JP2010088813A - Remote control type actuator - Google Patents

Remote control type actuator Download PDF

Info

Publication number
JP2010088813A
JP2010088813A JP2008264438A JP2008264438A JP2010088813A JP 2010088813 A JP2010088813 A JP 2010088813A JP 2008264438 A JP2008264438 A JP 2008264438A JP 2008264438 A JP2008264438 A JP 2008264438A JP 2010088813 A JP2010088813 A JP 2010088813A
Authority
JP
Japan
Prior art keywords
posture
spindle guide
spindle
tip member
type actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008264438A
Other languages
Japanese (ja)
Other versions
JP5197293B2 (en
Inventor
Hiroshi Isobe
浩 磯部
Takami Ozaki
孝美 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008264438A priority Critical patent/JP5197293B2/en
Priority to EP09818937.6A priority patent/EP2364652B1/en
Priority to KR1020117007861A priority patent/KR101287985B1/en
Priority to PCT/JP2009/005106 priority patent/WO2010041397A1/en
Publication of JP2010088813A publication Critical patent/JP2010088813A/en
Priority to US13/080,806 priority patent/US8511195B2/en
Application granted granted Critical
Publication of JP5197293B2 publication Critical patent/JP5197293B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling And Boring (AREA)
  • Surgical Instruments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a remote control type actuator in which the posture of a tool provided on a distal end can be changed by remote control and a part generating heat during work can be efficiently cooled without adversely affecting a mechanical part. <P>SOLUTION: The remote control type actuator includes a spindle guide part 3 in an elongate shape, a distal end member 2 attached to the distal end so as to freely change the posture, and a drive part housing 4a to which the proximal end of the spindle guide part 3 is connected. The distal end member 2 freely rotatably supports a spindle 13 holding the tool 1. The spindle guide part 3 has a rotary shaft 22 for transmitting rotation to the spindle 13 and a guide hole 30a made to pass through to both ends in the inside. A posture operating member 31 for the distal end member 2 is inserted into the guide hole 30a. A cooling means 50 for cooling the tool 1 or the like with coolant injected into the spindle guide part 3 is provided. A sealing means S for blocking the infiltration of the coolant from the inside of the spindle guide part 3 into the drive part housing 4a is provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、工具の姿勢を遠隔操作で変更可能で、医療用、機械加工等の用途で用いられる遠隔操作型アクチュエータに関する。   The present invention relates to a remotely operated actuator that can change the posture of a tool by remote operation and is used for medical use, machining, and the like.

医療用として骨の加工に用いられたり、機械加工用としてドリル加工や切削加工に用いられたりする遠隔操作型アクチュエータがある。遠隔操作型アクチュエータは、直線形状や湾曲形状をした細長いパイプ部の先端に設けた工具を遠隔操作で制御する。ただし、従来の遠隔操作用アクチュエータは、工具の回転のみを遠隔操作で制御するだけであったため、医療用の場合、複雑な形状の加工や外からは見えにくい箇所の加工が難しかった。また、ドリル加工では、直線だけではなく、湾曲状の加工が可能なことが求められる。さらに、切削加工では、溝内部の奥まった箇所の加工が可能なことが求められる。以下、医療用を例にとって、遠隔操作型アクチュエータの従来技術と課題について説明する。   There are remote-operated actuators that are used for bone processing for medical purposes and drilling and cutting for mechanical processing. The remote operation type actuator remotely controls a tool provided at the end of a long and narrow pipe portion having a linear shape or a curved shape. However, since the conventional remote control actuator only controls the rotation of the tool by remote control, in the case of medical use, it was difficult to process a complicated shape or a part that is difficult to see from the outside. Further, in drilling, it is required that not only a straight line but also a curved shape can be processed. Furthermore, in the cutting process, it is required that a deep part inside the groove can be processed. Hereinafter, taking the medical use as an example, the prior art and problems of the remote control type actuator will be described.

整形外科分野において、骨の老化等によって擦り減って使えなくなった関節を新しく人工のものに取り替える人工関節置換手術がある。この手術では、患者の生体骨を人工関節が挿入できるように加工する必要があるが、その加工には、術後の生体骨と人工関節との接着強度を高めるために、人工関節の形状に合わせて精度良く加工することが要求される。   In the field of orthopedics, there is an artificial joint replacement operation in which a joint that has become worn out due to bone aging or the like is replaced with a new artificial one. In this operation, it is necessary to process the patient's living bone so that the artificial joint can be inserted. In order to increase the adhesive strength between the living bone and the artificial joint after the operation, the shape of the artificial joint is required. It is required to process with high accuracy.

例えば、股関節の人工関節置換手術では、大腿骨の骨の中心にある髄腔部に人工関節挿入用の穴を形成する。人工関節と骨との接触強度を保つには両者の接触面積を大きくとる必要があり、人工関節挿入用の穴は、骨の奥まで延びた細長い形状に加工される。このような骨の切削加工に用いられる医療用アクチュエータとして、細長いパイプ部の先端に工具を回転自在に設け、パイプ部の基端側に設けたモータ等の回転駆動源の駆動により、パイプ部の内部に配した回転軸を介して工具を回転させる構成のものがある(例えば特許文献1)。この種の医療用アクチュエータは、外部に露出した回転部分は先端の工具のみであるため、工具を骨の奥まで挿入することができる。   For example, in hip joint replacement surgery, an artificial joint insertion hole is formed in the medullary cavity at the center of the femur bone. In order to maintain the contact strength between the artificial joint and the bone, it is necessary to increase the contact area between them, and the hole for inserting the artificial joint is processed into an elongated shape extending to the back of the bone. As a medical actuator used for such a bone cutting process, a tool is rotatably provided at the distal end of an elongated pipe portion, and by driving a rotational drive source such as a motor provided on the proximal end side of the pipe portion, There exists a thing of the structure which rotates a tool via the rotating shaft arrange | positioned inside (for example, patent document 1). In this type of medical actuator, the rotating part exposed to the outside is only the tool at the tip, so that the tool can be inserted deep into the bone.

人工関節置換手術では、皮膚切開や筋肉の切断を伴う。すなわち、人体に傷を付けなければならない。その傷を最小限に抑えるためには、前記パイプ部は真っ直ぐでなく、適度に湾曲している方が良い場合がある。このような状況に対応するためのものとして、次のような従来技術がある。例えば、特許文献2は、パイプ部の中間部を2重に湾曲させて、パイプ部の先端側の軸心位置と基端側の軸心位置とをずらせたものである。このようにパイプ部の軸心位置が先端側と軸心側とでずれているものは、他にも知られている。また、特許文献3は、パイプ部を180度回転させたものである。
特開2007−301149号公報 米国特許第4,466,429号明細書 米国特許第4,265,231号明細書 特開2001−17446号公報
Artificial joint replacement surgery involves skin incision and muscle cutting. That is, the human body must be damaged. In order to minimize the scratches, the pipe part may not be straight but may be appropriately curved. In order to cope with such a situation, there are the following conventional techniques. For example, in Patent Document 2, an intermediate portion of a pipe portion is bent twice, and the axial center position on the distal end side and the axial center position on the proximal end side of the pipe portion are shifted. There are other known cases where the axial position of the pipe portion is shifted between the tip end side and the axial center side. In Patent Document 3, the pipe portion is rotated 180 degrees.
JP 2007-301149 A U.S. Pat. No. 4,466,429 US Pat. No. 4,265,231 JP 2001-17446 A

生体骨の人工関節挿入用穴に人工関節を嵌め込んだ状態で、生体骨と人工関節との間に広い隙間があると、術後の接着時間が長くなるため、前記隙間はなるべく狭いのが望ましい。また、生体骨と人工関節の接触面が平滑であることも重要であり、人工関節挿入用穴の加工には高い精度が要求される。しかし、パイプ部がどのような形状であろうとも、工具の動作範囲はパイプ部の形状の制約を受けるため、皮膚切開や筋肉の切断をできるだけ小さくしながら、生体骨と人工関節との間の隙間を狭くかつ両者の接触面が平滑になるように人工関節挿入用穴を加工するのは難しい。   If there is a wide gap between the living bone and the artificial joint with the artificial joint inserted in the artificial bone insertion hole of the living bone, the adhesion time after the operation becomes longer, so the gap is as narrow as possible. desirable. It is also important that the contact surface between the living bone and the artificial joint is smooth, and high accuracy is required for processing the hole for inserting the artificial joint. However, no matter what the shape of the pipe part, the operating range of the tool is limited by the shape of the pipe part. It is difficult to process the artificial joint insertion hole so that the gap is narrow and the contact surface of both is smooth.

一般に、人工関節置換手術が行われる患者の骨は、老化等により強度が弱くなっていることが多く、骨そのものが変形している場合もある。したがって、通常考えられる以上に、人工関節挿入用穴の加工は難しい。   Generally, bones of patients undergoing artificial joint replacement surgery are often weakened due to aging or the like, and the bones themselves may be deformed. Therefore, it is more difficult to process the artificial joint insertion hole than is normally conceivable.

そこで、本出願人は、人工関節挿入用穴の加工を比較的容易にかつ精度良く行えるようにすることを目的として、工具の姿勢を遠隔操作で変更可能とすることを試みた。工具の姿勢が変更可能であれば、パイプ部の形状に関係なく、工具を適正な姿勢に保持することができるからである。しかし、工具は細長いパイプ部の先端に設けられているため、工具の姿勢を変更させる機構を設ける上で制約が多く、それを克服するための工夫が必要である。また、加工時には、工具および被加工物の他、アクチュエータの回転部分も発熱するため、これらの発熱箇所を効率良く冷却できることが望ましい。そのための冷却手段を設ける場合、冷却液が機械部分に悪影響を与えないようにする必要がある。   Therefore, the present applicant tried to make it possible to change the posture of the tool by remote operation in order to make it possible to process the artificial joint insertion hole relatively easily and accurately. This is because, if the posture of the tool can be changed, the tool can be held in an appropriate posture regardless of the shape of the pipe portion. However, since the tool is provided at the tip of the elongated pipe portion, there are many restrictions in providing a mechanism for changing the posture of the tool, and a device for overcoming it is necessary. Further, during machining, in addition to the tool and workpiece, the rotating portion of the actuator also generates heat, so it is desirable that these heat generation locations can be efficiently cooled. When providing a cooling means for this purpose, it is necessary to prevent the cooling liquid from adversely affecting the machine part.

なお、細長いパイプ部を有しない医療用アクチュエータでは、手で握る部分に対して工具が設けられた部分が姿勢変更可能なものがある(例えば特許文献4)が、遠隔操作で工具の姿勢を変更させるものは提案されていない。   Note that some medical actuators that do not have an elongated pipe part can change the position of the part where the tool is provided relative to the hand-held part (for example, Patent Document 4), but the position of the tool can be changed remotely. Nothing has been proposed to make it happen.

この発明は、細長いパイプ部の先端に設けられた工具の姿勢を遠隔操作で変更することができ、機械部分に悪影響を与えることなく、加工時に発熱する箇所を効率良く冷却できる遠隔操作型アクチュエータを提供することを課題としている。   The present invention provides a remote operation type actuator that can change the posture of a tool provided at the tip of an elongated pipe portion by remote operation, and can efficiently cool a portion that generates heat during processing without adversely affecting the machine part. The issue is to provide.

この発明にかかる遠隔操作型アクチュエータは、細長形状のスピンドルガイド部と、このスピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられた先端部材と、前記スピンドルガイド部の基端が結合された駆動部ハウジングとを備え、前記先端部材は、工具を保持するスピンドルを回転自在に支持し、前記スピンドルガイド部は、前記駆動部ハウジング内に設けられた工具回転用駆動源の回転を前記スピンドルに伝達する回転軸と、両端に貫通したガイド孔とを内部に有し、先端が前記先端部材に接して進退動作することにより前記先端部材を姿勢変更させる姿勢操作部材を前記ガイド孔内に進退自在に挿通し、前記姿勢操作部材を進退させる姿勢変更用駆動源を前記駆動部ハウジング内に設け、冷却液を、前記スピンドルガイド部の基端近傍に設けられた冷却液注入孔から内部に注入し、前記スピンドルガイド部および先端部材の内部を通って先端側へ送り、前記先端部材から前記工具に向けて吐出させる冷却手段を設けるとともに、前記スピンドルガイド部内から前記駆動部ハウジング内への前記冷却液の浸入を阻止するシール手段を設けたことを特徴とする。   A remote-control actuator according to the present invention includes an elongated spindle guide portion, a tip member attached to the tip of the spindle guide portion via a tip member connecting portion so that the posture can be freely changed, and a base end of the spindle guide portion And the tip member rotatably supports a spindle holding a tool, and the spindle guide portion rotates a tool rotation drive source provided in the drive unit housing. A rotation shaft that transmits the tip member to the spindle, and a guide hole that penetrates both ends of the shaft, and a posture operation member that changes the posture of the tip member by advancing and retracting with the tip contacting the tip member. A posture change drive source is provided in the drive unit housing to be inserted into the drive unit so as to advance and retreat, and to move the posture operation member back and forth. Cooling is injected into the inside from a coolant injection hole provided in the vicinity of the base end of the dollar guide portion, sent to the tip side through the inside of the spindle guide portion and the tip member, and discharged from the tip member toward the tool. And a sealing means for preventing intrusion of the coolant from the spindle guide portion into the drive portion housing.

この構成によれば、先端部材に設けた工具の回転により、骨等の切削が行われる。その場合に、姿勢変更用駆動源により姿勢操作部材を進退させると、この姿勢操作部材の先端が先端部材に対し作用することにより、スピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられた先端部材が姿勢変更する。姿勢変更用駆動源は、スピンドルガイド部の基端側の駆動部ハウジング内に設けられており、上記先端部材の姿勢変更は遠隔操作で行われる。姿勢操作部材はガイド孔に挿通されているため、姿勢操作部材が長手方向と交差する方向に位置ずれすることがなく、常に先端部材に対し適正に作用することができ、先端部材の姿勢変更動作が正確に行われる。   According to this structure, cutting of a bone etc. is performed by rotation of the tool provided in the tip member. In this case, when the posture operation member is moved forward and backward by the posture change drive source, the tip of the posture operation member acts on the tip member, so that the posture can be changed to the tip of the spindle guide portion via the tip member connecting portion. The position of the tip member attached to is changed. The posture changing drive source is provided in the drive portion housing on the proximal end side of the spindle guide portion, and the posture change of the tip member is performed by remote control. Since the posture operation member is inserted into the guide hole, the posture operation member does not shift in the direction intersecting the longitudinal direction, and can always act properly on the tip member, and the posture change operation of the tip member Is done accurately.

加工時には、工具および被加工物が発熱する他、回転軸、スピンドル等の回転する部材が回転摩擦により発熱する。冷却手段を設けたことにより、スピンドルガイド部および先端部材の内部を通って先端側へ送られる冷却液によって回転軸、スピンドル等が冷却され、先端部材から吐出させる冷却液によって工具および被加工物が冷却される。スピンドルガイド部および先端部材の内部に冷却液を通したことにより、冷却液供給用の管をスピンドルガイド部および先端部材の外部に設けなくて済み、スピンドルガイド部および先端部材を簡素化ならびに小径化できる。
また、シール手段を設けたため、スピンドルガイド部内から駆動部ハウジング内への冷却液の浸入を阻止することができ、駆動部ハウジング内の工具回転用駆動源および姿勢変更用駆動源を含む機構の故障が生じ難く、低寿命化を防止できる。
At the time of machining, the tool and the workpiece generate heat, and rotating members such as the rotating shaft and spindle generate heat due to rotational friction. By providing the cooling means, the rotating shaft, the spindle, and the like are cooled by the coolant sent to the tip side through the inside of the spindle guide portion and the tip member, and the tool and the work piece are cooled by the coolant discharged from the tip member. To be cooled. By passing the coolant through the spindle guide and tip member, it is not necessary to provide a coolant supply pipe outside the spindle guide and tip member. The spindle guide and tip member are simplified and reduced in diameter. it can.
Further, since the sealing means is provided, it is possible to prevent the coolant from entering from the spindle guide portion into the drive portion housing, and the failure of the mechanism including the tool rotation drive source and the posture change drive source in the drive portion housing. Is difficult to occur, and the life can be prevented from being shortened.

この発明において、前記シール手段は、前記冷却液注入孔よりも基端側の位置で前記回転軸を支持する滑り軸受とすることができる。
滑り軸受は回転軸に接触して支持するため、転がり軸受に比べて、軸受と回転軸との回転部の隙間が小さい。そのため、冷却液注入孔よりも基端側に位置する軸受を滑り軸受とすることで、これをシール部材に兼用できる。
In this invention, the sealing means may be a sliding bearing that supports the rotating shaft at a position closer to the base end side than the coolant injection hole.
Since the sliding bearing contacts and supports the rotating shaft, the clearance between the rotating portion of the bearing and the rotating shaft is smaller than that of the rolling bearing. Therefore, if the bearing located on the base end side with respect to the coolant injection hole is a sliding bearing, this can also be used as a seal member.

この発明において、前記シール手段は、前記駆動部ハウジングに設けられ前記スピンドルガイド部の基端でスピンドルガイド部の内部と連通する遮蔽空間を有し、この遮蔽空間の圧力を大気圧よりも高くしてもよい。
先端部材の冷却液吐出部は大気圧であるため、遮蔽空間の圧力を大気圧よりも高くすることにより、スピンドルガイド部内の冷却液が先端部材側へ流れるようになり、スピンドルガイド部内の冷却液が駆動部ハウジング内へ浸入することを防止できる。
In this invention, the sealing means has a shielding space provided in the drive portion housing and communicating with the inside of the spindle guide portion at the base end of the spindle guide portion, and the pressure of the shielding space is made higher than the atmospheric pressure. May be.
Since the coolant discharge part of the tip member is at atmospheric pressure, the coolant in the spindle guide part flows to the tip member side by increasing the pressure in the shielded space above atmospheric pressure, and the coolant in the spindle guide part Can be prevented from entering the drive unit housing.

この発明において、前記スピンドルガイド部が、このスピンドルガイド部の外郭となる外郭パイプを有し、前記ガイド孔を、前記外郭パイプ内に設けられたガイドパイプの内径孔とすることができる。
この構成であれば、外郭パイプによりスピンドルガイド部の内部を保護しつつ、スピンドルガイド部を中空状にして軽量化を図れる。
In the present invention, the spindle guide portion may include an outer pipe serving as an outer shell of the spindle guide portion, and the guide hole may be an inner diameter hole of a guide pipe provided in the outer pipe.
With this configuration, it is possible to reduce the weight by making the spindle guide hollow while protecting the inside of the spindle guide by the outer pipe.

上記構成である場合、前記外郭パイプは両端に貫通した中空孔を有し、この中空孔は、中心部の円形孔部と、この円形孔部から外径側へ凹んだ溝状部とでなり、前記円形孔部に前記回転軸を配置し、かつ前記溝状部に前記ガイドパイプを配置してもよい。
外郭パイプの中空孔は、中心部の円形孔部と、この円形孔部から外径側へ凹んだ溝状部とでなるため、外郭パイプの溝状部以外の箇所の肉厚を厚くすることができる。それにより、スピンドルガイド部の剛性(断面2次モーメント)が高くなり、先端部材の位置決め精度が向上させられるとともに、切削性を向上させられる。例えば、外郭パイプの断面2次モーメントが、同外径の中実シャフトの1/2以上とすると良い。また、溝状部にガイドパイプを配置したことにより、ガイドパイプの円周方向の位置決めを容易に行え、組立性が良好である。
In the case of the above configuration, the outer pipe has a hollow hole penetrating at both ends, and the hollow hole is formed by a circular hole portion at the center and a groove-like portion recessed from the circular hole portion toward the outer diameter side. The rotating shaft may be disposed in the circular hole portion, and the guide pipe may be disposed in the groove portion.
Since the hollow hole of the outer pipe is composed of a circular hole at the center and a groove-like part recessed from the circular hole to the outer diameter side, the thickness of the portion other than the groove-like part of the outer pipe should be increased. Can do. As a result, the rigidity of the spindle guide portion (secondary moment of section) is increased, the positioning accuracy of the tip member is improved, and the machinability is improved. For example, the secondary moment of section of the outer pipe may be ½ or more of a solid shaft with the same outer diameter. Further, since the guide pipe is arranged in the groove-like portion, the guide pipe can be easily positioned in the circumferential direction, and the assemblability is good.

スピンドルガイド部が外郭パイプを有する場合、前記外郭パイプに前記冷却液注入孔を設けることができる。
外郭パイプに冷却液注入孔を設ければ、駆動部ハウジングに冷却液注入孔を設けるのに比べて、構造を簡略にできる。特に、上記外郭パイプのように外郭パイプが肉厚の厚い箇所を有する場合は、この肉厚の厚い箇所に冷却液注入孔を開けることにより、補強用の他の部材を用いずにスピンドルガイド部に冷却液注入孔を設けることができる。
When the spindle guide has an outer pipe, the outer pipe can be provided with the coolant injection hole.
If the coolant injection hole is provided in the outer pipe, the structure can be simplified as compared with the case where the coolant injection hole is provided in the drive unit housing. In particular, when the outer pipe has a thick portion such as the outer pipe, the spindle guide portion can be formed without using any other reinforcing member by opening a coolant injection hole in the thick portion. A cooling liquid injection hole can be provided in this.

この発明において、前記スピンドルガイド部内の前記回転軸を回転自在に支持する複数の転がり軸受を設ける場合、隣合う転がり軸受間に、これら転がり軸受に対して予圧を与えるばね要素を設けるのが望ましい。
加工の仕上がりを良くするには、スピンドルを高速回転させて加工するのがよい。スピンドルを高速回転させると、工具に作用する切削抵抗を低減させる効果もある。スピンドルはワイヤ等からなる細い回転軸を介して回転力が伝達されるので、スピンドルの高速回転を実現させるため、回転軸を支持する転がり軸受に予圧をかけておくことが必要となる。この予圧のためのばね要素を隣合う転がり軸受間に設ければ、スピンドルガイド部の径を大きくせずにばね要素を設けられる。
In the present invention, when a plurality of rolling bearings that rotatably support the rotating shaft in the spindle guide portion are provided, it is desirable to provide a spring element that applies a preload to the rolling bearings between adjacent rolling bearings.
In order to improve the finish of processing, it is preferable to rotate the spindle at high speed. When the spindle is rotated at a high speed, there is an effect of reducing cutting resistance acting on the tool. Since the rotational force is transmitted to the spindle through a thin rotating shaft made of a wire or the like, it is necessary to preload the rolling bearing that supports the rotating shaft in order to realize high-speed rotation of the spindle. If a spring element for this preload is provided between adjacent rolling bearings, the spring element can be provided without increasing the diameter of the spindle guide portion.

前記スピンドルガイド部内の前記回転軸を回転自在に支持する複数の転がり軸受を設ける場合、前記冷却手段は、前記冷却液により前記転がり軸受を冷却するものであってもよい。
スピンドルガイド部の内部に冷却液を通過させるため、スピンドルガイド部内に設けた転がり軸受を冷却液で冷却することができる。
In the case of providing a plurality of rolling bearings that rotatably support the rotary shaft in the spindle guide portion, the cooling means may cool the rolling bearings with the cooling liquid.
Since the coolant is passed through the spindle guide portion, the rolling bearing provided in the spindle guide portion can be cooled with the coolant.

前記冷却液は、水もしくは生理食塩水であるのが望ましい。
この遠隔操作型アクチュエータが医療用であり、先端部材を生体内に挿入して加工を行う場合、冷却液が水もしくは生理食塩水であれば、冷却液が生体に悪影響を与えない。
The coolant is preferably water or physiological saline.
When this remote control type actuator is used for medical purposes and the tip member is inserted into the living body to perform processing, if the cooling liquid is water or physiological saline, the cooling liquid does not adversely affect the living body.

この発明において、前記スピンドルガイド部は湾曲した箇所を有していてもよい。
スピンドルガイド部が湾曲していれば、障害物の向こう側にある被加工物に対して加工を行える。
In the present invention, the spindle guide portion may have a curved portion.
If the spindle guide portion is curved, it is possible to process the workpiece on the other side of the obstacle.

この発明の遠隔操作型アクチュエータは、細長形状のスピンドルガイド部と、このスピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられた先端部材と、前記スピンドルガイド部の基端が結合された駆動部ハウジングとを備え、前記先端部材は、工具を保持するスピンドルを回転自在に支持し、前記スピンドルガイド部は、前記駆動部ハウジング内に設けられた工具回転用駆動源の回転を前記スピンドルに伝達する回転軸と、両端に貫通したガイド孔とを内部に有し、先端が前記先端部材に接して進退動作することにより前記先端部材を姿勢変更させる姿勢操作部材を前記ガイド孔内に進退自在に挿通し、前記姿勢操作部材を進退させる姿勢変更用駆動源を前記駆動部ハウジング内に設け、冷却液を、前記スピンドルガイド部の基端近傍に設けられた冷却液注入孔から内部に注入し、前記スピンドルガイド部および先端部材の内部を通って先端側へ送り、前記先端部材から前記工具に向けて吐出させる冷却手段を設けるとともに、前記スピンドルガイド部内から前記駆動部ハウジング内への前記冷却液の浸入を阻止するシール手段を設けたため、細長形状であるスピンドルガイド部の先端に設けられた工具の姿勢を遠隔操作で変更することができ、機械部分に悪影響を与えることなく、加工時に発熱する箇所を効率良く冷却できる。   The remote control type actuator according to the present invention comprises an elongated spindle guide portion, a tip member attached to the tip of the spindle guide portion via a tip member connecting portion so that the posture can be freely changed, and a base end of the spindle guide portion. A driving unit housing coupled thereto, wherein the tip member rotatably supports a spindle holding a tool, and the spindle guide unit rotates a driving source for rotating the tool provided in the driving unit housing. There is a rotation shaft that transmits to the spindle and guide holes that penetrate through both ends, and a posture operation member that changes the posture of the tip member by moving the tip member forward and backward while contacting the tip member. A posture change drive source that is inserted into the drive housing so as to advance and retreat, and that moves the posture operation member forward and backward. Cooling means for injecting into the inside from a coolant injection hole provided in the vicinity of the base end of the id portion, sending it to the tip side through the inside of the spindle guide portion and the tip member, and discharging from the tip member toward the tool And a sealing means for preventing the coolant from entering the drive unit housing from within the spindle guide part, so that the posture of the tool provided at the tip of the elongated spindle guide part can be controlled remotely. It can be changed, and the portion that generates heat during processing can be efficiently cooled without adversely affecting the machine part.

この発明の実施形態を図1〜図3と共に説明する。図1において、この遠隔操作型アクチュエータは、回転式の工具1を保持する先端部材2と、この先端部材2が先端に姿勢変更自在に取付けられた細長形状のスピンドルガイド部3と、このスピンドルガイド部3の基端が結合された駆動部ハウジング4aと、この駆動部ハウジング4a内の工具回転用駆動機構4bおよび姿勢変更用駆動機構4cを制御するコントローラ5と、工具1等を冷却する冷却手段50とを備える。なお、駆動部ハウジング4aは、内蔵の工具回転用駆動機構4bおよび姿勢変更用駆動機構4cと共に駆動部4を構成する。   An embodiment of the present invention will be described with reference to FIGS. In FIG. 1, the remote control type actuator includes a tip member 2 for holding a rotary tool 1, an elongated spindle guide portion 3 having the tip member 2 attached to the tip so that the posture can be freely changed, and the spindle guide. Drive unit housing 4a to which the base end of unit 3 is coupled, controller 5 for controlling tool rotation drive mechanism 4b and posture changing drive mechanism 4c in drive unit housing 4a, and cooling means for cooling tool 1 and the like 50. The drive unit housing 4a constitutes the drive unit 4 together with the built-in tool rotation drive mechanism 4b and posture changing drive mechanism 4c.

図2に示すように、先端部材2は、略円筒状のハウジング11の内部に、一対の軸受12によりスピンドル13が回転自在に支持されている。スピンドル13は、先端側が開口した筒状で、中空部に工具1のシャンク1aが嵌合状態に挿入され、回り止めピン14によりシャンク1aが回転不能に結合される。この先端部材2は、先端部材連結部15を介してスピンドルガイド部3の先端に取付けられる。先端部材連結部15は、先端部材2を姿勢変更自在に支持する手段であり、球面軸受からなる。具体的には、先端部材連結部15は、ハウジング11の基端の内径縮径部からなる被案内部11aと、スピンドルガイド部3の先端に固定された抜け止め部材21の鍔状部からなる案内部21aとで構成される。両者11a,21aの互いに接する各案内面F1,F2は、スピンドル13の中心線CL上に曲率中心Oが位置し、基端側ほど径が小さい球面とされている。これにより、スピンドルガイド部3に対して先端部材2が抜け止めされるとともに、姿勢変更自在に支持される。この例は、曲率中心Oを通るX軸回りに先端部材2が姿勢変更する構成であるため、案内面F1,F2が、点Oを通るX軸を軸心とする円筒面であってもよい。   As shown in FIG. 2, the tip member 2 has a spindle 13 rotatably supported by a pair of bearings 12 inside a substantially cylindrical housing 11. The spindle 13 has a cylindrical shape with an open end, and the shank 1a of the tool 1 is inserted into the hollow portion in a fitted state, and the shank 1a is non-rotatably coupled by the rotation prevention pin 14. The tip member 2 is attached to the tip of the spindle guide portion 3 via the tip member connecting portion 15. The tip member connecting portion 15 is a means for supporting the tip member 2 so that the posture thereof can be freely changed, and includes a spherical bearing. Specifically, the distal end member connecting portion 15 includes a guided portion 11 a that is a reduced inner diameter portion of the proximal end of the housing 11 and a hook-shaped portion of a retaining member 21 that is fixed to the distal end of the spindle guide portion 3. It is comprised with the guide part 21a. The guide surfaces F1 and F2 that are in contact with each other 11a and 21a are spherical surfaces having a center of curvature O located on the center line CL of the spindle 13 and having a smaller diameter toward the proximal end side. As a result, the tip member 2 is prevented from being detached from the spindle guide portion 3 and is supported so as to be freely changeable in posture. In this example, since the tip member 2 is configured to change the posture around the X axis passing through the center of curvature O, the guide surfaces F1 and F2 may be cylindrical surfaces having the X axis passing through the point O as an axis. .

スピンドルガイド部3は、駆動部ハウジング4a内の工具回転用駆動源41(図3)の回転力を前記スピンドル13へ伝達する回転軸22を有する。この例では、回転軸22はワイヤとされ、ある程度の弾性変形が可能である。ワイヤの材質としては、例えば金属、樹脂、グラスファイバー等が用いられる。ワイヤは単線であっても、撚り線であってもよい。図2(C)に示すように、スピンドル13と回転軸22とは、自在継手等の継手23を介して回転伝達可能に接続されている。継手23は、スピンドル13の閉塞した基端に設けられた溝13aと、回転軸22の先端に設けられ前記溝13aに係合する突起22aとで構成される。上記溝13aと突起22aとの連結箇所の中心は、前記案内面F1,F2の曲率中心Oと同位置である。回転軸22と突起22aは別部材として構成しても良い。   The spindle guide portion 3 has a rotating shaft 22 that transmits the rotational force of the tool rotation drive source 41 (FIG. 3) in the drive portion housing 4 a to the spindle 13. In this example, the rotating shaft 22 is a wire and can be elastically deformed to some extent. As the material of the wire, for example, metal, resin, glass fiber or the like is used. The wire may be a single wire or a stranded wire. As shown in FIG. 2C, the spindle 13 and the rotary shaft 22 are connected so as to be able to transmit rotation via a joint 23 such as a universal joint. The joint 23 includes a groove 13 a provided at the closed base end of the spindle 13 and a protrusion 22 a provided at the distal end of the rotating shaft 22 and engaged with the groove 13 a. The center of the connecting portion between the groove 13a and the protrusion 22a is at the same position as the center of curvature O of the guide surfaces F1 and F2. The rotating shaft 22 and the protrusion 22a may be configured as separate members.

スピンドルガイド部3は、このスピンドルガイド部3の外郭となる外郭パイプ25を有し、この外郭パイプ25の中心に前記回転軸22が位置する。回転軸22は、それぞれ軸方向に離れて配置された複数の転がり軸受26によって回転自在に支持されている。各転がり軸受26間には、これら転がり軸受26に予圧を発生させるためのばね要素27A,27Bが設けられている。ばね要素27A,27Bは、例えば圧縮コイルばねである。転がり軸受26の内輪に予圧を発生させる内輪用ばね要素27Aと、外輪に予圧を発生させる外輪用ばね要素27Bとがあり、これらが交互に配置されている。前記抜け止め部材21は、固定ピン28により外郭パイプ25のパイプエンド部25aに固定され、その先端内周部で転がり軸受29を介して回転軸22の先端部を回転自在に支持している。パイプエンド部25aは、外郭パイプ25と別部材とし、溶接等により結合してもよい。   The spindle guide section 3 has an outer pipe 25 that is an outer shell of the spindle guide section 3, and the rotation shaft 22 is located at the center of the outer pipe 25. The rotating shaft 22 is rotatably supported by a plurality of rolling bearings 26 that are arranged apart from each other in the axial direction. Between each rolling bearing 26, spring elements 27A and 27B for generating a preload on the rolling bearing 26 are provided. The spring elements 27A and 27B are, for example, compression coil springs. There are an inner ring spring element 27A for generating a preload on the inner ring of the rolling bearing 26 and an outer ring spring element 27B for generating a preload on the outer ring, which are arranged alternately. The retaining member 21 is fixed to the pipe end portion 25a of the outer pipe 25 by a fixing pin 28, and rotatably supports the distal end portion of the rotary shaft 22 via a rolling bearing 29 at the distal end inner peripheral portion thereof. The pipe end portion 25a may be a separate member from the outer pipe 25 and may be joined by welding or the like.

外郭パイプ25の内径面と回転軸22の間には、両端に貫通する1本のガイドパイプ30が設けられ、このガイドパイプ30の内径孔であるガイド孔30a内に可撓性の姿勢操作部材31が進退自在に挿通されている。この例では、姿勢操作部材31はワイヤである。姿勢操作部材31の先端は球面状で、その球面状の先端が、ハウジング11の基端面に形成された径方向の溝部11bの底面に当接している。溝部11bおよび姿勢操作部材31は回転防止機構37を構成し、溝部11bに挿入された姿勢操作部材31の先端部が溝部11bの側面に当たることで、先端部材2がスピンドルガイド部3に対して先端部材2の中心線CL回りに回転するのを防止している。姿勢操作部材31の基端側には柱状ピン31aが設けられ、この柱状ピン31aの球面状の基端が後記レバー43bの側面に当接している。   Between the inner diameter surface of the outer pipe 25 and the rotary shaft 22, one guide pipe 30 penetrating at both ends is provided, and a flexible posture operation member is placed in a guide hole 30 a which is an inner diameter hole of the guide pipe 30. 31 is inserted in such a manner that it can freely advance and retract. In this example, the posture operation member 31 is a wire. The distal end of the posture operation member 31 is spherical, and the spherical distal end is in contact with the bottom surface of the radial groove portion 11 b formed on the base end surface of the housing 11. The groove 11b and the posture operation member 31 constitute an anti-rotation mechanism 37, and the tip member 2 inserted into the groove 11b hits the side surface of the groove 11b, so that the tip member 2 is in front of the spindle guide 3. Rotation around the center line CL of the member 2 is prevented. A columnar pin 31a is provided on the base end side of the posture operation member 31, and the spherical base end of the columnar pin 31a is in contact with the side surface of the lever 43b described later.

上記姿勢操作部材31が位置する周方向位置に対し180度の位相の位置には、先端部材2のハウジング11の基端面とスピンドルガイド部3の外郭パイプ25の先端面との間に、例えば圧縮コイルばねからなる復元用弾性部材32が設けられている。この復元用弾性部材32は、先端部材2を所定姿勢側へ付勢する作用をする。   For example, compression is provided between the proximal end surface of the housing 11 of the distal end member 2 and the distal end surface of the outer pipe 25 of the spindle guide portion 3 at a position 180 degrees relative to the circumferential position where the posture operation member 31 is located. A restoring elastic member 32 made of a coil spring is provided. The restoring elastic member 32 acts to urge the tip member 2 toward a predetermined posture.

また、外郭パイプ25の内径面と回転軸22の間には、前記ガイドパイプ30とは別に、このガイドパイプ30と同一ピッチ円C上に、複数本の補強シャフト34が配置されている。これらの補強シャフト34は、スピンドルガイド部3の剛性を確保するためのものである。ガイドパイプ30と補強シャフト34の配列間隔は等間隔とされている。ガイドパイプ30および補強シャフト34は、外郭パイプ25の内径面におよび前記転がり軸受26の外径面に接している。これにより、転がり軸受26の外径面を支持している。   In addition to the guide pipe 30, a plurality of reinforcing shafts 34 are arranged on the same pitch circle C as the guide pipe 30 between the inner diameter surface of the outer pipe 25 and the rotary shaft 22. These reinforcing shafts 34 are for ensuring the rigidity of the spindle guide portion 3. The intervals between the guide pipe 30 and the reinforcing shaft 34 are equal. The guide pipe 30 and the reinforcing shaft 34 are in contact with the inner diameter surface of the outer pipe 25 and the outer diameter surface of the rolling bearing 26. Thereby, the outer diameter surface of the rolling bearing 26 is supported.

図3は、駆動部ハウジング4a内の工具回転用駆動機構4bおよび姿勢変更用駆動機構4cを示す。工具回転用駆動機構4bは、コントローラ5により制御される工具回転用駆動源41を備える。工具回転用駆動源41は、例えば電動モータであり、その出力軸41aが前記回転軸22の基端に結合させてある。姿勢変更用駆動機構4cは、コントローラ5により制御される姿勢変更用駆動源42を備える。姿勢変更用駆動源42は、例えば電動リニアアクチュエータであり、図3(A)の左右方向に移動する出力ロッド42aの動きが、増力伝達機構43を介して前記姿勢操作部材31に伝達される。増力伝達機構43は、支軸43a回りに回動自在なレバー43bを有し、このレバー43bにおける支軸43aからの距離が長い作用点P1に出力ロッド42aの力が作用し、支軸43aからの距離が短い力点P2で姿勢操作部材31に力を与える構成であり、姿勢変更用駆動源42の出力が増力して姿勢操作部材31に伝達される。増力伝達機構43を設けると、小さな出力のリニアアクチュエータでも姿勢操作部材31に大きな力を与えることができるので、リニアアクチュエータの小型化が可能になる。なお、回転軸22は、レバー43bに形成された開口44を貫通させてある。なお、リニアアクチュエータ等を設ける代わりに、手動により先端部材2の姿勢を遠隔操作してもよい。   FIG. 3 shows a tool rotation drive mechanism 4b and a posture change drive mechanism 4c in the drive unit housing 4a. The tool rotation drive mechanism 4 b includes a tool rotation drive source 41 controlled by the controller 5. The tool rotation drive source 41 is, for example, an electric motor, and its output shaft 41 a is coupled to the proximal end of the rotation shaft 22. The posture changing drive mechanism 4 c includes a posture changing drive source 42 controlled by the controller 5. The posture changing drive source 42 is, for example, an electric linear actuator, and the movement of the output rod 42 a that moves in the left-right direction in FIG. 3A is transmitted to the posture operating member 31 through the force transmission mechanism 43. The boost transmission mechanism 43 has a lever 43b that is rotatable around a support shaft 43a. The force of the output rod 42a acts on an action point P1 of the lever 43b that is long from the support shaft 43a. The force is applied to the posture operation member 31 at the force point P <b> 2 having a short distance, and the output of the posture changing drive source 42 is increased and transmitted to the posture operation member 31. If the boost transmission mechanism 43 is provided, a large force can be applied to the posture operation member 31 even with a linear actuator having a small output, and thus the linear actuator can be downsized. The rotary shaft 22 passes through an opening 44 formed in the lever 43b. Instead of providing a linear actuator or the like, the posture of the tip member 2 may be remotely operated manually.

姿勢変更用駆動機構4cには、姿勢変更用駆動源42の動作量を検出する動作量検出器45が設けられている。この動作量検出器45の検出値は、姿勢検出手段46に出力される。姿勢検出手段46は、動作量検出器45の出力により、先端部材2のX軸(図2)回りの傾動姿勢を検出する。姿勢検出手段46は、上記傾動姿勢と動作量検出器45の出力信号との関係を演算式またはテーブル等により設定した関係設定手段(図示せず)を有し、入力された出力信号から前記関係設定手段を用いて傾動姿勢を検出する。この姿勢検出手段46は、コントローラ5に設けられたものであっても、あるいは外部の制御装置に設けられたものであってもよい。   The posture change drive mechanism 4c is provided with an operation amount detector 45 for detecting the operation amount of the posture change drive source 42. The detection value of the movement amount detector 45 is output to the posture detection means 46. The posture detection means 46 detects the tilt posture of the tip member 2 around the X axis (FIG. 2) based on the output of the movement amount detector 45. The posture detection means 46 has relationship setting means (not shown) in which the relationship between the tilt posture and the output signal of the motion amount detector 45 is set by an arithmetic expression or a table, and the relationship is determined from the input output signal. The tilting posture is detected using setting means. This posture detection means 46 may be provided in the controller 5 or may be provided in an external control device.

また、姿勢変更用駆動機構4cには、電動アクチュエータである姿勢変更用駆動源42に供給される電力量を検出する供給電力計47が設けられている。この供給電力計47の検出値は、荷重検出手段48に出力される。荷重検出手段48は、供給電力計47の出力により、先端部材2に作用する荷重を検出する。荷重検出手段48は、上記荷重と供給電力計47の出力信号との関係を演算式またはテーブル等により設定した関係設定手段(図示せず)を有し、入力された出力信号から前記関係設定手段を用いて荷重を検出する。この荷重検出手段48は、コントローラ5に設けられたものであっても、あるいは外部の制御装置に設けられたものであってもよい。   The posture changing drive mechanism 4c is provided with a wattmeter 47 that detects the amount of power supplied to the posture changing drive source 42, which is an electric actuator. The detected value of the supplied wattmeter 47 is output to the load detecting means 48. The load detection means 48 detects the load acting on the tip member 2 based on the output of the wattmeter 47. The load detection means 48 has relation setting means (not shown) in which the relation between the load and the output signal of the supplied wattmeter 47 is set by an arithmetic expression or a table, and the relation setting means is determined from the input output signal. The load is detected using. The load detecting means 48 may be provided in the controller 5 or may be provided in an external control device.

コントローラ5は、前記姿勢検出手段46および荷重検出手段48の検出値に基づき、工具回転用駆動源41および姿勢変更用駆動源42を制御する。   The controller 5 controls the tool rotation drive source 41 and the posture change drive source 42 based on the detection values of the posture detection means 46 and the load detection means 48.

図1に示すように、冷却手段50は、遠隔操作型アクチュエータの外部に設けた冷却液供給装置51と、この冷却液供給装置51から供給される冷却液をスピンドルガイド部3、および先端部材2の内部を通して先端側へ導く冷却液供給管52とでなり、先端部材2の先端から工具1に向けて軸方向に冷却液を吐出させる。冷却液供給管52は、冷却液供給装置1からスピンドルガイド部3までの外部分52aと、スピンドルガイド部3および先端部材2の内部を通る内部分52bとでなり、内部分52bでは、スピンドルガイド部3の外郭パイプ25(図2)および先端部材2のハウジング11(図2)が冷却液供給管52になっている。   As shown in FIG. 1, the cooling means 50 includes a cooling liquid supply device 51 provided outside the remote operation type actuator, the cooling liquid supplied from the cooling liquid supply device 51, the spindle guide portion 3, and the tip member 2. A coolant supply pipe 52 that leads to the tip side through the inside of the tip member, and discharges coolant in the axial direction from the tip of the tip member 2 toward the tool 1. The coolant supply pipe 52 includes an outer portion 52a from the coolant supply apparatus 1 to the spindle guide portion 3, and an inner portion 52b that passes through the inside of the spindle guide portion 3 and the tip member 2, and in the inner portion 52b, a spindle guide. The outer pipe 25 (FIG. 2) of the part 3 and the housing 11 (FIG. 2) of the tip member 2 serve as a coolant supply pipe 52.

図2(A)に示すように、スピンドルガイド部3は、その基端部を駆動部ハウジング4aの先端側の側板70に挿入させて、駆動部ハウジング4aと結合されている。駆動部ハウジング4aの側板70には、スピンドルガイド部3の軸心と同軸上の軸受嵌合孔71、および前記ガイド孔30aに続く延長ガイド孔72が設けられている。そして、軸受嵌合孔71に滑り軸受73が嵌合し、この滑り軸受73により回転軸22が支持されている。延長ガイド孔72には、前記柱状ピン31aが挿通されている。   As shown in FIG. 2A, the spindle guide portion 3 is coupled to the drive portion housing 4a by inserting the base end portion of the spindle guide portion 3 into the side plate 70 on the distal end side of the drive portion housing 4a. The side plate 70 of the drive unit housing 4a is provided with a bearing fitting hole 71 coaxial with the axis of the spindle guide 3 and an extended guide hole 72 following the guide hole 30a. A sliding bearing 73 is fitted into the bearing fitting hole 71, and the rotating shaft 22 is supported by the sliding bearing 73. The columnar pin 31 a is inserted into the extension guide hole 72.

また、駆動部ハウジング4aの側板70および基板74には、スピンドルガイド部3内と外部とを連通する冷却液注入孔75が設けられ、この冷却液注入孔75の外部側端に管継手76を介して冷却液供給管52の外部分52aが結合されている。前記滑り軸受73は、冷却液注入孔75よりも基端側に位置している。滑り軸受73は、スピンドルガイド部3内から駆動部ハウジング4a内への冷却液の浸入を阻止するシール手段Sである。   Further, the side plate 70 and the substrate 74 of the drive unit housing 4a are provided with a cooling liquid injection hole 75 that allows the inside of the spindle guide part 3 to communicate with the outside, and a pipe joint 76 is connected to the external side end of the cooling liquid injection hole 75. The outer portion 52a of the coolant supply pipe 52 is coupled through the via. The sliding bearing 73 is located on the proximal end side with respect to the coolant injection hole 75. The sliding bearing 73 is a sealing means S that prevents the coolant from entering the spindle guide portion 3 into the drive portion housing 4a.

この遠隔操作型アクチュエータの動作を説明する。
工具回転用駆動源41を駆動すると、その回転力が回転軸22を介してスピンドル13に伝達されて、スピンドル13と共に工具1が回転する。工具1を回転させて骨等を切削加工する際に先端部材2に作用する荷重は、供給電力計47の検出値から、荷重検出手段48によって検出される。このように検出される荷重の値に応じて遠隔操作型アクチュエータ全体の送り量や後記先端部材2の姿勢変更を制御することにより、先端部材2に作用する荷重を適正に保った状態で骨の切削加工を行える。
The operation of this remote control type actuator will be described.
When the tool rotation drive source 41 is driven, the rotational force is transmitted to the spindle 13 via the rotation shaft 22, and the tool 1 rotates together with the spindle 13. The load acting on the tip member 2 when the tool 1 is rotated to cut bone or the like is detected by the load detection means 48 from the detection value of the supply wattmeter 47. By controlling the feed amount of the entire remote operation type actuator and the posture change of the distal end member 2 described later according to the load value thus detected, the load acting on the distal end member 2 can be appropriately maintained while maintaining the load. Cutting can be performed.

使用時には、姿勢変更用駆動源42を駆動させて、遠隔操作で先端部材2の姿勢変更を行う。例えば、姿勢変更用駆動源42により姿勢操作部材31を先端側へ進出させると、姿勢操作部材31によって先端部材2のハウジング11が押されて、先端部材2は図2(A)において先端側が下向きとなる側へ案内面F1,F2に沿って姿勢変更する。逆に、姿勢変更用駆動源42により姿勢操作部材31を後退させると、復元用弾性部材32の弾性反発力によって先端部材2のハウジング11が押し戻され、先端部材2は図2(A)において先端側が上向きとなる側へ案内面F1,F2に沿って姿勢変更する。その際、先端部材連結部15には、姿勢操作部材31の圧力、復元用弾性部材32の弾性反発力、および抜け止め部材21からの反力が作用しており、これらの作用力の釣り合いにより先端部材2の姿勢が決定される。先端部材2の姿勢は、動作量検出器45の検出値から、姿勢検出手段46によって検出される。そのため、遠隔操作で先端部材2の姿勢を適正に制御できる。   At the time of use, the posture changing drive source 42 is driven to change the posture of the tip member 2 by remote control. For example, when the posture operating member 31 is advanced to the distal end side by the posture changing drive source 42, the housing 11 of the distal end member 2 is pushed by the posture operating member 31, and the distal end member 2 is directed downward in FIG. The posture is changed along the guide surfaces F1 and F2 toward the side. On the other hand, when the posture operation member 31 is retracted by the posture changing drive source 42, the housing 11 of the tip member 2 is pushed back by the elastic repulsive force of the restoring elastic member 32, and the tip member 2 is shown in FIG. The posture is changed along the guide surfaces F1 and F2 to the side facing upward. At that time, the pressure of the posture operation member 31, the elastic repulsive force of the restoring elastic member 32, and the reaction force from the retaining member 21 act on the tip member connecting portion 15, and the balance of these acting forces The posture of the tip member 2 is determined. The posture of the tip member 2 is detected by the posture detection means 46 from the detection value of the movement amount detector 45. Therefore, the posture of the tip member 2 can be appropriately controlled by remote operation.

また、先端部材2がスピンドルガイド部3に対して先端部材2の中心線CL回りに回転するのを防止する回転防止機構37が設けられているため、姿勢操作部材31の進退を制御する姿勢操作用駆動機構4cやその制御装置の故障等により工具1を保持する先端部材2が制御不能となった場合でも、先端部材2が中心線CL回りに回転して加工箇所の周りを傷つけたり、先端部材2自体が破損したりすることを防止できる。   Further, since the rotation preventing mechanism 37 for preventing the tip member 2 from rotating around the center line CL of the tip member 2 with respect to the spindle guide portion 3 is provided, the posture operation for controlling the advancement and retreat of the posture operation member 31 is provided. Even when the tip member 2 that holds the tool 1 becomes uncontrollable due to a failure of the drive mechanism 4c or its control device, the tip member 2 rotates around the center line CL and damages the periphery of the machining site, It is possible to prevent the member 2 itself from being damaged.

姿勢操作部材31はガイド孔30aに挿通されているため、姿勢操作部材31が長手方向と交差する方向に位置ずれすることがなく、常に先端部材2に対し適正に作用することができ、先端部材2の姿勢変更動作が正確に行われる。また、姿勢操作部材31はワイヤからなり可撓性であるため、スピンドルガイド部3が湾曲した状態でも先端部材2の姿勢変更動作が確実に行われる。さらに、スピンドル13と回転軸22との連結箇所の中心が案内面F1,F2の曲率中心Oと同位置であるため、先端部材2の姿勢変更によって回転軸22に対して押し引きする力がかからず、先端部材2が円滑に姿勢変更できる。   Since the posture operation member 31 is inserted through the guide hole 30a, the posture operation member 31 does not shift in the direction intersecting the longitudinal direction, and can always act properly on the tip member 2, and the tip member 2 posture change operation is performed accurately. Further, since the posture operation member 31 is made of a wire and is flexible, the posture changing operation of the tip member 2 is reliably performed even when the spindle guide portion 3 is curved. Furthermore, since the center of the connecting portion between the spindle 13 and the rotating shaft 22 is at the same position as the center of curvature O of the guide surfaces F1 and F2, a force for pushing and pulling against the rotating shaft 22 by changing the posture of the tip member 2 is increased. Accordingly, the posture of the tip member 2 can be changed smoothly.

この遠隔操作型アクチュエータは、例えば人工関節置換手術において骨の髄腔部を削るのに使用されるものであり、施術時には、先端部材2の全部または一部が患者の体内に挿入して使用される。このため、上記のように先端部材2の姿勢を遠隔操作で変更できれば、常に工具1を適正な姿勢に保持した状態で骨の加工をすることができ、人工関節挿入用穴を精度良く仕上げることができる。   This remote control type actuator is used, for example, for cutting the medullary cavity of bone in artificial joint replacement surgery. During the operation, all or part of the distal end member 2 is inserted into the patient's body. The For this reason, if the posture of the tip member 2 can be changed by remote control as described above, the bone can be processed while the tool 1 is always held in an appropriate posture, and the artificial joint insertion hole is finished with high accuracy. Can do.

細長形状であるスピンドルガイド部3には、回転軸22および姿勢操作部材31を保護状態で設ける必要があるが、外郭パイプ25の中心部に回転軸22を設け、外郭パイプ25と回転軸22との間に、姿勢操作部材31を収容したガイドパイプ30と補強シャフト34とを円周方向に並べて配置した構成としたことにより、回転軸22および姿勢操作部材31を保護し、かつ内部を中空として軽量化を図りつつ剛性を確保できる。また、全体のバランスも良い。   The elongated spindle guide portion 3 needs to be provided with the rotating shaft 22 and the posture operation member 31 in a protected state. The rotating shaft 22 is provided at the center of the outer pipe 25, and the outer pipe 25, the rotating shaft 22, Since the guide pipe 30 accommodating the posture operation member 31 and the reinforcing shaft 34 are arranged side by side in the circumferential direction, the rotary shaft 22 and the posture operation member 31 are protected and the interior is hollow. Rigidity can be ensured while reducing weight. Also, the overall balance is good.

回転軸22を支持する転がり軸受26の外径面を、ガイドパイプ30と補強シャフト34とで支持させたため、余分な部材を用いずに転がり軸受26の外径面を支持できる。また、ばね要素27A,27Bにより転がり軸受26に予圧がかけられているため、ワイヤからなる回転軸22を高速回転させることができる。そのため、スピンドル13を高速回転させて加工することができ、加工の仕上がりが良く、工具1に作用する切削抵抗を低減させられる。ばね要素27A,27Bは隣合う転がり軸受26間に設けられているので、スピンドルガイド部3の径を大きくせずにばね要素27A,27Bを設けることができる。   Since the outer diameter surface of the rolling bearing 26 that supports the rotating shaft 22 is supported by the guide pipe 30 and the reinforcing shaft 34, the outer diameter surface of the rolling bearing 26 can be supported without using extra members. Moreover, since the preload is applied to the rolling bearing 26 by the spring elements 27A and 27B, the rotating shaft 22 made of a wire can be rotated at a high speed. Therefore, machining can be performed by rotating the spindle 13 at a high speed, the machining finish is good, and the cutting resistance acting on the tool 1 can be reduced. Since the spring elements 27A and 27B are provided between the adjacent rolling bearings 26, the spring elements 27A and 27B can be provided without increasing the diameter of the spindle guide portion 3.

冷却手段50により、冷却液供給装置51から供給される冷却液が、冷却液注入孔75からスピンドルガイド部3内に入り、スピンドルガイド部3および先端部材2の内部を通って先端側へ送くられて、先端部材2の先端から軸方向に工具1に向けて吐出される。詳しくは、スピンドルガイド部3の内部では、外郭パイプ25内の回転軸22とガイドパイプ25と補強シャフト25との間の中空部、ならびに転がり軸受26の内輪と外輪間の隙間を冷却液が流れる。スピンドルガイド部3から先端部材2にかけては、抜け止め部材21と回転軸22との間の隙間、および転がり軸受29の内輪と外輪間の隙間を冷却液が流れる。先端部材2の内部では、軸受12の内輪と外輪間の隙間を冷却液が流れる。   By the cooling means 50, the coolant supplied from the coolant supply device 51 enters the spindle guide portion 3 through the coolant injection hole 75 and passes through the inside of the spindle guide portion 3 and the tip member 2 to the tip side. Then, it is discharged toward the tool 1 in the axial direction from the tip of the tip member 2. Specifically, in the spindle guide portion 3, the coolant flows through the hollow portion between the rotating shaft 22 in the outer pipe 25, the guide pipe 25 and the reinforcing shaft 25, and the gap between the inner ring and the outer ring of the rolling bearing 26. . From the spindle guide portion 3 to the tip member 2, the coolant flows through the gap between the retaining member 21 and the rotating shaft 22 and the gap between the inner ring and the outer ring of the rolling bearing 29. Inside the tip member 2, the coolant flows through the gap between the inner ring and the outer ring of the bearing 12.

冷却液がスピンドルガイド部3および先端部材2の内部を通過する際に、回転軸22、転がり軸受26,29、およびスピンドル13を冷却する。これらの回転する部材は、回転摩擦により発熱する。また、先端部材2から吐出される冷却液により、工具1および被加工物が冷却される。このように、スピンドルガイド部3および先端部材2の内部に冷却液を通したことにより、冷却液供給用の管を外部に設けなくて済み、スピンドルガイド部3および先端部材2を簡素化ならびに小径化できる。   When the coolant passes through the inside of the spindle guide portion 3 and the tip member 2, the rotating shaft 22, the rolling bearings 26 and 29, and the spindle 13 are cooled. These rotating members generate heat due to rotational friction. Further, the tool 1 and the workpiece are cooled by the coolant discharged from the tip member 2. As described above, since the coolant is passed through the spindle guide portion 3 and the tip member 2, it is not necessary to provide a coolant supply pipe outside. The spindle guide portion 3 and the tip member 2 are simplified and have a small diameter. Can be

なお、前記冷却液を転がり軸受26,29の潤滑に兼用させてもよい。そうすれば、軸受に一般的に使用されているグリス等を使用しなくてもよく、しかも別に潤滑装置を設けなくて済む。   Note that the cooling liquid may also be used for lubricating the rolling bearings 26 and 29. By doing so, it is not necessary to use grease or the like generally used for bearings, and it is not necessary to provide a separate lubricating device.

一般に、滑り軸受は回転軸を接触状態で支持するため、転がり軸受に比べて、軸受と回転軸との回転部の隙間が小さい。そのため、冷却液注入孔75よりも基端側で回転軸22を支持する軸受を滑り軸受73とすることで、スピンドルガイド部3内から駆動部ハウジング4a内への冷却液の浸入を阻止できる。すなわち、滑り軸受73をシール手段Sに兼用できる。シール手段Sを設けることにより、駆動部ハウジング4a内の工具回転用駆動機構4bおよび姿勢変更用駆動機構4cに故障が生じ難く、低寿命化を防止できる。   Generally, since the sliding bearing supports the rotating shaft in a contact state, the clearance between the rotating portion of the bearing and the rotating shaft is smaller than that of the rolling bearing. Therefore, the bearing that supports the rotating shaft 22 on the base end side with respect to the coolant injection hole 75 is the sliding bearing 73, so that the coolant can be prevented from entering from the spindle guide portion 3 into the drive portion housing 4a. That is, the sliding bearing 73 can be used as the sealing means S. By providing the sealing means S, it is difficult for the tool rotation drive mechanism 4b and the posture change drive mechanism 4c in the drive unit housing 4a to fail, and the lifetime can be prevented.

上記冷却液は、水もしくは生理食塩水であるのが望ましい。冷却液が水もしくは生理食塩水であれば、この遠隔操作型アクチュエータが医療用であり、先端部材2を生体内に挿入して加工を行う場合に、冷却液が生体に悪影響を与えないからである。冷却液が水もしくは生理食塩水である場合、冷却液と接する部品の材質は、耐腐食性に優れたステンレスであるのが望ましい。この遠隔操作型アクチュエータを構成する他の部品も、ステンレス製であってもよい。   The cooling liquid is preferably water or physiological saline. If the coolant is water or saline, this remote control type actuator is for medical use, and when the tip member 2 is inserted into the living body for processing, the coolant does not adversely affect the living body. is there. When the coolant is water or physiological saline, it is desirable that the material of the parts in contact with the coolant is stainless steel having excellent corrosion resistance. Other parts constituting this remote control type actuator may also be made of stainless steel.

上記実施形態では、駆動部ハウジング4aの側板70内に挿入されたスピンドルガイド部3の基端部に冷却液注入孔75が設けられているが、スピンドルガイド部3の側板70から露出している箇所に冷却液注入孔75を設けてもよい。その場合、冷却液注入孔75に対する冷却液供給管52の外部分52aの取付けが不安定となるのを防ぐため、図4のように、フランジ部材77を用いてスピンドルガイド部3の根元部を側板70に固定し、このフランジ部77に冷却液注入孔75を設けるのがよい。   In the above embodiment, the coolant injection hole 75 is provided at the proximal end portion of the spindle guide portion 3 inserted into the side plate 70 of the drive portion housing 4a, but is exposed from the side plate 70 of the spindle guide portion 3. A coolant injection hole 75 may be provided at a location. In that case, in order to prevent the attachment of the outer portion 52a of the coolant supply pipe 52 to the coolant injection hole 75 from becoming unstable, the base portion of the spindle guide portion 3 is fixed using a flange member 77 as shown in FIG. It is preferable to fix to the side plate 70 and provide the coolant injection hole 75 in the flange portion 77.

図5はシール手段の異なる構成を示す。このシール手段Sは、駆動部ハウジング4aに、前記軸受嵌合孔71を介してスピンドルガイド部3内と連通する遮蔽空間78を設け、この遮蔽空間78と外部の圧力発生手段79とを管継手80を介して接続し、圧力発生手段79の作用で遮蔽空間78の圧力を大気圧よりも高くしたものである。圧力発生手段79としては、例えばエアポンプを使用できる。軸受嵌合孔72に嵌合して回転軸22を支持する軸受は、転がり軸受26とされている。   FIG. 5 shows a different configuration of the sealing means. This sealing means S is provided with a shielding space 78 communicating with the inside of the spindle guide portion 3 through the bearing fitting hole 71 in the drive section housing 4a, and this shielding space 78 and an external pressure generating means 79 are connected to a pipe joint. The pressure of the shielding space 78 is made higher than the atmospheric pressure by the action of the pressure generating means 79. As the pressure generating means 79, for example, an air pump can be used. A bearing that is fitted in the bearing fitting hole 72 and supports the rotary shaft 22 is a rolling bearing 26.

この構成のシール手段Sによれば、先端部材2の冷却液吐出部の圧力は大気圧であるため、遮蔽空間78の圧力を大気圧よりも高くすることにより、スピンドルガイド部3内の冷却液が先端部材2側へ流れるようになり、スピンドルガイド部3内の冷却液が駆動部ハウジング4a内へ浸入することを防止できる。なお、遮蔽空間78を完全に密封状態、すなわち全く空気の漏れがない状態とすることができるのであれば、圧力発生手段79を設けなくてもよい。   According to the sealing means S having this configuration, since the pressure of the coolant discharge portion of the tip member 2 is atmospheric pressure, the coolant in the spindle guide portion 3 is increased by making the pressure of the shielding space 78 higher than atmospheric pressure. Can flow to the tip member 2 side, and the coolant in the spindle guide portion 3 can be prevented from entering the drive portion housing 4a. Note that the pressure generating means 79 may not be provided if the shielding space 78 can be completely sealed, that is, without any air leakage.

図6のように、遮蔽空間78の両側で回転軸22を支持する軸受を滑り軸受73とすれば、遮蔽空間78の圧力を上昇させやすくなり、スピンドルガイド部3内から駆動部ハウジング4a内への冷却液の浸入をより一層効果的に防止できる。   As shown in FIG. 6, if the bearings that support the rotating shaft 22 on both sides of the shielding space 78 are sliding bearings 73, the pressure in the shielding space 78 can be easily increased, and the spindle guide portion 3 enters the drive portion housing 4a. Intrusion of the coolant can be more effectively prevented.

上記実施形態では、姿勢操作部材31がハウジング11を押すことにより先端部材2の姿勢変更を行うが、図7のように、ワイヤからなる姿勢操作部材31の先端とハウジング11とを連結部材31bで連結し、姿勢変更用駆動源(図示せず)により姿勢操作部材31を基端側へ後退させることで、姿勢操作部材31がハウジング11を引っ張って先端部材2の姿勢変更を行うようにしてもよい。復元用弾性部材32は引っ張りコイルばねとする。   In the above embodiment, the posture operation member 31 pushes the housing 11 to change the posture of the tip member 2, but as shown in FIG. 7, the tip of the posture operation member 31 made of a wire and the housing 11 are connected by a connecting member 31b. By connecting and retreating the posture operation member 31 to the proximal end side by a posture change drive source (not shown), the posture operation member 31 pulls the housing 11 to change the posture of the distal end member 2. Good. The restoring elastic member 32 is a tension coil spring.

図8は異なる実施形態を示す。この遠隔操作型アクチュエータは、外郭パイプ25内の互いに180度の位相にある周方向位置に2本のガイドパイプ30を設け、そのガイドパイプ30の内径孔であるガイド孔30a内に前記同様の姿勢操作部材31が進退自在に挿通してある。2本のガイドパイプ30間には、ガイドパイプ30と同一ピッチ円C上に複数本の補強シャフト34が配置されている。復元用弾性部材32は設けられていない。案内面F1,F2は、曲率中心が点Oである球面、または点Oを通るX軸を軸心とする円筒面である。   FIG. 8 shows a different embodiment. This remote control type actuator is provided with two guide pipes 30 at circumferential positions in the outer pipe 25 that are 180 degrees in phase with each other, and in the guide hole 30a that is the inner diameter hole of the guide pipe 30, the same attitude as described above. The operating member 31 is inserted so as to freely advance and retract. Between the two guide pipes 30, a plurality of reinforcing shafts 34 are arranged on the same pitch circle C as the guide pipe 30. The restoring elastic member 32 is not provided. The guide surfaces F1 and F2 are spherical surfaces whose center of curvature is the point O, or cylindrical surfaces whose axis is the X axis passing through the point O.

駆動部4(図示せず)には、2つの姿勢操作部材31をそれぞれ個別に進退操作させる2つの姿勢変更用駆動源42(図示せず)が設けられており、これら2つの姿勢変更用駆動源42を互いに逆向きに駆動することで先端部材2の姿勢変更を行う。例えば、図8における上側の姿勢操作部材31を先端側へ進出させ、かつ下側の姿勢操作部材31を後退させると、上側の姿勢操作部材31によって先端部材2のハウジング11が押されることにより、先端部材2は図8(A)において先端側が下向きとなる側へ案内面F1,F2に沿って姿勢変更する。逆に、両姿勢操作部材31を逆に進退させると、下側の姿勢操作部材31によって先端部材2のハウジング11が押されることにより、先端部材2は図8(A)において先端側が上向きとなる側へ案内面F1,F2に沿って姿勢変更する。その際、先端部材連結部15には、上下2つの姿勢操作部材31の圧力、および抜け止め部材21からの反力が作用しており、これらの作用力の釣り合いにより先端部材2の姿勢が決定される。この構成では、2つの姿勢操作部材31で先端部材2のハウジング11に加圧されるため、1つの姿勢操作部材31だけで加圧される前記実施形態に比べ、先端部材2の姿勢安定性を高めることができる。   The drive unit 4 (not shown) is provided with two posture change drive sources 42 (not shown) for individually moving the two posture operation members 31 forward and backward, and these two posture change drives. The posture of the tip member 2 is changed by driving the sources 42 in opposite directions. For example, when the upper posture operation member 31 in FIG. 8 is advanced to the distal end side and the lower posture operation member 31 is retracted, the housing 11 of the distal end member 2 is pushed by the upper posture operation member 31. The posture of the tip member 2 is changed along the guide surfaces F1 and F2 to the side where the tip side faces downward in FIG. Conversely, when both posture operation members 31 are moved back and forth, the housing 11 of the tip member 2 is pushed by the lower posture operation member 31, so that the tip member 2 is directed upward in FIG. 8A. The posture is changed along the guide surfaces F1 and F2 to the side. At that time, the pressure of the two upper and lower posture operating members 31 and the reaction force from the retaining member 21 are acting on the tip member connecting portion 15, and the posture of the tip member 2 is determined by the balance of these acting forces. Is done. In this configuration, the housing 11 of the tip member 2 is pressurized by the two posture operation members 31, so that the posture stability of the tip member 2 is improved as compared with the embodiment in which the pressure is applied by only one posture operation member 31. Can be increased.

図9はさらに異なる実施形態を示す。この遠隔操作型アクチュエータは、外郭パイプ25内の互いに120度の位相にある周方向位置に3本のガイドパイプ30を設け、そのガイドパイプ30の内径孔であるガイド孔30a内に姿勢操作部材31が進退自在に挿通してある。この例では、各姿勢操作部材31の先端側にも柱状ピン31cが設けられている。柱状ピン31cの先端は球面状で、その球面状の先端が、ハウジング11の基端面に形成された径方向の溝部11bの底面に当接している。3本のガイドパイプ30間には、ガイドパイプ30と同一ピッチ円C上に複数本の補強シャフト34が配置されている。復元用弾性部材32は設けられていない。案内面F1,F2は曲率中心が点Oである球面であり、先端部材2は任意方向に傾動可能である。   FIG. 9 shows a further different embodiment. In this remote operation type actuator, three guide pipes 30 are provided at circumferential positions in the outer pipe 25 at a phase of 120 degrees with respect to each other, and a posture operation member 31 is provided in a guide hole 30 a which is an inner diameter hole of the guide pipe 30. Has been inserted to move forward and backward. In this example, a columnar pin 31 c is also provided on the tip side of each posture operation member 31. The distal end of the columnar pin 31 c is spherical, and the spherical distal end is in contact with the bottom surface of the radial groove 11 b formed on the proximal end surface of the housing 11. Between the three guide pipes 30, a plurality of reinforcing shafts 34 are arranged on the same pitch circle C as the guide pipes 30. The restoring elastic member 32 is not provided. The guide surfaces F1 and F2 are spherical surfaces whose center of curvature is a point O, and the tip member 2 can tilt in any direction.

駆動部4には、3つの姿勢操作部材31(31U,31L,31R)をそれぞれ個別に進退操作させる3つの姿勢変更用駆動源42(42U,42L,42R)(図13)が設けられており、これら3つの姿勢変更用駆動源42を互いに連係させて駆動することで先端部材2の姿勢変更を行う。
例えば、図9における上側の1つの姿勢操作部材31Uを先端側へ進出させ、かつ他の2つの姿勢操作部材31L,31Rを後退させると、上側の姿勢操作部材31Uによって先端部材2のハウジング11が押されることにより、先端部材2は図9(A)において先端側が下向きとなる側へ案内面F1,F2に沿って姿勢変更する。このとき、各姿勢操作部材31の進退量が適正になるよう、各姿勢変更用駆動源42が制御される。各姿勢操作部材31を逆に進退させると、左右の姿勢操作部材31L,31Rによって先端部材2のハウジング11が押されることにより、先端部材2は図9(A)において先端側が上向きとなる側へ案内面F1,F2に沿って姿勢変更する。
また、上側の姿勢操作部材31Uは静止させた状態で、左側の姿勢操作部材31Lを先端側へ進出させ、かつ右側の姿勢操作部材31Rを後退させると、左側の姿勢操作部材31Lによって先端部材2のハウジング11が押されることにより、先端部材2は右向き、すなわち図9(A)において紙面の裏側向きとなる側へ案内面F1,F2に沿って姿勢変更する。左右の姿勢操作部材31L,31Rを逆に進退させると、右の姿勢操作部材31Rによって先端部材2のハウジング11が押されることにより、先端部材2は左向きとなる側へ案内面F1,F2に沿って姿勢変更する。
このように姿勢操作部材31を円周方向の3箇所に設けることにより、先端部材2を上下左右の2軸(X軸、Y軸)の方向に姿勢変更することができる。その際、先端部材連結部15には、3つの姿勢操作部材31の圧力、および抜け止め部材21からの反力が作用しており、これらの作用力の釣り合いにより先端部材2の姿勢が決定される。この構成では、3つの姿勢操作部材31で先端部材2のハウジング11に加圧されるため、さらに先端部材2の姿勢安定性を高めることができる。姿勢操作部材31の数をさらに増やせば、先端部材2の姿勢安定性をより一層高めることができる。
The drive unit 4 is provided with three posture changing drive sources 42 (42U, 42L, 42R) (FIG. 13) for individually moving the three posture operation members 31 (31U, 31L, 31R) forward and backward. The attitude of the tip member 2 is changed by driving these three attitude changing drive sources 42 in conjunction with each other.
For example, when the upper one posture operation member 31U in FIG. 9 is advanced to the distal end side and the other two posture operation members 31L and 31R are moved backward, the upper posture operation member 31U causes the housing 11 of the distal end member 2 to move. By being pushed, the tip member 2 changes its posture along the guide surfaces F1 and F2 to the side in which the tip side faces downward in FIG. At this time, each posture changing drive source 42 is controlled so that the amount of advance / retreat of each posture operation member 31 is appropriate. When each posture operation member 31 is moved back and forth, the housing 11 of the tip member 2 is pushed by the left and right posture operation members 31L and 31R, so that the tip member 2 moves to the side where the tip side is upward in FIG. 9A. The posture is changed along the guide surfaces F1 and F2.
Further, when the left posture operation member 31L is advanced to the distal end side and the right posture operation member 31R is moved backward while the upper posture operation member 31U is stationary, the distal end member 2 is moved by the left posture operation member 31L. When the housing 11 is pushed, the tip member 2 changes its posture along the guide surfaces F1 and F2 to the right, that is, the side facing the back side of the paper surface in FIG. 9A. When the left and right posture operation members 31L and 31R are moved back and forth, the housing 11 of the tip member 2 is pushed by the right posture operation member 31R, so that the tip member 2 moves along the guide surfaces F1 and F2 toward the left side. Change the posture.
Thus, by providing the posture operation member 31 at three positions in the circumferential direction, the tip member 2 can be changed in posture in the directions of the upper, lower, left and right axes (X axis, Y axis). At that time, the pressure of the three posture operating members 31 and the reaction force from the retaining member 21 are acting on the tip member connecting portion 15, and the posture of the tip member 2 is determined by the balance of these acting forces. The In this configuration, since the pressure is applied to the housing 11 of the tip member 2 by the three posture operation members 31, the posture stability of the tip member 2 can be further improved. If the number of posture operation members 31 is further increased, the posture stability of the tip member 2 can be further enhanced.

姿勢操作部材31は、図10および図11に示すように、ガイド孔30aの長さ方向に隙間無く並ぶ複数の力伝達部材31d,31eで構成してもよい。図10の例は、複数の力伝達部材31dがボールであり、そのボールの並びの先端側に柱状ピン31cが設けられている。図11の例は、複数の力伝達部材31eが円柱等の柱状体であり、その柱状体の並びの先端側に柱状ピン31cが設けられている。柱状ピン31cは前記同様のものであり、その球面状の先端が、ハウジング11の基端面に形成された径方向の溝部11bの底面に当接している。   As shown in FIGS. 10 and 11, the posture operation member 31 may be composed of a plurality of force transmission members 31 d and 31 e arranged without gaps in the length direction of the guide hole 30 a. In the example of FIG. 10, the plurality of force transmission members 31 d are balls, and columnar pins 31 c are provided on the front end side of the alignment of the balls. In the example of FIG. 11, the plurality of force transmission members 31 e are columnar bodies such as columns, and columnar pins 31 c are provided on the front end side of the columnar bodies. The columnar pin 31 c is the same as described above, and its spherical tip is in contact with the bottom surface of the radial groove 11 b formed on the base end surface of the housing 11.

姿勢操作部材31が複数の力伝達部材31d,31eで構成されている場合は、姿勢操作部材31の先端で先端部材2を押付ける側に動作することにより先端部材2を姿勢変更させる。姿勢操作部材31が複数の力伝達部材31d,31eで構成されていても、先端部材2に対して確実に作用を及ぼすことができる。力伝達部材31d,31eはガイド孔30a内に配列されているため、姿勢操作部材31が長手方向と交差する方向に位置ずれすることがなく、常に先端部材2に対し適正に作用することができ、先端部材2の姿勢変更動作が正確に行われる。また、個々の力伝達部材31d,31eは剛体であっても、姿勢操作部材31全体では可撓性であるため、湾曲形状のスピンドルガイド部3に設けられる場合でも先端部材2の姿勢変更動作が確実に行われる。   When the posture operation member 31 includes a plurality of force transmission members 31 d and 31 e, the posture of the tip member 2 is changed by operating the tip member 2 toward the side pressing the tip member 2. Even if the posture operation member 31 is composed of a plurality of force transmission members 31d and 31e, it is possible to reliably act on the tip member 2. Since the force transmission members 31d and 31e are arranged in the guide hole 30a, the posture operation member 31 does not shift in the direction intersecting the longitudinal direction, and can always act properly on the tip member 2. The posture changing operation of the tip member 2 is accurately performed. Even if each of the force transmission members 31d and 31e is a rigid body, the posture operation member 31 as a whole is flexible, so that the posture changing operation of the tip member 2 can be performed even when provided on the curved spindle guide portion 3. Surely done.

図10および図11は、姿勢操作部材31を互いに120度の位相にある3箇所の周方向位置に設けた例を示しているが、姿勢操作部材31を互いに180度の位相にある2箇所の周方向位置に設けた場合や、周方向の1箇所に設けた姿勢操作部材31とこれに対応する復元用弾性部材32とを組み合わせた場合にも、複数の力伝達部材31d,31eで構成した姿勢操作部材31を適用できる。   10 and 11 show an example in which the posture operation member 31 is provided at three circumferential positions at a phase of 120 degrees, but the posture operation member 31 is at two positions at a phase of 180 degrees. Even when the circumferential position is provided, or when the posture operation member 31 provided at one place in the circumferential direction is combined with the restoring elastic member 32 corresponding thereto, the force transmission members 31d and 31e are configured. The posture operation member 31 can be applied.

図12は、外郭パイプの断面形状が異なる実施形態を示す。この実施形態の外郭パイプ25は、その中空孔24が、中心部の円形孔部24aと、この円形孔部24aの外周における互いに120度の位相をなす周方向位置から外径側へ凹んだ3つの溝状部24bとでなる。溝状部24bの先端の周壁は、断面半円形である。そして、円形孔部24aに回転軸22が配置され、各溝状部24bにガイドパイプ30が設けられている。   FIG. 12 shows an embodiment in which the cross-sectional shape of the outer pipe is different. In the outer pipe 25 of this embodiment, the hollow hole 24 is recessed from the circumferential position forming a phase of 120 degrees to the outer periphery of the circular hole 24a at the center and the outer periphery of the circular hole 24a. It consists of two groove-like parts 24b. The peripheral wall at the tip of the groove-like portion 24b has a semicircular cross section. And the rotating shaft 22 is arrange | positioned in the circular hole part 24a, and the guide pipe 30 is provided in each groove-shaped part 24b.

外郭パイプ25を上記断面形状としたことにより、外郭パイプ25の溝状部24b以外の箇所の肉厚tを厚くすることができる。それにより、スピンドルガイド部3の剛性(断面2次モーメント)が高まり、先端部材2の位置決め精度が向上させられるとともに、切削性を向上させられる。例えば、外郭パイプ25の断面2次モーメントが、同外径の中実シャフトの1/2以上とすると良い。また、溝状部24bにガイドパイプ30をそれぞれ配置したことにより、ガイドパイプ30の円周方向の位置決めを容易に行え、組立性が良好である。また、外郭パイプ25に肉厚の厚い箇所があるので、この肉厚の厚い箇所に冷却液注入孔75を開けることにより、前記フランジ部材77等のような補強用の他の部材を用いずにスピンドルガイド部3に冷却液注入孔75を設けることができる。   By making the outer pipe 25 have the above-described cross-sectional shape, the thickness t of the outer pipe 25 other than the groove-like portion 24b can be increased. Thereby, the rigidity (secondary moment of cross section) of the spindle guide portion 3 is increased, the positioning accuracy of the tip member 2 is improved, and the machinability is improved. For example, the secondary moment of section of the outer pipe 25 is preferably ½ or more of a solid shaft with the same outer diameter. Further, by arranging the guide pipes 30 in the groove-like portions 24b, the guide pipes 30 can be easily positioned in the circumferential direction, and the assemblability is good. In addition, since the outer pipe 25 has a thick portion, by opening the coolant injection hole 75 in the thick portion without using other reinforcing members such as the flange member 77. A coolant injection hole 75 can be provided in the spindle guide portion 3.

図9ないし図12の各実施形態のように姿勢操作部材31が周方向の3箇所に設けられている場合、姿勢変更駆動機構4cを例えば図13のように構成することができる。すなわち、各姿勢操作部材31(31U,31L,31R)をそれぞれ個別に進退操作させる3つの姿勢変更用駆動源42(42U,42L,42R)を左右並列に配置すると共に、各姿勢変更用駆動源42に対応するレバー43b(43bU,43bL,43bR)を共通の支軸43a回りに回動自在に設け、各レバー43bにおける支軸43aからの距離が長い作用点P1(P1U,P1L,P1R)に各姿勢変更用駆動源42の出力ロッド42aの力が作用し、支軸43aからの距離が短い力点P2(P2U,P2L,P2R)で姿勢操作部材31に力を与える構成としてある。これにより、各姿勢変更用駆動源42の出力が増力して対応する姿勢操作部材31に伝達させることができる。なお、回転軸22は、上側の姿勢操作部材31U用のレバー43bUに形成された開口44を貫通させてある。   When the posture operation members 31 are provided at three places in the circumferential direction as in the embodiments of FIGS. 9 to 12, the posture change drive mechanism 4c can be configured as shown in FIG. 13, for example. That is, three posture change drive sources 42 (42U, 42L, 42R) for individually moving the posture operation members 31 (31U, 31L, 31R) forward and backward are arranged in parallel on the left and right sides, and each posture change drive source is provided. A lever 43b (43bU, 43bL, 43bR) corresponding to 42 is provided so as to be rotatable around a common support shaft 43a, and each lever 43b has a long distance from the support shaft 43a at an action point P1 (P1U, P1L, P1R). The force of the output rod 42a of each posture change drive source 42 is applied, and the force is applied to the posture operation member 31 at a force point P2 (P2U, P2L, P2R) having a short distance from the support shaft 43a. Thereby, the output of each posture change drive source 42 can be increased and transmitted to the corresponding posture operation member 31. The rotary shaft 22 passes through an opening 44 formed in the lever 43bU for the upper posture operation member 31U.

図14は姿勢操作用駆動機構4cの構成が異なる実施形態の工具回転用駆動機構および姿勢変更用駆動機構の破断側面図、図15はその姿勢操作部材31と駆動部ハウジング4aの連結部の拡大図である。この実施形態では、ワイヤからなる姿勢操作部材31の基端に雄ねじ部36aが形成されており、この雄ねじ部36aは、駆動部ハウジング4aに形成された雌ねじ部36bと螺合している。これら雄ねじ部36aと雌ねじ部36bとでねじ機構36を構成している。姿勢変更用駆動源42の駆動で姿勢操作部材31の基端を回転させることにより、ねじ機構36の作用で姿勢操作部材31が進退する。   FIG. 14 is a cutaway side view of a tool rotation drive mechanism and a posture change drive mechanism of an embodiment in which the configuration of the posture operation drive mechanism 4c is different, and FIG. FIG. In this embodiment, a male screw portion 36a is formed at the base end of the posture operation member 31 made of a wire, and this male screw portion 36a is screwed with a female screw portion 36b formed in the drive portion housing 4a. The male screw portion 36a and the female screw portion 36b constitute a screw mechanism 36. By rotating the base end of the posture operating member 31 by driving the posture changing drive source 42, the posture operating member 31 moves forward and backward by the action of the screw mechanism 36.

姿勢変更用駆動機構4cは、例えば電動ロータリアクチュエータからなる姿勢変更用駆動源42の出力軸42aの回転が減速回転伝達機構49を介して前記姿勢操作部材31の基端に減速して伝達される。減速回転伝達機構49は、姿勢変更用駆動源42の出力軸42aに取付けられた円形平歯車49aと、駆動部ハウジング4aに固定の支持部材60に回転自在に支持され前記円形平歯車49aと噛み合う扇形平歯車49bとでなり、この扇形平歯車49bの回転中心軸上に設けた回転摺動部62で、扇形平歯車49bから姿勢操作部材31の基端側延長部63へ回転を伝達する。円形平歯車49aよりも扇形平歯車49bの方が、ピッチ円直径が大きく、出力軸42aの回転が減速して姿勢操作部材31の基端に伝達される。減速回転伝達機構49を設けると、高速回転する小型のロータリアクチュエータでも姿勢操作部材31の基端を低速で回転させることができるので、姿勢変更用駆動源42として小型のロータリアクチュエータを使用することが可能になる。工具回転用駆動機構4bは、前記同様の構成である。   In the posture changing drive mechanism 4 c, for example, the rotation of the output shaft 42 a of the posture changing drive source 42 formed of an electric rotary actuator is reduced and transmitted to the base end of the posture operating member 31 via the reduction rotation transmission mechanism 49. . The decelerating rotation transmission mechanism 49 is rotatably supported by a circular spur gear 49a attached to the output shaft 42a of the attitude changing drive source 42, and a support member 60 fixed to the drive unit housing 4a, and meshes with the circular spur gear 49a. The rotation is transmitted from the sector spur gear 49b to the base end side extension 63 of the posture operation member 31 by the rotation sliding portion 62 provided on the rotation center axis of the sector spur gear 49b. The sector spur gear 49 b has a larger pitch circle diameter than the circular spur gear 49 a, and the rotation of the output shaft 42 a is decelerated and transmitted to the base end of the posture operation member 31. Providing the decelerating rotation transmission mechanism 49 allows the base end of the posture operating member 31 to rotate at a low speed even with a small rotary actuator that rotates at high speed, so that a small rotary actuator can be used as the posture changing drive source 42. It becomes possible. The tool rotation drive mechanism 4b has the same configuration as described above.

上記各実施形態は、先端部材2の回転防止機構37が設けられているが、回転防止機構37は設けなくてもよい。   In each of the above embodiments, the rotation prevention mechanism 37 of the tip member 2 is provided, but the rotation prevention mechanism 37 may not be provided.

また、上記各実施形態はスピンドルガイド部3が直線形状であるが、この発明の遠隔操作型アクチュエータは、姿勢操作部材31が可撓性であり、スピンドルガイド部3が湾曲した状態でも先端部材2の姿勢変更動作が確実に行われるので、図16のようにスピンドルガイド部3を初期状態で湾曲形状としてもよい。あるいは、スピンドルガイド部3の一部分のみを湾曲形状としてもよい。スピンドルガイド部3が湾曲形状であれば、直線形状では届きにくい骨の奥まで先端部材2を挿入することが可能となる場合があり、人工関節置換手術における人工関節挿入用穴の加工を精度良く仕上げることが可能になる。   In each of the above embodiments, the spindle guide portion 3 has a linear shape. However, in the remote control type actuator of the present invention, the tip operation member 31 is flexible even when the posture operation member 31 is flexible and the spindle guide portion 3 is curved. Therefore, the spindle guide portion 3 may have a curved shape in the initial state as shown in FIG. Alternatively, only a part of the spindle guide portion 3 may be curved. If the spindle guide portion 3 is curved, it may be possible to insert the distal end member 2 to the back of the bone, which is difficult to reach in the straight shape, so that the hole for artificial joint insertion can be accurately processed in artificial joint replacement surgery. It becomes possible to finish.

スピンドルガイド部3を湾曲形状とする場合、外郭パイプ25、ガイドパイプ30、および補強シャフト34を湾曲形状とする必要がある。また、回転軸22は変形しやすい材質を用いるのが良く、例えば形状記憶合金が適する。   When the spindle guide portion 3 has a curved shape, the outer pipe 25, the guide pipe 30, and the reinforcing shaft 34 need to have a curved shape. The rotating shaft 22 is preferably made of a material that is easily deformed, and for example, a shape memory alloy is suitable.

以上、医療用の遠隔操作型アクチュエータについて説明したが、この発明はそれ以外の用途の遠隔操作型アクチュエータにも適用できる。例えば、機械加工用とした場合、湾曲状をした孔のドリル加工や、溝内部の奥まった箇所の切削加工が可能になる。   The medical remote control actuator has been described above, but the present invention can be applied to remote control actuators for other purposes. For example, in the case of machining, drilling of a curved hole or cutting of a deep part inside the groove is possible.

この発明の実施形態にかかる遠隔操作型アクチュエータの概略構成を示す図である。It is a figure which shows schematic structure of the remote control type actuator concerning embodiment of this invention. (A)は同遠隔操作型アクチュエータの先端部材、スピンドルガイド部、および駆動部ハウジングの一部の断面図、(B)はそのIIB−IIB断面図、(C)は先端部材と回転軸との連結構造を示す図、(D)は先端部材のハウジングを基端側から見た図である。(A) is a sectional view of a part of the distal end member, spindle guide portion, and drive portion housing of the remote control type actuator, (B) is a sectional view taken along the line IIB-IIB, and (C) is a sectional view of the distal end member and the rotating shaft. The figure which shows a connection structure, (D) is the figure which looked at the housing of the front-end | tip member from the base end side. (A)は同遠隔操作型アクチュエータの工具回転用駆動機構および姿勢変更用駆動機構の正面図に制御系を組み合わせて表示した図、(B)はそのIIIB−IIIB断面図である。(A) is the figure which combined and displayed the control system in the front view of the tool rotation drive mechanism and attitude | position change drive mechanism of the remote operation type | mold actuator, (B) is the IIIB-IIIB sectional drawing. この発明の異なる実施形態にかかる遠隔操作型アクチュエータのスピンドルガイド部と駆動部ハウジングとの結合部の断面図である。It is sectional drawing of the coupling | bond part of the spindle guide part and drive part housing of the remote control type actuator concerning different embodiment of this invention. シール手段の異なる構成を示すスピンドルガイド部および駆動部ハウジングの一部の断面図である。It is sectional drawing of a part of spindle guide part and drive part housing which show a different structure of a sealing means. シール手段のさらに異なる構成を示すスピンドルガイド部および駆動部ハウジングの一部の断面図である。It is sectional drawing of a part of spindle guide part and drive part housing which shows further another structure of a sealing means. (A)はこの発明の異なる実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのVIIB−VIIB断面図、(C)は先端部材のハウジングを基端側から見た図である。(A) is a sectional view of a distal end member and a spindle guide portion of a remote control type actuator according to a different embodiment of the present invention, (B) is a sectional view of VIIB-VIIB, and (C) is a proximal end side housing of the distal end member. It is the figure seen from. (A)はこの発明のさらに異なる実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのVIIIB−VIIIB断面図、(C)は先端部材のハウジングを基端側から見た図である。(A) is a sectional view of a distal end member and a spindle guide portion of a remote control type actuator according to still another embodiment of the present invention, (B) is a sectional view of the VIIIB-VIIIB, and (C) is a proximal end of a housing of the distal end member. It is the figure seen from the side. (A)はこの発明のさらに異なる実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのIXB−IXB断面図、(C)は先端部材のハウジングを基端側から見た図である。(A) is a sectional view of a tip member and a spindle guide portion of a remote control type actuator according to still another embodiment of the present invention, (B) is a sectional view of IXB-IXB, and (C) is a base end of a housing of the tip member. It is the figure seen from the side. (A)はこの発明のさらに異なる実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのXB−XB断面図、(C)は先端部材のハウジングを基端側から見た図である。(A) is a sectional view of a distal end member and a spindle guide portion of a remote control type actuator according to still another embodiment of the present invention, (B) is an XB-XB sectional view thereof, and (C) is a proximal end of a housing of the distal end member. It is the figure seen from the side. (A)はこの発明のさらに異なる実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのXIB−XIB断面図、(C)は先端部材のハウジングを基端側から見た図である。(A) is a sectional view of a distal end member and a spindle guide portion of a remote control type actuator according to still another embodiment of the present invention, (B) is a sectional view of the XIB-XIB, and (C) is a proximal end of a housing of the distal end member. It is the figure seen from the side. (A)はこの発明のさらに異なる実施形態にかかる遠隔操作型アクチュエータの先端部材、スピンドルガイド部、および駆動部ハウジングの一部の断面図、(B)はそのXIIB−XIIB断面図、(C)は先端部材のハウジングを基端側から見た図である。(A) is sectional drawing of the tip member of a remote control type actuator concerning another embodiment of this invention, a spindle guide part, and a part of drive section housing, (B) is the XIIB-XIIB sectional view, (C) FIG. 6 is a view of the housing of the distal end member as viewed from the proximal end side. (A)図9ないし図12に示す各遠隔操作型アクチュエータの工具回転用駆動機構および姿勢変更用駆動機構の正面図、(B)はそのXIIIB−XIIIB断面図である。FIG. 9A is a front view of a tool rotation drive mechanism and a posture change drive mechanism of each remotely operated actuator shown in FIGS. 9 to 12, and FIG. 9B is a sectional view taken along line XIIIB-XIIIB. 姿勢操作用駆動機構の構成が異なる遠隔操作型アクチュエータの工具回転用駆動機構および姿勢変更用駆動機構の破断側面図である。FIG. 6 is a cutaway side view of a tool rotation drive mechanism and a posture change drive mechanism of a remote operation type actuator having different configurations of posture operation drive mechanisms. 同遠隔操作型アクチュエータの姿勢操作部材と駆動部ハウジングの連結部の拡大図である。It is an enlarged view of the connection part of the attitude | position operation member and drive part housing of the remote control type actuator. スピンドルガイド部の形状が異なる遠隔操作型アクチュエータの概略構成を示す図である。It is a figure which shows schematic structure of the remote control type actuator from which the shape of a spindle guide part differs.

符号の説明Explanation of symbols

1…工具
2…先端部材
3…スピンドルガイド部
4a…駆動部ハウジング
5…コントローラ
13…スピンドル
15…先端部材連結部
22…回転軸
24…中空孔
24a…円形孔部
24b…溝状部
25…外郭パイプ
26,29…転がり軸受
27A,27B…ばね要素
30…ガイドパイプ
30a…ガイド孔
31…姿勢操作部材
41…工具回転用駆動源
42…姿勢変更用駆動源
50…冷却手段
73…滑り軸受
75…冷却液注入孔
78…遮蔽空間
S…シール手段
DESCRIPTION OF SYMBOLS 1 ... Tool 2 ... Tip member 3 ... Spindle guide part 4a ... Drive part housing 5 ... Controller 13 ... Spindle 15 ... Tip member connection part 22 ... Rotating shaft 24 ... Hollow hole 24a ... Circular hole part 24b ... Groove-like part 25 ... Outer Pipes 26, 29 ... rolling bearings 27A, 27B ... spring element 30 ... guide pipe 30a ... guide hole 31 ... attitude operating member 41 ... tool rotation drive source 42 ... attitude changing drive source 50 ... cooling means 73 ... slide bearing 75 ... Coolant injection hole 78 ... shielding space S ... sealing means

Claims (10)

細長形状のスピンドルガイド部と、このスピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられた先端部材と、前記スピンドルガイド部の基端が結合された駆動部ハウジングとを備え、
前記先端部材は、工具を保持するスピンドルを回転自在に支持し、前記スピンドルガイド部は、前記駆動部ハウジング内に設けられた工具回転用駆動源の回転を前記スピンドルに伝達する回転軸と、両端に貫通したガイド孔とを内部に有し、先端が前記先端部材に接して進退動作することにより前記先端部材を姿勢変更させる姿勢操作部材を前記ガイド孔内に進退自在に挿通し、前記姿勢操作部材を進退させる姿勢変更用駆動源を前記駆動部ハウジング内に設け、
冷却液を、前記スピンドルガイド部の基端近傍に設けられた冷却液注入孔から内部に注入し、前記スピンドルガイド部および先端部材の内部を通って先端側へ送り、前記先端部材から前記工具に向けて吐出させる冷却手段を設けるとともに、前記スピンドルガイド部内から前記駆動部ハウジング内への前記冷却液の浸入を阻止するシール手段を設けたことを特徴とする遠隔操作型アクチュエータ。
An elongated spindle guide part, a tip member attached to the tip of the spindle guide part via a tip member connecting part so that the posture can be freely changed, and a drive part housing to which the base end of the spindle guide part is coupled. ,
The tip member rotatably supports a spindle that holds a tool, and the spindle guide portion includes a rotating shaft that transmits rotation of a driving source for tool rotation provided in the driving portion housing to the spindle, and both ends. A guide hole penetrating into the guide hole, and a posture operation member for changing the posture of the tip member by advancing and retreating with the tip contacting the tip member is inserted into the guide hole so as to be able to advance and retract. A posture changing drive source for moving the member forward and backward is provided in the drive unit housing,
Cooling liquid is injected into the inside from a cooling liquid injection hole provided in the vicinity of the base end of the spindle guide portion, and is sent to the tip side through the inside of the spindle guide portion and the tip member, and from the tip member to the tool. A remote operation type actuator characterized in that a cooling means for discharging the liquid is provided, and a sealing means for preventing the coolant from entering the drive part housing from the spindle guide part is provided.
請求項1において、前記シール手段は、前記冷却液注入孔よりも基端側の位置で前記回転軸を支持する滑り軸受である遠隔操作型アクチュエータ。   2. The remote operation type actuator according to claim 1, wherein the sealing means is a sliding bearing that supports the rotating shaft at a position closer to the base end side than the coolant injection hole. 請求項1または請求項2において、前記シール手段は、前記駆動部ハウジングに設けられ前記スピンドルガイド部の基端でスピンドルガイド部の内部と連通する遮蔽空間を有し、この遮蔽空間の圧力を大気圧よりも高くした遠隔操作型アクチュエータ。   3. The sealing means according to claim 1, wherein the sealing means has a shielding space that is provided in the drive portion housing and communicates with the inside of the spindle guide portion at a base end of the spindle guide portion, and a pressure in the shielding space is increased. Remote control type actuator that is higher than atmospheric pressure. 請求項1ないし請求項3のいずれか1項において、前記スピンドルガイド部が、このスピンドルガイド部の外郭となる外郭パイプを有し、前記ガイド孔が、前記外郭パイプ内に設けられたガイドパイプの内径孔である遠隔操作型アクチュエータ。   The spindle guide part according to any one of claims 1 to 3, wherein the spindle guide part includes an outer pipe serving as an outer part of the spindle guide part, and the guide hole is provided in the outer pipe. Remote control type actuator with an inner diameter hole. 請求項4において、前記外郭パイプは両端に貫通した中空孔を有し、この中空孔は、中心部の円形孔部と、この円形孔部から外径側へ凹んだ溝状部とでなり、前記円形孔部に前記回転軸を配置し、かつ前記溝状部に前記ガイドパイプを配置した遠隔操作型アクチュエータ。   In claim 4, the outer pipe has a hollow hole penetrating at both ends, the hollow hole is a circular hole portion in the center portion, and a groove-shaped portion recessed from the circular hole portion to the outer diameter side, A remote operation type actuator in which the rotating shaft is arranged in the circular hole portion and the guide pipe is arranged in the groove-like portion. 請求項4または請求項5において、前記外郭パイプに前記冷却液注入孔を設けた遠隔操作型アクチュエータ。   6. The remote control type actuator according to claim 4, wherein the coolant injection hole is provided in the outer pipe. 請求項1ないし請求項6のいずれか1項において、前記スピンドルガイド部内の前記回転軸を回転自在に支持する複数の転がり軸受を設け、隣合う転がり軸受間に、これら転がり軸受に対して予圧を与えるばね要素を設けた遠隔操作型アクチュエータ。   The rolling bearing according to claim 1, wherein a plurality of rolling bearings that rotatably support the rotating shaft in the spindle guide portion are provided, and a preload is applied to the rolling bearings between adjacent rolling bearings. Remote control type actuator with spring element to give. 請求項1ないし請求項7のいずれか1項において、前記スピンドルガイド部内の前記回転軸を回転自在に支持する複数の転がり軸受を設け、前記冷却手段は、前記冷却液により前記転がり軸受を冷却するものとした遠隔操作型アクチュエータ。   8. The rolling bearing according to claim 1, further comprising a plurality of rolling bearings rotatably supporting the rotating shaft in the spindle guide portion, wherein the cooling means cools the rolling bearing with the cooling liquid. A remote control type actuator. 請求項1ないし請求項8のいずれか1項において、前記冷却液は、水もしくは生理食塩水である遠隔操作型アクチュエータ。   9. The remote operation type actuator according to claim 1, wherein the cooling liquid is water or physiological saline. 請求項1ないし請求項9のいずれか1項において、前記スピンドルガイド部は湾曲した箇所を有する遠隔操作型アクチュエータ。   10. The remote control type actuator according to claim 1, wherein the spindle guide portion has a curved portion.
JP2008264438A 2008-10-08 2008-10-10 Remote control type actuator Expired - Fee Related JP5197293B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008264438A JP5197293B2 (en) 2008-10-10 2008-10-10 Remote control type actuator
EP09818937.6A EP2364652B1 (en) 2008-10-08 2009-10-02 Remotely operated actuator
KR1020117007861A KR101287985B1 (en) 2008-10-08 2009-10-02 Remotely operated actuator
PCT/JP2009/005106 WO2010041397A1 (en) 2008-10-08 2009-10-02 Remotely operated actuator
US13/080,806 US8511195B2 (en) 2008-10-08 2011-04-06 Remote-controlled actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008264438A JP5197293B2 (en) 2008-10-10 2008-10-10 Remote control type actuator

Publications (2)

Publication Number Publication Date
JP2010088813A true JP2010088813A (en) 2010-04-22
JP5197293B2 JP5197293B2 (en) 2013-05-15

Family

ID=42252128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008264438A Expired - Fee Related JP5197293B2 (en) 2008-10-08 2008-10-10 Remote control type actuator

Country Status (1)

Country Link
JP (1) JP5197293B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880213U (en) * 1981-11-27 1983-05-31 オリンパス光学工業株式会社 Drill device for intrabody cavity procedures
JPH0611936U (en) * 1993-02-18 1994-02-15 株式会社森精機製作所 Detachable spindle rotation control unit for machine tools
JPH07163574A (en) * 1993-09-30 1995-06-27 Ethicon Inc Foldable socket joint assenbly for endoscopic operation instrument and track of fastener for operation
JP2001017446A (en) * 1999-07-05 2001-01-23 Nakanishi:Kk Hand piece for medical purpose
JP2005528159A (en) * 2002-06-04 2005-09-22 オフィス オブ テクノロジー ライセンシング スタンフォード ユニバーシティ Apparatus and method for rapidly aspirating and collecting body tissue from within encapsulated body space
JP2007068636A (en) * 2005-09-05 2007-03-22 Olympus Corp Cell collection apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880213U (en) * 1981-11-27 1983-05-31 オリンパス光学工業株式会社 Drill device for intrabody cavity procedures
JPH0611936U (en) * 1993-02-18 1994-02-15 株式会社森精機製作所 Detachable spindle rotation control unit for machine tools
JPH07163574A (en) * 1993-09-30 1995-06-27 Ethicon Inc Foldable socket joint assenbly for endoscopic operation instrument and track of fastener for operation
JP2001017446A (en) * 1999-07-05 2001-01-23 Nakanishi:Kk Hand piece for medical purpose
JP2005528159A (en) * 2002-06-04 2005-09-22 オフィス オブ テクノロジー ライセンシング スタンフォード ユニバーシティ Apparatus and method for rapidly aspirating and collecting body tissue from within encapsulated body space
JP2007068636A (en) * 2005-09-05 2007-03-22 Olympus Corp Cell collection apparatus

Also Published As

Publication number Publication date
JP5197293B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
WO2010041397A1 (en) Remotely operated actuator
JP5464892B2 (en) Remote control type actuator
JP2010260139A (en) Remote-controlled work robot
EP2340772B1 (en) Remote-controlled actuator
JP5289470B2 (en) Flexible cable
JP5202200B2 (en) Remote control type actuator
WO2010137603A1 (en) Remotely operated actuator
WO2010029741A1 (en) Remote control actuator
JP5197293B2 (en) Remote control type actuator
JP5500890B2 (en) Remote control type actuator
JP5258495B2 (en) Remote control type actuator
WO2011037131A1 (en) Remote operation actuator and plastic forming method for attitude operation member
JP5557522B2 (en) Remote control type actuator
JP5213735B2 (en) Remote control type actuator
JP2010046764A (en) Remote operation type actuator
JP2010088812A (en) Remote control type actuator
JP5500891B2 (en) Remote control type actuator
JP5388702B2 (en) Remote control type actuator
JP2010051439A (en) Remote-controlled actuator
JP5258594B2 (en) Remote control type actuator
JP5388701B2 (en) Remote control type actuator
JP2010046197A (en) Remote control type actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5197293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees