding system

Also Published As

Publication number Publication date
JP5087585B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP4969689B2 (en) Injection molding apparatus and injection molding method
CN102574319B (en) Molding method of injection molding machine
JP5069503B2 (en) Injection molding system, computer program, injection molding method, injection molding machine
JP5031867B2 (en) Injection molding method and apparatus
JP4361459B2 (en) Injection molding method and mold temperature control device for injection molding machine
JP5087585B2 (en) Injection molding method and injection molding apparatus
JP2014069415A (en) Injection molding machine
JP2005329577A (en) Method and apparatus for adjusting temperature of mold
US8741193B2 (en) Injection molding method, molded-article producing method, and injection molding apparatus
JP5419364B2 (en) Injection molding system and injection molding method
JP4999905B2 (en) Mold temperature adjusting device
JP4994916B2 (en) Injection molding machine and injection molding method
EP3778182A1 (en) Mold system
JPH01200925A (en) Method for molding plastic lens
JP5581741B2 (en) Resin molding method using multiple molds
KR102543175B1 (en) Backflow prevention device of light metal injection device and backflow prevention method of light metal injection device
JP6840600B2 (en) Injection molding machine
JP2019177660A (en) Injection molding machine and injection molding method
JP5739177B2 (en) Mold clamping apparatus, control method therefor, and injection molding machine
JP2011126186A (en) Resin molding process and injection molding machine
JP5029498B2 (en) Casting product manufacturing method and mold temperature control device
JP2010030078A (en) Injection molding machine equipped with temperature controller
JP2014057968A (en) Method for controlling water flow of cooling die-cast machine
JP2005329649A (en) Injection molding mold
JP3232550B2 (en) Control method of mold clamping pressure in injection compression molding

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

R150 Certificate of patent or registration of utility model

Ref document number: 5087585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees