JP2010086885A - Storage container for used battery - Google Patents

Storage container for used battery Download PDF

Info

Publication number
JP2010086885A
JP2010086885A JP2008256964A JP2008256964A JP2010086885A JP 2010086885 A JP2010086885 A JP 2010086885A JP 2008256964 A JP2008256964 A JP 2008256964A JP 2008256964 A JP2008256964 A JP 2008256964A JP 2010086885 A JP2010086885 A JP 2010086885A
Authority
JP
Japan
Prior art keywords
storage container
lithium ion
lid
ion battery
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008256964A
Other languages
Japanese (ja)
Inventor
Akio Kobayashi
昭雄 小林
Haruo Shiraishi
春夫 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SR KK
Original Assignee
SR KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SR KK filed Critical SR KK
Priority to JP2008256964A priority Critical patent/JP2010086885A/en
Publication of JP2010086885A publication Critical patent/JP2010086885A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Refuse Receptacles (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure of a storage container for solidifying and keeping cold an electrolyte solution (inflammable organic solvent solution). <P>SOLUTION: The inside of the container surrounded by a multiple insulating material wall is kept at cooled solidification temperature of an electrolyte by using a liquefied noninflammable gas, a low-temperature noninflammable gas, and a solidified noninflammable gas as a cooling medium. A battery is stored inside the container by passing through an outer cover inlet (opening with the minimum gap of an elastic body) contacting with the open air and a multiple inner cover inlet (self-closing type opening/closing door) prepared inside the container. Leakage of the chill is prevented by the structure of the inlets, and a refrigerating structure can be established by a structure wherein the cooling medium is poured into a gap of the insulating material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、廃棄リチウムイオン電池を含む電池の保管容器に関するものである。   The present invention relates to a battery storage container including a waste lithium ion battery.

現代の人類は、電池、即ち物質の化学エネルギーを電流として取り出すことができる比較的小型な装置、によって電源コード無しに、多くの電子電気機器を使用することが可能になった。近年は、使い切った電池を再充電しエネルギーの満ちた状態に戻すことの出来る、即ち放電と充電を繰返し行なうことが可能な、二次電池の発達が著しい。その中でも、リチウムイオン2次電池は、起電力が大きく、電池の体積又は重量当りの充放電量が多いという特性によって、携帯電話、ノート型パーソナルコンピュータ、デジタルカメラ等、種々の持ち運びを必要とする電子電気機器に用いられ、その生産数量は、2006年には日本国内だけでも10億個(経済産業省統計による)に上っている。今後、この種類の電池は大型化も進み、電気自動車、ハイブリッドカーそのほかの大型機器の動力電源としても、広く使われようとしている。   Modern mankind has made it possible to use many electronic and electrical devices without a power cord by means of a battery, a relatively small device that can extract the chemical energy of a substance as an electric current. In recent years, there has been a remarkable development of a secondary battery that can recharge a used battery and return it to a full state of energy, that is, can be repeatedly discharged and charged. Among them, a lithium ion secondary battery requires a variety of portable devices such as a mobile phone, a notebook personal computer, and a digital camera due to its large electromotive force and a large amount of charge / discharge per volume or weight of the battery. Used in electronic and electrical equipment, its production volume reached 1 billion in 2006 alone (according to METI statistics). In the future, this type of battery will continue to increase in size, and is also widely used as a power source for electric vehicles, hybrid cars, and other large devices.

一方、リチウムイオン電池のこの特性は、酸化還元電位が高く、その単位重量のイオンの移動に伴う電荷移動量が大きいリチウムという元素によるものであり、このことは、反応性に富み、過激で、制御し難しいという反面をも有している。リチウムイオン2次電池内では、リチウムイオンが、充電時は正極から負極へ、放電時は負極から正極へ、移動するが、その電位差が水の電気分解電位差よりも大きいため、その媒体となる電解質溶液として水溶液が使用できず、代わりにリチウムイオンの溶存可能な種類の有機溶剤溶液が使われている。   On the other hand, this characteristic of the lithium ion battery is due to an element called lithium, which has a high oxidation-reduction potential and a large amount of charge transfer accompanying movement of ions of its unit weight, which is rich in reactivity, radical, It is difficult to control. In a lithium ion secondary battery, lithium ions move from the positive electrode to the negative electrode during charging and from the negative electrode to the positive electrode during discharging, but the potential difference is larger than the electrolysis potential difference of water, so that the electrolyte serving as the medium An aqueous solution cannot be used as the solution, and instead, a kind of organic solvent solution in which lithium ions can be dissolved is used.

リチウムイオン2次電池の電解液に使用可能な有機溶媒として知られているものは、γブチロラクトン(沸点206℃、凝固点−42℃)、エチレンカーボネート(沸点238℃、凝固点36℃)、プロピレンカーボネート(沸点90℃、凝固点−49℃)、ジメチルカーボネート(沸点90℃、凝固点0.5℃)、ジエチルカーボネート(沸点127℃、凝固点−43℃)、1.2−ジメトキシメタン(沸点82℃、凝固点−58℃)、テトラヒドロフラン(沸点65℃、凝固点−108℃)、12ジオキソラン(沸点78℃、凝固点−95℃)、ジエチルエーテル(沸点34.5℃、凝固点−116℃)等の極性溶媒があげられる。   Known organic solvents that can be used in the electrolyte of lithium ion secondary batteries are γ-butyrolactone (boiling point 206 ° C., freezing point −42 ° C.), ethylene carbonate (boiling point 238 ° C., freezing point 36 ° C.), propylene carbonate ( Boiling point 90 ° C, freezing point -49 ° C), dimethyl carbonate (boiling point 90 ° C, freezing point 0.5 ° C), diethyl carbonate (boiling point 127 ° C, freezing point -43 ° C), 1.2-dimethoxymethane (boiling point 82 ° C, freezing point- 58 ° C), tetrahydrofuran (boiling point 65 ° C, freezing point -108 ° C), 12 dioxolane (boiling point 78 ° C, freezing point -95 ° C), diethyl ether (boiling point 34.5 ° C, freezing point -116 ° C) and the like. .

実際には、これらのうちエーテル結合を有する溶媒は、沸点が80℃に達せず比較的低いため、高温の電池使用環境において溶剤蒸気圧による電池内圧上昇を引起こし、且つ引火点が低いので電池の耐熱性が低くなるために、ほとんど使用されていない。沸点の高い複数種のカーボネート系溶剤を混合して、凝固点が低く沸点が高くなるように調整し、耐熱性と耐寒性のバランスをとった混合液が電解液として使用されている。しかし、これらいずれの溶媒も易燃性であるがため、この電池は燃え易いという大きな弱点を有している。   Actually, among these solvents, the solvent having an ether bond has a boiling point that does not reach 80 ° C. and is relatively low. Therefore, the battery internal pressure rises due to the vapor pressure of the solvent in a high-temperature battery use environment, and the flash point is low. Because of its low heat resistance, it is rarely used. A mixed solution in which a plurality of carbonate solvents having a high boiling point are mixed and adjusted so as to have a low freezing point and a high boiling point, and a balance between heat resistance and cold resistance is used as an electrolytic solution. However, since all these solvents are flammable, this battery has a great weakness that it is easy to burn.

更に、このリチウムイオン2次電池は、高温に曝されていたり、過充電又は過放電が繰り返えし行われていると、正極活物質(主としてコバルト酸リチウム、ニッケル酸リチウム等)の結晶構造が不安定になり、崩れたり、分解したりして、そこから酸素が遊離し、発熱が生じ、電解質溶液の酸化、燃焼が起こり易くなる。しかも、この電池に含有されているエネルギーの量が多いので、正極と負極の接触による短絡が生ずれば、それによって発生する短絡電流も大きい。電池内部の正極と負極との接触を物理的に防止しているセパレーターというプラスチック多孔質フィルムが、電池の変形、破壊等により傷つき、その傷を通して両極が接触する内部短絡、又は電池外部で正負両極の端子が導電性物質を介して接触する外部短絡、が生ずれば、急激に大電流が流れて、電池内が発熱し、正極活物質(コバルト酸リチウム他)の分解、酸素の遊離、発熱暴走、それが電解質液の沸騰、引火、爆発を引き起こすことになる。爆発にいたらなくとも発煙、燃焼事故の実際に発生したことが、携帯電話、パーソナルコンピュータの場合について、報じられている。   Furthermore, when this lithium ion secondary battery is exposed to high temperature or repeatedly overcharged or overdischarged, the crystal structure of the positive electrode active material (mainly lithium cobaltate, lithium nickelate, etc.) Becomes unstable, collapses or decomposes, oxygen is liberated therefrom, heat is generated, and oxidation and combustion of the electrolyte solution easily occur. In addition, since the amount of energy contained in the battery is large, if a short circuit occurs due to contact between the positive electrode and the negative electrode, the short circuit current generated thereby is large. A plastic porous film called a separator that physically prevents contact between the positive electrode and negative electrode inside the battery is damaged due to deformation, destruction, etc. of the battery, and both electrodes come into contact through the damage, or both positive and negative electrodes outside the battery If an external short circuit occurs in which the terminal of the battery contacts via a conductive material, a large current flows suddenly and heat is generated in the battery, decomposition of the positive electrode active material (such as lithium cobalt oxide), liberation of oxygen, and heat generation. Runaway, which causes the electrolyte to boil, ignite, and explode. It has been reported for mobile phones and personal computers that smoke and combustion accidents actually occurred even without an explosion.

従来、電池メーカーにおいては、リチウムイオン2次電池の構造、材料組成、製造法等を改良し、電池そのものの安全性を高めてきた。例えば、使用環境温度が高くても正極物質の劣化分解を起こりにくくする、短絡による大電流発熱が生じたときには、セパレータフィルムの溶融によりリチウムイオンの通過する細孔を塞ぎ、電池の内部抵抗を大きくして電流を通さなくする、発熱による電解液蒸気圧上昇に対しては安全弁を内蔵させ、設定圧以上になると圧抜きが行なわれる、等である。 更に、電池メーカーは、リチウムイオン2次電池そのままのもの(単セルと称する)を一般ユーザーには使用させず、過充電及び過放電を防止する制御基板を単セルに必ずセットして(パック電池と称する)、販売している。   Conventionally, battery manufacturers have improved the structure, material composition, manufacturing method, and the like of lithium ion secondary batteries to enhance the safety of the batteries themselves. For example, even when the operating environment temperature is high, the cathode material is less likely to be degraded and decomposed. When a large-current heat generation occurs due to a short circuit, the separator film melts to close the pores through which lithium ions pass, increasing the internal resistance of the battery. For example, a safety valve is built in to prevent the electrolyte vapor pressure from rising due to heat generation, and the pressure is released when the pressure exceeds the set pressure. In addition, battery manufacturers do not allow ordinary users to use lithium ion secondary batteries as they are (referred to as single cells), and always set control boards to prevent overcharge and overdischarge in single cells (pack batteries). Called).

パック電池は、電池を組み込む電子電気機器によって異なるが、一般にプラスチックのケースに制御基板と単セルが単数又は複数個連結して収められ、ケース外面に正極及び負極端子が設けられているもの、ケースの一部がコネクター端子となっているものなどがある。パック電池によって、単セルの場合より安全性が飛躍的に増大しているが、それでもリチウムイオン2次電池の発煙燃焼事故は起こっている。電池使用者の中には、メーカー製パック電池を分解して単セルを取り出し、自分の電子電気機器の設計仕様に合わせて独自に使用する場合があり、この場合の電池の安全性は保証されてはいない。   The battery pack differs depending on the electronic / electrical device in which the battery is incorporated, but in general, a case in which one or more control boards and single cells are connected to a plastic case, and a positive electrode and a negative electrode terminal are provided on the outer surface of the case. Some of them are connector terminals. Although battery packs have dramatically increased safety compared to single cells, there are still smoke and combustion accidents in lithium ion secondary batteries. Some battery users may disassemble the battery pack made by the manufacturer, take out the single cell, and use it independently according to the design specifications of their electronic equipment. In this case, the safety of the battery is guaranteed. Not.

リチウムイオン2次電池は、製造後、商品としての梱包がなされ、変形、破壊、短絡等の生じない安全が確保された状態で保管され、流通している。これらの電池は実用に供された後、長期間使用による劣化又は、組み込まれている機器の更新、廃棄等に伴い、使用済み電池として排出され、廃棄処分される。廃棄電池は、分別保管するように啓蒙されているが、 実際は分別が徹底されず、種々の電池、しかも残存電気量の多いもの、少ないもの、一次電池、二次電池、プラスチックケースに入ったパック電池、端子がむき出しのもの、端子がコネクター状に保護されているもの等が、混って廃棄物保管場所に集積される。廃棄電池の保管容器並びに保管場所の環境は、使用前の商品として保管されていた時とは比べ物にならない劣悪さで、特にリチウムイオン2次電池に必要な安全に対する配慮のなされていない場合が少なくない。   Lithium ion secondary batteries are packaged as products after production, and are stored and distributed in a state in which safety that does not cause deformation, destruction, short circuit, etc. is ensured. After these batteries are put to practical use, they are discharged as used batteries and disposed of when they are deteriorated due to long-term use or when the built-in equipment is renewed or discarded. Waste batteries are enlightened to be stored separately, but in practice, separation is not thorough, various batteries, and those with a lot of residual electricity, those with a small amount of electricity, primary batteries, secondary batteries, packs in plastic cases Batteries, exposed terminals, and terminals protected in the form of connectors are mixed and collected in the waste storage area. The environment of the storage container and storage location of the waste battery is incomparably inferior to that when it was stored as a product before use. In particular, there are few cases where the safety considerations required for lithium ion secondary batteries are not taken into consideration. Absent.

起電力の残存する廃棄電池が、電極端子むき出しのまま廃棄物置場の電池保管容器に、しばしば無造作に投入されている。電池保管容器にクリップ、金属缶、その他の金属面が露出している廃棄物の混入があれば、それと起電力残存電池の電極端子とが接触して外部短絡が発生する。電池投入時の衝撃、多量電池の荷重による変形破壊、保管場所の高低温多湿環境と漏洩電解質による腐食、それらが相乗的に関与して、短絡発熱、電解質液漏洩、引火、燃焼等につながり、更にその近隣の電池にも作用して、連鎖的に誘発し、多くの電池がからむ火災・爆発事故になる可能性もある。廃棄電池保管容器の静置時には異状が無くとも、それを車両に載せて輸送する時は、振動によって電池の向きが変化して短絡が促進されたり、輸送車両の急停車時の衝撃、車両からの落下衝撃等のエネルギーが保管容器内の電池に作用して、その電池の破壊をもたらす場合も在り得る。特に車両動力源として用いられる大型リチウムイオン2次電池の場合、内蔵エネルギー量が大きいので輸送時の運搬車両の交通事故が、廃棄電池の燃焼、爆発等を伴う大事故につながる可能性を否定することはできない。   A waste battery in which an electromotive force remains is often randomly inserted into a battery storage container of a waste storage area with an electrode terminal exposed. If the battery storage container contains a clip, a metal can, or other waste with exposed metal surfaces, the electrode terminal of the electromotive force remaining battery comes into contact with the battery, and an external short circuit occurs. Impact at the time of battery insertion, deformation destruction due to the load of a large amount of battery, high / low temperature and high humidity environment of storage place and corrosion due to leaked electrolyte, they are synergistically involved, leading to short circuit heat generation, electrolyte leakage, ignition, combustion, etc. In addition, it may affect neighboring batteries and cause chaining, resulting in a fire / explosion accident involving many batteries. Even if there is no abnormality when the waste battery storage container is left standing, when it is transported on a vehicle, the direction of the battery changes due to vibration, and a short circuit is promoted. There may be a case where energy such as a drop impact acts on the battery in the storage container to cause destruction of the battery. Especially in the case of a large lithium ion secondary battery used as a vehicle power source, the amount of built-in energy is large, so the possibility that a traffic accident on a transport vehicle during transportation could lead to a major accident involving combustion, explosion, etc. of a discarded battery is denied. It is not possible.

然るに、リチウムイオン2次電池の保管、輸送に関しては、その危険性に対して使用者の注意を促すか、航空機内の持ち込み制限のように規制によって、安全を確保することが主体になっている。   However, with regard to the storage and transportation of lithium ion secondary batteries, the main focus is to ensure the safety by encouraging users to be aware of the danger or by restricting the carry-on of aircraft. .

商品としての安全輸送を確保するために、電池メーカーは、リチウムイオン2次電池の充電量を最大充電量の50%に落として出荷している。安全を確保する商品梱包に関しては、電池メーカーから、梱包したときの総重量が25Kg以下になる、JISに規定された方法による13.0Kgf/cm2以上の破壊強さを有する輸送用梱包容器の特許が公開されている(特許文献1参照)。この梱包容器を用いる方法は、あくまで、商品として品種及び履歴の揃った電池を接触しないように、破損しないように、容器内を仕切り板で分割して各電池を個別に隔離して保管できるようにしたものである。これが廃棄電池の場合、使用済み品を保管容器に無造作に投入することが当たり前になっているため、仕切られた空間への整列投入を徹底して行なうことは出来ず、上記特許文献1に示されている容器は、廃棄電池の保管容器として実用に供することは困難である。即ち、個々の廃棄電池の整列投入・集積を多勢の電池使用者各人に徹底させることは困難であり、廃棄物管理者が廃棄電池の集積場所を安全にする手段を講じなければ、廃棄電池保管の安全は確保できないと考えられる。   In order to ensure safe transportation as a product, battery manufacturers are reducing the charge amount of lithium ion secondary batteries to 50% of the maximum charge amount before shipping. Regarding product packaging to ensure safety, a patent for a packaging container for transportation having a breaking strength of 13.0 Kgf / cm2 or more according to the method specified by JIS, with a total weight of 25 Kg or less from the battery manufacturer. Is disclosed (see Patent Document 1). The method using this packing container is to be able to separate and store each battery individually by dividing the inside of the container with a partition plate so as not to damage the battery having a variety and history as a product. It is a thing. In the case of a waste battery, since it is natural to randomly put used products into a storage container, it is impossible to perform thorough placement into a partitioned space. It is difficult to put the used container into practical use as a storage container for a discarded battery. In other words, it is difficult for a large number of battery users to thoroughly arrange and accumulate individual waste batteries, and if the waste manager does not take measures to make the collection location of the waste batteries safe, the waste batteries It is considered that storage safety cannot be ensured.

廃棄リチウムイオン2次電池から原料物質を回収する目的で、該電池の破砕処理を行なう時に短絡電流に関する安全対策として電解液の固化する温度まで、電池の存在する槽内を冷却することが知られている(特許文献2参照)。この場合、破砕とそれと前後する一連の処理搬送過程に於ける時間内だけその空間を冷却することが必要であり、廃棄電池集積場所の保管及び又は集積場所から廃棄処理工場への輸送の場合に比べれば、保冷時間ははるかに短いということが出来る。破砕処理を目的とする冷却保冷を、保管及び又は輸送に適用しても安全を確保することは出来ない。   For the purpose of recovering raw materials from waste lithium ion secondary batteries, it is known to cool the inside of the tank where the battery exists to the temperature at which the electrolyte solution solidifies as a safety measure for short-circuit current when crushing the battery. (See Patent Document 2). In this case, it is necessary to cool the space only within the time required for crushing and a series of processing conveyances that follow it, and in the case of storage of the waste battery accumulation place and / or transportation from the accumulation place to the waste treatment factory. In comparison, it can be said that the cooling time is much shorter. Even if the cooling and cooling for the purpose of crushing is applied to storage and / or transportation, safety cannot be ensured.

廃棄電池を保管、輸送する場合の安全の確保に関して、現在実際に行なわれている方法は、リチウムイオン電池の外部短絡を防止するために、電極端子に電気絶縁性の粘着テープを貼ることである。しかし、この方法では、個々の電池全部について確実に行なうためには手間がかかり且つその徹底のための管理が必要である。更に、テープ剥がれの危険性があり、変形、破壊、等の因子による内部短絡を防ぐことが出来ず、液漏れによる燃焼の危険性を排除することも出来ない。   The current practice for ensuring safety when storing and transporting waste batteries is to apply an electrically insulating adhesive tape to the electrode terminals in order to prevent external shorting of the lithium ion battery. . However, in this method, it takes time and effort to ensure thorough execution of all individual batteries. Further, there is a risk of tape peeling, and internal short circuit due to factors such as deformation and destruction cannot be prevented, and the risk of combustion due to liquid leakage cannot be excluded.

輸送時は、リチウムイオン2次電池の保管状態が急激に変化し、危険因子が静置保管時に比べると多くなっている。一般の輸送車両で、該電池を容器にランダム投入した状態で運搬した場合、容器は荷台に固定してあっても、急停止、急発進による衝撃、振動、坂道の傾斜変化等により、容器内の電池は衝突、加速度による荷重の過負荷、混入導電性物との接触、場合によっては車内温度の上昇等の危険因子が挙げられ、電池に関して著しく不安全な状態になっている。交通事故によるこれら危険因子のリスクも大きく、大事故発生の可能性が無いとは言えない。   At the time of transportation, the storage state of the lithium ion secondary battery changes abruptly, and the risk factors are increased compared to those at the time of stationary storage. If the battery is transported in a state where the battery is randomly inserted in a general transport vehicle, even if the container is fixed to the loading platform, it may be suddenly stopped, shocked by sudden start-up, vibration, slope inclination change, etc. However, there are risk factors such as collision, overload due to acceleration, contact with mixed conductive materials, and in some cases, an increase in the temperature inside the vehicle, which makes the battery extremely unsafe. The risk of these risk factors due to traffic accidents is great, and it cannot be said that there is no possibility of a major accident.

特開2002−75308号公報JP 2002-75308 A 特開平10−241748号公報JP-A-10-241748

以上記したように、種々の一次電池、二次電池が廃棄電池として廃棄物置場に集積されるが、その内でも特に危険性の高いリチウムイオン2次電池を含む廃棄電池に対して必要な安全な保管容器が確立されていない。リチウムイオン2次電池を商品として仕切られた箱の中に個別に整列隔離して保管する容器は知られているが、ランダムに投入される廃棄電池の保管容器としては使用できない。リチウムイオン2次電池が危険である最大の原因の一つが、電解液に易燃性の有機溶剤を用いていることである。リチウムイオン2次電池を粉砕処理する時に、一時的に冷却槽に入れ、溶剤を固化して短絡発熱を防止することは知られているが、この場合は冷却時間が短いので、保冷時間が長時間に渡る廃棄電池の保管及び保管場所から廃棄物処理又はリサイクル工場までの輸送に際しては、この冷却槽を適用することは困難である。   As described above, various primary batteries and secondary batteries are integrated as waste batteries in a waste storage area. Among them, safety necessary for waste batteries including lithium ion secondary batteries, which are particularly dangerous. A secure storage container has not been established. Although a container for storing lithium ion secondary batteries that are individually aligned and separated in a box partitioned as a product is known, it cannot be used as a storage container for randomly inserted waste batteries. One of the biggest causes of danger in lithium ion secondary batteries is the use of flammable organic solvents in the electrolyte. It is known that when a lithium ion secondary battery is pulverized, it is temporarily placed in a cooling bath and the solvent is solidified to prevent short circuit heat generation. In this case, the cooling time is short, so the cooling time is long. It is difficult to apply this cooling tank when storing waste batteries over time and transporting them from a storage location to a waste disposal or recycling factory.

本発明者らは、廃棄物集積場所に於ける保管容器中で長時間、この電解液を制御することによって、燃焼、爆発の危害を避けることが出来るはずであり、そのためには次に挙げる事項の技術的解決のなされることが必要であると考えた。
a. 廃棄電池の保管容器中において、電池内の電流の担い手である電解質イオンの移動が不可能な状態にする。
b.廃棄電池の保管容器中において、電池内の燃焼物である有機溶剤電解液の漏洩、気化を不可能にする。
上記2項を技術的に解決することによって、廃棄リチウムイオン2次電池の保管中及び又は輸送中の発熱、燃焼事故の防止可能な保管容器を確立し、従来から危険な状態に置かれていた、廃棄リチウムイオン2次電池の安全を確保することが、本発明の目的である。
The inventors should be able to avoid the danger of combustion and explosion by controlling this electrolyte for a long time in the storage container at the waste collection site. I thought it was necessary to make a technical solution.
a. In the storage container of the waste battery, the electrolyte ions, which are the current carriers in the battery, cannot be moved.
b. Leakage and vaporization of the organic solvent electrolyte, which is a combustion product in the battery, is made impossible in the storage container of the waste battery.
By technically solving the above two items, we established a storage container that can prevent heat generation and combustion accidents during storage and / or transportation of waste lithium ion secondary batteries, and has been placed in a dangerous state. It is an object of the present invention to ensure the safety of the discarded lithium ion secondary battery.

上記の目的を達成するため、本発明は、リチウムイオン電池の冷却保管容器に次の手段を備える。
外部から投入したリチウムイオン電池を冷却保管し、かつ移動時の衝撃を吸収する冷却保管容器であって、この冷却保管容器内に冷却媒体を注入し、前記リチウムイオン電池の電解液を冷却凝固する手段と、冷却凝固した電解液の固化状態を維持する手段と、冷却保管容器内への前記冷却媒体の注入と前記リチウムイオン電池の投入に際し、冷却保管容器内の低温気体の外部への漏れを防ぐ投入口の開閉手段と、 を有してなることに特徴がある。
In order to achieve the above object, the present invention comprises the following means in a cooled storage container of a lithium ion battery.
A cooling storage container that cools and stores an externally charged lithium ion battery and absorbs impact during movement, and injects a cooling medium into the cooling storage container to cool and solidify the electrolyte of the lithium ion battery. Means, a means for maintaining the solidified state of the cooled and solidified electrolyte, and leakage of the low temperature gas in the cooling storage container to the outside when the cooling medium is injected into the cooling storage container and the lithium ion battery is inserted. And a means for opening and closing the opening to prevent.

電解液を冷却凝固する手段は、投入口から、電解液を冷却凝固する温度の、液化不燃性ガスを注入、及び又は凝固不燃性ガスを投入することに特徴がある。   The means for cooling and solidifying the electrolyte is characterized by injecting a liquefied incombustible gas and / or injecting a solidified incombustible gas at a temperature at which the electrolyte is cooled and solidified.

電解液の固化状態を維持する手段は、冷却保管容器の底、上蓋、及び側面の壁を少なくとも2重の断熱材で構成する多重壁構増を備え、冷却保管容器の外壁と少なくとも一つの内壁の間の間隙に、又は該内壁間の間隙に、前記液化不燃性ガス及び又は不燃性ガスが充填されることに特徴がある。   The means for maintaining the solidified state of the electrolyte comprises a multi-wall construction in which the bottom, top lid, and side walls of the cooling storage container are made of at least double insulation, and the outer wall of the cooling storage container and at least one inner wall The liquefied incombustible gas and / or incombustible gas is filled in the gap between the two or the gap between the inner walls.

冷却保管容器の内部に、リチウムイオン電池を収納する脱着可能な少なくとも1個の上方が開いた内容器を備えることに特徴がある。   The cooling storage container is characterized in that at least one detachable inner container for storing the lithium ion battery is provided.

内容器にドライアイスを投入することにより、冷却保管容器及び内容器内を空気より重い二酸化炭素で充満させ、かつ電解液の冷却凝固を維持することに特徴がある。   By putting dry ice into the inner container, the cooling storage container and the inner container are filled with carbon dioxide heavier than air, and the cooling and solidification of the electrolyte is maintained.

冷却保管容器の外壁の外蓋に設けた第1の投入口と、少なくとも一つの内壁の内蓋に設けた第2の投入口と、内容器の上方と、が上下垂直に繋がる投入口であって、外蓋に設けられた第1の投入口は、弾性体の変形により開口する蓋であり、内蓋に設けた第2の投入口は、開閉蓋であることに特徴がある。   The first input port provided in the outer lid of the outer wall of the cooling storage container, the second input port provided in the inner cover of the at least one inner wall, and the upper side of the inner container are vertically connected vertically. The first insertion port provided in the outer lid is a lid that is opened by deformation of the elastic body, and the second insertion port provided in the inner lid is characterized by being an open / close lid.

低温気体の外部への漏れを防ぐ投入口の開閉手段は、外蓋に設けられた第1の投入口に、液化不燃性ガスの注入ロート、ドライアイス、及びリチウムイオン電池を押し込むときに、弾性体の蓋が変形して口を開き、内蓋に設けられた第2の投入口に、投下されたときに、ドライアイス、及びリチウムイオン電池の重み及び又は押し込む力で開閉扉が開き、通過後は弾性により各扉が閉じる、ことに特徴がある。   The inlet opening / closing means for preventing leakage of low-temperature gas to the outside is elastic when the liquefied incombustible gas injection funnel, dry ice, and lithium ion battery are pushed into the first inlet provided in the outer lid. The lid of the body deforms and opens its mouth, and when it is dropped into the second insertion port provided on the inner lid, the open / close door opens and passes by the weight and / or pushing force of dry ice and lithium ion battery After that, each door is closed by elasticity.

内蓋に設けた第2の投入口の蓋である開閉扉は、液化不燃性ガスの重みだけでは開かず、外壁と内壁の間、及び内壁間の間隙に、液化不燃性ガスが流れることに特徴がある。   The open / close door, which is the lid of the second inlet port provided in the inner lid, does not open only by the weight of the liquefied incombustible gas, and the liquefied incombustible gas flows between the outer wall and the inner wall and between the inner walls. There are features.

また、リチウムイオン電池の電解液の冷却凝固温度の雰囲気において、冷却保管容器の内部に設置された内容器の間、及び又は内容器の周囲の空間に、緩衝材を充填することを特徴とする。
尚、緩衝材は、外部からの衝撃を吸収する役割を持つため、発泡材、繊維綿、不織布等で出来ており、パッキン状、あられ状、ひも状、等のものが絡み合ったり、ポリエチレン製袋に入っていたりして、飛散しないようになっているものが好ましい。
In addition, in the atmosphere of the cooling solidification temperature of the electrolyte solution of the lithium ion battery, a buffer material is filled between and / or in the space around the inner container installed in the cooling storage container. .
The cushioning material has the role of absorbing impact from the outside, so it is made of foamed material, fiber cotton, non-woven fabric, etc., and packing, hail, string, etc. are intertwined or polyethylene bags It is preferable that it does not scatter, for example.

投入口は、投下するリチウムイオン電池の形状に合わせた形態を有し、外蓋及び内蓋から脱着可能な部品であることに特徴がある。
外蓋及び内蓋は、冷却容器から脱着可能であることを特徴とする。
The insertion port has a shape that matches the shape of the lithium ion battery to be dropped, and is characterized by being a part that can be detached from the outer lid and the inner lid.
The outer lid and the inner lid are detachable from the cooling container.

本発明にかかる保管容器は、保冷の能力が高く、リチウムイオン2次電池を安全に長時間保管することが可能である。電池内の電解質溶液の凝固温度は、溶解している電解質の凝固点降下作用によって、物理化学的に純粋な溶媒の凝固点より低くなっているが、充分に冷却、保冷し、凝固点以下の温度に維持することによって、電池内の電解質溶液は流動性がなくなり、イオンの移動が不可能になるため、短絡時においても短絡電流が流れなくなる効果がある。電解質溶液が凝固しているときは、その電池の破壊が生じても電解質溶液の流出は無く、凝固物の蒸気圧が低いため可燃性溶剤の気化する量も無視できる。すなわち、この保管容器によって、有機溶剤電解液の漏洩、気化を不可能にする効果が得られる。   The storage container according to the present invention has a high ability to keep cold, and can safely store a lithium ion secondary battery for a long time. The freezing point of the electrolyte solution in the battery is lower than the freezing point of the physicochemically pure solvent due to the freezing point depressing action of the dissolved electrolyte, but it is sufficiently cooled and kept cool and kept below the freezing point. By doing so, the electrolyte solution in the battery loses its fluidity and ion migration becomes impossible, so that there is an effect that the short-circuit current does not flow even during a short circuit. When the electrolyte solution is solidified, the electrolyte solution does not flow out even if the battery is destroyed, and the vapor pressure of the combustible solvent can be ignored because the vapor pressure of the solidified product is low. That is, this storage container provides the effect of making it impossible to leak and vaporize the organic solvent electrolyte.

有機溶剤電解室溶液を含有するリチウムイオン電池は、−50℃以下、より確実には−60℃以下に冷却して凝固させることが出来る。 この温度以下においては、電池内の電解質(六フッ化リン酸リチウム、六フッ化硼酸リチウム等)は、電解液の凝固した結晶混合塊の中に存在するが、リチウムイオンの負極から正極への移動が阻まれて、電位差が生じている場合においても、電極間に電気は流れ難い効果がある。   The lithium ion battery containing the organic solvent electrolytic chamber solution can be solidified by cooling to −50 ° C. or lower, more certainly −60 ° C. or lower. Below this temperature, the electrolyte in the battery (lithium hexafluorophosphate, lithium hexafluoroborate, etc.) is present in the solidified crystal mixture of the electrolyte solution, but the lithium ion from the negative electrode to the positive electrode Even when the movement is blocked and a potential difference is generated, there is an effect that it is difficult for electricity to flow between the electrodes.

冷却には、不燃性の低温気体又は液体、固体を用いて行なうが、これによって、燃焼阻害効果は更に大きくなる。保管容器の蓋、及び蓋に設けられた投入口の蓋の構造により、冷却媒体の一部が保管容器を構成する断熱材多重壁の間隙に入り、壁間からも冷却することが出来るため、保冷を確実なものにする効果がある。投入口の蓋をリチウムイオン電池に合わせた形態で開口する構造によって、冷却不燃性ガスの漏れを少なくし、保冷が永く継続する効果がある。   Cooling is performed using a nonflammable low-temperature gas, liquid, or solid, which further increases the combustion inhibition effect. Due to the structure of the lid of the storage container and the lid of the inlet port provided in the lid, a part of the cooling medium enters the gap between the heat insulating material multiple walls constituting the storage container, so that it can also be cooled from between the walls. It has the effect of ensuring cold insulation. The structure in which the lid of the inlet is opened in a form matching the lithium ion battery has the effect of reducing the leakage of the cooling incombustible gas and keeping the cold for a long time.

この保管容器の輸送に当たっては、冷凍機を附設した保冷車に積み込んで、保管容器を冷却すれば更なる長時間の確実な安全輸送が可能である。冷却によって、輸送時の危険因子はほとんど無くなり、電池の発熱事故が回避される効果がある。   When transporting the storage container, it can be securely transported for an extended period of time by loading it in a cold storage vehicle equipped with a refrigerator and cooling the storage container. By cooling, there are almost no risk factors during transportation, and there is an effect of avoiding battery heat generation accidents.

保管容器の一つを、図1に上面図101(一部が断面図)、正面図102(一部が断面図)及び図2に投入口の一部が開いた状態を示す正面図の一部104(断面図)にて例示する。この保管容器の外観形状は直方体であるが、円筒、楕円筒、その他の多角形の筒状体、複雑な曲面を有する形状の筒状体等、種々の形が可能である。内容積に比して、外表面積の小さな形状が保冷効果は高いが、実際の形状としては、取扱が容易な直方体、又は円筒が好ましい。保管容器内には、上方に口を開いた内容器5を設置し、この中に電池を収容する。   FIG. 1 is a top view 101 (partially a cross-sectional view), front view 102 (partially a cross-sectional view), and FIG. 2 is a front view showing a state where a part of an inlet is opened. This is illustrated by the section 104 (cross-sectional view). The external shape of the storage container is a rectangular parallelepiped, but various shapes such as a cylinder, an elliptic cylinder, other polygonal cylinders, and a cylinder having a complicated curved surface are possible. Although the shape having a small outer surface area has a high cooling effect as compared with the internal volume, the actual shape is preferably a rectangular parallelepiped or a cylinder that is easy to handle. In the storage container, an inner container 5 having an opening upward is installed, and a battery is accommodated therein.

保管容器の外壁3の表面材4は、構造材としての強度並びに外観を守る表面引掻き強度を有する必要がある。そのような材料としては、塗装処理された木材、プラスチック、繊維強化プラスチック等の金属に比べて熱伝導性が悪く、強度が実用上問題なく、軽い材質が適している。この外壁表面材4は、内側に外壁3の断熱材として、発泡ポリスチレン、発泡ポリウレタン、有機又は無機繊維綿の成形断熱材、等を固定してある。   The surface material 4 of the outer wall 3 of the storage container needs to have a strength as a structural material and a surface scratching strength that protects the appearance. As such a material, a light material having a low thermal conductivity and no problem in practical use as compared with metals such as painted wood, plastic and fiber reinforced plastic is suitable. The outer wall surface material 4 is fixed with foamed polystyrene, foamed polyurethane, a molded heat insulating material of organic or inorganic fiber cotton, etc. as a heat insulating material of the outer wall 3 on the inner side.

保管容器の内壁1の表面材13は、内容器5と接触する機会が多いので表面が傷つきにくく、結露により発生する水分の浸み込みの無い材質で出来ていることが望ましく、外壁の表面材4と同様の材質で出来ており、外壁3と同様の断熱材が固定されている。
保管容器は、これら外壁3及び内壁1の間に空隙を設けて多重の断熱材で仕切る多重内壁構造にしてある(図1における1,2,3、この図の場合、外壁断熱材及び2重の内壁断熱材の合わせて3重壁構造)。断熱材は発泡材だけでなく、熱伝導が悪い素材で発泡材並みの強度があれば使用可能である。
The surface material 13 of the inner wall 1 of the storage container is preferably made of a material that does not easily damage the surface because there are many opportunities to come into contact with the inner container 5, and does not soak in moisture generated by condensation. 4 is made of the same material, and the same heat insulating material as that of the outer wall 3 is fixed.
The storage container has a multiple inner wall structure in which gaps are provided between the outer wall 3 and the inner wall 1 and partitioned by multiple heat insulating materials (1, 2 and 3 in FIG. 1, in this figure, the outer wall heat insulating material and the double wall). The triple wall structure of the inner wall insulation material). The heat insulating material can be used as long as it is not only a foam material but also has a low thermal conductivity and has the same strength as the foam material.

壁の数は、断熱材の厚みとの関係で決まり、1枚の断熱材の厚みは1〜10cm、断熱材合計の厚みは10〜30cmで、壁の数は2以上好ましくは3以上である。断熱材を厚くして、その数を多くすれば、当然保冷能力は大きくなるが、保管容器全体の体積が大きくなり、実用に適さなくなる。断熱材間の間隙(図1に於ける14,15)は0.5〜3cm が好ましく、間隙が広過ぎると保管容器全体の体積が大きくなると同時に、外界の暖気が投入口から流れ込んで滞留する空間が大きくなり、保冷を悪化させる。これらの間隙は、冷却媒体、又は保管容器の内部からあふれ出てきた冷気、が充満して保冷効果を高める働きをするものであって、外部からの暖気が滞留し易くなってはならない。   The number of walls is determined by the relationship with the thickness of the heat insulating material, the thickness of one heat insulating material is 1 to 10 cm, the total thickness of the heat insulating materials is 10 to 30 cm, and the number of walls is 2 or more, preferably 3 or more. . If the heat insulating material is made thicker and the number thereof is increased, naturally the cold insulation capacity is increased, but the volume of the entire storage container is increased and becomes unsuitable for practical use. The gap between the heat insulating materials (14 and 15 in FIG. 1) is preferably 0.5 to 3 cm. If the gap is too wide, the volume of the entire storage container increases, and at the same time, warm air from the outside flows from the inlet and stays. The space becomes larger and the cold insulation gets worse. These gaps serve to increase the cooling effect by being filled with the cooling medium or the cold air overflowing from the inside of the storage container, and the warm air from the outside should not easily stay.

底面においても同様に間隙を設けることが保冷上、望ましいが、そのためには、間隙維持可能な強度を有する断熱材底板並びにそれを支える柱と梁を間隙の間に設け、収容する電池の重量に抗して凹みたわみ等の変形を生じないようにしなければならず、発泡材等の低熱伝導性材料だけでは、この強度を得ることは出来ない。従って、保管対象物の収容能力を確保し且つ保冷能力を維持するためには、間隙を設けず、底面全面をその下の層の断熱材全面と接触させて積み上げた多重積層構造(図1の例においては、内底断熱材17+内底断熱材18+外底断熱材19)とし、底全面で保管物の重量を支える構造にする。この場合、内容器5に満杯に電池を収容しても、底面にかかる荷重は0.03〜0.2Kg/平方センチメートルであり、先に記した発泡ポリスチレンを始めとする硬質発泡材等断熱材の強度で充分足りる。
尚、保管容器はそれを設置する床面に直置きせずに、木製又はプラスチック製パレットに載せて設置したほうが、床からの伝熱を減らすことが出来る。保管容器の移動もパレットごとフォークリフトで行なうことが望ましい。
In the same way, it is desirable to provide a gap on the bottom surface for cooling. However, in order to do so, a bottom plate of heat insulating material having a strength capable of maintaining the gap and a column and a beam supporting it are provided between the gaps, and the weight of the battery to be accommodated is reduced. Therefore, it is necessary to prevent deformation such as indentation deflection, and this strength cannot be obtained only with a low thermal conductivity material such as a foam material. Therefore, in order to secure the storage capacity of the object to be stored and maintain the cold insulation capacity, a multi-layered structure in which the entire bottom surface is brought into contact with the entire surface of the heat insulating material in the lower layer without providing a gap (see FIG. 1). In the example, the inner bottom heat insulating material 17 + the inner bottom heat insulating material 18 + the outer bottom heat insulating material 19) are used so as to support the weight of stored items over the entire bottom surface. In this case, even if the battery is fully accommodated in the inner container 5, the load applied to the bottom surface is 0.03 to 0.2 Kg / square centimeter, and the insulation material such as the hard foam material such as the expanded polystyrene described above is used. Strength is sufficient.
Note that the heat transfer from the floor can be reduced by placing the storage container on a wooden or plastic pallet instead of directly placing it on the floor where it is installed. It is desirable to move the storage container with the forklift together with the pallet.

保管容器を多重の真空保冷壁によって構成することも可能ではあるが、この場合、材質が、真空に耐えて変形しない金属でなければならず、大きい形状の場合はその肉厚が厚くなるため重量が大となり、取扱が容易ではない。従って、大型保冷箱の断熱材は、軽量の発泡材又は繊維綿を固めた成形材等の断熱材又はそれらと同等の低熱伝導性材料が好ましい。   It is possible to configure the storage container with multiple vacuum insulation walls, but in this case, the material must be a metal that can withstand vacuum and does not deform, and if it is large in shape, its thickness increases and its weight increases. Is not easy to handle. Therefore, the heat insulating material of the large-sized cold box is preferably a heat insulating material such as a lightweight foamed material or a molded material obtained by solidifying fiber cotton, or a low thermal conductive material equivalent thereto.

該保管容器の中に上方に口を開けた内容器を設置(図1においては、内容器5を9個設置できる大きさの保管容器になっているが、特に9個に限定されるものではない)し、その上に断熱材からなる多重の蓋(図1の6,9,10,11)をする。蓋は多重の側面壁に対応して各側面壁に囲まれる上方に被せるようにして壁の縁で嵌合して脱着可能にする。各蓋には、投入口を設ける。外気の影響はこの投入口から侵入する暖気による場合が多いので、投入口の影響を減じるために外蓋9の上に更に投入口を覆う形で最上蓋6をつける。最上蓋6は、電池投入作業をすばやく効率的に行なうために、投入作業中は外した状態におき、投入が終了し、長時間の保管が始まるときに被せればよい。   In the storage container, an inner container with an opening upward is installed (in FIG. 1, the storage container is sized so that nine inner containers 5 can be installed, but is not limited to nine in particular. And a plurality of lids (6, 9, 10, 11 in FIG. 1) made of a heat insulating material. The lid is fitted on the edge of the wall so as to be detachable by covering the upper side surrounded by each side wall corresponding to the multiple side walls. Each lid is provided with a slot. Since the influence of the outside air is often due to warm air entering from the inlet, the top lid 6 is attached on the outer lid 9 so as to cover the inlet further in order to reduce the influence of the inlet. The top cover 6 may be removed during the charging operation in order to perform the battery charging operation quickly and efficiently, and may be covered when the charging is finished and storage for a long time starts.

外蓋9、内蓋10、内蓋11には内容器5の上に位置するように投入口を設ける。投入口には投入口蓋(12,7、8)を備え、それを開いて電池を下方に落下させ、次々に下方の投入口蓋を押し開き、通過して内容器に到達させる。投入口蓋を閉じれば、内容器を多重の断熱壁が囲込み、外気温の影響を遮断して保冷することが出来る。投入口と投入口蓋を設けなければ 最上蓋6、外蓋9、内蓋10、内蓋11を順に外して、内容器5に電池を投入しなければならず、外気の侵入により、保冷は破れて保管容器はその役を果たさず、しかも蓋の数が多いのでそれを外す操作の手数が多いために、非常に不便である。   The outer lid 9, the inner lid 10, and the inner lid 11 are provided with inlets so as to be positioned on the inner container 5. The charging port is provided with a charging port lid (12, 7, 8), which is opened to drop the battery downward, and push the lower charging port lid one after another to pass through to reach the inner container. If the inlet lid is closed, the inner container is surrounded by multiple heat insulating walls, and the influence of the outside temperature can be cut off and kept cool. If the inlet and the inlet lid are not provided, the top lid 6, the outer lid 9, the inner lid 10, and the inner lid 11 must be removed in order, and the battery must be inserted into the inner container 5. In addition, the storage container does not play its role, and since the number of lids is large, it is very inconvenient because there are many operations to remove it.

図2において、最上蓋投入口蓋6を持ち上げて外した状態(6b)、外蓋投入口12を開いた状態(12b)、内蓋投入口蓋7を上から押して、ヒンジ16を下に折って、両開きの扉が開いた状態(7b)を示している(このヒンジにはバネが付いていて、上からの押す力がなくなるとバネの力でヒンジが伸びて扉が戻る自閉式構造になっている)。   In FIG. 2, the state (6b) in which the top lid charging port lid 6 is lifted and removed, the state (12b) in which the outer lid charging port 12 is opened, the inner lid charging port lid 7 is pushed from above, the hinge 16 is folded down, It shows a state (7b) in which the double-open door is open (this hinge has a spring, and when the pushing force from the top disappears, the hinge is extended by the force of the spring and the door returns) )

最上蓋6は、外した時もその下の外蓋以下の多重の蓋による外気との遮断が有効であるため、投入者が各投入口を全部視野に入れるように全面一度に外す単純な構造にし、通常の保管時は、該蓋6をはめ込んで、冷却保管容器全体が、開口部の現れない保冷に有効な構造になっている。   Even when the top lid 6 is removed, it is effective to block off the outside air by using multiple lids below the outer lid below it, so the thrower can be removed all at once so that all the inlets are in view. During normal storage, the lid 6 is fitted, and the entire cooling storage container has a structure that is effective for keeping cold without opening.

外蓋投入口蓋12は、電池投入時に外気と直接接し、暖気侵入と冷気の漏出を最小限に食い止めながら、電池の必要最小限の通路を開く必要がある。外蓋投入口蓋12は、スプリングを仕込んで弾力性を強化しワイヤーを入れて補強したポリウレタンスポンジ弾性体の外側を撥水性布で包んだもので、閉口時は開口部の合わせ目を両側から締め付けて閉じ、電池投入時は電池をその合わせ目に押し込んで口を開かせて通すことが出来るようにしてある。 この外蓋投入口蓋は投入頻度が多ければ損傷が激しくなるので、この部分だけ脱着可能にし、 容易に新品と交換して取り付けられるようにしてある。最上蓋を外している時、外蓋は、直接外気と接触しているので、湿度の高い場所では空気中の水分で結露し易くなる。従って、この場合は、撥水性の外蓋表面に現れた水滴を拭取った後、最上蓋を嵌める。
尚、外蓋投入口蓋の構造は、開放時の隙間を許容する場合は、前記構造だけでなく、種々の構造、例えば、ヒンジを用いた内蓋投入口蓋と同様の構造、手動の嵌合蓋等も適用可能である。
The outer lid charging opening lid 12 is in direct contact with the outside air when the battery is inserted, and it is necessary to open the minimum necessary passage of the battery while preventing the intrusion of warm air and the leakage of cold air to the minimum. The outer lid charging port lid 12 is a polyurethane sponge elastic body that is reinforced with springs and reinforced with a wire and is reinforced with a water-repellent cloth. When closing the mouth, the opening joint is tightened from both sides. When the battery is inserted, the battery is pushed into the joint so that the mouth can be opened and passed. Since this outer lid insertion port lid becomes severely damaged when it is inserted frequently, only this portion can be detached and easily replaced with a new one. When the top lid is removed, the outer lid is in direct contact with the outside air, so that it is easy to condense with moisture in the air in a humid place. Therefore, in this case, the top lid is fitted after wiping off the water droplets appearing on the surface of the water-repellent outer lid.
In addition, the structure of the outer lid charging opening lid is not limited to the above-described structure when allowing a clearance when opened, but various structures, for example, a structure similar to the inner lid charging opening lid using a hinge, a manual fitting lid Etc. are also applicable.

内蓋投入口蓋7および内蓋投入口蓋8は、外蓋投入口12の下及びその下に在り、それぞれ、上に位置する蓋の投入口を電池が通過し、その上の投入口の蓋が閉じた後又は閉じる直前に、開くものである。内蓋投入口蓋7および内蓋投入口蓋8は、電池並びにドライアイス塊が投入された時は、その重量及び又は押し込む力によって開き、液体窒素が注入されたときは、液は横に流れ、滞留する量の液の重みだけでは開かない。側面断熱材壁間の間隙に流れた液体窒素及び低温窒素ガスは、間隙からの冷却、保冷に加わり、保管容器全体の冷却を短時間で行なうことに寄与する。壁間の間隙が液体窒素で満杯になり、液面が投入口蓋の上に上ってきた場合は、投入口の蓋が下方に押されて開き、液は蓋の下の空間に流れ込み、蓋上の液が減るとその蓋は再度閉まる。   The inner lid charging port lid 7 and the inner lid charging port lid 8 are below and below the outer lid charging port 12, respectively, and the battery passes through the upper charging port and the upper charging port lid is located above the charging port. It opens after closing or just before closing. The inner lid charging port lid 7 and the inner lid charging port lid 8 are opened by the weight and / or pushing force when the battery and the dry ice lump are charged, and when liquid nitrogen is injected, the liquid flows sideways and stays. The weight of the liquid to be opened does not open. The liquid nitrogen and the low-temperature nitrogen gas that flow into the gap between the side heat insulating walls contribute to cooling the entire storage container in a short time in addition to cooling from the gap and cooling. When the gap between the walls is filled with liquid nitrogen and the liquid level rises above the inlet lid, the inlet lid is pushed downward to open, and the liquid flows into the space under the lid, and the lid The lid closes again when the top liquid is depleted.

投入口の大きさと蓋の開閉方式を変えることは、外蓋9、内蓋10、内蓋11を、別の大きさ及び又は別の開閉機構の投入口を備えた互換性のある嵌合構造又はその他の構造の蓋に代えること、又は投入口毎に投入口蓋を脱着可能にして、異なる投入口蓋に代えることによって行なうことが出来る。少量づつ廃棄電池が集積され、長期間に渡ってその集積電池を保管しなければならない集積場所においては、なるべく投入口が小さく開口時間が短くなるようにし、短期間に多量の廃棄電池が集積するところでは、手間がかからず短時間で多量の廃棄電池を投入することが出来る大きく開く投入口の備わっている各蓋を選択し使用する。   Changing the size of the inlet and the opening / closing method of the lid means that the outer lid 9, the inner lid 10 and the inner lid 11 are compatible fitting structures having different sizes and / or different opening / closing mechanisms. Or it can replace with the lid | cover of another structure, or it makes it possible to attach or detach the insertion opening lid | cover for every insertion opening, and can replace with a different insertion opening cover. In a collection place where waste batteries are accumulated little by little and the accumulated batteries must be stored for a long period of time, the inlet is made as small as possible to shorten the opening time, and a large amount of waste batteries are accumulated in a short period of time. By the way, each lid provided with a large opening that can be loaded with a large amount of discarded batteries in a short time without any trouble is selected and used.

保管容器の大きさ及び内容積は、廃棄電池の保管量及び保冷能力(断熱材量及び間隙量に対応)によって決められる。廃棄電池は保管後、廃棄物処理業者又はリサイクル処理業者の工場へ保管容器(内容器を含む)ごと運搬されるので、運送車両並びにフォークリフト積載に都合が良い保管容器の外寸、大きさが要求される。保管容器をなるべく大きく採り、その上に保冷能力を充分確保することが必要であるが、多重の断熱材層の占める部分が大きいので、外殻体積に対する内容積の割合(内容積率と称する)は、20〜60%になる。内容積率25〜50%が保冷能力と内容積とのバランスの取れた範囲である。図1に示した保管容器は体積1100リットル、内容積350リットル、内容積率約32%である。   The size and internal volume of the storage container are determined by the storage amount and the cold storage capacity (corresponding to the amount of heat insulating material and the amount of gap) of the waste battery. After storage, waste batteries are transported together with storage containers (including inner containers) to the factory of the waste disposal company or recycling company, so the outer dimensions and size of the storage containers that are convenient for carrying vehicles and forklifts are required. Is done. It is necessary to take as large a storage container as possible and to ensure sufficient cooling capacity, but since the portion occupied by multiple thermal insulation layers is large, the ratio of the internal volume to the outer shell volume (referred to as the internal volume ratio) Becomes 20 to 60%. An internal volume ratio of 25 to 50% is a balanced range between the cold storage capacity and the internal volume. The storage container shown in FIG. 1 has a volume of 1100 liters, an internal volume of 350 liters, and an internal volume ratio of about 32%.

冷却は、内壁表面材13と内容器5の間即ち内容器内壁空間20及び内容器5の中に、粒状又は小片状のドライアイス(−78℃)を投入し、全部の蓋を閉めて、充分予冷却する。ドライアイスの代わりに、極低温冷凍機を接続して冷風を送り込むことで予冷却を行なうことも可能である。ドライアイス投入後、最初気化した二酸化炭素は、冷却前から存在する空気を上方に押し上げ、多重の投入口それぞれの閉じた扉の隙間から上方の空間へ排除し、保管容器内壁1、底及び内容器をドライアイス温度近辺まで冷却する。   Cooling is performed by putting granular or small pieces of dry ice (−78 ° C.) between the inner wall surface material 13 and the inner container 5, that is, in the inner container inner wall space 20 and the inner container 5, and closing all the lids. Sufficiently precool. Instead of dry ice, it is also possible to perform pre-cooling by connecting a cryogenic refrigerator and sending cold air. After the dry ice is charged, the first vaporized carbon dioxide pushes up the air that has existed before cooling and removes it from the closed door gap of each of the multiple charging ports to the upper space. Cool the vessel to near dry ice temperature.

次いで、投入口から液体窒素を、激しい沸騰に注意しながら、注ぎ込み、二酸化炭素ガスを凝固させると同時に気化して間もない低温の窒素ガスが保管容器の内蓋11投入口蓋8の隙間から上の空間に抜け(蓋の合わさる褶動部(縁)は精密に凸凹無く表面仕上げされていても、発生窒素ガスによる内部の気圧が僅かに高いので気体は合わせ目の僅かの隙間から漏出する)、内壁1外面と内壁2内面との間隙14に達して、そこに存在する気体と置換しながらその空間を冷やし、内壁2内面の表面温度を低下させる。低温窒素ガスは、同様にして内壁2外面と外壁3内面の間隙15にも到達し、内壁2の保冷効果を高める。即ち、多重の断熱材壁間のそれぞれの間隙に低温ガスを存在させ、間隙によってその温度勾配の不連続性を大きくし、且つ各断熱材内の温度勾配を緩やかにして、保温効果を高めることが出来る。外気からの伝熱を間隙を含め多層の仕切りによって遮断する機構により保管容器内部は有効に低温状態を保つことが出来る。この間隙による保冷効果は側面及び上面において得られる。   Next, liquid nitrogen is poured from the charging port, paying attention to vigorous boiling, solidifying the carbon dioxide gas, and at the same time, the low-temperature nitrogen gas that has just been vaporized rises from the gap between the inner lid 11 and the charging port lid 8 of the storage container. (Even if the peristaltic part (edge) where the lid is fitted is precisely finished without unevenness, the gas leaks from a slight gap in the joint because the internal pressure of the generated nitrogen gas is slightly high) The air reaches the gap 14 between the outer surface of the inner wall 1 and the inner surface of the inner wall 2, cools the space while replacing the gas present therein, and lowers the surface temperature of the inner surface of the inner wall 2. Similarly, the low-temperature nitrogen gas reaches the gap 15 between the outer surface of the inner wall 2 and the inner surface of the outer wall 3 and enhances the cooling effect of the inner wall 2. That is, low temperature gas is present in each gap between multiple heat insulating material walls, the discontinuity of the temperature gradient is increased by the gap, and the temperature gradient in each heat insulating material is made gentle to enhance the heat insulating effect. I can do it. The inside of the storage container can be effectively kept at a low temperature by a mechanism that blocks heat transfer from the outside air by a multi-layer partition including a gap. The cooling effect by this gap is obtained on the side surface and the upper surface.

液体窒素は外蓋投入口12にロートを差し込んで注入するが、ロート先端出口の位置を調整して、内容器の設置してある空間へ直接注入するか、内蓋投入口8上の空間、内蓋投入口7上の空間へ入れるか決めることが出来る。狙った空間にロート先の出口を位置させ、液体窒素をゆっくり注入することにより、その下の内蓋投入口蓋を開かず、液体窒素を横方向に流して内蓋の縁から側面断熱材壁の間隙にめぐらし効率よく保管容器を冷却することが出来る。   Liquid nitrogen is injected by inserting a funnel into the outer lid inlet 12, and the position of the funnel tip outlet is adjusted and injected directly into the space where the inner container is installed, or the space above the inner lid inlet 8, Whether to enter the space above the inner lid inlet 7 can be determined. By positioning the outlet of the funnel in the target space and slowly injecting liquid nitrogen, the inner lid charging port lid is not opened, but liquid nitrogen is allowed to flow laterally from the edge of the inner lid to the side insulation wall. The storage container can be efficiently cooled over the gap.

冷却媒体としてドライアイス、液体窒素等の凝固不燃性ガス及び又は液化不燃性ガスを使用することによって、保管容器内は、発生した不燃性ガスにより酸素が排除されるために、燃焼の起こらない空間とすることが出来、安全性が一段と強化される。   By using solidified incombustible gas such as dry ice and liquid nitrogen and / or liquefied incombustible gas as a cooling medium, oxygen is excluded from the generated incombustible gas, so that no combustion occurs in the storage container. And safety is further enhanced.

内容器5の大きさは、廃棄電池を収容して、人間が持ち運び出来る重量になる程度の容積であり、保管容器に入る大きさであれば、本質的な制限はないが、好ましくは10リットル以上、30リットル以下が適している。内容器5は、廃棄電池を充填して、破壊しない強度を有していなければならないが、水分に濡れても強度が大きくは低下しないことが必要である。 即ち、産業廃棄物処理又はリサイクル処理工場においては、廃棄電池を処理するために、電池の入った内容器をだけを取り出し、空になった保管容器は通い容器として、廃棄電池の排出元に返送する。内容器を低温状態から外気の常温に曝したとき結露するので、それに耐えうる強度が必要である。   The size of the inner container 5 is a volume that can accommodate a waste battery and can be carried by a human. There is no essential limitation as long as it can fit in a storage container, but it is preferably 10 liters. Thus, 30 liters or less is suitable. The inner container 5 must be filled with a waste battery and have a strength that does not break, but it is necessary that the strength does not decrease greatly even when wet. That is, in an industrial waste treatment or recycling factory, in order to treat a waste battery, only the inner container with the battery is taken out and the empty storage container is returned to the waste battery discharge source as a returnable container. To do. Condensation occurs when the inner container is exposed to a normal temperature of the outside air from a low temperature state, and the strength that can withstand it is necessary.

産業廃棄物処理又はリサイクル処理工場においては、廃棄電池を内容器ごと焼却炉に投入する場合が多いので、内容器は、焼却炉で焼却が可能で、保管容器としての使用時には非常時の電池発熱に対して直ちには燃え上がらないものが望ましい。実用上この要求を満たす材質として、高密度ポリエチレン、ポリプロピレン、アクリロニトリルブタジエンスチレン樹脂、フェノール樹脂、尿素樹脂、塩化ビニール樹脂、繊維強化不飽和ポリエステル樹脂、繊維強化エポキシ樹脂、等のプラスチック、難燃処理された耐水性高強度ダンボール、が好ましい。   In industrial waste processing or recycling processing plants, waste batteries are often put into incinerators together with their inner containers, so the inner containers can be incinerated in incinerators, and when they are used as storage containers, battery heat is generated in an emergency. It is desirable that it does not burn immediately. Practical materials that satisfy this requirement include high-density polyethylene, polypropylene, acrylonitrile butadiene styrene resin, phenol resin, urea resin, vinyl chloride resin, fiber reinforced unsaturated polyester resin, fiber reinforced epoxy resin, etc. Water resistant and high strength cardboard is preferred.

保管容器の蓋(図1の6、9,10、11)を外した状態で、内容器を保管容器内に設置し、内容器内壁空間20にドライアイス及び又は緩衝材を充填して、それら多重の蓋を閉め、蓋が外れないようにとめ具を取り付けておく。
内容器5と内壁表面材13との間の内容器内壁空間20は、内容器5の設置及び取り出し作業を円滑に行なう為に必要である。更にこの空間に、ドライアイス及び又は熱容量の大きい物質、蓄冷材等を存在させることにより、保冷をより長期間有効に継続させることが出来る。ドライアイス等が無く空間が広い場合、特に車両での運搬時においては、内容器5が内壁表面材13に衝突し、この空間が広ければ内容器5が倒れることもある。保管容器内における内容器の急激な移動に伴う衝撃を防ぐために、この内容器内壁空間20及び又は内容器間に、緩衝材を充填することが挙げられる。この緩衝材としては、一般に発泡プラスチック成型品、空気を多量に含むプラスチックシート、有機無機繊維の綿、不織布等が適している。これらの緩衝材を取り扱いやすい形、例えば礫状成型品、不定形破片、繊維綿等ならば保管容器中で飛散しないようにポリエチレン等の袋に入れる、シートならば内容器全部を合わせその外周に巻きつける、ひも・帯状ならば緩やかに絡ませる等を行なってこの内容器内壁空間20を埋めることが望ましい。
With the lid of the storage container (6, 9, 10, 11 in FIG. 1) removed, the inner container is installed in the storage container, and the inner wall space 20 of the inner container is filled with dry ice and / or cushioning material. Close the multiple lids and attach the fasteners so that the lids do not come off.
The inner container inner wall space 20 between the inner container 5 and the inner wall surface material 13 is necessary for smooth installation and removal of the inner container 5. Further, by allowing dry ice and / or a substance having a large heat capacity, a cold storage material, and the like to exist in this space, the cold insulation can be effectively continued for a longer period of time. When there is no dry ice or the like and the space is wide, the inner container 5 may collide with the inner wall surface material 13 especially when transported by a vehicle, and if the space is wide, the inner container 5 may fall down. In order to prevent an impact caused by a sudden movement of the inner container in the storage container, a buffer material is filled between the inner container inner wall space 20 and / or the inner container. As this cushioning material, foamed plastic molded products, plastic sheets containing a large amount of air, organic inorganic fiber cotton, non-woven fabric, and the like are generally suitable. If these cushioning materials are easy to handle, such as gravel moldings, irregular shaped pieces, fiber cotton, etc., put them in a polyethylene bag so that they do not scatter in the storage container. It is desirable to fill the inner wall 20 of the inner container by wrapping or entwining it gently if it is a string or belt.

保管容器内の温度測定は、温度計のセンサー例えば白金抵抗温度計の感温部を保管容器の底部にセットしておけば、細い導線を個冠容器外に引き出し、連続自記記録することが可能である。簡単な測定方法としては、低温測定の可能な温度計(例えばアルコール温度計)を棒又は筒の先端に取り付け、投入口を最小限開いて、保冷箱内に挿入し、1〜2分おいて引き上げ直ちに温度計の指示を読むことで実施可能である。
冷却温度は絶対零度まで特に下限は無く、液体窒素の代わりに、液体ヘリウム、液体アルゴンを使用しても、冷却にはなんら差し支えない。冷却保持温度範囲は、絶対零度以上−60℃までが好適であり、−60℃超から−50℃までの範囲でも通常の電解液として使用している溶剤においては実施可能である。
本発明にかかる保管容器は、長時間−50℃以下を保持することが出来るが、投入量、投入頻度、外気温、等で内部温度の変化は異なるので、連続して温度を記録監視できる、自記温度計を使用することが好ましい。長期保管のために−50℃を上回るようになった場合は、ドライアイス又は液体窒素を添加して。内部温度を−50℃以下に低下させる。
If the temperature sensor inside the storage container is set at the bottom of the storage container, the temperature sensor of the thermometer, for example, a platinum resistance thermometer, can be pulled out of the individual container and recorded continuously. It is. As a simple measurement method, attach a thermometer (for example, an alcohol thermometer) capable of low temperature measurement to the tip of a stick or tube, open the inlet to the minimum, insert it into a cold box, and leave it for 1-2 minutes. This can be done by immediately reading the thermometer's instructions.
There is no particular lower limit to the cooling temperature up to absolute zero, and even if liquid helium or liquid argon is used instead of liquid nitrogen, there is no problem in cooling. The cooling holding temperature range is preferably from zero to -60 ° C, and even in the range from more than -60 ° C to -50 ° C, it can be carried out in a solvent used as a normal electrolytic solution.
The storage container according to the present invention can hold -50 ° C. or less for a long time, but the change in the internal temperature differs depending on the input amount, the input frequency, the outside air temperature, etc., so the temperature can be continuously recorded and monitored. It is preferable to use a self-recording thermometer. If it exceeds -50 ° C due to long-term storage, add dry ice or liquid nitrogen. The internal temperature is lowered to -50 ° C or lower.

廃棄電池を入れたこの保管容器を廃棄電池集積場所から廃棄物処理又はリサイクル処理業者の工場へ運搬する場合、冷凍コンテナー車で運搬することが最も望ましいが、普通のコンテナー車、平ボディ車でも廃棄リチウムイオン2次電池の安全輸送が可能である。   When transporting this storage container containing waste batteries from a waste battery collection site to a waste disposal or recycling plant, it is most desirable to transport them in a refrigerated container vehicle, but even ordinary container vehicles and flat body vehicles are discarded. Safe transport of lithium ion secondary batteries is possible.

尚、本発明にかかる保管容器は、廃棄リチウムイオン2次電池の保管及び輸送用に用いることが出来るが、このほかにも同様の−50℃以下の低温で長時間保管が必要な対象物に対して使用することが出来る。それらの対象物としては、通常の生活環境下では反応性または分解性に富む過酸化物、有機金属化合物、その他の反応性化合物を、低温に保ち、安全に保管及び輸送することが出来る。更に保冷温度が高い条件での保管容器としては、更に長時間にわたって使用することが出来る。   The storage container according to the present invention can be used for storing and transporting a waste lithium ion secondary battery. In addition, it can be used for a similar object requiring storage at a low temperature of −50 ° C. or lower for a long time. It can be used against. As those objects, peroxides, organometallic compounds, and other reactive compounds that are highly reactive or decomposable in a normal living environment can be stored and transported safely at low temperatures. Furthermore, it can be used for a longer time as a storage container under a condition where the cold temperature is high.

3重壁冷却保管容器上面図及び正面図でその一部は断面図である。The triple wall cooling storage container is a cross-sectional view of a top view and a front view thereof. 3重壁冷却保管容器正面図の一部の断面図で、外蓋投入口と中間の内蓋投入口が開き、最内壁の内蓋が閉まっている状態を示す。FIG. 5 is a partial cross-sectional view of the triple-wall cooled storage container front view, showing a state where the outer lid inlet and the intermediate inner lid inlet are opened and the inner lid of the innermost wall is closed.

符号の説明Explanation of symbols

101 3重壁冷却保管容器上面図
102 3重壁冷却保管容器正面図
103 内容器斜面図
104 3重壁冷却保管容器正面図の一部で投入口の開閉を示す例
1 内壁
2 内壁
3 外壁
4 外壁表面材
5 内容器
6 最上蓋
6b 取り外した状態の最上蓋
7 内蓋投入口蓋
7b 開いた状態の内蓋投入口
8 内蓋投入口蓋
9 外蓋
10 内蓋
11 内蓋
12 外蓋の投入口蓋
12b 開いた状態の外蓋投入口
13 内壁
14 内壁間の間隙
15 内壁と外壁との間隙
16 ヒンジ
17 内底断熱材
18 内底断熱材
19 外底断熱材
20 内容器内壁空間
50 中心線
51 断面
52 断面
53 断面
101 Top view of triple wall cooling storage container 102 Front view of triple wall cooling storage container 103 Slope view of inner container 104 Example of opening and closing of inlet at part of front view of triple wall cooling storage container 1 Inner wall 2 Inner wall 3 Outer wall 4 Outer wall surface material 5 Inner container 6 Top lid 6b Removed top lid 7 Inner lid inlet lid 7b Opened inner lid inlet 8 Inner lid inlet lid 9 Outer lid 10 Inner lid 11 Inner lid 12 Outer lid inlet lid 12b Opened outer lid inlet 13 Inner wall 14 Gap between inner walls 15 Gap between inner wall and outer wall 16 Hinge 17 Inner bottom heat insulating material 18 Inner bottom heat insulating material 19 Outer bottom heat insulating material 20 Inner container inner wall space 50 Center line 51 Cross section 52 cross section 53 cross section

Claims (11)

外部から投入したリチウムイオン電池を冷却保管し、かつ移動時の衝撃を吸収する冷却保管容器であって、前記冷却保管容器内に冷却媒体を注入し、前記リチウムイオン電池の電解液を冷却凝固する手段と、前記冷却凝固した電解液の固化状態を維持する手段と、前記冷却保管容器内への前記冷却媒体の注入と前記リチウムイオン電池の投入に際し、前記冷却保管容器内の低温気体の外部への漏れを防ぐ投入口の開閉手段と、を有してなることを特徴とするリチウムイオン電池の冷却保管容器。   A cooling storage container that cools and stores an externally charged lithium ion battery and absorbs impact during movement, and injects a cooling medium into the cooling storage container to cool and solidify the electrolyte of the lithium ion battery. Means, a means for maintaining the solidified state of the cooled and solidified electrolyte, and the introduction of the cooling medium into the cooling storage container and the introduction of the lithium ion battery to the outside of the low-temperature gas in the cooling storage container A cooling storage container for a lithium ion battery, comprising: an opening opening / closing means for preventing leakage of the lithium ion battery. 前記電解液を冷却凝固する手段は、前記投入口から前記電解液を冷却凝固する温度の液化不燃性ガスを注入及び又は凝固不燃性ガスを投入することを特徴とする請求項1に記載のリチウムイオン電池の冷却保管容器。   2. The lithium according to claim 1, wherein the means for cooling and solidifying the electrolytic solution injects a liquefied incombustible gas having a temperature for cooling and solidifying the electrolytic solution from the charging port and / or inputs a solidified incombustible gas. Ion battery cooling storage container. 前記電解液の固化状態を維持する手段は、前記冷却保管容器の底、上蓋、及び側面の壁を少なくとも2重の断熱材で構成する多重壁構造を備え、前記冷却保管容器の外壁と少なくとも一つの内壁間の間隙に、又は該内壁間の間隙に、前記液化不燃性ガス及び又は不燃性ガスが充填されることを特徴とする請求項1又は2に記載のリチウムイオン電池の冷却保管容器。   The means for maintaining the solidified state of the electrolytic solution includes a multi-wall structure in which the bottom, top cover, and side walls of the cooling storage container are formed of at least a double heat insulating material, and at least one of the outer wall of the cooling storage container. 3. The cooling storage container for a lithium ion battery according to claim 1, wherein the liquefied incombustible gas and / or the incombustible gas is filled in a gap between two inner walls or a gap between the inner walls. 前記冷却保管容器の内部に、前記リチウムイオン電池を収納する脱着可能な少なくとも1個の上方が開いた内容器を備えることを特徴とする請求項1乃至3のいずれか1項に記載のリチウムイオン電池の冷却保管容器。   4. The lithium ion according to claim 1, further comprising at least one detachable inner container in which the lithium ion battery is accommodated inside the cold storage container. 5. Battery storage container. 前記内容器にドライアイスを投入することにより、前記冷却保管容器及び前記内容器内を空気より重い二酸化炭素で充満させ、かつ前記電解液の冷却凝固を維持することを特徴とする請求項1乃至4のいずれか1項に記載のリチウムイオン電池の冷却保管容器。   The dry storage container and the inner container are filled with carbon dioxide heavier than air by charging dry ice into the inner container, and cooling and solidification of the electrolyte solution is maintained. The cooling storage container for the lithium ion battery according to any one of 4. 前記冷却保管容器の外壁の外蓋に設けた第1の投入口と、前記少なくとも一つの内壁の内蓋に設けた第2の投入口と、前記内容器の上方と、が上下垂直に繋がる前記投入口であって、前記外蓋に設けられた第1の投入口は、弾性体の変形により開口する蓋であり、前記内蓋に設けた第2の投入口は、開閉蓋であることを特徴とする請求項1乃至5のいずれか1項に記載のリチウムイオン電池の冷却保管容器。   The first input port provided in the outer lid of the outer wall of the cooling storage container, the second input port provided in the inner cover of the at least one inner wall, and the upper side of the inner container are vertically connected to each other The first inlet provided in the outer lid is a lid opened by deformation of the elastic body, and the second inlet provided in the inner lid is an opening / closing lid. The cooled storage container for a lithium ion battery according to any one of claims 1 to 5. 前記低温気体の外部への漏れを防ぐ投入口の開閉手段は、前記外蓋に設けられた第1の投入口に、前記液化不燃性ガスの注入ロート、前記ドライアイス、及び前記リチウムイオン電池を押し込むときに、前記弾性体蓋の変形により口が開き、前記内蓋に設けられた第2の投入口に、投下されたときに、前記ドライアイス、及び前記リチウムイオン電池の重み及び又は押し込む力で前記開閉蓋が開き、通過後は弾性体により閉じる、ことを特徴とする請求項1乃至6のいずれか1項に記載のリチウムイオン電池の冷却保管容器。   The inlet opening / closing means for preventing leakage of the low temperature gas to the outside includes the liquefied incombustible gas injection funnel, the dry ice, and the lithium ion battery in the first inlet provided in the outer lid. When pushed, the mouth opens due to deformation of the elastic lid, and when dropped into the second slot provided in the inner lid, the weight of the dry ice and the lithium ion battery and / or the pushing force The lithium ion battery cooling storage container according to any one of claims 1 to 6, wherein the opening / closing lid is opened and closed by an elastic body after passing. 前記内蓋に設けた第2の投入口の前記開閉蓋は、前記液化不燃性ガスの注入開始時には開かず、前記外蓋と前記内蓋の間、及び前記内壁間の前記間隙に流れることを特徴とする請求項1乃至7のいずれか1項に記載のリチウムイオン電池の冷却保管容器。   The opening / closing lid of the second inlet provided in the inner lid does not open at the start of the injection of the liquefied incombustible gas, and flows into the gap between the outer lid and the inner lid and between the inner walls. The lithium ion battery cooled storage container according to any one of claims 1 to 7. 前記リチウムイオン電池の電解液の冷却凝固温度の雰囲気において、前記冷却保管容器の内部に設置された前記内容器の間に、及び又は内容器の周囲の空間に緩衝材を充填することを特徴とする請求項1乃至8のいずれか1項に記載のリチウムイオン電池の冷却保管容器。   In the atmosphere of the cooling and solidification temperature of the electrolyte solution of the lithium ion battery, a buffer material is filled between and / or in the space around the inner container installed in the cold storage container. The cooling storage container for a lithium ion battery according to any one of claims 1 to 8. 前記投入口は、投下する前記リチウムイオン電池の形状に合わせた形態を有し、前記外蓋及び前記内蓋から脱着可能な部品であることを特徴とする請求項1乃至9のいずれか1項に記載のリチウムイオン電池の冷却保管容器。   The said insertion port has a form according to the shape of the said lithium ion battery to drop, and is a component which can be attached or detached from the said outer lid | cover and the said inner lid | cover. A cooling storage container for the lithium ion battery according to 1. 前記外蓋及び前記内蓋は、前記冷却保管容器から脱着可能であることを特徴とする請求項1乃至10のいずれか1項に記載のリチウムイオン電池の冷却保管容器。   11. The cold storage container for a lithium ion battery according to claim 1, wherein the outer cover and the inner cover are detachable from the cold storage container. 11.
JP2008256964A 2008-10-02 2008-10-02 Storage container for used battery Pending JP2010086885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008256964A JP2010086885A (en) 2008-10-02 2008-10-02 Storage container for used battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256964A JP2010086885A (en) 2008-10-02 2008-10-02 Storage container for used battery

Publications (1)

Publication Number Publication Date
JP2010086885A true JP2010086885A (en) 2010-04-15

Family

ID=42250635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256964A Pending JP2010086885A (en) 2008-10-02 2008-10-02 Storage container for used battery

Country Status (1)

Country Link
JP (1) JP2010086885A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051609A (en) * 2010-08-31 2012-03-15 Furuno Electric Co Ltd Insulation storage, voyage data recording unit, and voyage data recording device
JP2012059564A (en) * 2010-09-09 2012-03-22 Sumitomo Metal Mining Co Ltd Method for reusing waste lithium-ion battery electrolyte
JP2012174341A (en) * 2011-02-17 2012-09-10 Toyota Motor Corp Battery
JP2013045597A (en) * 2011-08-23 2013-03-04 Hitachi Koki Co Ltd Power supply device
CN103915588A (en) * 2014-04-23 2014-07-09 昆山市大久电子有限公司 Storage battery box with automatic cooling function
JP2014529859A (en) * 2011-08-22 2014-11-13 フェデラル−モーグル パワートレイン インコーポレイテッドFederal−Mogul Powertrain, Inc. Non-woven battery cover that is flexible green and its construction method
GB2519290A (en) * 2013-10-14 2015-04-22 Lacuna & Co Eco Solutions Ltd Fire retardant container for insulation use
WO2015158042A1 (en) * 2014-04-14 2015-10-22 浙江君飞科技有限公司 Storage battery with fireproof feature
US9345156B2 (en) 2011-08-23 2016-05-17 Hitachi Koki Co., Ltd. Power supply device
JP2017523576A (en) * 2014-07-29 2017-08-17 ゲニウス パテントフェアヴェルトゥング ゲーエムベーハー ウント コンパニー カーゲーGenius Patentverwertung Gmbh & Co. Kg Apparatus and method for transporting galvanic cells
CN108565114A (en) * 2018-05-18 2018-09-21 长兴金新电子有限公司 A kind of aluminium electrolutic capacitor with anti-electrolyte volatilization function
CN108682758A (en) * 2018-06-11 2018-10-19 四会市恒星智能科技有限公司 A kind of method that duration reduces temperature rise in accumulator use
JP2019140082A (en) * 2018-02-06 2019-08-22 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Battery module
US10502794B2 (en) * 2018-03-05 2019-12-10 Lg Chem, Ltd. Method and system for predicting the time required for low voltage expression of a secondary battery, and aging method of the secondary battery using the same
CN111564588A (en) * 2020-05-26 2020-08-21 西安电子科技大学芜湖研究院 High-efficient radiating fire prevention anticollision car lithium cell
CN111762456A (en) * 2020-06-22 2020-10-13 中国科学院电工研究所 Electrical equipment sealed cabin system with nitrogen gas directional temperature control function
KR102250245B1 (en) * 2020-12-30 2021-05-10 연세대학교 산학협력단 Apparatus and Method for safe handling and transportation of end-of-life waste lithium-ion batteries
CN114751115A (en) * 2022-04-08 2022-07-15 深圳市天赋新能源科技有限公司 New energy battery recovery device based on Internet of things and implementation method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051609A (en) * 2010-08-31 2012-03-15 Furuno Electric Co Ltd Insulation storage, voyage data recording unit, and voyage data recording device
JP2012059564A (en) * 2010-09-09 2012-03-22 Sumitomo Metal Mining Co Ltd Method for reusing waste lithium-ion battery electrolyte
JP2012174341A (en) * 2011-02-17 2012-09-10 Toyota Motor Corp Battery
KR102020843B1 (en) * 2011-08-22 2019-11-04 페더럴-모걸 파워트레인 엘엘씨 Flexible green nonwoven battery cover and method of construction thereof
JP2014529859A (en) * 2011-08-22 2014-11-13 フェデラル−モーグル パワートレイン インコーポレイテッドFederal−Mogul Powertrain, Inc. Non-woven battery cover that is flexible green and its construction method
KR20150004789A (en) * 2011-08-22 2015-01-13 페더럴-모걸 파워트레인, 인코포레이티드 Flexible green nonwoven battery cover and method of construction thereof
US10367177B2 (en) 2011-08-22 2019-07-30 Federal-Mogul Powertrain Llc Flexible green nonwoven battery cover and method of construction thereof
JP2013045597A (en) * 2011-08-23 2013-03-04 Hitachi Koki Co Ltd Power supply device
US9345156B2 (en) 2011-08-23 2016-05-17 Hitachi Koki Co., Ltd. Power supply device
GB2519290A (en) * 2013-10-14 2015-04-22 Lacuna & Co Eco Solutions Ltd Fire retardant container for insulation use
WO2015158042A1 (en) * 2014-04-14 2015-10-22 浙江君飞科技有限公司 Storage battery with fireproof feature
CN103915588A (en) * 2014-04-23 2014-07-09 昆山市大久电子有限公司 Storage battery box with automatic cooling function
JP2017523576A (en) * 2014-07-29 2017-08-17 ゲニウス パテントフェアヴェルトゥング ゲーエムベーハー ウント コンパニー カーゲーGenius Patentverwertung Gmbh & Co. Kg Apparatus and method for transporting galvanic cells
JP2019140082A (en) * 2018-02-06 2019-08-22 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Battery module
US10502794B2 (en) * 2018-03-05 2019-12-10 Lg Chem, Ltd. Method and system for predicting the time required for low voltage expression of a secondary battery, and aging method of the secondary battery using the same
CN108565114A (en) * 2018-05-18 2018-09-21 长兴金新电子有限公司 A kind of aluminium electrolutic capacitor with anti-electrolyte volatilization function
CN108565114B (en) * 2018-05-18 2024-06-04 云南神火铝业有限公司 Aluminum electrolytic capacitor with electrolyte volatilization prevention function
CN108682758A (en) * 2018-06-11 2018-10-19 四会市恒星智能科技有限公司 A kind of method that duration reduces temperature rise in accumulator use
CN111564588B (en) * 2020-05-26 2022-04-22 西安电子科技大学芜湖研究院 High-efficient radiating fire prevention anticollision car lithium cell
CN111564588A (en) * 2020-05-26 2020-08-21 西安电子科技大学芜湖研究院 High-efficient radiating fire prevention anticollision car lithium cell
CN111762456A (en) * 2020-06-22 2020-10-13 中国科学院电工研究所 Electrical equipment sealed cabin system with nitrogen gas directional temperature control function
CN111762456B (en) * 2020-06-22 2022-07-22 中国科学院电工研究所 Electrical equipment sealed cabin system with nitrogen gas directional temperature control function
KR102250245B1 (en) * 2020-12-30 2021-05-10 연세대학교 산학협력단 Apparatus and Method for safe handling and transportation of end-of-life waste lithium-ion batteries
WO2022146013A1 (en) * 2020-12-30 2022-07-07 연세대학교 산학협력단 Storage device and method for safe transport of waste secondary battery
CN114751115A (en) * 2022-04-08 2022-07-15 深圳市天赋新能源科技有限公司 New energy battery recovery device based on Internet of things and implementation method

Similar Documents

Publication Publication Date Title
JP2010086885A (en) Storage container for used battery
Liu et al. Experimental study on the efficiency of dodecafluoro-2-methylpentan-3-one on suppressing lithium-ion battery fires
US11101522B2 (en) Methods of inerting lithium-containing batteries and associated containers
Xu et al. Mitigation strategies for Li-ion battery thermal runaway: A review
JP4907362B2 (en) Medium or large battery pack with safety device
CN103931019B (en) Improve the battery module of safety and include the set of cells of this battery module
KR102250161B1 (en) Battery module with improved safety and Battery pack comprising the
CN105849933A (en) Portable electrical energy storage device with thermal runaway mitigation
CN112103444B (en) Battery, electric equipment and manufacturing method of battery
CN109088109A (en) Safety battery
JPH07226232A (en) Non-aqueous electrolyte secondary battery and power source device
Quintiere et al. Literature Review: Packaging Technique to Defeat Fires and Explosions due to Lithium-ion and Related High-Energy-Density Batteries
CN217182277U (en) Energy storage prefabricated box and battery replacement station
JP2001257006A (en) Battery system, industrial system equipped with battery system and mobile structure
KR102250245B1 (en) Apparatus and Method for safe handling and transportation of end-of-life waste lithium-ion batteries
CN108394635A (en) A kind of dedicated lithium battery storage box of aircraft
CN112952177A (en) Power battery fire suppression device and power battery
JP7558615B2 (en) Battery pack including heat diffusion suppression structure
KR20240003650A (en) Thermal runaway prevention Power Bank
CN208706799U (en) Safety battery
JP2010140788A (en) Used battery storage vessel
CN208102755U (en) A kind of dedicated lithium battery storage box of aircraft
JP4789295B2 (en) Sealed battery
CN218944201U (en) Hidden immersed fire-retarding device and energy storage system
KR20240121009A (en) Container for transporting waste batteries