JP2010088643A - Remote control type actuator - Google Patents

Remote control type actuator Download PDF

Info

Publication number
JP2010088643A
JP2010088643A JP2008261339A JP2008261339A JP2010088643A JP 2010088643 A JP2010088643 A JP 2010088643A JP 2008261339 A JP2008261339 A JP 2008261339A JP 2008261339 A JP2008261339 A JP 2008261339A JP 2010088643 A JP2010088643 A JP 2010088643A
Authority
JP
Japan
Prior art keywords
posture
pipe
tip member
spindle
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008261339A
Other languages
Japanese (ja)
Other versions
JP5258495B2 (en
Inventor
Hiroshi Isobe
浩 磯部
Takami Ozaki
孝美 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008261339A priority Critical patent/JP5258495B2/en
Priority to KR1020117007861A priority patent/KR101287985B1/en
Priority to PCT/JP2009/005106 priority patent/WO2010041397A1/en
Priority to EP09818937.6A priority patent/EP2364652B1/en
Publication of JP2010088643A publication Critical patent/JP2010088643A/en
Priority to US13/080,806 priority patent/US8511195B2/en
Application granted granted Critical
Publication of JP5258495B2 publication Critical patent/JP5258495B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a remote control type actuator in which the posture of a tool provided on the distal end of an elongate pipe part can be changed by remote control and the rigidity of the pipe part is high. <P>SOLUTION: The remote control type actuator includes a spindle guide part 3 in an elongate shape as the pipe part, a distal end member 2 attached to the distal end so as to freely change the posture, and a drive part housing to which the proximal end of the spindle guide part 3 is connected. The distal end member 2 freely rotatably supports a spindle 13 holding the tool 1. The spindle guide part 3 has a shell pipe 25, a rotary shaft 22 and a guide pipe 30, and a posture operating member 31 for changing the posture of the distal end member 2 is inserted into the guide pipe 30. The hollow hole 24 of the shell pipe 25 comprises a circular hole part 24a at the center part and a groove-like part 24b recessed from the circular hole part 24a to the outer diameter side. The rotary shaft 22 is disposed to the circular hole part 24a and the guide pipe 30 is disposed to the groove-like part 24b. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、工具の姿勢を遠隔操作で変更可能で、医療用、機械加工等の用途で用いられる遠隔操作型アクチュエータに関する。   The present invention relates to a remotely operated actuator that can change the posture of a tool by remote operation and is used for medical use, machining, and the like.

医療用として骨の加工に用いられたり、機械加工用としてドリル加工や切削加工に用いられたりする遠隔操作型アクチュエータがある。遠隔操作型アクチュエータは、直線形状や湾曲形状をした細長いパイプ部の先端に設けた工具を遠隔操作で制御する。ただし、従来の遠隔操作用アクチュエータは、工具の回転のみを遠隔操作で制御するだけであったため、医療用の場合、複雑な形状の加工や外からは見えにくい箇所の加工が難しかった。また、ドリル加工では、直線だけではなく、湾曲状の加工が可能なことが求められる。さらに、切削加工では、溝内部の奥まった箇所の加工が可能なことが求められる。以下、医療用を例にとって、遠隔操作型アクチュエータの従来技術と課題について説明する。   There are remote-operated actuators that are used for bone processing for medical purposes and drilling and cutting for mechanical processing. The remote operation type actuator remotely controls a tool provided at the end of a long and narrow pipe portion having a linear shape or a curved shape. However, since the conventional remote control actuator only controls the rotation of the tool by remote control, in the case of medical use, it was difficult to process a complicated shape or a part that is difficult to see from the outside. Further, in drilling, it is required that not only a straight line but also a curved shape can be processed. Furthermore, in the cutting process, it is required that a deep part inside the groove can be processed. Hereinafter, taking the medical use as an example, the prior art and problems of the remote control type actuator will be described.

整形外科分野において、骨の老化等によって擦り減って使えなくなった関節を新しく人工のものに取り替える人工関節置換手術がある。この手術では、患者の生体骨を人工関節が挿入できるように加工する必要があるが、その加工には、術後の生体骨と人工関節との接着強度を高めるために、人工関節の形状に合わせて精度良く加工することが要求される。   In the field of orthopedics, there is an artificial joint replacement operation in which a joint that has become worn out due to bone aging or the like is replaced with a new artificial one. In this operation, it is necessary to process the patient's living bone so that the artificial joint can be inserted. In order to increase the adhesive strength between the living bone and the artificial joint after the operation, the shape of the artificial joint is required. It is required to process with high accuracy.

例えば、股関節の人工関節置換手術では、大腿骨の骨の中心にある髄腔部に人工関節挿入用の穴を形成する。人工関節と骨との接触強度を保つには両者の接触面積を大きくとる必要があり、人工関節挿入用の穴は、骨の奥まで延びた細長い形状に加工される。このような骨の切削加工に用いられる医療用アクチュエータとして、細長いパイプ部の先端に工具を回転自在に設け、パイプ部の基端側に設けたモータ等の回転駆動源の駆動により、パイプ部の内部に配した回転軸を介して工具を回転させる構成のものがある(例えば特許文献1)。この種の医療用アクチュエータは、外部に露出した回転部分は先端の工具のみであるため、工具を骨の奥まで挿入することができる。   For example, in hip joint replacement surgery, an artificial joint insertion hole is formed in the medullary cavity at the center of the femur bone. In order to maintain the contact strength between the artificial joint and the bone, it is necessary to increase the contact area between them, and the hole for inserting the artificial joint is processed into an elongated shape extending to the back of the bone. As a medical actuator used for such a bone cutting process, a tool is rotatably provided at the distal end of an elongated pipe portion, and by driving a rotational drive source such as a motor provided on the proximal end side of the pipe portion, There exists a thing of the structure which rotates a tool via the rotating shaft arrange | positioned inside (for example, patent document 1). In this type of medical actuator, the rotating part exposed to the outside is only the tool at the tip, so that the tool can be inserted deep into the bone.

人工関節置換手術では、皮膚切開や筋肉の切断を伴う。すなわち、人体に傷を付けなければならない。その傷を最小限に抑えるためには、前記パイプ部は真っ直ぐでなく、適度に湾曲している方が良い場合がある。このような状況に対応するためのものとして、次のような従来技術がある。例えば、特許文献2は、パイプ部の中間部を2重に湾曲させて、パイプ部の先端側の軸心位置と基端側の軸心位置とをずらせたものである。このようにパイプ部の軸心位置が先端側と軸心側とでずれているものは、他にも知られている。また、特許文献3は、パイプ部を180度回転させたものである。
特開2007−301149号公報 米国特許第4,466,429号明細書 米国特許第4,265,231号明細書 特開2001−17446号公報
Artificial joint replacement surgery involves skin incision and muscle cutting. That is, the human body must be damaged. In order to minimize the scratches, the pipe part may not be straight but may be appropriately curved. In order to cope with such a situation, there are the following conventional techniques. For example, in Patent Document 2, an intermediate portion of a pipe portion is bent twice, and the axial center position on the distal end side and the axial center position on the proximal end side of the pipe portion are shifted. There are other known cases where the axial position of the pipe portion is shifted between the tip end side and the axial center side. In Patent Document 3, the pipe portion is rotated 180 degrees.
JP 2007-301149 A U.S. Pat. No. 4,466,429 US Pat. No. 4,265,231 JP 2001-17446 A

生体骨の人工関節挿入用穴に人工関節を嵌め込んだ状態で、生体骨と人工関節との間に広い隙間があると、術後の接着時間が長くなるため、前記隙間はなるべく狭いのが望ましい。また、生体骨と人工関節の接触面が平滑であることも重要であり、人工関節挿入用穴の加工には高い精度が要求される。しかし、パイプ部がどのような形状であろうとも、工具の動作範囲はパイプ部の形状の制約を受けるため、皮膚切開や筋肉の切断をできるだけ小さくしながら、生体骨と人工関節との間の隙間を狭くかつ両者の接触面が平滑になるように人工関節挿入用穴を加工するのは難しい。   If there is a wide gap between the living bone and the artificial joint with the artificial joint inserted in the artificial bone insertion hole of the living bone, the adhesion time after the operation becomes longer, so the gap is as narrow as possible. desirable. It is also important that the contact surface between the living bone and the artificial joint is smooth, and high accuracy is required for processing the hole for inserting the artificial joint. However, no matter what the shape of the pipe part, the operating range of the tool is limited by the shape of the pipe part. It is difficult to process the artificial joint insertion hole so that the gap is narrow and the contact surface of both is smooth.

一般に、人工関節置換手術が行われる患者の骨は、老化等により強度が弱くなっていることが多く、骨そのものが変形している場合もある。したがって、通常考えられる以上に、人工関節挿入用穴の加工は難しい。   Generally, bones of patients undergoing artificial joint replacement surgery are often weakened due to aging or the like, and the bones themselves may be deformed. Therefore, it is more difficult to process the artificial joint insertion hole than is normally conceivable.

そこで、本出願人は、人工関節挿入用穴の加工を比較的容易にかつ精度良く行えるようにすることを目的として、工具の姿勢を遠隔操作で変更可能とすることを試みた。工具の姿勢が変更可能であれば、パイプ部の形状に関係なく、工具を適正な姿勢に保持することができるからである。しかし、工具は細長いパイプ部の先端に設けられているため、工具の姿勢を変更させる機構を設ける上で制約が多く、それを克服するための工夫が必要である。なお、細長いパイプ部を有しない医療用アクチュエータでは、手で握る部分に対して工具が設けられた部分が姿勢変更可能なものがある(例えば特許文献4)が、遠隔操作で工具の姿勢を変更させるものは提案されていない。   Therefore, the present applicant tried to make it possible to change the posture of the tool by remote operation in order to make it possible to process the artificial joint insertion hole relatively easily and accurately. This is because, if the posture of the tool can be changed, the tool can be held in an appropriate posture regardless of the shape of the pipe portion. However, since the tool is provided at the tip of the elongated pipe portion, there are many restrictions in providing a mechanism for changing the posture of the tool, and a device for overcoming it is necessary. Note that some medical actuators that do not have an elongated pipe part can change the position of the part where the tool is provided relative to the hand-held part (for example, Patent Document 4), but the position of the tool can be changed remotely. Nothing has been proposed to make it happen.

細長いパイプ部の先端に工具を設けた遠隔操作型アクチュエータでは、工具等に外力が作用した場合、細長いパイプ部が撓むことにより、工具の位置がずれることが考えられる。工具の位置がずれると、正確な加工や正確な工具の姿勢コントロールができない。また、パイプ部が撓みやすいと、切削力が被加工物に対して垂直に作用しにくく、切削性が悪くなる。これらの理由から、パイプ部が十分な剛性を有することが求められる。   In a remote control type actuator in which a tool is provided at the tip of an elongated pipe portion, when an external force is applied to the tool or the like, it is conceivable that the position of the tool is shifted due to the bending of the elongated pipe portion. If the position of the tool is shifted, accurate machining and accurate tool posture control cannot be performed. In addition, if the pipe portion is easily bent, the cutting force is less likely to act perpendicularly on the workpiece, resulting in poor machinability. For these reasons, the pipe portion is required to have sufficient rigidity.

この発明は、細長いパイプ部の先端に設けられた工具の姿勢を遠隔操作で変更することができ、パイプ部としてのスピンドルガイド部の剛性が高く、組立性が良好な遠隔操作型アクチュエータを提供することを課題としている。   The present invention provides a remotely operated actuator that can change the posture of a tool provided at the tip of an elongated pipe portion by remote control, has a high rigidity of a spindle guide portion as a pipe portion, and has good assemblability. It is an issue.

この発明にかかる遠隔操作型アクチュエータは、細長形状のスピンドルガイド部と、このスピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられた先端部材と、前記スピンドルガイド部の基端が結合された駆動部ハウジングとを備え、前記先端部材は、工具を保持するスピンドルを回転自在に支持し、前記スピンドルガイド部は、このスピンドルガイド部の外郭となる中空の外郭パイプと、この外郭パイプの両端に貫通した中空孔内に設けられ前記駆動部ハウジング内の工具回転用駆動源の回転を前記スピンドルに伝達する回転軸と、前記中空孔内に設けられ両端に貫通した中空のガイドパイプとを有し、先端が前記先端部材に接して進退動作することにより前記先端部材を姿勢変更させる姿勢操作部材を前記ガイドパイプ内に進退自在に挿通し、前記姿勢操作部材を進退させる姿勢変更用駆動源を前記駆動部ハウジング内に設け、前記中空孔は、中心部の円形孔部と、この円形孔部から外径側へ凹んだ溝状部とでなり、前記円形孔部に前記回転軸を配置し、かつ前記溝状部に前記ガイドパイプを配置したことを特徴とする。   A remote-control actuator according to the present invention includes an elongated spindle guide portion, a tip member attached to the tip of the spindle guide portion via a tip member connecting portion so that the posture can be freely changed, and a base end of the spindle guide portion And a drive unit housing coupled thereto, the tip member rotatably supporting a spindle for holding a tool, the spindle guide unit including a hollow outer pipe serving as an outer shell of the spindle guide portion, and the outer shell. A rotating shaft that is provided in a hollow hole that penetrates both ends of the pipe and transmits the rotation of a driving source for tool rotation in the drive unit housing to the spindle, and a hollow guide pipe that is provided in the hollow hole and penetrates both ends And a guide for a posture operation member that changes the posture of the tip member by advancing and retracting with the tip contacting the tip member. An attitude change drive source is provided in the drive section housing for allowing the attitude control member to be advanced and retracted in the interior of the drive, and the hollow hole has a circular hole at the center and an outer diameter from the circular hole. The rotary shaft is disposed in the circular hole portion, and the guide pipe is disposed in the groove portion.

この構成によれば、先端部材に設けた工具の回転により、骨等の切削が行われる。その場合に、姿勢変更用駆動源により姿勢操作部材を進退させると、この姿勢操作部材の先端が先端部材に対し作用することにより、スピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられた先端部材が姿勢変更する。姿勢変更用駆動源は、スピンドルガイド部の基端側の駆動部ハウジング内に設けられており、上記先端部材の姿勢変更は遠隔操作で行われる。姿勢操作部材は中空のガイドパイプ内に挿通されているため、姿勢操作部材が長手方向と交差する方向に位置ずれすることがなく、常に先端部材に対し適正に作用することができ、先端部材の姿勢変更動作が正確に行われる。   According to this structure, cutting of a bone etc. is performed by rotation of the tool provided in the tip member. In this case, when the posture operation member is moved forward and backward by the posture change drive source, the tip of the posture operation member acts on the tip member, so that the posture can be changed to the tip of the spindle guide portion via the tip member connecting portion. The position of the tip member attached to is changed. The posture changing drive source is provided in the drive portion housing on the proximal end side of the spindle guide portion, and the posture change of the tip member is performed by remote control. Since the posture operation member is inserted into the hollow guide pipe, the posture operation member does not shift in the direction intersecting the longitudinal direction, and can always act properly on the tip member. The posture changing operation is performed accurately.

外郭パイプの中空孔は、中心部の円形孔部と、この円形孔部から外径側へ凹んだ溝状部とでなるため、外郭パイプの溝状部以外の箇所の肉厚を厚くすることができる。それにより、スピンドルガイド部の剛性(断面2次モーメント)が高くなり、先端部材の位置決め精度が向上させられるとともに、切削性を向上させられる。例えば、外郭パイプの断面2次モーメントが、同外径の中実シャフトの1/2以上とする。また、溝状部にガイドパイプを配置したことにより、ガイドパイプの円周方向の位置決めを容易に行え、組立性が良好である。   Since the hollow hole of the outer pipe is composed of a circular hole at the center and a groove-like part recessed from the circular hole to the outer diameter side, the thickness of the portion other than the groove-like part of the outer pipe should be increased. Can do. As a result, the rigidity of the spindle guide portion (secondary moment of section) is increased, the positioning accuracy of the tip member is improved, and the machinability is improved. For example, the cross-sectional secondary moment of the outer pipe is ½ or more of the solid shaft with the same outer diameter. Further, since the guide pipe is arranged in the groove-like portion, the guide pipe can be easily positioned in the circumferential direction, and the assemblability is good.

この発明において、前記姿勢操作部材が、前記ガイドパイプの長さ方向に沿って一列に配列された複数個の力伝達部材、または前記ガイドパイプの長さ方向に沿うワイヤからなるものとすることができる。
何れの場合も、姿勢変更用駆動源で姿勢操作部材を進退させることができる。また、姿勢操作部材は全体で可撓性であり、スピンドルガイド部の撓みに追随することができる。
In this invention, the posture operation member may be composed of a plurality of force transmission members arranged in a line along the length direction of the guide pipe, or a wire along the length direction of the guide pipe. it can.
In either case, the posture operation member can be advanced and retracted by the posture change drive source. Further, the posture operation member is flexible as a whole, and can follow the bending of the spindle guide portion.

この発明において、前記ガイドパイプおよびこのガイドパイプ内に挿通された姿勢操作部材を1箇所のみに設け、前記先端部材を所定姿勢側へ付勢する復元用弾性部材を設け、前記姿勢操作部材は前記復元用弾性部材の付勢力に抗して前記先端部材を姿勢変更させることができる。また、前記ガイドパイプおよびこのガイドパイプ内に挿通された姿勢操作部材を2箇所に設け、前記姿勢変更用駆動源を各姿勢操作部材に対して個別に設け、前記2箇所の姿勢操作部材の前記先端部材への作用力の釣り合いにより前記先端部材の姿勢を変更、維持させてもよい。これらの場合、1本の姿勢変更軸回りに先端部材の姿勢を変更できる。後者は、2つの姿勢操作部材で先端部材に加圧されるため、1つの姿勢操作部材だけで加圧される前者に比べ、先端部材の姿勢安定性を高めることができる。   In the present invention, the guide pipe and the posture operation member inserted into the guide pipe are provided in only one place, a restoring elastic member for urging the tip member toward a predetermined posture is provided, and the posture operation member is The posture of the tip member can be changed against the biasing force of the restoring elastic member. Further, the guide pipe and the posture operation member inserted into the guide pipe are provided at two locations, the posture change drive source is individually provided for each posture operation member, and the posture control members of the two locations are provided. You may change and maintain the attitude | position of the said front-end | tip member by the balance of the acting force to a front-end | tip member. In these cases, the posture of the tip member can be changed around one posture changing axis. In the latter, since the tip member is pressurized by two posture operation members, the posture stability of the tip member can be improved as compared with the former in which pressure is applied by only one posture operation member.

さらに、前記先端部材連結部が、前記先端部材を任意方向に傾動可能に支持するものであり、前記ガイドパイプおよびこのガイドパイプ内に挿通された姿勢操作部材を、前記先端部材の傾動中心の周りの3箇所以上に設け、前記姿勢変更用駆動源を各姿勢操作部材に対して個別に設け、前記3箇所以上の姿勢操作部材の前記先端部材への作用力の釣り合いにより前記先端部材の姿勢を変更、維持させてもよい。この場合、2本の姿勢変更軸回りに先端部材の姿勢を変更できる。この構成では、3つ以上の姿勢操作部材で先端部材に加圧されるため、さらに先端部材の姿勢安定性を高めることができる。   Further, the tip member connecting portion supports the tip member so as to be tiltable in an arbitrary direction, and the guide pipe and the posture operation member inserted into the guide pipe are arranged around the tilt center of the tip member. The posture changing drive source is provided individually for each posture operation member, and the posture of the tip member is adjusted by balancing the acting forces of the posture operation members of the three or more locations on the tip member. It may be changed and maintained. In this case, the posture of the tip member can be changed around the two posture change axes. In this configuration, since the tip member is pressurized by three or more posture operation members, the posture stability of the tip member can be further improved.

この発明において、前記スピンドルガイド部内の前記回転軸を回転自在に支持する複数の転がり軸受を設ける場合、隣合う転がり軸受間に、これら転がり軸受に対して予圧を与えるばね要素を設けるのが望ましい。
加工の仕上がりを良くするには、スピンドルを高速回転させて加工するのがよい。スピンドルを高速回転させると、工具に作用する切削抵抗を低減させる効果もある。スピンドルはワイヤ等からなる細い回転軸を介して回転力が伝達されるので、スピンドルの高速回転を実現させるため、回転軸を支持する転がり軸受に予圧をかけておくことが必要となる。この予圧のためのばね要素を隣合う転がり軸受間に設ければ、スピンドルガイド部の径を大きくせずにばね要素を設けられる。
In the present invention, when a plurality of rolling bearings that rotatably support the rotating shaft in the spindle guide portion are provided, it is desirable to provide a spring element that applies a preload to the rolling bearings between adjacent rolling bearings.
In order to improve the finish of processing, it is preferable to rotate the spindle at high speed. When the spindle is rotated at a high speed, there is an effect of reducing cutting resistance acting on the tool. Since the rotational force is transmitted to the spindle through a thin rotating shaft made of a wire or the like, it is necessary to preload the rolling bearing that supports the rotating shaft in order to realize high-speed rotation of the spindle. If a spring element for this preload is provided between adjacent rolling bearings, the spring element can be provided without increasing the diameter of the spindle guide portion.

また、前記スピンドルガイド部内の前記回転軸を回転自在に支持する転がり軸受を設けた場合、この転がり軸受の外径面を前記ガイドパイプで支持させることができる。
ガイドパイプを利用することで、余分な部材を用いずに転がり軸受の外径面を支持できる。
Moreover, when the rolling bearing which supports the said rotating shaft in the said spindle guide part rotatably is provided, the outer diameter surface of this rolling bearing can be supported by the said guide pipe.
By using the guide pipe, the outer diameter surface of the rolling bearing can be supported without using an extra member.

前記スピンドルガイド部内の前記回転軸を回転自在に支持する軸受を設ける場合、前記外郭パイプの内部を通過する冷却液により前記軸受を冷却する冷却手段を設けてもよい。
工具を回転させるスピンドル、回転軸等の回転する部材は、回転摩擦により発熱する。それに伴い、軸受が加熱される。冷却手段を設ければ、軸受や上記発熱箇所を冷却液により冷却することができる。外郭パイプの内部に冷却液を通過させれば、冷却液供給用の管を別に設ける必要がなく、スピンドルガイド部を簡素化および小径化できる。
さらに、前記冷却液により軸受を潤滑する効果も得られる。冷却液を軸受の潤滑に兼用させれば、軸受に一般的に使用されているグリス等を使用しなくてもよく、しかも別に潤滑装置を設けなくて済む。
In the case of providing a bearing that rotatably supports the rotating shaft in the spindle guide portion, a cooling unit that cools the bearing with a coolant that passes through the inside of the outer pipe may be provided.
Rotating members such as a spindle and a rotating shaft that rotate the tool generate heat due to rotational friction. Along with this, the bearing is heated. If a cooling means is provided, a bearing and the said heat_generation | fever location can be cooled with a cooling fluid. If the coolant is allowed to pass through the outer pipe, there is no need to provide a separate coolant supply pipe, and the spindle guide portion can be simplified and reduced in diameter.
Furthermore, the effect of lubricating the bearing with the coolant is also obtained. If the coolant is also used for the lubrication of the bearing, it is not necessary to use grease or the like generally used for the bearing, and it is not necessary to provide a separate lubricating device.

また、前記外郭パイプの内部を通過する冷却液、または外部から供給される冷却液により前記工具を冷却する冷却手段を設けてもよい。
加工時には、工具および被加工物が発熱する。冷却手段を設ければ、工具および被加工物を冷却液により冷却することができる。
Moreover, you may provide the cooling means which cools the said tool with the cooling fluid which passes through the inside of the said outer pipe, or the cooling fluid supplied from the outside.
At the time of processing, the tool and the work piece generate heat. If the cooling means is provided, the tool and the workpiece can be cooled by the coolant.

この発明において、前記外郭パイプと前記ガイドパイプとを固定したパイプ固定部を設けてもよい。
外郭パイプとガイドパイプとをパイプ固定部により固定したことにより、スピンドルガイド部の剛性がより一層高められる。
In the present invention, a pipe fixing portion that fixes the outer pipe and the guide pipe may be provided.
Since the outer pipe and the guide pipe are fixed by the pipe fixing portion, the rigidity of the spindle guide portion is further enhanced.

前記パイプ固定部は、前記外郭パイプの周壁に内外に連通する開口を設け、前記外郭パイプにおける前記開口の周囲と前記ガイドパイプとをろう付けまたは溶接により固定したものとすることができる。あるいは、前記パイプ固定部は、前記外郭パイプの外径面側からレーザー溶接により前記外郭パイプと前記ガイドパイプとを固定したものとしてもよい。
何れの場合も、外郭パイプとガイドパイプとを比較的容易に、かつ強固に固定することができる。特に、前者に比べ後者は、外郭パイプに開口を設けなくて済むので、より一層スピンドルガイド部の剛性を高めることができ、しかも組立性が向上する。
The pipe fixing portion may be configured such that an opening communicating with the inside and the outside is provided in a peripheral wall of the outer pipe, and the periphery of the opening in the outer pipe and the guide pipe are fixed by brazing or welding. Alternatively, the pipe fixing portion may be configured to fix the outer pipe and the guide pipe by laser welding from the outer diameter surface side of the outer pipe.
In any case, the outer pipe and the guide pipe can be fixed relatively easily and firmly. In particular, since the latter does not require an opening in the outer pipe compared to the former, the rigidity of the spindle guide portion can be further increased and the assemblability is improved.

この発明において、前記スピンドルガイド部は湾曲した箇所を有していてもよい。
姿勢操作部材は可撓性であるため、スピンドルガイド部に湾曲した箇所があっても、ガイド孔内で進退させることができる。
In the present invention, the spindle guide portion may have a curved portion.
Since the posture operation member is flexible, even if there is a curved portion in the spindle guide portion, it can be advanced and retracted in the guide hole.

この発明の遠隔操作型アクチュエータは、細長形状のスピンドルガイド部と、このスピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられた先端部材と、前記スピンドルガイド部の基端が結合された駆動部ハウジングとを備え、前記先端部材は、工具を保持するスピンドルを回転自在に支持し、前記スピンドルガイド部は、このスピンドルガイド部の外郭となる中空の外郭パイプと、この外郭パイプの両端に貫通した中空孔内に設けられ前記駆動部ハウジング内の工具回転用駆動源の回転を前記スピンドルに伝達する回転軸と、前記中空孔内に設けられ両端に貫通した中空のガイドパイプとを有し、先端が前記先端部材に接して進退動作することにより前記先端部材を姿勢変更させる姿勢操作部材を前記ガイドパイプ内に進退自在に挿通し、前記姿勢操作部材を進退させる姿勢変更用駆動源を前記駆動部ハウジング内に設け、前記中空孔は、中心部の円形孔部と、この円形孔部から外径側へ凹んだ溝状部とでなり、前記円形孔部に前記回転軸を配置し、かつ前記溝状部に前記ガイドパイプを配置したため、細長いパイプ部の先端に設けられた工具の姿勢を遠隔操作で変更することができ、パイプ部としてのスピンドルガイド部の剛性が高く、組立性が良好である。   The remote control type actuator according to the present invention comprises an elongated spindle guide portion, a tip member attached to the tip of the spindle guide portion via a tip member connecting portion so that the posture can be freely changed, and a base end of the spindle guide portion. A drive housing that is coupled, the tip member rotatably supports a spindle that holds a tool, the spindle guide portion is a hollow outer pipe that is an outer shell of the spindle guide portion, and the outer pipe A rotating shaft that is provided in a hollow hole that penetrates both ends of the tool and transmits the rotation of a drive source for rotating the tool in the drive unit housing to the spindle, and a hollow guide pipe that is provided in the hollow hole and penetrates both ends. An attitude control member that changes the attitude of the tip member by moving forward and backward with the tip contacting the tip member. A posture changing drive source is provided in the drive unit housing to be inserted into and retracted freely and the posture operating member is moved forward and backward. The hollow hole has a central circular hole and an outer diameter side from the circular hole. Since the rotary shaft is disposed in the circular hole portion and the guide pipe is disposed in the groove portion, the posture of the tool provided at the tip of the elongated pipe portion can be remotely controlled. It can be changed, the rigidity of the spindle guide portion as the pipe portion is high, and the assemblability is good.

この発明の実施形態を図1〜図3と共に説明する。図1において、この遠隔操作型アクチュエータは、回転式の工具1を保持する先端部材2と、この先端部材2が先端に姿勢変更自在に取付けられた細長形状のスピンドルガイド部3と、このスピンドルガイド部3の基端が結合された駆動部ハウジング4aと、この駆動部ハウジング4a内の工具回転用駆動機構4bおよび姿勢変更用駆動機構4cを制御するコントローラ5とを備える。駆動部ハウジング4aは、内蔵の工具回転用駆動機構4bおよび姿勢変更用駆動機構4cと共に駆動部4を構成する。   An embodiment of the present invention will be described with reference to FIGS. In FIG. 1, the remote control type actuator includes a tip member 2 for holding a rotary tool 1, an elongated spindle guide portion 3 having the tip member 2 attached to the tip so that the posture can be freely changed, and the spindle guide. A drive unit housing 4a to which the base end of the unit 3 is coupled, and a controller 5 for controlling the tool rotation drive mechanism 4b and the attitude change drive mechanism 4c in the drive unit housing 4a are provided. The drive unit housing 4a constitutes the drive unit 4 together with the built-in tool rotation drive mechanism 4b and posture changing drive mechanism 4c.

図2に示すように、先端部材2は、略円筒状のハウジング11の内部に、一対の軸受12によりスピンドル13が回転自在に支持されている。スピンドル13は、先端側が開口した筒状で、中空部に工具1のシャンク1aが嵌合状態に挿入され、回り止めピン14によりシャンク1aが回転不能に結合される。この先端部材2は、先端部材連結部15を介してスピンドルガイド部3の先端に取付けられる。先端部材連結部15は、先端部材2を姿勢変更自在に支持する手段であり、球面軸受からなる。具体的には、先端部材連結部15は、ハウジング11の基端の内径縮径部からなる被案内部11aと、スピンドルガイド部3の先端に固定された抜け止め部材21の鍔状部からなる案内部21aとで構成される。両者11a,21aの互いに接する各案内面F1,F2は、スピンドル13の中心線CL上に曲率中心Oが位置し、基端側ほど径が小さい球面とされている。これにより、スピンドルガイド部3に対して先端部材2が抜け止めされるとともに、姿勢変更自在に支持される。この例は、曲率中心Oを通るX軸回りに先端部材2が姿勢変更する構成であるため、案内面F1,F2が、点Oを通るX軸を軸心とする円筒面であってもよい。   As shown in FIG. 2, the tip member 2 has a spindle 13 rotatably supported by a pair of bearings 12 inside a substantially cylindrical housing 11. The spindle 13 has a cylindrical shape with an open end, and the shank 1a of the tool 1 is inserted into the hollow portion in a fitted state, and the shank 1a is non-rotatably coupled by the rotation prevention pin 14. The tip member 2 is attached to the tip of the spindle guide portion 3 via the tip member connecting portion 15. The tip member connecting portion 15 is a means for supporting the tip member 2 so that the posture thereof can be freely changed, and includes a spherical bearing. Specifically, the distal end member connecting portion 15 includes a guided portion 11 a that is a reduced inner diameter portion of the proximal end of the housing 11 and a hook-shaped portion of a retaining member 21 that is fixed to the distal end of the spindle guide portion 3. It is comprised with the guide part 21a. The guide surfaces F1 and F2 that are in contact with each other 11a and 21a are spherical surfaces having a center of curvature O located on the center line CL of the spindle 13 and having a smaller diameter toward the proximal end side. As a result, the tip member 2 is prevented from being detached from the spindle guide portion 3 and is supported so as to be freely changeable in posture. In this example, since the tip member 2 is configured to change the posture around the X axis passing through the center of curvature O, the guide surfaces F1 and F2 may be cylindrical surfaces having the X axis passing through the point O as an axis. .

スピンドルガイド部3は、駆動部ハウジング4a内の工具回転用駆動源41(図3)の回転力を前記スピンドル13へ伝達する回転軸22を有する。この例では、回転軸22はワイヤとされ、ある程度の弾性変形が可能である。ワイヤの材質としては、例えば金属、樹脂、グラスファイバー等が用いられる。ワイヤは単線であっても、撚り線であってもよい。図2(C)に示すように、スピンドル13と回転軸22とは、自在継手等の継手23を介して回転伝達可能に接続されている。継手23は、スピンドル13の閉塞した基端に設けられた溝13aと、回転軸22の先端に設けられ前記溝13aに係合する突起22aとで構成される。上記溝13aと突起22aとの連結箇所の中心は、前記案内面F1,F2の曲率中心Oと同位置である。回転軸22と突起22aは別部材として構成してもよい。   The spindle guide portion 3 has a rotating shaft 22 that transmits the rotational force of the tool rotation drive source 41 (FIG. 3) in the drive portion housing 4 a to the spindle 13. In this example, the rotating shaft 22 is a wire and can be elastically deformed to some extent. As the material of the wire, for example, metal, resin, glass fiber or the like is used. The wire may be a single wire or a stranded wire. As shown in FIG. 2C, the spindle 13 and the rotary shaft 22 are connected so as to be able to transmit rotation via a joint 23 such as a universal joint. The joint 23 includes a groove 13 a provided at the closed base end of the spindle 13 and a protrusion 22 a provided at the distal end of the rotating shaft 22 and engaged with the groove 13 a. The center of the connecting portion between the groove 13a and the protrusion 22a is at the same position as the center of curvature O of the guide surfaces F1 and F2. The rotating shaft 22 and the protrusion 22a may be configured as separate members.

スピンドルガイド部3は、このスピンドルガイド部3の外郭となる外郭パイプ25を有する。外郭パイプ25は両端に貫通した中空状で、その中空孔24は、中心部の円形孔部24aと、この円形孔部24aの外周における互いに180度の位相をなす周方向位置から外径側へ凹んだ2つの溝状部24bとでなる。溝状部24bの先端の周壁は、断面半円形である。例えば、外郭パイプ25の外径は8〜10mm、溝状部24以外の箇所の内径は3〜5mmである。また、外郭パイプ25の材質としては、ステンレス、チタン等が適する。
外郭パイプ25を上記断面形状としたことにより、外郭パイプ25の溝状部24b以外の箇所の肉厚tを厚くすることができる。それにより、外郭パイプ25の断面2次モーメントを、同外径の中実シャフトの1/2以上とすることができる。例えば、ステンレス材料からなる外径8mmの中実シャフトの場合、断面2次モーメントは約200mmである。
The spindle guide portion 3 has an outer pipe 25 that is an outer portion of the spindle guide portion 3. The outer pipe 25 has a hollow shape penetrating at both ends, and the hollow hole 24 extends from the circular hole portion 24a at the center portion to the outer diameter side from a circumferential position that forms a phase of 180 degrees on the outer periphery of the circular hole portion 24a. It consists of two recessed grooves 24b. The peripheral wall at the tip of the groove-like portion 24b has a semicircular cross section. For example, the outer diameter of the outer pipe 25 is 8 to 10 mm, and the inner diameter of portions other than the groove-like portion 24 is 3 to 5 mm. Further, as the material of the outer pipe 25, stainless steel, titanium or the like is suitable.
By making the outer pipe 25 have the above-described cross-sectional shape, the thickness t of the outer pipe 25 other than the groove-like portion 24b can be increased. Thereby, the cross-sectional secondary moment of the outer pipe 25 can be set to 1/2 or more of the solid shaft with the same outer diameter. For example, in the case of a solid shaft made of stainless steel and having an outer diameter of 8 mm, the secondary moment of section is about 200 mm 4 .

前記中空孔24の円形孔部24aには、前記回転軸22が配置される。回転軸22は、それぞれ軸方向に離れて配置された複数の転がり軸受26によって回転自在に支持されている。各転がり軸受26間には、これら転がり軸受26に予圧を発生させるためのばね要素27A,27Bが設けられている。ばね要素27A,27Bは、例えば圧縮コイルばねである。転がり軸受26の内輪に予圧を発生させる内輪用ばね要素27Aと、外輪に予圧を発生させる外輪用ばね要素27Bとがあり、これらが交互に配置されている。前記抜け止め部材21は、固定ピン28により外郭パイプ25のパイプエンド部25aに固定され、その先端内周部で転がり軸受29を介して回転軸22の先端部を回転自在に支持している。パイプエンド部25aは、外郭パイプ25と別部材とし、溶接等により結合してもよい。   The rotary shaft 22 is disposed in the circular hole portion 24 a of the hollow hole 24. The rotating shaft 22 is rotatably supported by a plurality of rolling bearings 26 that are arranged apart from each other in the axial direction. Between each rolling bearing 26, spring elements 27A and 27B for generating a preload on the rolling bearing 26 are provided. The spring elements 27A and 27B are, for example, compression coil springs. There are an inner ring spring element 27A for generating a preload on the inner ring of the rolling bearing 26 and an outer ring spring element 27B for generating a preload on the outer ring, which are arranged alternately. The retaining member 21 is fixed to the pipe end portion 25a of the outer pipe 25 by a fixing pin 28, and rotatably supports the distal end portion of the rotary shaft 22 via a rolling bearing 29 at the distal end inner peripheral portion thereof. The pipe end portion 25a may be a separate member from the outer pipe 25 and may be joined by welding or the like.

前記中空孔24の一方(図2における上側)の溝状部24bには、両端に貫通する中空のガイドパイプ30が設けられる。そして、このガイドパイプ30の内径孔であるガイド孔30a内に姿勢操作部材31が進退自在に挿通されている。この例では、姿勢操作部材31はワイヤである。姿勢操作部材31の先端は球面状で、その球面状の先端が、ハウジング11の基端面に形成された径方向の溝部11bの底面に当接している。溝部11bおよび姿勢操作部材31は回転防止機構37を構成し、溝部11bに挿入された姿勢操作部材31の先端部が溝部11bの側面に当たることで、先端部材2がスピンドルガイド部3に対して先端部材2の中心線CL回りに回転するのを防止している。   One of the hollow holes 24 (upper side in FIG. 2) is provided with a hollow guide pipe 30 penetrating at both ends. And the attitude | position operation member 31 is penetrated by the guide hole 30a which is an internal diameter hole of this guide pipe 30 so that advance / retreat is possible. In this example, the posture operation member 31 is a wire. The distal end of the posture operation member 31 is spherical, and the spherical distal end is in contact with the bottom surface of the radial groove portion 11 b formed on the base end surface of the housing 11. The groove 11b and the posture operation member 31 constitute an anti-rotation mechanism 37, and the tip member 2 inserted into the groove 11b hits the side surface of the groove 11b, so that the tip member 2 is in front of the spindle guide 3. Rotation around the center line CL of the member 2 is prevented.

上記姿勢操作部材31が位置する周方向位置に対し180度の位相の位置には、先端部材2のハウジング11の基端面とスピンドルガイド部3の外郭パイプ25の先端面との間に、例えば圧縮コイルばねからなる復元用弾性部材32が設けられている。この復元用弾性部材32は、先端部材2を所定姿勢側へ付勢する作用をする。   For example, compression is provided between the proximal end surface of the housing 11 of the distal end member 2 and the distal end surface of the outer pipe 25 of the spindle guide portion 3 at a position 180 degrees relative to the circumferential position where the posture operation member 31 is located. A restoring elastic member 32 made of a coil spring is provided. The restoring elastic member 32 acts to urge the tip member 2 toward a predetermined posture.

前記中空孔24のもう一方(図2における下側)の溝状部24bには、中実の補強シャフト34が配置されている。補強シャフト34は、スピンドルガイド部3の剛性を確保するためのものである。ガイドパイプ30と補強シャフト34は同一ピッチ円C上に位置し、これらガイドパイプ30および補強シャフト34で転がり軸受26の外径面を支持している。   A solid reinforcing shaft 34 is disposed in the groove portion 24b on the other side (lower side in FIG. 2) of the hollow hole 24. The reinforcing shaft 34 is for ensuring the rigidity of the spindle guide portion 3. The guide pipe 30 and the reinforcing shaft 34 are located on the same pitch circle C, and the guide pipe 30 and the reinforcing shaft 34 support the outer diameter surface of the rolling bearing 26.

図3は、駆動部ハウジング4a内の工具回転用駆動機構4bおよび姿勢変更用駆動機構4cを示す。工具回転用駆動機構4bは、コントローラ5により制御される工具回転用駆動源41を備える。工具回転用駆動源41は、例えば電動モータであり、その出力軸41aが前記回転軸22の基端に結合させてある。姿勢変更用駆動機構4cは、コントローラ5により制御される姿勢変更用駆動源42を備える。姿勢変更用駆動源42は、例えば電動リニアアクチュエータであり、図3(A)の左右方向に移動する出力ロッド42aの動きが、増力伝達機構43を介して前記姿勢操作部材31に伝達される。増力伝達機構43は、支軸43a回りに回動自在なレバー43bを有し、このレバー43bにおける支軸43aからの距離が長い作用点P1に出力ロッド42aの力が作用し、支軸43aからの距離が短い力点P2で姿勢操作部材31に力を与える構成であり、姿勢変更用駆動源42の出力が増力して姿勢操作部材31に伝達される。増力伝達機構43を設けると、小さな出力のリニアアクチュエータでも姿勢操作部材31に大きな力を与えることができるので、リニアアクチュエータの小型化が可能になる。なお、回転軸22は、レバー43bに形成された開口44を貫通させてある。なお、リニアアクチュエータ等を設ける代わりに、手動により先端部材2の姿勢を遠隔操作してもよい。   FIG. 3 shows a tool rotation drive mechanism 4b and a posture change drive mechanism 4c in the drive unit housing 4a. The tool rotation drive mechanism 4 b includes a tool rotation drive source 41 controlled by the controller 5. The tool rotation drive source 41 is, for example, an electric motor, and its output shaft 41 a is coupled to the proximal end of the rotation shaft 22. The posture changing drive mechanism 4 c includes a posture changing drive source 42 controlled by the controller 5. The posture changing drive source 42 is, for example, an electric linear actuator, and the movement of the output rod 42 a that moves in the left-right direction in FIG. 3A is transmitted to the posture operating member 31 through the force transmission mechanism 43. The boost transmission mechanism 43 has a lever 43b that is rotatable around a support shaft 43a. The force of the output rod 42a acts on an action point P1 of the lever 43b that is long from the support shaft 43a. The force is applied to the posture operation member 31 at the force point P <b> 2 having a short distance, and the output of the posture changing drive source 42 is increased and transmitted to the posture operation member 31. If the boost transmission mechanism 43 is provided, a large force can be applied to the posture operation member 31 even with a linear actuator having a small output, and thus the linear actuator can be downsized. The rotary shaft 22 passes through an opening 44 formed in the lever 43b. Instead of providing a linear actuator or the like, the posture of the tip member 2 may be remotely operated manually.

姿勢変更用駆動機構4cには、姿勢変更用駆動源42の動作量を検出する動作量検出器45が設けられている。この動作量検出器45の検出値は、姿勢検出手段46に出力される。姿勢検出手段46は、動作量検出器45の出力により、先端部材2のX軸(図2)回りの傾動姿勢を検出する。姿勢検出手段46は、上記傾動姿勢と動作量検出器45の出力信号との関係を演算式またはテーブル等により設定した関係設定手段(図示せず)を有し、入力された出力信号から前記関係設定手段を用いて傾動姿勢を検出する。この姿勢検出手段46は、コントローラ5に設けられたものであっても、あるいは外部の制御装置に設けられたものであってもよい。   The posture change drive mechanism 4c is provided with an operation amount detector 45 for detecting the operation amount of the posture change drive source 42. The detection value of the movement amount detector 45 is output to the posture detection means 46. The posture detection means 46 detects the tilt posture of the tip member 2 around the X axis (FIG. 2) based on the output of the movement amount detector 45. The posture detection means 46 has relationship setting means (not shown) in which the relationship between the tilt posture and the output signal of the motion amount detector 45 is set by an arithmetic expression or a table, and the relationship is determined from the input output signal. The tilting posture is detected using setting means. This posture detection means 46 may be provided in the controller 5 or may be provided in an external control device.

また、姿勢変更用駆動機構4cには、電動アクチュエータである姿勢変更用駆動源42に供給される電力量を検出する供給電力計47が設けられている。この供給電力計47の検出値は、荷重検出手段48に出力される。荷重検出手段48は、供給電力計47の出力により、先端部材2に作用する荷重を検出する。荷重検出手段48は、上記荷重と供給電力計47の出力信号との関係を演算式またはテーブル等により設定した関係設定手段(図示せず)を有し、入力された出力信号から前記関係設定手段を用いて荷重を検出する。この荷重検出手段48は、コントローラ5に設けられたものであっても、あるいは外部の制御装置に設けられたものであってもよい。   The posture changing drive mechanism 4c is provided with a wattmeter 47 that detects the amount of power supplied to the posture changing drive source 42, which is an electric actuator. The detected value of the supplied wattmeter 47 is output to the load detecting means 48. The load detection means 48 detects the load acting on the tip member 2 based on the output of the wattmeter 47. The load detection means 48 has relation setting means (not shown) in which the relation between the load and the output signal of the supplied wattmeter 47 is set by an arithmetic expression or a table, and the relation setting means is determined from the input output signal. The load is detected using. The load detecting means 48 may be provided in the controller 5 or may be provided in an external control device.

コントローラ5は、前記姿勢検出手段46および荷重検出手段48の検出値に基づき、工具回転用駆動源41および姿勢変更用駆動源42を制御する。   The controller 5 controls the tool rotation drive source 41 and the posture change drive source 42 based on the detection values of the posture detection means 46 and the load detection means 48.

この遠隔操作型アクチュエータの動作を説明する。
工具回転用駆動源41を駆動すると、その回転力が回転軸22を介してスピンドル13に伝達されて、スピンドル13と共に工具1が回転する。工具1を回転させて骨等を切削加工する際に先端部材2に作用する荷重は、供給電力計47の検出値から、荷重検出手段48によって検出される。このように検出される荷重の値に応じて遠隔操作型アクチュエータ全体の送り量や後記先端部材2の姿勢変更を制御することにより、先端部材2に作用する荷重を適正に保った状態で骨の切削加工を行える。
The operation of this remote control type actuator will be described.
When the tool rotation drive source 41 is driven, the rotational force is transmitted to the spindle 13 via the rotation shaft 22, and the tool 1 rotates together with the spindle 13. The load acting on the tip member 2 when the tool 1 is rotated to cut bone or the like is detected by the load detection means 48 from the detection value of the supply wattmeter 47. By controlling the feed amount of the entire remote operation type actuator and the posture change of the distal end member 2 described later according to the load value thus detected, the load acting on the distal end member 2 can be appropriately maintained while maintaining the load. Cutting can be performed.

使用時には、姿勢変更用駆動源42を駆動させて、遠隔操作で先端部材2の姿勢変更を行う。例えば、姿勢変更用駆動源42により姿勢操作部材31を先端側へ進出させると、姿勢操作部材31によって先端部材2のハウジング11が押されて、先端部材2は図2(A)において先端側が下向きとなる側へ案内面F1,F2に沿って姿勢変更する。逆に、姿勢変更用駆動源42により姿勢操作部材31を後退させると、復元用弾性部材32の弾性反発力によって先端部材2のハウジング11が押し戻され、先端部材2は図2(A)において先端側が上向きとなる側へ案内面F1,F2に沿って姿勢変更する。その際、先端部材連結部15には、姿勢操作部材31の圧力、復元用弾性部材32の弾性反発力、および抜け止め部材21からの反力が作用しており、これらの作用力の釣り合いにより先端部材2の姿勢が決定される。先端部材2の姿勢は、動作量検出器45の検出値から、姿勢検出手段46によって検出される。そのため、遠隔操作で先端部材2の姿勢を適正に制御できる。   At the time of use, the posture changing drive source 42 is driven to change the posture of the tip member 2 by remote control. For example, when the posture operating member 31 is advanced to the distal end side by the posture changing drive source 42, the housing 11 of the distal end member 2 is pushed by the posture operating member 31, and the distal end member 2 is directed downward in FIG. The posture is changed along the guide surfaces F1 and F2 toward the side. On the other hand, when the posture operation member 31 is retracted by the posture changing drive source 42, the housing 11 of the tip member 2 is pushed back by the elastic repulsive force of the restoring elastic member 32, and the tip member 2 is shown in FIG. The posture is changed along the guide surfaces F1 and F2 to the side facing upward. At that time, the pressure of the posture operation member 31, the elastic repulsive force of the restoring elastic member 32, and the reaction force from the retaining member 21 act on the tip member connecting portion 15, and the balance of these acting forces The posture of the tip member 2 is determined. The posture of the tip member 2 is detected by the posture detection means 46 from the detection value of the movement amount detector 45. Therefore, the posture of the tip member 2 can be appropriately controlled by remote operation.

また、先端部材2がスピンドルガイド部3に対して先端部材2の中心線CL回りに回転するのを防止する回転防止機構37が設けられているため、姿勢操作部材31の進退を制御する姿勢操作用駆動機構4cやその制御装置の故障等により工具1を保持する先端部材2が制御不能となった場合でも、先端部材2が中心線CL回りに回転して加工箇所の周りを傷つけたり、先端部材2自体が破損したりすることを防止できる。   Further, since the rotation preventing mechanism 37 for preventing the tip member 2 from rotating around the center line CL of the tip member 2 with respect to the spindle guide portion 3 is provided, the posture operation for controlling the advancement and retreat of the posture operation member 31 is provided. Even when the tip member 2 that holds the tool 1 becomes uncontrollable due to a failure of the drive mechanism 4c or its control device, the tip member 2 rotates around the center line CL and damages the periphery of the machining site, It is possible to prevent the member 2 itself from being damaged.

姿勢操作部材31はガイドパイプ30のガイド孔30aに挿通されているため、姿勢操作部材31が長手方向と交差する方向に位置ずれすることがなく、常に先端部材2に対し適正に作用することができ、先端部材2の姿勢変更動作が正確に行われる。また、姿勢操作部材31はワイヤからなり可撓性であるため、スピンドルガイド部3が湾曲した状態でも先端部材2の姿勢変更動作が確実に行われる。さらに、スピンドル13と回転軸22との連結箇所の中心が案内面F1,F2の曲率中心Oと同位置であるため、先端部材2の姿勢変更によって回転軸22に対して押し引きする力がかからず、先端部材2が円滑に姿勢変更できる。   Since the posture operation member 31 is inserted through the guide hole 30a of the guide pipe 30, the posture operation member 31 does not shift in the direction intersecting the longitudinal direction and can always act properly on the tip member 2. Thus, the posture changing operation of the tip member 2 is accurately performed. Further, since the posture operation member 31 is made of a wire and is flexible, the posture changing operation of the tip member 2 is reliably performed even when the spindle guide portion 3 is curved. Furthermore, since the center of the connecting portion between the spindle 13 and the rotating shaft 22 is at the same position as the center of curvature O of the guide surfaces F1 and F2, a force for pushing and pulling against the rotating shaft 22 by changing the posture of the tip member 2 is increased. Accordingly, the posture of the tip member 2 can be changed smoothly.

この遠隔操作型アクチュエータは、例えば人工関節置換手術において骨の髄腔部を削るのに使用されるものであり、施術時には、先端部材2の全部または一部が患者の体内に挿入して使用される。このため、上記のように先端部材2の姿勢を遠隔操作で変更できれば、常に工具1を適正な姿勢に保持した状態で骨の加工をすることができ、人工関節挿入用穴を精度良く仕上げることができる。   This remote control type actuator is used, for example, for cutting the medullary cavity of bone in artificial joint replacement surgery. During the operation, all or part of the distal end member 2 is inserted into the patient's body. The For this reason, if the posture of the tip member 2 can be changed by remote control as described above, the bone can be processed while the tool 1 is always held in an appropriate posture, and the artificial joint insertion hole is finished with high accuracy. Can do.

細長形状であるスピンドルガイド部3は、外郭パイプ25の中心部に回転軸22を設け、この回転軸22との周囲に、姿勢操作部材31を収容したガイドパイプ30と補強シャフト34とを互いに180度の位相をなす周方向位置に配置したことにより、回転軸22、ガイドパイプ30、および補強シャフト34をバランス良く設けることができる。   The elongated spindle guide portion 3 is provided with a rotating shaft 22 at the center of the outer pipe 25, and around the rotating shaft 22, a guide pipe 30 accommodating a posture operation member 31 and a reinforcing shaft 34 are mutually connected 180. By disposing at the circumferential position forming the phase of the degree, the rotating shaft 22, the guide pipe 30, and the reinforcing shaft 34 can be provided in a well-balanced manner.

外郭パイプ25の溝状部24b以外の箇所の肉厚が厚いため、スピンドルガイド部3の剛性(断面2次モーメント)が高い。そのため、先端部材2の位置決め精度が向上させられるとともに、切削性を向上させられる。また、溝状部24bにガイドパイプ30および補強シャフト34をそれぞれ配置したことにより、ガイドパイプ30および補強シャフト34の円周方向の位置決めを容易に行え、組立性が良好である。   Since the portion of the outer pipe 25 other than the groove-like portion 24b is thick, the spindle guide portion 3 has high rigidity (secondary moment of cross section). Therefore, the positioning accuracy of the tip member 2 is improved and the machinability is improved. Further, by arranging the guide pipe 30 and the reinforcing shaft 34 in the groove-like portion 24b, the guide pipe 30 and the reinforcing shaft 34 can be easily positioned in the circumferential direction, and the assemblability is good.

回転軸22を支持する転がり軸受26の外径面を、ガイドパイプ30と補強シャフト34とで支持させたため、余分な部材を用いずに転がり軸受26の外径面を支持できる。また、ばね要素27A,27Bにより転がり軸受26に予圧がかけられているため、ワイヤからなる回転軸22を高速回転させることができる。そのため、スピンドル13を高速回転させて加工することができ、加工の仕上がりが良く、工具1に作用する切削抵抗を低減させられる。ばね要素27A,27Bは隣合う転がり軸受26間に設けられているので、スピンドルガイド部3の径を大きくせずにばね要素27A,27Bを設けることができる。   Since the outer diameter surface of the rolling bearing 26 that supports the rotating shaft 22 is supported by the guide pipe 30 and the reinforcing shaft 34, the outer diameter surface of the rolling bearing 26 can be supported without using extra members. Moreover, since the preload is applied to the rolling bearing 26 by the spring elements 27A and 27B, the rotating shaft 22 made of a wire can be rotated at a high speed. Therefore, machining can be performed by rotating the spindle 13 at a high speed, the machining finish is good, and the cutting resistance acting on the tool 1 can be reduced. Since the spring elements 27A and 27B are provided between the adjacent rolling bearings 26, the spring elements 27A and 27B can be provided without increasing the diameter of the spindle guide portion 3.

スピンドルガイド部3の剛性をさらに高めるには、図5または図6に示すように、パイプ固定部70により、外郭パイプ25とガイドパイプ30とを固定すれば良い。図5のパイプ固定部70は、外郭パイプ25の周壁に内外に連通する開口71を設け、外郭パイプ25における前記開口71の周囲とガイドパイプ30とをろう付けまたは溶接72により固定したものである。図6のパイプ固定部70は、外郭パイプ25の外径面側からレーザー溶接73により外郭パイプ25とガイドパイプ30とを固定したものである。何れのパイプ固定部70も、外郭パイプ25とガイドパイプ30とを比較的容易に、かつ強固に固定することができる。特に、前者に比べ後者は、外郭パイプ25に開口71を設けなくて済むので、より一層スピンドルガイド部3の剛性を高めることができ、しかも組立性が向上する。
なお、図示は省略するが、外郭パイプ25と補強シャフト34とを上記同様の方法で固定しても、スピンドルガイド部3の剛性を高められる。
In order to further increase the rigidity of the spindle guide portion 3, the outer pipe 25 and the guide pipe 30 may be fixed by a pipe fixing portion 70 as shown in FIG. The pipe fixing portion 70 of FIG. 5 is provided with an opening 71 communicating with the inside and outside of the peripheral wall of the outer pipe 25, and the periphery of the opening 71 in the outer pipe 25 and the guide pipe 30 are fixed by brazing or welding 72. . The pipe fixing portion 70 in FIG. 6 is obtained by fixing the outer pipe 25 and the guide pipe 30 by laser welding 73 from the outer diameter surface side of the outer pipe 25. Any pipe fixing part 70 can fix the outer pipe 25 and the guide pipe 30 relatively easily and firmly. In particular, the latter does not require the opening 71 in the outer pipe 25 as compared with the former, so that the rigidity of the spindle guide 3 can be further increased and the assemblability is improved.
Although illustration is omitted, even if the outer pipe 25 and the reinforcing shaft 34 are fixed by the same method as described above, the rigidity of the spindle guide portion 3 can be increased.

この遠隔操作型アクチュエータは、スピンドルガイド部3が中空状であることを利用して、工具1等を冷却する冷却手段50を図4のように設けることができる。すなわち、冷却手段50は、遠隔操作型アクチュエータの外部に設けた冷却液供給装置51と、この冷却液供給装置51から駆動部ハウジング4a、スピンドルガイド部3、および先端部材2の内部を通って工具1に冷却液を導く冷却液供給管52とでなり、冷却液供給管52におけるスピンドルガイド部3を通る部分52aは外郭パイプ25自体が冷却液供給管52であり、外郭パイプ25の内部を冷却液が通過するようにしてある。工具1まで導かれた冷却液は、工具1の外周へ吐出される。このような冷却手段50を設ければ、冷却液により、工具1、被加工物、スピンドル13、回転軸22、軸受26,29等の発熱箇所を冷却することができる。外郭パイプ25内に冷却液を通過させるため、冷却液供給用の管を別に設ける必要がなく、スピンドルガイド部3を簡素化および小径化できる。また、前記冷却液を転がり軸受26,29の潤滑に兼用させてもよい。そうすれば、軸受に一般的に使用されているグリス等を使用しなくてもよく、しかも別に潤滑装置を設けなくて済む。なお、工具1まで導かれた冷却液を工具1の外周へ吐出させずに、冷却液供給装置51へ戻す循環型の構成としてもよい。また、外郭パイプ25内に通過させる冷却液の流量が少ない場合は、さらに外部から冷却液を供給し、工具1や被加工物を冷却してもよい。   This remote control type actuator can be provided with a cooling means 50 for cooling the tool 1 or the like as shown in FIG. 4 by utilizing the fact that the spindle guide portion 3 is hollow. That is, the cooling means 50 includes a coolant supply device 51 provided outside the remote control type actuator, and a tool that passes from the coolant supply device 51 through the inside of the drive unit housing 4a, the spindle guide portion 3, and the tip member 2. 1 is a coolant supply pipe 52 that guides the coolant to 1, and a portion 52 a of the coolant supply pipe 52 that passes through the spindle guide portion 3 is the outer pipe 25 itself that is the coolant supply pipe 52, and cools the inside of the outer pipe 25. The liquid passes through. The coolant guided to the tool 1 is discharged to the outer periphery of the tool 1. If such a cooling means 50 is provided, the heat generating locations such as the tool 1, the workpiece, the spindle 13, the rotary shaft 22, and the bearings 26 and 29 can be cooled by the coolant. Since the coolant is allowed to pass through the outer pipe 25, it is not necessary to provide a separate coolant supply pipe, and the spindle guide portion 3 can be simplified and reduced in diameter. Further, the cooling liquid may be used for lubricating the rolling bearings 26 and 29. By doing so, it is not necessary to use grease or the like generally used for bearings, and it is not necessary to provide a separate lubricating device. It is also possible to adopt a circulation type configuration in which the coolant guided to the tool 1 is returned to the coolant supply device 51 without being discharged to the outer periphery of the tool 1. Further, when the flow rate of the coolant passing through the outer pipe 25 is small, the tool 1 and the workpiece may be cooled by further supplying the coolant from the outside.

上記冷却液は、水もしくは生理食塩水であるのが望ましい。冷却液が水もしくは生理食塩水であれば、先端部材2を生体内に挿入して加工を行う場合に冷却液が生体に悪影響を与えないからである。冷却液を水もしくは生理食塩水とする場合、冷却液と接する部品の材質は、耐腐食性に優れたステンレスであるのが望ましい。この遠隔操作型アクチュエータを構成する他の部品も、ステンレス製であってもよい。   The cooling liquid is preferably water or physiological saline. This is because if the coolant is water or physiological saline, the coolant does not adversely affect the living body when the tip member 2 is inserted into the living body to perform processing. When the coolant is water or physiological saline, it is desirable that the material of the parts in contact with the coolant is stainless steel having excellent corrosion resistance. Other parts constituting this remote control type actuator may also be made of stainless steel.

上記各実施形態では、姿勢操作部材31がハウジング11を押すことにより先端部材2の姿勢変更を行うが、図7のように、ワイヤからなる姿勢操作部材31の先端とハウジング11とを連結部材31aで連結し、姿勢変更用駆動源(図示せず)により姿勢操作部材31を基端側へ後退させることで、姿勢操作部材31がハウジング11を引っ張って先端部材2の姿勢変更を行うようにしてもよい。この場合、復元用弾性部材32は引っ張りコイルばねとする。   In each of the above embodiments, the posture operation member 31 pushes the housing 11 to change the posture of the tip member 2. However, as shown in FIG. 7, the tip of the posture operation member 31 made of a wire and the housing 11 are connected to the connecting member 31a. The posture operation member 31 is retracted to the proximal end side by a posture change drive source (not shown) so that the posture operation member 31 pulls the housing 11 to change the posture of the distal end member 2. Also good. In this case, the restoring elastic member 32 is a tension coil spring.

図8は異なる実施形態を示す。この遠隔操作型アクチュエータは、図1ないし図3の実施形態における補強シャフト34に代えてガイドパイプ30を設け、そのガイドパイプ30の内径孔であるガイド孔30a内に姿勢操作部材31が進退自在に挿通してある。すなわち、2組のガイドパイプ30および姿勢操作部材31が、互いに180度の位相にある周方向位置に配置してある。復元用弾性部材32は設けられていない。案内面F1,F2は、曲率中心が点Oである球面、または点Oを通るX軸を軸心とする円筒面である。   FIG. 8 shows a different embodiment. In this remote operation type actuator, a guide pipe 30 is provided instead of the reinforcing shaft 34 in the embodiment of FIGS. 1 to 3, and the posture operation member 31 can be moved forward and backward in a guide hole 30a which is an inner diameter hole of the guide pipe 30. It is inserted. That is, the two sets of the guide pipe 30 and the posture operation member 31 are arranged at circumferential positions that are 180 degrees in phase with each other. The restoring elastic member 32 is not provided. The guide surfaces F1 and F2 are spherical surfaces whose center of curvature is the point O, or cylindrical surfaces whose axis is the X axis passing through the point O.

駆動部4(図示せず)には、2つの姿勢操作部材31をそれぞれ個別に進退操作させる2つの姿勢変更用駆動源42(図示せず)が設けられており、これら2つの姿勢変更用駆動源42を互いに逆向きに駆動することで先端部材2の姿勢変更を行う。例えば、図8における上側の姿勢操作部材31を先端側へ進出させ、かつ下側の姿勢操作部材31を後退させると、上側の姿勢操作部材31によって先端部材2のハウジング11が押されることにより、先端部材2は図8(A)において先端側が下向きとなる側へ案内面F1,F2に沿って姿勢変更する。逆に、両姿勢操作部材31を逆に進退させると、下側の姿勢操作部材31によって先端部材2のハウジング11が押されることにより、先端部材2は図8(A)において先端側が上向きとなる側へ案内面F1,F2に沿って姿勢変更する。その際、先端部材連結部15には、上下2つの姿勢操作部材31の圧力、および抜け止め部材21からの反力が作用しており、これらの作用力の釣り合いにより先端部材2の姿勢が決定される。この構成では、2つの姿勢操作部材31で先端部材2のハウジング11に加圧されるため、1つの姿勢操作部材31だけで加圧される前記実施形態に比べ、先端部材2の姿勢安定性を高めることができる。   The drive unit 4 (not shown) is provided with two posture change drive sources 42 (not shown) for individually moving the two posture operation members 31 forward and backward, and these two posture change drives. The posture of the tip member 2 is changed by driving the sources 42 in opposite directions. For example, when the upper posture operation member 31 in FIG. 8 is advanced to the distal end side and the lower posture operation member 31 is retracted, the housing 11 of the distal end member 2 is pushed by the upper posture operation member 31. The posture of the tip member 2 is changed along the guide surfaces F1 and F2 to the side where the tip side faces downward in FIG. Conversely, when both posture operation members 31 are moved back and forth, the housing 11 of the tip member 2 is pushed by the lower posture operation member 31, so that the tip member 2 is directed upward in FIG. 8A. The posture is changed along the guide surfaces F1 and F2 to the side. At that time, the pressure of the two upper and lower posture operating members 31 and the reaction force from the retaining member 21 are acting on the tip member connecting portion 15, and the posture of the tip member 2 is determined by the balance of these acting forces. Is done. In this configuration, the housing 11 of the tip member 2 is pressurized by the two posture operation members 31, so that the posture stability of the tip member 2 is improved as compared with the embodiment in which the pressure is applied by only one posture operation member 31. Can be increased.

図9はさらに異なる実施形態を示す。この遠隔操作型アクチュエータは、外郭パイプ25の中空孔24が、中心部の円形孔部24aと、この円形孔部24aの外周における互いに120度の位相をなす周方向位置から外径側へ凹んだ3つの溝状部24bとでなる。そして、各溝状部24bにガイドパイプ30を設け、そのガイドパイプ30の内径孔であるガイド孔30a内に姿勢操作部材31が進退自在に挿通されている。この例では、各姿勢操作部材31は、ワイヤ31bと、このワイヤ31bの先端側に設けた柱状ピン31cとでなる。柱状ピン31cの先端は球面状で、その球面状の先端が、ハウジング11の基端面に形成された径方向の溝部11bの底面に当接している。復元用弾性部材32は設けられていない。案内面F1,F2は曲率中心が点Oである球面であり、先端部材2は任意方向に傾動可能である。   FIG. 9 shows a further different embodiment. In this remote-controlled actuator, the hollow hole 24 of the outer pipe 25 is recessed from the circumferential position that forms a phase of 120 degrees to the outer periphery of the circular hole 24a at the center and the outer periphery of the circular hole 24a. It consists of three groove-like parts 24b. A guide pipe 30 is provided in each groove-like portion 24b, and a posture operation member 31 is inserted into a guide hole 30a that is an inner diameter hole of the guide pipe 30 so as to be able to advance and retract. In this example, each posture operation member 31 includes a wire 31b and a columnar pin 31c provided on the distal end side of the wire 31b. The distal end of the columnar pin 31 c is spherical, and the spherical distal end is in contact with the bottom surface of the radial groove 11 b formed on the proximal end surface of the housing 11. The restoring elastic member 32 is not provided. The guide surfaces F1 and F2 are spherical surfaces whose center of curvature is a point O, and the tip member 2 can tilt in any direction.

駆動部4には、3つの姿勢操作部材31(31U,31L,31R)をそれぞれ個別に進退操作させる3つの姿勢変更用駆動源42(42U,42L,42R)(図12)が設けられており、これら3つの姿勢変更用駆動源42を互いに連係させて駆動することで先端部材2の姿勢変更を行う。
例えば、図9における上側の1つの姿勢操作部材31Uを先端側へ進出させ、かつ他の2つの姿勢操作部材31L,31Rを後退させると、上側の姿勢操作部材31Uによって先端部材2のハウジング11が押されることにより、先端部材2は図9(A)において先端側が下向きとなる側へ案内面F1,F2に沿って姿勢変更する。このとき、各姿勢操作部材31の進退量が適正になるよう、各姿勢変更用駆動源42が制御される。各姿勢操作部材31を逆に進退させると、左右の姿勢操作部材31L,31Rによって先端部材2のハウジング11が押されることにより、先端部材2は図9(A)において先端側が上向きとなる側へ案内面F1,F2に沿って姿勢変更する。
また、上側の姿勢操作部材31Uは静止させた状態で、左側の姿勢操作部材31Lを先端側へ進出させ、かつ右側の姿勢操作部材31Rを後退させると、左側の姿勢操作部材31Lによって先端部材2のハウジング11が押されることにより、先端部材2は右向き、すなわち図9(A)において紙面の裏側向きとなる側へ案内面F1,F2に沿って姿勢変更する。左右の姿勢操作部材31L,31Rを逆に進退させると、右の姿勢操作部材31Rによって先端部材2のハウジング11が押されることにより、先端部材2は左向きとなる側へ案内面F1,F2に沿って姿勢変更する。
このように姿勢操作部材31を円周方向の3箇所に設けることにより、先端部材2を上下左右の2軸(X軸、Y軸)の方向に姿勢変更することができる。その際、先端部材連結部15には、3つの姿勢操作部材31の圧力、および抜け止め部材21からの反力が作用しており、これらの作用力の釣り合いにより先端部材2の姿勢が決定される。この構成では、3つの姿勢操作部材31で先端部材2のハウジング11に加圧されるため、さらに先端部材2の姿勢安定性を高めることができる。姿勢操作部材31の数をさらに増やせば、先端部材2の姿勢安定性をより一層高めることができる。
The drive unit 4 is provided with three posture change drive sources 42 (42U, 42L, 42R) (FIG. 12) for individually moving the three posture operation members 31 (31U, 31L, 31R) forward and backward. The attitude of the tip member 2 is changed by driving these three attitude changing drive sources 42 in conjunction with each other.
For example, when the upper one posture operation member 31U in FIG. 9 is advanced to the distal end side and the other two posture operation members 31L and 31R are moved backward, the upper posture operation member 31U causes the housing 11 of the distal end member 2 to move. By being pushed, the tip member 2 changes its posture along the guide surfaces F1 and F2 to the side in which the tip side faces downward in FIG. At this time, each posture changing drive source 42 is controlled so that the amount of advance / retreat of each posture operation member 31 is appropriate. When each posture operation member 31 is moved back and forth, the housing 11 of the tip member 2 is pushed by the left and right posture operation members 31L and 31R, so that the tip member 2 moves to the side where the tip side is upward in FIG. 9A. The posture is changed along the guide surfaces F1 and F2.
Further, when the left posture operation member 31L is advanced to the distal end side and the right posture operation member 31R is moved backward while the upper posture operation member 31U is stationary, the distal end member 2 is moved by the left posture operation member 31L. When the housing 11 is pushed, the tip member 2 changes its posture along the guide surfaces F1 and F2 to the right, that is, the side facing the back side of the paper surface in FIG. 9A. When the left and right posture operation members 31L and 31R are moved back and forth, the housing 11 of the tip member 2 is pushed by the right posture operation member 31R, so that the tip member 2 moves along the guide surfaces F1 and F2 toward the left side. Change the posture.
Thus, by providing the posture operation member 31 at three positions in the circumferential direction, the tip member 2 can be changed in posture in the directions of the upper, lower, left and right axes (X axis, Y axis). At that time, the pressure of the three posture operating members 31 and the reaction force from the retaining member 21 are acting on the tip member connecting portion 15, and the posture of the tip member 2 is determined by the balance of these acting forces. The In this configuration, since the pressure is applied to the housing 11 of the tip member 2 by the three posture operation members 31, the posture stability of the tip member 2 can be further improved. If the number of posture operation members 31 is further increased, the posture stability of the tip member 2 can be further enhanced.

姿勢操作部材31は、図10および図11に示すように、ガイド孔30aの長さ方向に隙間無く並ぶ複数の力伝達部材で構成してもよい。図10の例は、複数の力伝達部材がボール31dであり、そのボール31dの並びの先端側に柱状ピン31cが設けられている。図11の例は、複数の力伝達部材が円柱等の柱状体31eであり、その柱状体31eの並びの先端側に柱状ピン31cが設けられている。柱状ピン31cは前記同様のものであり、その球面状の先端が、ハウジング11の基端面に形成された径方向の溝部11bの底面に当接している。   As shown in FIGS. 10 and 11, the posture operation member 31 may be composed of a plurality of force transmission members arranged without gaps in the length direction of the guide hole 30 a. In the example of FIG. 10, a plurality of force transmission members are balls 31d, and columnar pins 31c are provided on the front end side of the balls 31d. In the example of FIG. 11, the plurality of force transmission members are columnar bodies 31e such as cylinders, and columnar pins 31c are provided on the front end side of the columnar bodies 31e. The columnar pin 31 c is the same as described above, and its spherical tip is in contact with the bottom surface of the radial groove 11 b formed on the base end surface of the housing 11.

このように、姿勢操作部材31が複数の力伝達部材31d,31eで構成されている場合は、姿勢操作部材31の先端で先端部材2を押付ける側に動作することにより先端部材2を姿勢変更させる。姿勢操作部材31が複数の力伝達部材31d,31eで構成されていても、先端部材2に対して確実に作用を及ぼすことができる。力伝達部材31d,31eはガイド孔30a内に配列されているため、姿勢操作部材31が長手方向と交差する方向に位置ずれすることがなく、常に先端部材2に対し適正に作用することができ、先端部材2の姿勢変更動作が正確に行われる。また、個々の力伝達部材31d,31eは剛体であっても、姿勢操作部材31全体では可撓性であるため、湾曲形状のスピンドルガイド部3に設けられる場合でも先端部材2の姿勢変更動作が確実に行われる。   As described above, when the posture operation member 31 includes a plurality of force transmission members 31 d and 31 e, the posture of the tip member 2 is changed by moving the tip member 2 toward the side pressing the tip member 2 at the tip of the posture operation member 31. Let Even if the posture operation member 31 is composed of a plurality of force transmission members 31d and 31e, it is possible to reliably act on the tip member 2. Since the force transmission members 31d and 31e are arranged in the guide hole 30a, the posture operation member 31 does not shift in the direction intersecting the longitudinal direction, and can always act properly on the tip member 2. The posture changing operation of the tip member 2 is accurately performed. Even if each of the force transmission members 31d and 31e is a rigid body, the posture operation member 31 as a whole is flexible, so that the posture changing operation of the tip member 2 can be performed even when provided on the curved spindle guide portion 3. Surely done.

図10および図11は、姿勢操作部材31を互いに120度の位相にある3箇所の周方向位置に設けた例を示しているが、姿勢操作部材31を互いに180度の位相にある2箇所の周方向位置に設けた場合や、周方向の1箇所に設けた姿勢操作部材31とこれに対応する復元用弾性部材32とを組み合わせた場合にも、複数の力伝達部材31d,31eで構成した姿勢操作部材31を適用できる。   10 and 11 show an example in which the posture operation member 31 is provided at three circumferential positions at a phase of 120 degrees, but the posture operation member 31 is at two positions at a phase of 180 degrees. Even when the circumferential position is provided, or when the posture operation member 31 provided at one place in the circumferential direction is combined with the restoring elastic member 32 corresponding thereto, the force transmission members 31d and 31e are configured. The posture operation member 31 can be applied.

図9、図10、および図11のように姿勢操作部材31が周方向の3箇所に設けられている場合、姿勢変更駆動機構4cを例えば図12のように構成することができる。すなわち、各姿勢操作部材31(31U,31L,31R)をそれぞれ個別に進退操作させる3つの姿勢変更用駆動源42(42U,42L,42R)を左右並列に配置すると共に、各姿勢変更用駆動源42に対応するレバー43b(43bU,43bL,43bR)を共通の支軸43a回りに回動自在に設け、各レバー43bにおける支軸43aからの距離が長い作用点P1(P1U,P1L,P1R)に各姿勢変更用駆動源42の出力ロッド42a(42aU,42aL,42aR)の力が作用し、支軸43aからの距離が短い力点P2(P2U,P2L,P2R)で姿勢操作部材31に力を与える構成としてある。これにより、各姿勢変更用駆動源42の出力が増力して対応する姿勢操作部材31に伝達させることができる。なお、回転軸22は、上側の姿勢操作部材31U用のレバー43bUに形成された開口44を貫通させてある。   When the posture operation member 31 is provided at three locations in the circumferential direction as shown in FIGS. 9, 10, and 11, the posture change drive mechanism 4c can be configured as shown in FIG. 12, for example. That is, three posture change drive sources 42 (42U, 42L, 42R) for individually moving the posture operation members 31 (31U, 31L, 31R) forward and backward are arranged in parallel on the left and right sides, and each posture change drive source is provided. A lever 43b (43bU, 43bL, 43bR) corresponding to 42 is provided so as to be rotatable around a common support shaft 43a, and each lever 43b has a long distance from the support shaft 43a at an action point P1 (P1U, P1L, P1R). The force of the output rod 42a (42aU, 42aL, 42aR) of each posture changing drive source 42 is applied, and a force is applied to the posture operating member 31 at a force point P2 (P2U, P2L, P2R) having a short distance from the support shaft 43a. As a configuration. Thereby, the output of each posture change drive source 42 can be increased and transmitted to the corresponding posture operation member 31. The rotary shaft 22 passes through an opening 44 formed in the lever 43bU for the upper posture operation member 31U.

図13は姿勢操作用駆動機構4cの構成が異なる実施形態の工具回転用駆動機構および姿勢変更用駆動機構の破断側面図、図14はその姿勢操作部材31と駆動部ハウジング4aの連結部の拡大図である。この実施形態では、ワイヤからなる姿勢操作部材31の基端に雄ねじ部36aが形成されており、この雄ねじ部36aは、駆動部ハウジング4aに形成された雌ねじ部36bと螺合している。これら雄ねじ部36aと雌ねじ部36bとでねじ機構36を構成している。姿勢変更用駆動源42の駆動で姿勢操作部材31の基端を回転させることにより、ねじ機構36の作用で姿勢操作部材31が進退する。   FIG. 13 is a cutaway side view of a tool rotation drive mechanism and a posture change drive mechanism of an embodiment in which the configuration of the posture operation drive mechanism 4c is different, and FIG. 14 is an enlarged view of a connection portion between the posture operation member 31 and the drive unit housing 4a. FIG. In this embodiment, a male screw portion 36a is formed at the base end of the posture operation member 31 made of a wire, and this male screw portion 36a is screwed with a female screw portion 36b formed in the drive portion housing 4a. The male screw portion 36a and the female screw portion 36b constitute a screw mechanism 36. By rotating the base end of the posture operating member 31 by driving the posture changing drive source 42, the posture operating member 31 moves forward and backward by the action of the screw mechanism 36.

姿勢変更用駆動機構4cは、例えば電動ロータリアクチュエータからなる姿勢変更用駆動源42の出力軸42aの回転が減速回転伝達機構49を介して前記姿勢操作部材31の基端に減速して伝達される。減速回転伝達機構49は、姿勢変更用駆動源42の出力軸42aに取付けられた円形平歯車49aと、駆動部ハウジング4aに固定の支持部材60に回転自在に支持され前記円形平歯車49aと噛み合う扇形平歯車49bとでなり、この扇形平歯車49bの回転中心軸上に設けた回転摺動部62で、扇形平歯車49bから姿勢操作部材31の基端側延長部63へ回転を伝達する。円形平歯車49aよりも扇形平歯車49bの方が、ピッチ円直径が大きく、出力軸42aの回転が減速して姿勢操作部材31の基端に伝達される。減速回転伝達機構49を設けると、高速回転する小型のロータリアクチュエータでも姿勢操作部材31の基端を低速で回転させることができるので、姿勢変更用駆動源42として小型のロータリアクチュエータを使用することが可能になる。工具回転用駆動機構4bは、前記同様の構成である。   In the posture changing drive mechanism 4 c, for example, the rotation of the output shaft 42 a of the posture changing drive source 42 formed of an electric rotary actuator is reduced and transmitted to the base end of the posture operating member 31 via the reduction rotation transmission mechanism 49. . The decelerating rotation transmission mechanism 49 is rotatably supported by a circular spur gear 49a attached to the output shaft 42a of the attitude changing drive source 42, and a support member 60 fixed to the drive unit housing 4a, and meshes with the circular spur gear 49a. The rotation is transmitted from the sector spur gear 49b to the base end side extension 63 of the posture operation member 31 by the rotation sliding portion 62 provided on the rotation center axis of the sector spur gear 49b. The sector spur gear 49 b has a larger pitch circle diameter than the circular spur gear 49 a, and the rotation of the output shaft 42 a is decelerated and transmitted to the base end of the posture operation member 31. Providing the decelerating rotation transmission mechanism 49 allows the base end of the posture operating member 31 to rotate at a low speed even with a small rotary actuator that rotates at high speed, so that a small rotary actuator can be used as the posture changing drive source 42. It becomes possible. The tool rotation drive mechanism 4b has the same configuration as described above.

上記各実施形態は、先端部材2の回転防止機構37が設けられているが、回転防止機構37は設けなくてもよい。
また、ガイドパイプ30および姿勢操作部材31が周方向の複数箇所に設けられている場合にも、パイプ固定部70により、外郭パイプ25と各ガイドパイプ30とを固定してもよい。それにより、スピンドルガイド部3の剛性をさらに高めることができる。
In each of the above embodiments, the rotation prevention mechanism 37 of the tip member 2 is provided, but the rotation prevention mechanism 37 may not be provided.
Further, even when the guide pipe 30 and the posture operation member 31 are provided at a plurality of locations in the circumferential direction, the outer pipe 25 and each guide pipe 30 may be fixed by the pipe fixing portion 70. Thereby, the rigidity of the spindle guide part 3 can further be improved.

上記各実施形態はスピンドルガイド部3が直線形状であるが、この発明の遠隔操作型アクチュエータは、姿勢操作部材31が可撓性であり、スピンドルガイド部3が湾曲した状態でも先端部材2の姿勢変更動作が確実に行われるので、図15のようにスピンドルガイド部3を初期状態で湾曲形状としてもよい。あるいは、スピンドルガイド部3の一部分のみを湾曲形状としてもよい。スピンドルガイド部3が湾曲形状であれば、直線形状では届きにくい骨の奥まで先端部材2を挿入することが可能となる場合があり、人工関節置換手術における人工関節挿入用穴の加工を精度良く仕上げることが可能になる。   In each of the above embodiments, the spindle guide portion 3 has a linear shape. However, in the remote control type actuator of the present invention, the posture operation member 31 is flexible, and the posture of the tip member 2 is maintained even when the spindle guide portion 3 is curved. Since the changing operation is performed reliably, the spindle guide portion 3 may be curved in the initial state as shown in FIG. Alternatively, only a part of the spindle guide portion 3 may be curved. If the spindle guide portion 3 is curved, it may be possible to insert the distal end member 2 to the back of the bone, which is difficult to reach in the straight shape, so that the hole for artificial joint insertion can be accurately processed in artificial joint replacement surgery. It becomes possible to finish.

スピンドルガイド部3を湾曲形状とする場合、外郭パイプ25、ガイドパイプ30、および補強シャフト34を湾曲形状とする必要がある。また、回転軸22は変形しやすい材質を用いるのが良く、例えば形状記憶合金が適する。   When the spindle guide portion 3 has a curved shape, the outer pipe 25, the guide pipe 30, and the reinforcing shaft 34 need to have a curved shape. The rotating shaft 22 is preferably made of a material that is easily deformed, and for example, a shape memory alloy is suitable.

以上、医療用の遠隔操作型アクチュエータについて説明したが、この発明はそれ以外の用途の遠隔操作型アクチュエータにも適用できる。例えば、機械加工用とした場合、湾曲状をした孔のドリル加工や、溝内部の奥まった箇所の切削加工が可能になる。   The medical remote control actuator has been described above, but the present invention can be applied to remote control actuators for other purposes. For example, in the case of machining, drilling of a curved hole or cutting of a deep part inside the groove is possible.

この発明の実施形態にかかる遠隔操作型アクチュエータの概略構成を示す図である。It is a figure which shows schematic structure of the remote control type actuator concerning embodiment of this invention. (A)は同遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのIIB−IIB断面図、(C)は先端部材と回転軸との連結構造を示す図、(D)は先端部材のハウジングを基端側から見た図である。(A) is a cross-sectional view of the tip member and spindle guide portion of the remote operation type actuator, (B) is a IIB-IIB cross-sectional view thereof, (C) is a diagram showing a connection structure between the tip member and the rotating shaft, (D ) Is a view of the housing of the tip member as seen from the base end side. (A)は同遠隔操作型アクチュエータの工具回転用駆動機構および姿勢変更用駆動機構の正面図に制御系を組み合わせて表示した図、(B)はそのIIIB−IIIB断面図である。(A) is the figure which combined and displayed the control system in the front view of the tool rotation drive mechanism and attitude | position change drive mechanism of the remote operation type | mold actuator, (B) is the IIIB-IIIB sectional drawing. 図1の遠隔操作型アクチュエータに冷却手段を設けた場合の概略構成を示す図である。It is a figure which shows schematic structure at the time of providing a cooling means in the remote control type actuator of FIG. (A)はこの発明の異なる実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はその平面図である。(A) is sectional drawing of the front-end | tip member and spindle guide part of the remote control type actuator concerning different embodiment of this invention, (B) is the top view. (A)はこの発明のさらに異なる実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はその平面図である。(A) is sectional drawing of the front-end | tip member and spindle guide part of the remote control type actuator concerning further different embodiment of this invention, (B) is the top view. (A)はこの発明の異なる実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのVIIB−VIIB断面図、(C)は先端部材のハウジングを基端側から見た図である。(A) is a sectional view of a distal end member and a spindle guide portion of a remote control type actuator according to a different embodiment of the present invention, (B) is a sectional view of VIIB-VIIB, and (C) is a proximal end side housing of the distal end member. It is the figure seen from. (A)はこの発明のさらに異なる実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのVIIIB−VIIIB断面図、(C)は先端部材のハウジングを基端側から見た図である。(A) is a sectional view of a distal end member and a spindle guide portion of a remote control type actuator according to still another embodiment of the present invention, (B) is a sectional view of the VIIIB-VIIIB, and (C) is a proximal end of a housing of the distal end member. It is the figure seen from the side. (A)はこの発明のさらに異なる実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのIXB−IXB断面図、(C)は先端部材のハウジングを基端側から見た図である。(A) is a sectional view of a tip member and a spindle guide portion of a remote control type actuator according to still another embodiment of the present invention, (B) is a sectional view of IXB-IXB, and (C) is a base end of a housing of the tip member. It is the figure seen from the side. (A)はこの発明のさらに異なる実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのXB−XB断面図、(C)は先端部材のハウジングを基端側から見た図である。(A) is a sectional view of a distal end member and a spindle guide portion of a remote control type actuator according to still another embodiment of the present invention, (B) is an XB-XB sectional view thereof, and (C) is a proximal end of a housing of the distal end member. It is the figure seen from the side. (A)はこの発明のさらに異なる実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのXIB−XIB断面図、(C)は先端部材のハウジングを基端側から見た図である。(A) is a sectional view of a distal end member and a spindle guide portion of a remote control type actuator according to still another embodiment of the present invention, (B) is a sectional view of the XIB-XIB, and (C) is a proximal end of a housing of the distal end member. It is the figure seen from the side. 図9、図10、および図11に示す遠隔操作型アクチュエータの工具回転用駆動機構および姿勢変更用駆動機構の破断側面図である。FIG. 12 is a cutaway side view of the tool rotation drive mechanism and the attitude change drive mechanism of the remote operation type actuator shown in FIGS. 9, 10, and 11. 姿勢操作用駆動機構の構成が異なる遠隔操作型アクチュエータの工具回転用駆動機構および姿勢変更用駆動機構の破断側面図である。FIG. 6 is a cutaway side view of a tool rotation drive mechanism and a posture change drive mechanism of a remote operation type actuator having different configurations of posture operation drive mechanisms. 同遠隔操作型アクチュエータの姿勢操作部材と駆動部ハウジングの連結部の拡大図である。It is an enlarged view of the connection part of the attitude | position operation member and drive part housing of the remote control type actuator. スピンドルガイド部の形状が異なる遠隔操作型アクチュエータの概略構成を示す図である。It is a figure which shows schematic structure of the remote control type actuator from which the shape of a spindle guide part differs.

符号の説明Explanation of symbols

1…工具
2…先端部材
3…スピンドルガイド部
4a…駆動部ハウジング
5…コントローラ
13…スピンドル
15…先端部材連結部
22…回転軸
24…中空孔
24a…円形孔部
24b…溝状部
25…外郭パイプ
26,29…転がり軸受
27A,27B…ばね要素
30…ガイドパイプ
30a…ガイド孔
31…姿勢操作部材
32…復元用弾性部材
34…補強シャフト
41…工具回転用駆動源
42…姿勢変更用駆動源
70…パイプ固定部
71…開口
72…ろう付けまたは溶接
73…レーザー溶接
DESCRIPTION OF SYMBOLS 1 ... Tool 2 ... Tip member 3 ... Spindle guide part 4a ... Drive part housing 5 ... Controller 13 ... Spindle 15 ... Tip member connection part 22 ... Rotating shaft 24 ... Hollow hole 24a ... Circular hole part 24b ... Groove-like part 25 ... Outer Pipes 26, 29 ... Rolling bearings 27A, 27B ... Spring element 30 ... Guide pipe 30a ... Guide hole 31 ... Posture operating member 32 ... Restoring elastic member 34 ... Reinforcement shaft 41 ... Tool rotation drive source 42 ... Posture change drive source 70 ... Pipe fixing part 71 ... Opening 72 ... Brazing or welding 73 ... Laser welding

Claims (14)

細長形状のスピンドルガイド部と、このスピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられた先端部材と、前記スピンドルガイド部の基端が結合された駆動部ハウジングとを備え、
前記先端部材は、工具を保持するスピンドルを回転自在に支持し、前記スピンドルガイド部は、このスピンドルガイド部の外郭となる中空の外郭パイプと、この外郭パイプの両端に貫通した中空孔内に設けられ前記駆動部ハウジング内の工具回転用駆動源の回転を前記スピンドルに伝達する回転軸と、前記中空孔内に設けられ両端に貫通した中空のガイドパイプとを有し、先端が前記先端部材に接して進退動作することにより前記先端部材を姿勢変更させる姿勢操作部材を前記ガイドパイプ内に進退自在に挿通し、前記姿勢操作部材を進退させる姿勢変更用駆動源を前記駆動部ハウジング内に設け、
前記中空孔は、中心部の円形孔部と、この円形孔部から外径側へ凹んだ溝状部とでなり、前記円形孔部に前記回転軸を配置し、かつ前記溝状部に前記ガイドパイプを配置したことを特徴とする遠隔操作型アクチュエータ。
An elongated spindle guide part, a tip member attached to the tip of the spindle guide part via a tip member connecting part so that the posture can be freely changed, and a drive part housing to which the base end of the spindle guide part is coupled. ,
The tip member rotatably supports a spindle that holds a tool, and the spindle guide portion is provided in a hollow outer pipe that is an outer shell of the spindle guide portion, and in a hollow hole that penetrates both ends of the outer pipe. A rotation shaft for transmitting the rotation of the drive source for rotating the tool in the drive unit housing to the spindle, and a hollow guide pipe provided in the hollow hole and penetrating at both ends, the tip of which is the tip member. A posture operation member for changing the posture of the tip member by contact and advance / retreat operation is inserted into the guide pipe so as to freely advance and retract, and a posture change drive source for moving the posture operation member forward and backward is provided in the drive unit housing,
The hollow hole is composed of a circular hole portion at the center and a groove-like portion recessed from the circular hole portion toward the outer diameter side, the rotating shaft is arranged in the circular hole portion, and the groove-like portion is A remote control type actuator characterized by arranging a guide pipe.
請求項1において、前記外郭パイプの断面2次モーメントは、同外径の中実シャフトの1/2以上である遠隔操作型アクチュエータ。   2. The remote control type actuator according to claim 1, wherein a secondary moment of section of the outer pipe is equal to or greater than ½ of a solid shaft having the same outer diameter. 請求項1または請求項2において、前記姿勢操作部材が、前記ガイドパイプの長さ方向に沿って一列に配列された複数個の力伝達部材、または前記ガイドパイプの長さ方向に沿うワイヤからなる遠隔操作型アクチュエータ。   3. The posture operation member according to claim 1, wherein the posture operation member includes a plurality of force transmission members arranged in a line along the length direction of the guide pipe or a wire along the length direction of the guide pipe. Remote control type actuator. 請求項1ないし請求項3のいずれか1項において、前記ガイドパイプおよびこのガイドパイプ内に挿通された姿勢操作部材を1箇所のみに設け、前記先端部材を所定姿勢側へ付勢する復元用弾性部材を設け、前記姿勢操作部材は前記復元用弾性部材の付勢力に抗して前記先端部材を姿勢変更させるものとした遠隔操作型アクチュエータ。   4. The restoring elasticity according to claim 1, wherein the guide pipe and the posture operation member inserted into the guide pipe are provided at only one position, and the tip member is urged toward a predetermined posture side. 5. A remote operation type actuator provided with a member, wherein the posture operation member changes the posture of the tip member against an urging force of the elastic member for restoration. 請求項1ないし請求項3のいずれか1項において、前記ガイドパイプおよびこのガイドパイプ内に挿通された姿勢操作部材を2箇所に設け、前記姿勢変更用駆動源を各姿勢操作部材に対して個別に設け、前記2箇所の姿勢操作部材の前記先端部材への作用力の釣り合いにより前記先端部材の姿勢を変更、維持させるものとした遠隔操作型アクチュエータ。   4. The guide pipe and the posture operation member inserted into the guide pipe are provided at two locations according to claim 1, and the posture change drive source is individually provided for each posture operation member. A remote-operated actuator that is provided on the front end and changes and maintains the posture of the tip member by balancing the acting forces of the two posture operation members on the tip member. 請求項1ないし請求項3のいずれか1項において、前記先端部連結部材が、前記先端部材を任意方向に傾動可能に支持するものであり、前記ガイドパイプおよびこのガイドパイプ内に挿通された姿勢操作部材を、前記先端部材の傾動中心の周りの3箇所以上に設け、前記姿勢変更用駆動源を各姿勢操作部材に対して個別に設け、前記3箇所以上の姿勢操作部材の前記先端部材への作用力の釣り合いにより前記先端部材の姿勢を変更、維持させるものとした遠隔操作型アクチュエータ。   4. The posture according to claim 1, wherein the tip end connecting member supports the tip member so as to be tiltable in an arbitrary direction, and is inserted into the guide pipe and the guide pipe. 5. Operation members are provided at three or more positions around the tilt center of the tip member, and the posture changing drive source is provided individually for each posture operation member, to the tip member of the three or more posture operation members. A remote-operated actuator that changes and maintains the posture of the tip member by balancing the acting forces. 請求項1ないし請求項6のいずれか1項において、前記スピンドルガイド部内の前記回転軸を回転自在に支持する複数の転がり軸受を設け、隣合う転がり軸受間に、これら転がり軸受に対して予圧を与えるばね要素を設けた遠隔操作型アクチュエータ。   The rolling bearing according to claim 1, wherein a plurality of rolling bearings that rotatably support the rotating shaft in the spindle guide portion are provided, and a preload is applied to the rolling bearings between adjacent rolling bearings. Remote control type actuator with spring element to give. 請求項1ないし請求項7のいずれか1項において、前記スピンドルガイド部内の前記回転軸を回転自在に支持する転がり軸受を設け、この転がり軸受の外径面を前記ガイドパイプで支持させた遠隔操作型アクチュエータ。   The remote operation according to any one of claims 1 to 7, wherein a rolling bearing that rotatably supports the rotating shaft in the spindle guide portion is provided, and an outer diameter surface of the rolling bearing is supported by the guide pipe. Type actuator. 請求項7または請求項8において、前記外郭パイプの内部を通過する冷却液により前記軸受を冷却する冷却手段を設けた遠隔操作型アクチュエータ。   9. The remote control type actuator according to claim 7, further comprising a cooling unit that cools the bearing with a coolant that passes through the inside of the outer pipe. 請求項1ないし請求項9のいずれか1項において、前記外郭パイプの内部を通過する冷却液、または外部から供給される冷却液により前記工具を冷却する冷却手段を設けた遠隔操作型アクチュエータ。   10. The remote control type actuator according to claim 1, further comprising a cooling unit that cools the tool with a coolant that passes through the inside of the outer pipe or a coolant supplied from outside. 11. 請求項1ないし請求項10のいずれか1項において、前記外郭パイプと前記ガイドパイプとを固定したパイプ固定部を設けた遠隔操作型アクチュエータ。   11. The remote operation type actuator according to claim 1, further comprising a pipe fixing portion that fixes the outer pipe and the guide pipe. 請求項11において、前記パイプ固定部は、前記外郭パイプの周壁に内外に連通する開口を設け、前記外郭パイプにおける前記開口の周囲と前記ガイドパイプとをろう付けまたは溶接により固定したものである遠隔操作型アクチュエータ。   12. The remote according to claim 11, wherein the pipe fixing portion is provided with an opening communicating with the inside and outside of the peripheral wall of the outer pipe, and the periphery of the opening in the outer pipe and the guide pipe are fixed by brazing or welding. Operation type actuator. 請求項11において、前記パイプ固定部は、前記外郭パイプの外径面側からレーザー溶接により前記外郭パイプと前記ガイドパイプとを固定したものである遠隔操作型アクチュエータ。   12. The remote control type actuator according to claim 11, wherein the pipe fixing portion fixes the outer pipe and the guide pipe by laser welding from an outer diameter surface side of the outer pipe. 請求項1ないし請求項13のいずれか1項において、前記スピンドルガイド部は湾曲した箇所を有する遠隔操作型アクチュエータ。   14. The remote control type actuator according to claim 1, wherein the spindle guide portion has a curved portion.
JP2008261339A 2008-10-08 2008-10-08 Remote control type actuator Expired - Fee Related JP5258495B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008261339A JP5258495B2 (en) 2008-10-08 2008-10-08 Remote control type actuator
KR1020117007861A KR101287985B1 (en) 2008-10-08 2009-10-02 Remotely operated actuator
PCT/JP2009/005106 WO2010041397A1 (en) 2008-10-08 2009-10-02 Remotely operated actuator
EP09818937.6A EP2364652B1 (en) 2008-10-08 2009-10-02 Remotely operated actuator
US13/080,806 US8511195B2 (en) 2008-10-08 2011-04-06 Remote-controlled actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008261339A JP5258495B2 (en) 2008-10-08 2008-10-08 Remote control type actuator

Publications (2)

Publication Number Publication Date
JP2010088643A true JP2010088643A (en) 2010-04-22
JP5258495B2 JP5258495B2 (en) 2013-08-07

Family

ID=42251972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008261339A Expired - Fee Related JP5258495B2 (en) 2008-10-08 2008-10-08 Remote control type actuator

Country Status (1)

Country Link
JP (1) JP5258495B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017144541A (en) * 2016-02-19 2017-08-24 株式会社マキタ Working tool
JP2020103786A (en) * 2018-12-28 2020-07-09 サンスター株式会社 Oral hygiene device and oral hygiene supporting system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880213U (en) * 1981-11-27 1983-05-31 オリンパス光学工業株式会社 Drill device for intrabody cavity procedures
JPH0611936U (en) * 1993-02-18 1994-02-15 株式会社森精機製作所 Detachable spindle rotation control unit for machine tools
JPH07163574A (en) * 1993-09-30 1995-06-27 Ethicon Inc Foldable socket joint assenbly for endoscopic operation instrument and track of fastener for operation
JP2001017446A (en) * 1999-07-05 2001-01-23 Nakanishi:Kk Hand piece for medical purpose
JP2005528159A (en) * 2002-06-04 2005-09-22 オフィス オブ テクノロジー ライセンシング スタンフォード ユニバーシティ Apparatus and method for rapidly aspirating and collecting body tissue from within encapsulated body space
JP2007068636A (en) * 2005-09-05 2007-03-22 Olympus Corp Cell collection apparatus
WO2007143440A2 (en) * 2006-05-31 2007-12-13 Medtronic Xomed, Inc. High speed surgical cutting instrument
WO2008038307A1 (en) * 2006-09-25 2008-04-03 Piezosurgery S.R.L. Handpiece with surgical tool to perform holes in bone tissues.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880213U (en) * 1981-11-27 1983-05-31 オリンパス光学工業株式会社 Drill device for intrabody cavity procedures
JPH0611936U (en) * 1993-02-18 1994-02-15 株式会社森精機製作所 Detachable spindle rotation control unit for machine tools
JPH07163574A (en) * 1993-09-30 1995-06-27 Ethicon Inc Foldable socket joint assenbly for endoscopic operation instrument and track of fastener for operation
JP2001017446A (en) * 1999-07-05 2001-01-23 Nakanishi:Kk Hand piece for medical purpose
JP2005528159A (en) * 2002-06-04 2005-09-22 オフィス オブ テクノロジー ライセンシング スタンフォード ユニバーシティ Apparatus and method for rapidly aspirating and collecting body tissue from within encapsulated body space
JP2007068636A (en) * 2005-09-05 2007-03-22 Olympus Corp Cell collection apparatus
WO2007143440A2 (en) * 2006-05-31 2007-12-13 Medtronic Xomed, Inc. High speed surgical cutting instrument
WO2008038307A1 (en) * 2006-09-25 2008-04-03 Piezosurgery S.R.L. Handpiece with surgical tool to perform holes in bone tissues.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017144541A (en) * 2016-02-19 2017-08-24 株式会社マキタ Working tool
JP2020103786A (en) * 2018-12-28 2020-07-09 サンスター株式会社 Oral hygiene device and oral hygiene supporting system
JP7303417B2 (en) 2018-12-28 2023-07-05 サンスター株式会社 Oral hygiene device and oral hygiene support system

Also Published As

Publication number Publication date
JP5258495B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5464892B2 (en) Remote control type actuator
WO2010041397A1 (en) Remotely operated actuator
WO2010018665A1 (en) Remote-controlled actuator
JP2010260139A (en) Remote-controlled work robot
JP5289470B2 (en) Flexible cable
WO2010061567A1 (en) Remote control actuator
JP5202200B2 (en) Remote control type actuator
WO2010137603A1 (en) Remotely operated actuator
JP5258495B2 (en) Remote control type actuator
JP5500890B2 (en) Remote control type actuator
WO2011037131A1 (en) Remote operation actuator and plastic forming method for attitude operation member
JP5538795B2 (en) Remote control type actuator
JP5557522B2 (en) Remote control type actuator
JP5213735B2 (en) Remote control type actuator
JP5500891B2 (en) Remote control type actuator
JP2010088812A (en) Remote control type actuator
JP2010051439A (en) Remote-controlled actuator
JP2010046764A (en) Remote operation type actuator
JP5388702B2 (en) Remote control type actuator
JP5197293B2 (en) Remote control type actuator
JP2010046197A (en) Remote control type actuator
JP5388701B2 (en) Remote control type actuator
JP5258594B2 (en) Remote control type actuator
JP2012034883A (en) Remote controlled actuator
JP2012029841A (en) Medical actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5258495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees