JP2004314494A - Injection molding method - Google Patents

Injection molding method Download PDF

Info

Publication number
JP2004314494A
JP2004314494A JP2003113080A JP2003113080A JP2004314494A JP 2004314494 A JP2004314494 A JP 2004314494A JP 2003113080 A JP2003113080 A JP 2003113080A JP 2003113080 A JP2003113080 A JP 2003113080A JP 2004314494 A JP2004314494 A JP 2004314494A
Authority
JP
Japan
Prior art keywords
cavity
mold
resin
injection
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003113080A
Other languages
Japanese (ja)
Inventor
Hisashi Sawa
尚志 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2003113080A priority Critical patent/JP2004314494A/en
Publication of JP2004314494A publication Critical patent/JP2004314494A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an injection molding method which can hold the temperature of the surface of a cavity brought into contact with a resin during the injection of the resin to be higher and is excellent in mass production properties. <P>SOLUTION: After the surface of the cavity is heated by filling the cavity 11 of an injection mold 1 with overheated steam, the resin is injected/packed in the cavity 11 while the overheated steam is discharged outside the cavity 11. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、射出成形法に関する。
【0002】
【従来の技術】
射出金型のキャビティ表面を高温にしておけば、ウェルドライン、ジェッティング、フローマークの解消や、金型形状の転写性向上などの効果を得られることは既にいろいろな文献で公知である。
ところで、上記のように金型のキャビティ表面を高温にする方法としては、金型の温調を高温側にシフトする方法が一番簡便であるが、この方法の場合、金型全体を高温状態から冷却しなければならないので、冷却に時間がかかり生産性に大きな支障をきたすばかりか、射出充填された樹脂も高温状態から冷却しなければならないため、高温化する温度範囲に限界がある。
【0003】
そこで、様々な金型温度制御技術が試みられており(非特許文献1の543頁〜549頁等参照)、その中でも高周波誘導加熱法や、断熱金型法(特許文献1等参照)が有用性があるとされている。
しかしながら、高周波誘導加熱法の場合、高周波誘導加熱によって金型のキャビティ表面を加熱した後に型締→昇圧の工程を経るために樹脂射出される時には、樹脂が接触するキャビティ表面温度が相当量低下してしまう。一方、断熱金型法の場合、金型表面に断熱層を設ける方法であって、断熱層との間の熱膨張率の差異による剥がれや、断熱層端面のめくれ等が発生しやすく量産性に難があった。
【0004】
【非特許文献1】
「成形加工」、プラスチック成形加工学会、2000年9月20日、第12巻、第9号
【特許文献1】
国際公開第95/35194号公報
【0005】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みて、樹脂射出時に樹脂が接触するキャビティ表面の温度をより高い状態に保持することができ、量産性に優れた射出成形法を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明にかかる射出成形法は、射出金型のキャビティ内に過熱水蒸気を充満させることによってキャビティ表面を加熱したのち、過熱水蒸気をキャビティ外に排出させながらキャビティ内に樹脂を射出充填することを特徴としている。
【0007】
本発明において、過熱水蒸気の温度は、特に限定されないが、200℃以上500℃以下が好ましい。すなわち、水蒸気は、100℃で液体から気体に変化した時に有する潜熱を持ち、他の気体とは保有する熱量に大きな差を有している。そのため、100℃以上で使用すれば、その効果発現は可能であるが、キャビティの温度上昇を生産性を損なわない範囲で制御しようとすると、100℃よりもさらに高い200℃以上の過熱水蒸気が望ましく、水蒸気を一般大気圧上で過熱するための装置の製作費用を考慮すると500℃以下が好ましい。
キャビティ内の過熱水蒸気の圧力は、特に限定されないが、0.5MPa以下が好ましい。
【0008】
過熱水蒸気をキャビティ内に注入するタイミングは、特に限定されず、型締開始後ならば、どのタイミングで注入を開始しても効果の発現が可能であるが、水蒸気が大気中に拡散するのを防止するために型締完了後に開始することが有効である。
過熱水蒸気により昇温保持されるキャビティ表面温度は、特に限定されないが、金型内に射出される樹脂が非晶性の樹脂の場合、ガラス転移温度(Tg)以上が好ましく、結晶性樹脂の場合、溶融温度以上が好ましい。
【0009】
過熱水蒸気のキャビティ内への注入方法あるいはキャビティからの排出は、特に限定されないが、たとえば、金型の製品面ないしはそのパーティングライン(PL)周辺に空気の注入口および排出口を設置し、この空気の注入口および排出口を利用して過熱水蒸気をキャビティ内に注入するとともに排出させる方法が挙げられる。
【0010】
なお、上記の方法によれば、過熱水蒸気は、キャビティ内への樹脂の射出時に過熱水蒸気の注入を停止しておけば、樹脂の射出にともなって、空気の注入口および排出口から自動的に排出される。したがって、真空ポンプなどを用いてキャビティ内を減圧する必要はない。ただし、製品形状によってエアだまりになりやすい部分のある場合には、その部分から過熱水蒸気を積極的に排出することは成形条件の幅を広げる意味でも有効な手段となりうる。
【0011】
本発明の射出成形に使用される樹脂としては、特に限定されないが、たとえば、ポリエチレン、ポリプロピレンといった汎用プラスチック、ポリカーボネート、ポリフェニレンサルファイド、ポリアセタール等のエンジニアリングプラスチックなどが挙げられる。
本発明の射出成形法に使用される金型の材質は、特に限定されず、あらゆる鋼材を適用できるばかりか、鋼材にメッキあるいは窒化などの表面処理をしたもの、さらには窒化チタン(TiN)等のセラミックコーティングしたもの、ポリイミド(PI)等の樹脂コーティングしたもの等が使用できる。
【0012】
また、本発明の射出成形法は、通常の射出成形だけでなく、射出圧縮成形にも用いることができる。
【0013】
【発明の実施の形態】
以下に、本発明を、その実施の形態をあらわす図面を参照しつつ詳しく説明する。
図1は、本発明にかかる射出成形法に使用される金型の1例をあらわし、図2は本発明の射出成形法の1つの実施の形態を工程順にあらわしている。
【0014】
図1に示すように、この金型1は、可動型2に過熱水蒸気の注入路3および排出路4が設けられ、それぞれ可動型2のキャビティ11を臨む部分に設けられた注入口21または排出口22に接続されている。
注入口21および排出口22は、それぞれ、可動型本体23に焼結金属4を埋め込むことによって形成されている。
なお、図1中、5は固定型である。
【0015】
そして、この金型1を用いた本発明の射出成形法は、図2に示すように、まず、可動型2を固定型5側に移動させ、型締を行いながら注入路3および注入口21を介して過熱水蒸気をキャビティ11内に注入しつつ昇圧し、過熱水蒸気によって、射出される樹脂が非晶性の樹脂の場合、ガラス転移温度(Tg)以上、結晶性樹脂の場合、溶融温度以上までキャビティ11の内面を過熱する。
つぎに、樹脂をキャビティ11内に射出しながら、排出口22および排出路4を介して水蒸気をキャビティ11から排出し、樹脂充填完了後、所定時間保圧する。
【0016】
そして、樹脂を冷却固化させるとともに、射出機につぎの射出樹脂を計量する。
冷却完了後、型開きし製品を取り出したのち、型締めし、つぎの射出工程を実施するようになっている。
【0017】
この射出成形法は、以上のように、樹脂をキャビティ11内に射出する前に過熱水蒸気をキャビティ11内に注入することによって、樹脂の射出直前まで、キャビティ表面が高温に維持される。したがって、金型形状が転写される瞬間のキャビティ表面に接する部分の樹脂温度は、ガラス転移温度あるいは溶融温度以上に保持することができ、以下のような高品質な射出成形品を成形できる。
【0018】
1)高外観・・・金型転写性の大幅な向上により、シボを施した金型に対してはより陰影感のある成形品が提供でき、光沢面を持った金型で成形したものは、そのまま高光沢な成形品を生産できる。また、樹脂が溶融状態のまま成形できるので、ウエルドのない成形品になる。
2)高強度・・・ウエルドが無くなることにより、ウエルド部分での物性低下が発生することもない。
3)高機能・・・特に発泡成形においては、この手法により、発泡粒径制御が可能となり、課題であった、軽量化と物性保持のバランスが容易となる。
【0019】
【実施例】
以下に、本発明の実施例を説明する。
【0020】
(実施例1)
注入口が3ヶ所、排出口が2ヶ所設けられた図1に示すような金型に200℃の過熱水蒸気を注入排出を240秒ピッチで繰り返した場合の水蒸気温度と、金型のキャビティ表面の温度変化を調べ、その平均値を図3に示した。
図3から、200℃の過熱水蒸気によって、キャビティ表面が140℃まで加熱されることがわかる。
【0021】
(実施例2)
図1に示す金型1に400℃の過熱水蒸気、250℃の過熱水蒸気、400℃の空気、250℃の空気をそれぞれ型締状態で注入し、注入後60秒後の図4に示すように、可動型2のa,bの2点でキャビティ表面温度を測定し、その測定結果の平均値を表1に示した。また、水蒸気と空気の各温度での常圧熱量を表2に示した。
【0022】
【表1】

Figure 2004314494
【0023】
【表2】
Figure 2004314494
【0024】
上記表1および表2から本発明のように、過熱水蒸気を用いれば、その潜熱によって、金型のキャビティ表面を効率よく高温まで加熱できることがよくわかる。
【0025】
【発明の効果】
本発明にかかる射出成形法は、以上のように構成されているので、樹脂射出時に樹脂が接触するキャビティ表面の温度をより高い状態に保持することができる。したがって、高外観、高強度、高機能な成形品を得ることができる。
また、キャビティ表面のみを加熱するだけであるので、射出後の樹脂の冷却もすばやく行え、量産性に優れている。
【図面の簡単な説明】
【図1】本発明にかかる射出成形法に用いる金型の1例をあらわす断面図である。
【図2】本発明にかかる射出成形法の1つの実施の形態を説明するフローチャートである。
【図3】過熱水蒸気の金型への注入排出に伴う過熱水蒸気と金型のキャビティ表面の温度変化をあらわすグラフである。
【図4】実施例2で測定箇所を説明する可動型の平面図である。
【符号の説明】
1 金型
11 キャビティ
3 注入路
4 排出路
21 注入口
22 排出口[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an injection molding method.
[0002]
[Prior art]
It is already known from various literatures that if the cavity surface of the injection mold is kept at a high temperature, effects such as elimination of weld lines, jetting, and flow marks, and improvement of mold shape transferability can be obtained.
By the way, as described above, the simplest method of raising the temperature of the cavity surface of the mold is to shift the temperature control of the mold to a higher temperature side. In this method, however, the entire mold is kept in a high temperature state. Since the cooling must be performed from the beginning, it takes a long time to cool, which greatly impairs the productivity. In addition, the injection-filled resin must be cooled from a high temperature state, so that the temperature range in which the temperature is increased is limited.
[0003]
Therefore, various mold temperature control techniques have been tried (see pages 543 to 549 of Non-Patent Document 1). Among them, the high-frequency induction heating method and the adiabatic mold method (see Patent Document 1 and the like) are useful. It is said that there is.
However, in the case of the high-frequency induction heating method, when the cavity surface of the mold is heated by the high-frequency induction heating and then the resin is injected in order to go through a process of mold clamping → pressurization, the cavity surface temperature with which the resin comes into contact decreases by a considerable amount. Would. On the other hand, in the case of the heat-insulating mold method, a heat-insulating layer is provided on the surface of the mold, and peeling due to a difference in the coefficient of thermal expansion between the heat-insulating layer and the end face of the heat-insulating layer are likely to occur. There was difficulty.
[0004]
[Non-patent document 1]
"Molding", Japan Society of Plastics Processing, September 20, 2000, Volume 12, No. 9 [Patent Document 1]
WO 95/35194 [0005]
[Problems to be solved by the invention]
In view of the above circumstances, an object of the present invention is to provide an injection molding method that can maintain the temperature of a cavity surface with which a resin comes into contact with a resin at a higher temperature during resin injection and is excellent in mass productivity.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the injection molding method according to the present invention heats the cavity surface by filling the cavity of the injection mold with superheated steam, and then discharges the superheated steam out of the cavity into the cavity. It is characterized by injection filling of resin.
[0007]
In the present invention, the temperature of the superheated steam is not particularly limited, but is preferably 200 ° C. or more and 500 ° C. or less. That is, water vapor has latent heat when it changes from a liquid to a gas at 100 ° C., and has a large difference in the amount of heat retained from other gases. Therefore, if used at 100 ° C. or higher, the effect can be exhibited. However, in order to control the temperature rise of the cavity within a range that does not impair the productivity, superheated steam at 200 ° C. or higher, which is higher than 100 ° C., is desirable. Considering the manufacturing cost of an apparatus for superheating steam at a general atmospheric pressure, the temperature is preferably 500 ° C. or lower.
The pressure of the superheated steam in the cavity is not particularly limited, but is preferably 0.5 MPa or less.
[0008]
The timing of injecting the superheated steam into the cavity is not particularly limited, and the effect can be exhibited at any timing after the mold clamping is started, although the effect can be exhibited. It is effective to start after completion of mold clamping to prevent this.
The cavity surface temperature raised and maintained by the superheated steam is not particularly limited, but is preferably equal to or higher than the glass transition temperature (Tg) when the resin injected into the mold is an amorphous resin, and is preferably a crystalline resin. And the melting temperature or higher is preferred.
[0009]
The method of injecting the superheated steam into the cavity or the method of discharging the superheated steam from the cavity are not particularly limited. For example, an inlet and an outlet for air are installed on the product surface of the mold or around the parting line (PL). There is a method of injecting and discharging superheated steam into the cavity using an air inlet and an outlet.
[0010]
According to the above method, if the injection of the superheated steam is stopped at the time of injecting the resin into the cavity, the superheated steam is automatically transmitted from the air inlet and the outlet through the injection of the resin. Is discharged. Therefore, there is no need to reduce the pressure inside the cavity using a vacuum pump or the like. However, in the case where there is a portion that easily forms an air pool depending on the product shape, actively discharging superheated steam from that portion can be an effective means in terms of expanding the range of molding conditions.
[0011]
The resin used for the injection molding of the present invention is not particularly limited, and examples thereof include general-purpose plastics such as polyethylene and polypropylene, engineering plastics such as polycarbonate, polyphenylene sulfide, and polyacetal.
The material of the mold used in the injection molding method of the present invention is not particularly limited, and not only can all steel materials be used, but also steel materials that have been subjected to surface treatment such as plating or nitriding, and titanium nitride (TiN), etc. And those coated with a resin such as polyimide (PI).
[0012]
Further, the injection molding method of the present invention can be used not only for ordinary injection molding but also for injection compression molding.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings showing the embodiments.
FIG. 1 shows an example of a mold used for the injection molding method according to the present invention, and FIG. 2 shows one embodiment of the injection molding method of the present invention in the order of steps.
[0014]
As shown in FIG. 1, the mold 1 has a movable mold 2 provided with a superheated steam injection path 3 and a discharge path 4, and an injection port 21 or a discharge port provided at a portion of the movable mold 2 facing the cavity 11. It is connected to the outlet 22.
The inlet 21 and the outlet 22 are respectively formed by embedding the sintered metal 4 in the movable mold body 23.
In FIG. 1, reference numeral 5 denotes a fixed type.
[0015]
In the injection molding method of the present invention using the mold 1, as shown in FIG. 2, first, the movable mold 2 is moved to the fixed mold 5 side, and the injection path 3 and the injection port 21 are closed while performing mold clamping. The pressure is increased while injecting superheated steam into the cavity 11 through the above, and when the resin injected by the superheated steam is an amorphous resin, the glass transition temperature (Tg) or higher, and the crystalline resin is higher than the melting temperature. Until the inner surface of the cavity 11 is heated.
Next, while injecting the resin into the cavity 11, the water vapor is discharged from the cavity 11 through the discharge port 22 and the discharge path 4, and after the resin filling is completed, the pressure is maintained for a predetermined time.
[0016]
Then, the resin is cooled and solidified, and the next injection resin is measured in the injection machine.
After the cooling is completed, the mold is opened, the product is taken out, the mold is clamped, and the next injection step is performed.
[0017]
In this injection molding method, as described above, by injecting superheated steam into the cavity 11 before injecting the resin into the cavity 11, the cavity surface is maintained at a high temperature until immediately before the resin is injected. Therefore, the resin temperature of the portion in contact with the cavity surface at the moment when the mold shape is transferred can be maintained at a temperature equal to or higher than the glass transition temperature or the melting temperature, and the following high-quality injection molded product can be molded.
[0018]
1) High appearance: The mold transferability is greatly improved, so that a molded product with more shade can be provided for a mold subjected to graining. As a result, high gloss molded products can be produced as they are. Further, since the resin can be molded in a molten state, a molded product without welds can be obtained.
2) High strength: There is no decrease in the physical properties at the weld portion due to the absence of the weld.
3) High performance ... Especially in foam molding, this technique makes it possible to control the foam particle size, and the balance between weight reduction and physical property retention, which have been problems, becomes easy.
[0019]
【Example】
Hereinafter, examples of the present invention will be described.
[0020]
(Example 1)
The steam temperature when 200 ° C. superheated steam was repeatedly injected and discharged at a 240-second pitch into a mold having three injection ports and two discharge ports as shown in FIG. The temperature change was examined, and the average value is shown in FIG.
FIG. 3 shows that the cavity surface is heated to 140 ° C. by the superheated steam at 200 ° C.
[0021]
(Example 2)
400 ° C. superheated steam, 250 ° C. superheated steam, 400 ° C. air, and 250 ° C. air are respectively injected into the mold 1 shown in FIG. 1 in a mold clamped state, and as shown in FIG. The cavity surface temperature was measured at two points a and b of the movable mold 2, and the average value of the measurement results is shown in Table 1. Table 2 shows the normal pressure calorific value at each temperature of steam and air.
[0022]
[Table 1]
Figure 2004314494
[0023]
[Table 2]
Figure 2004314494
[0024]
From Tables 1 and 2 above, it can be clearly understood that when superheated steam is used as in the present invention, the latent heat thereof can efficiently heat the cavity surface of the mold to a high temperature.
[0025]
【The invention's effect】
Since the injection molding method according to the present invention is configured as described above, the temperature of the cavity surface with which the resin comes into contact during the resin injection can be maintained at a higher temperature. Therefore, a molded article with high appearance, high strength, and high functionality can be obtained.
In addition, since only the cavity surface is heated, the resin after injection can be cooled quickly, which is excellent in mass productivity.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of a mold used for an injection molding method according to the present invention.
FIG. 2 is a flowchart illustrating one embodiment of an injection molding method according to the present invention.
FIG. 3 is a graph showing a change in temperature of superheated steam and a cavity surface of the mold accompanying injection and discharge of superheated steam into a mold.
FIG. 4 is a plan view of a movable mold illustrating measurement points in a second embodiment.
[Explanation of symbols]
Reference Signs List 1 mold 11 cavity 3 injection path 4 discharge path 21 inlet 22 discharge port

Claims (1)

射出金型のキャビティ内に過熱水蒸気を充満させることによってキャビティ表面を加熱したのち、過熱水蒸気をキャビティ外に排出させながらキャビティ内に樹脂を射出充填することを特徴とする射出成形法。An injection molding method comprising heating a cavity surface by filling a cavity of an injection mold with superheated steam, and then injecting and filling a resin into the cavity while discharging the superheated steam out of the cavity.
JP2003113080A 2003-04-17 2003-04-17 Injection molding method Pending JP2004314494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003113080A JP2004314494A (en) 2003-04-17 2003-04-17 Injection molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003113080A JP2004314494A (en) 2003-04-17 2003-04-17 Injection molding method

Publications (1)

Publication Number Publication Date
JP2004314494A true JP2004314494A (en) 2004-11-11

Family

ID=33473122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003113080A Pending JP2004314494A (en) 2003-04-17 2003-04-17 Injection molding method

Country Status (1)

Country Link
JP (1) JP2004314494A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093112A1 (en) * 2005-03-01 2006-09-08 Dai-Ichi Electric Co., Ltd. Heat molding method and heat molding system
JP2010089484A (en) * 2009-04-15 2010-04-22 Mitsubishi Heavy Industries Plastic Technology Co Ltd Injection molding method and injection molding apparatus
US8460586B2 (en) 2008-10-09 2013-06-11 Mitsubishi Heavy Industries Plastics Technology Co., Ltd. Injection molding method and apparatus for controlling a mold temperature and displacement of an injection screw

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093112A1 (en) * 2005-03-01 2006-09-08 Dai-Ichi Electric Co., Ltd. Heat molding method and heat molding system
US8460586B2 (en) 2008-10-09 2013-06-11 Mitsubishi Heavy Industries Plastics Technology Co., Ltd. Injection molding method and apparatus for controlling a mold temperature and displacement of an injection screw
JP2010089484A (en) * 2009-04-15 2010-04-22 Mitsubishi Heavy Industries Plastic Technology Co Ltd Injection molding method and injection molding apparatus

Similar Documents

Publication Publication Date Title
TW466166B (en) Synthetic resin molding mold, apparatus for and method of adjusting a temperature of the mold
KR940009912B1 (en) Method of manufacturing a plastic hollow product using water soluble resin
JP2005504658A5 (en)
US20180169903A1 (en) Systems and methods for molding
FR2909303A1 (en) Container manufacturing method, involves detecting expansion end time in interval between pre-blowing variance and blowing variance, when pressure increases in linear manner, and advancing blowing variance according to detected time
TW201127605A (en) Device and method for producing thick-walled moulded plastics parts with reduced sink marks by injection moulding or injection-compression moulding
JP5954700B2 (en) Apparatus and method for thermoforming
JP2004314494A (en) Injection molding method
JPH10100156A (en) Method for obtaining molded product of injection compression molding of thermoplastic resin having high quality appearance
EP0034582A4 (en) Method for injection moulding foamed resin parts with a smooth finish.
JP4725906B2 (en) Mold for thermoplastic resin injection molding
JP2013028047A (en) Thermoforming device and forming method
JP5915961B2 (en) Apparatus and method for thermoforming
JPH08156028A (en) Injection mold and injection molding method
JP5047643B2 (en) Method for producing thermoplastic resin foam
JP6504772B2 (en) Injection molding apparatus, injection molding method and method of manufacturing molded article
JP5998402B2 (en) Thermoforming apparatus and molding method
JP4495820B2 (en) Blow molding method of amorphous thermoplastic resin
JP5356452B2 (en) Melt fine transfer molding method and melt fine transfer molding apparatus
JPS61152420A (en) Molding process of thermoplastic resin
JP2000289065A (en) Method for molding thermoplastic resin
JP3910388B2 (en) Molding method
JP2008149578A (en) Molding method molding mold device
JP2006327133A (en) Carbon dioxide injection device used for injection molding of thermoplastic resin
JP3930712B2 (en) Mold apparatus and method of manufacturing molded product