JP2010084783A - Hydrogen storage container - Google Patents

Hydrogen storage container Download PDF

Info

Publication number
JP2010084783A
JP2010084783A JP2008251269A JP2008251269A JP2010084783A JP 2010084783 A JP2010084783 A JP 2010084783A JP 2008251269 A JP2008251269 A JP 2008251269A JP 2008251269 A JP2008251269 A JP 2008251269A JP 2010084783 A JP2010084783 A JP 2010084783A
Authority
JP
Japan
Prior art keywords
hydrogen storage
cylindrical tube
heat transfer
hydrogen
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008251269A
Other languages
Japanese (ja)
Inventor
Kenji Kibune
研児 木船
Koji Yasuo
耕司 安尾
Takahiro Isono
隆博 礒野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008251269A priority Critical patent/JP2010084783A/en
Publication of JP2010084783A publication Critical patent/JP2010084783A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage container capable of quickly storing and discharging hydrogen by improving diffusing performance of hydrogen. <P>SOLUTION: The hydrogen storage container 10 includes: a container including a barrel part 24; a cylindrical tube 30; a thermoconductive plate 40; and a composite material 50 including a hydrogen storage alloy. The cylindrical tube 30 is a cylindrical hollow tube, andt has a function as a center shaft or a winding core for winding up the thermoconductive plate 40. A plurality of openings 31 are provided in a side surface of the cylindrical tube 30. The thermoconductive plate 40 is housed in a container 20 in the state of being spirally wound around the cylindrical tube 30. The thermoconductive plate 40 is coated with the composite material 50 including a hydrogen storage alloy to prevent through-holes 41 from being blocked. A plurality of through-holes 41 are arranged to structure one part of a gas passage communicating from the center of the container 20 in the radial direction, corresponding to each opening 31 provided in the cylindrical tube 30, in the state of winding the thermoconductive plate 40 around the cylindrical tube 30. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水素を吸蔵または放出する水素吸蔵合金を収容する水素貯蔵容器に関する。   The present invention relates to a hydrogen storage container that contains a hydrogen storage alloy that stores or releases hydrogen.

近年、地球環境問題に対する関心の高まりから、クリーンな石油代替エネルギーとして、水素の重要性が非常に大きくなっている。たとえば、水素と空気中の酸素とを化学反応させて発電させる燃料電池は、自動車用の動力源、家庭用電力供給源から、携帯電話、ノートパソコン、PDA等の移動情報端末などのポータブル電源やモバイル電源に至るまで適用が検討されている。   In recent years, with the growing interest in global environmental problems, the importance of hydrogen as a clean petroleum alternative energy has become very large. For example, fuel cells that generate electricity by chemically reacting hydrogen with oxygen in the air are used in portable power supplies such as mobile information terminals such as mobile phones, notebook computers, and PDAs from automobile power sources and household power supply sources. Application to mobile power supply is being studied.

水素は、一般的に、天然ガス、ナフサ、液化石油ガス、メタノール等の炭化水素燃料を改質し、水素が主成分の燃料ガスに変換されることにより得られる。この他、太陽電池などによる発電エネルーによって水を電気分解することや、金属化合物などを酸、アルカリと反応させることで水素を取り出すなどの手段が考案されている。   Hydrogen is generally obtained by reforming a hydrocarbon fuel such as natural gas, naphtha, liquefied petroleum gas, methanol, etc., and converting the hydrogen into a main fuel gas. In addition, means have been devised such as electrolyzing water with a power generation energy such as a solar cell, and taking out hydrogen by reacting a metal compound with an acid or alkali.

しかし、水素は通常の温度では気体であり、高圧水素タンクや液化水素タンクでは、水素充填量が限定され、タンク重量が重くなるほか、大がかりな改質装置や化学反応の制御によって水素を必要に応じて利用することが要求され、特にポータブル電源やモバイル機器用電源としての燃料電池への適用が困難であった。   However, hydrogen is a gas at normal temperatures, and in high-pressure hydrogen tanks and liquefied hydrogen tanks, the hydrogen filling amount is limited, the tank weight increases, and hydrogen is required by controlling large-scale reformers and chemical reactions. Therefore, it has been difficult to apply to a fuel cell as a portable power source or a power source for mobile devices.

そこで、水素ガスを低圧状態で貯蔵できる水素吸蔵合金に吸蔵し、貯蔵・輸送できる水素吸蔵合金タンクの開発が進められている。水素吸蔵合金材料として、LaNi合金などが挙げられる。LaNi合金は水素解離圧力が常温で0.1MPa程度であることから、高価な耐圧容器が不要なことや、1MPa以下の比較的低圧で水素の吸蔵放出が可能であるなどの利点を有する。 Therefore, development of hydrogen storage alloy tanks that store, transport and store hydrogen gas in a hydrogen storage alloy that can be stored in a low-pressure state is underway. Examples of the hydrogen storage alloy material include LaNi 5 alloy. Since the LaNi 5 alloy has a hydrogen dissociation pressure of about 0.1 MPa at room temperature, it has advantages such that an expensive pressure-resistant vessel is unnecessary and that hydrogen can be stored and released at a relatively low pressure of 1 MPa or less.

ここで、水素吸蔵合金を容器に収容する方法として、大きく2つの方式が挙げられる。一つは、水素吸蔵合金粉末を容器に充填する方法であり、もう一つの方法は、水や結着剤などと水素吸蔵合金粉末を混練してペースト状にしたうえで、金属板や多孔質金属に塗布して充填し、捲回あるいは積層した状態で容器に収納する方法である。   Here, there are roughly two methods for accommodating the hydrogen storage alloy in the container. One is a method of filling the container with hydrogen storage alloy powder, and the other is a method of kneading the hydrogen storage alloy powder with water, a binder or the like to make a paste, and then using a metal plate or porous material. It is a method in which a metal is applied and filled, and stored in a container in a wound or laminated state.

水素吸蔵合金粉末を充填する方法は、容器に水素吸蔵合金粉末を充填するという簡易的な方法があり、水素吸蔵・放出時においても、粒子間の隙間より水素ガスの拡散がしやすいという利点がある。しかし、水素吸蔵合金は水素ガスの吸蔵・放出において体積が膨張または収縮し、その繰り返しによって微粉化する。微粉化した金属粉末は、水素吸蔵時の水素がガス圧によってタンクの奥へ押しやられ、微粉化した粉末の分布が場所的、粒度的に異なることにより、吸蔵時の膨張によるタンク壁への応力と発熱反応による熱応力が局所的に集中することになる。この結果、水素吸蔵と放出を繰り返した結果、タンク壁は応力サイクルによって疲労破壊するという問題があった。   The method of filling the hydrogen storage alloy powder has a simple method of filling the container with the hydrogen storage alloy powder, and has the advantage that hydrogen gas is more easily diffused through the gaps between the particles even during storage and release of hydrogen. is there. However, the hydrogen storage alloy expands or contracts in volume when hydrogen gas is stored and released, and is pulverized by repetition of the repetition. Micronized metal powder has a stress applied to the tank wall due to expansion during occlusion because the hydrogen during hydrogen occlusion is pushed deep into the tank by the gas pressure and the distribution of the finely divided powder differs in terms of location and particle size. And the thermal stress due to the exothermic reaction is concentrated locally. As a result, as a result of repeated hydrogen storage and release, there was a problem that the tank wall was fatigued by stress cycles.

一方、溶媒や結着剤などと水素吸蔵合金粉末とを混練してペースト状にし、金属板や多孔質金属に塗布して充填し、捲回あるいは積層した状態で容器に収納する方法は、水素吸蔵合金微粉化から生ずる、タンクの疲労破壊を回避する有効な方法である。また、捲回する方式は、化学電池で利用されており、応用しやすいという利点がある。   On the other hand, a method in which a solvent, a binder, etc. and hydrogen storage alloy powder are kneaded into a paste, applied to a metal plate or porous metal, filled, and stored in a container in a wound or laminated state is a hydrogen This is an effective method for avoiding the fatigue failure of the tank resulting from the pulverization of the occluded alloy. Further, the winding method is used in chemical batteries and has the advantage of being easy to apply.

そこで、特許文献1または特許文献2のように、水素吸蔵合金を水や結着剤などと混練してペースト状(合材とよぶ)にし、パンチングメタルやエクスパンドメタルなどの金属製薄板に塗布あるいは金属製多孔体の空隙内に水素吸蔵合金を充填し、加圧成形して得られたシートを渦巻き状にして円筒容器に収容する方法が開示されている。
特開平6−140033号公報 特開平8−296798号公報
Therefore, as in Patent Document 1 or Patent Document 2, the hydrogen storage alloy is kneaded with water or a binder to form a paste (called a composite material), which is applied to a thin metal plate such as punching metal or expanded metal, or A method is disclosed in which a hydrogen storage alloy is filled in a void of a metal porous body, and a sheet obtained by pressure forming is spirally accommodated in a cylindrical container.
JP-A-6-140033 JP-A-8-296798

特許文献1や特許文献2に開示された方法では、ペーストを塗布した基板表面は結着剤などを含んでいるため、水素吸蔵合金粉末単体よりも熱伝導性が良くない。さらに、捲回や積層の方法では、シート間の接触面積が積層方向の伝熱量を左右する。水素を急激に吸蔵・放出する場合には、熱を急速に除去あるいは供給する必要があるが、この課題に対してシート間の接触状態を良くする目的で圧力をかけながらシートを捲回、積層する必要があった。   In the methods disclosed in Patent Document 1 and Patent Document 2, since the substrate surface to which the paste is applied contains a binder or the like, the thermal conductivity is not as good as that of the hydrogen storage alloy powder alone. Furthermore, in the winding and laminating method, the contact area between the sheets affects the heat transfer amount in the laminating direction. When storing and releasing hydrogen rapidly, it is necessary to rapidly remove or supply heat. To this problem, the sheets are wound and laminated while applying pressure to improve the contact between the sheets. There was a need to do.

しかし、圧力をかけながらシートを捲回、積層することによって、合材が圧縮されて容器に収容されることになるため、水素の通過する経路が減少し、水素の拡散性が悪化するという課題が発生している。   However, by rolling and laminating the sheets while applying pressure, the composite material is compressed and accommodated in the container, so that the path through which hydrogen passes is reduced and the hydrogen diffusibility deteriorates. Has occurred.

また、金属製多孔体に多量の水素吸蔵合金を充填させる場合には、金属製薄板に塗布する場合と比較して、多孔体の利用率が100%でないことから水素ガスの拡散性は良いものの以下のような問題がある。すなわち、金属製多孔質材料は、一般に、ニッケル水素電池で用いられている発泡状ニッケルシートに代表されるような発泡金属である。この発泡金属は、高コストであることが問題であるほか、機械的強度が弱く柔軟性に欠ける面があり、たとえば、電極合材を塗り込んだ前述の発泡状ニッケルシートに、水素吸蔵合金を充填して捲回した際に、発泡状ニッケルシートが折損するという課題があった。   In addition, when filling a metal porous body with a large amount of hydrogen storage alloy, the utilization rate of the porous body is not 100% compared to the case where it is applied to a metal thin plate, but the diffusibility of hydrogen gas is good. There are the following problems. That is, the metal porous material is generally a foam metal represented by a foamed nickel sheet used in a nickel metal hydride battery. This foam metal has a problem that it is expensive and has a surface that is weak in mechanical strength and lacks flexibility. For example, a hydrogen storage alloy is applied to the foamed nickel sheet coated with the electrode mixture. When filled and wound, there was a problem that the foamed nickel sheet was broken.

本発明はこうした課題に鑑みてなされたものであり、その目的は、安価で容易に製造可能な、伝熱板が捲回されて収められている円筒形の容器に水素吸蔵合金が充填されている水素貯蔵容器において、水素の拡散性を高め、容器全体で水素の吸蔵・放出反応を均一にすることで、急速な水素吸蔵反応・放出を実現する水素貯蔵容器の提供にある。   The present invention has been made in view of these problems, and its object is to provide a hydrogen-absorbing alloy filled in a cylindrical container in which a heat transfer plate is wound and stored, which can be easily manufactured at low cost. It is an object of the present invention to provide a hydrogen storage container that realizes a rapid hydrogen storage reaction / release by increasing the hydrogen diffusibility and making the hydrogen storage / release reaction uniform throughout the container.

本発明のある態様は、水素貯蔵容器である。当該水素貯蔵容器は、筒状の収容部材と、水素を流通させるための複数の貫通孔が設けられ、捲回した状態で収容部材に収容された伝熱板と、伝熱板に塗布された水素吸蔵合金と、を備え、複数の貫通孔は、捲回された伝熱板の積層方向において連通する気体流路の一部を構成することを特徴とする。
上記態様によれば、収容部材に伝熱板が捲回されて収容されているため、収容部材内部の伝熱性を向上させることができる。また、伝熱板には、収容部材の中心軸から収容部材の半径方向に向けて、貫通孔により形成された気体流路が形成されているため、捲回された伝熱板の一方の側から他方の側への水素の流通が容易となり、収容部材の半径方向の水素の拡散性が向上する。
One embodiment of the present invention is a hydrogen storage container. The hydrogen storage container is provided with a cylindrical housing member and a plurality of through holes for circulating hydrogen, and is applied to the heat transfer plate accommodated in the housing member in a wound state. And a plurality of through holes constitute a part of a gas flow path communicating in the stacking direction of the wound heat transfer plates.
According to the said aspect, since the heat exchanger plate is wound and accommodated by the accommodating member, the heat conductivity inside an accommodating member can be improved. Moreover, since the gas flow path formed by the through-hole is formed in the heat transfer plate from the central axis of the storage member toward the radial direction of the storage member, one side of the wound heat transfer plate From one side to the other side is facilitated, and the hydrogen diffusibility in the radial direction of the housing member is improved.

上記態様の水素貯蔵容器において、水素吸蔵合金は、複数の貫通孔を閉塞しないように伝熱板に塗布されていてもよい。   In the hydrogen storage container of the above aspect, the hydrogen storage alloy may be applied to the heat transfer plate so as not to close the plurality of through holes.

また、上記態様の水素貯蔵容器において、収容部材の軸方向に沿って収容部材に収められ、側面に複数の開口が設けられた中空の筒状の管をさらに備え、筒状の管は、収容部材の外部へ接続される管とガス気密に固定されており、伝熱板は、筒状の管の周りに捲回されており、気体流路は、個々の開口に対応して、捲回された伝熱板の積層方向にそれぞれ設けられていてもよい。この場合、気体流路は、個々の開口に対応しない位置に、捲回された伝熱板の積層方向に併設されていてもよい。また、筒状の管は、外部と前記収容部材の内部とを接続する管と一体となっていてもよい。   Further, the hydrogen storage container according to the above aspect further includes a hollow cylindrical tube that is housed in the storage member along the axial direction of the storage member and that has a plurality of openings on the side surface. The pipe connected to the outside of the member is gas-tightly fixed, the heat transfer plate is wound around the cylindrical pipe, and the gas flow path is wound around corresponding to each opening. Each of the heat transfer plates may be provided in the stacking direction. In this case, the gas flow path may be provided in the stacking direction of the wound heat transfer plates at a position not corresponding to each opening. Moreover, the cylindrical pipe | tube may be united with the pipe | tube which connects the exterior and the inside of the said accommodating member.

本発明によれば、水素貯蔵容器において、伝熱性と、水素の拡散性を高め、容器全体で水素の吸蔵・放出反応を均一にすることで、急速な水素吸蔵反応・放出を実現することができる。また、水素吸蔵合金をペースト状にして、伝熱板に塗布することにより、従来の水素吸蔵合金粉末を充填する際に問題となっている微粉化を抑制することができる。   According to the present invention, in a hydrogen storage container, it is possible to realize rapid hydrogen storage reaction / release by enhancing heat transfer and hydrogen diffusibility and making the hydrogen storage / release reaction uniform throughout the container. it can. Moreover, by making the hydrogen storage alloy into a paste and applying it to the heat transfer plate, it is possible to suppress pulverization which is a problem when filling the conventional hydrogen storage alloy powder.

発明を実施するための一形態An embodiment for carrying out the invention

以下、本発明の実施の形態を図面を参照して説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

(実施の形態1)
図1は、実施の形態1に係る水素貯蔵容器10の外観を示す斜視図である。図2は、実施の形態1に係る水素貯蔵容器10の外観を示す側面図である。図2(B)は、図2(A)の側面図に示したA−A’線に沿った断面図である。水素貯蔵容器10は、容器20、円筒管30、伝熱板40および水素吸蔵合金を含む合材50を備える。
(Embodiment 1)
FIG. 1 is a perspective view showing an appearance of a hydrogen storage container 10 according to the first embodiment. FIG. 2 is a side view showing an appearance of the hydrogen storage container 10 according to the first embodiment. FIG. 2B is a cross-sectional view along the line AA ′ shown in the side view of FIG. The hydrogen storage container 10 includes a container 20, a cylindrical tube 30, a heat transfer plate 40, and a composite material 50 including a hydrogen storage alloy.

容器20は、底部22、中空状の胴部24および蓋部26からなり、剛性および伝熱性を有する。容器20を構成する材料としては、たとえば、ニッケルめっきした鋼板などの金属が挙げられる。   The container 20 includes a bottom part 22, a hollow body part 24, and a lid part 26, and has rigidity and heat conductivity. Examples of the material constituting the container 20 include metals such as nickel-plated steel plates.

底部22は、胴部24の直径とほぼ等しい円盤状の部材である。底部22の周縁部分は、胴部24の一方の端部と溶接などにより接合されており、容器20の気密性が保たれている。   The bottom portion 22 is a disk-shaped member that is substantially equal to the diameter of the body portion 24. The peripheral portion of the bottom portion 22 is joined to one end portion of the body portion 24 by welding or the like, so that the airtightness of the container 20 is maintained.

蓋部26は、胴部24の直径とほぼ等しい円盤状の部材に気体流路27が設けられた接続部28が配設された構造を有する。気体流路27を経由して、水素ボンベなどの外部から水素貯蔵容器10に収容された水素吸蔵合金に吸蔵させる水素が流入する。また、気体流路27を経由して、水素吸蔵合金から放出された水素が燃料電池へ送出される。蓋部26の周縁部分は、胴部24の他方の端部と溶接などにより接合されており、容器20の気密性が保たれている。なお、接続部28は、水素の供給先である燃料電池に設けられた水素受け入れ口および水素の供給元である水素ボンベなどの水素貯蔵部材に設けられた受け入れ口に接続可能であり、接続することによって気体流路27を介して水素の流通が可能になるような開閉機構を備える。また、図示されていないが、水素が吸蔵され密閉された状態で温度が高くなった場合には、容器内部のガス圧力が高くなる。容器の破裂防止等のため、高圧ガスの開放弁としての安全弁が設けられている。   The lid part 26 has a structure in which a connection part 28 provided with a gas flow path 27 is disposed on a disk-like member substantially equal to the diameter of the body part 24. Through the gas flow path 27, hydrogen to be stored in the hydrogen storage alloy accommodated in the hydrogen storage container 10 flows from the outside such as a hydrogen cylinder. Further, hydrogen released from the hydrogen storage alloy is sent to the fuel cell via the gas flow path 27. The peripheral edge portion of the lid portion 26 is joined to the other end portion of the body portion 24 by welding or the like, so that the airtightness of the container 20 is maintained. The connecting portion 28 can be connected to and connected to a hydrogen receiving port provided in a fuel cell that is a hydrogen supply destination and a receiving port provided in a hydrogen storage member such as a hydrogen cylinder that is a hydrogen supply source. Thus, an opening / closing mechanism is provided so that hydrogen can be circulated through the gas flow path 27. Although not shown, when the temperature rises in a state where hydrogen is occluded and sealed, the gas pressure inside the container increases. In order to prevent the container from bursting, a safety valve is provided as a high pressure gas release valve.

円筒管30は、円筒状の中空管であり、伝熱板40を捲回するための中心軸または巻き芯の役割を有する。円筒管30の側面には、複数の開口31が設けられている。開口31の数および配置は、特に限定されないが、円筒管30の側面方向の水素の流通を均一化する観点から円筒管30の周方向および軸方向に等間隔に設けられていることが望ましい。円筒管30は、伝熱性が良好であれば材料は限定されないが、たとえば、銅やアルミニウムなどの金属が好適である。銅は無酸素銅など耐水素脆化材料を使用するのが望ましい。   The cylindrical tube 30 is a cylindrical hollow tube and serves as a central axis or a winding core for winding the heat transfer plate 40. A plurality of openings 31 are provided on the side surface of the cylindrical tube 30. The number and arrangement of the openings 31 are not particularly limited, but are desirably provided at equal intervals in the circumferential direction and the axial direction of the cylindrical tube 30 from the viewpoint of equalizing the hydrogen flow in the side surface direction of the cylindrical tube 30. The material of the cylindrical tube 30 is not limited as long as the heat conductivity is good, but for example, a metal such as copper or aluminum is suitable. As for copper, it is desirable to use a hydrogen embrittlement resistant material such as oxygen-free copper.

円筒管30は、胴部24の中心軸に沿って設けられており、円筒管30の一方の端部は、底部22に接合されている。円筒管30を底部22に接合する方法としては、溶接のほか、底部22に設けた突起に円筒管30の一方の端部を嵌め込むことが挙げられる。これにより、円筒管30から底部22への熱伝導が可能になり、容器20の内部と外部との熱のやりとりを容易にすることができる。   The cylindrical tube 30 is provided along the central axis of the body portion 24, and one end portion of the cylindrical tube 30 is joined to the bottom portion 22. As a method of joining the cylindrical tube 30 to the bottom portion 22, in addition to welding, one end portion of the cylindrical tube 30 is fitted into a protrusion provided on the bottom portion 22. Thereby, heat conduction from the cylindrical tube 30 to the bottom portion 22 becomes possible, and heat exchange between the inside and the outside of the container 20 can be facilitated.

また、円筒管30の他方の端部は、蓋部26に接合されている。円筒管30を蓋部26に接合する方法としては、溶接のほか、気体流路27の周囲に沿って蓋部26に設けられた円状の突起(図示せず)に円筒管30の他方の端部を嵌め込むことが挙げられる。溶接の場合は、より強固に接合することができ、容器20の変形を防止する補強効果も得られる。これらの接合により、円筒管30から蓋部26への熱伝導が可能になり、容器20の内部と外部との熱のやりとりを容易にすることができる。なお、円筒管30の他方の端部は開口しており、蓋部26に設けられた気体流路27と連通している。以上のように、円筒管30は、後述する伝熱板40を捲回するための巻き中心としての機能と、水素吸蔵合金に吸蔵する水素、または水素吸蔵合金から放出される水素が流通する流通路としての機能と、容器20の内部と外部との間の熱伝導を促進する機能と、を併せ持つ。また、円筒管30と蓋部26と接続部28とを一個の部品にしてもよい。円筒管30と蓋部26と接続部28と一体化することにより、円筒管30と蓋部26との溶接、嵌め合わせ作業を省略でき、かつ気体流路27と円筒管30とが連通することが可能になる。   The other end of the cylindrical tube 30 is joined to the lid portion 26. As a method of joining the cylindrical tube 30 to the lid portion 26, in addition to welding, a circular protrusion (not shown) provided on the lid portion 26 along the periphery of the gas flow path 27 is used for the other side of the cylindrical tube 30. For example, the end portion may be fitted. In the case of welding, it can join more firmly and the reinforcement effect which prevents the deformation | transformation of the container 20 is also acquired. By these joining, heat conduction from the cylindrical tube 30 to the lid portion 26 becomes possible, and heat exchange between the inside and the outside of the container 20 can be facilitated. The other end of the cylindrical tube 30 is open and communicates with a gas flow path 27 provided in the lid portion 26. As described above, the cylindrical tube 30 has a function as a winding center for winding the heat transfer plate 40 described later, and a flow through which hydrogen stored in the hydrogen storage alloy or hydrogen released from the hydrogen storage alloy flows. It has both a function as a path and a function of promoting heat conduction between the inside and the outside of the container 20. Further, the cylindrical tube 30, the lid portion 26, and the connection portion 28 may be formed as one component. By integrating the cylindrical tube 30, the lid portion 26, and the connecting portion 28, welding and fitting work between the cylindrical tube 30 and the lid portion 26 can be omitted, and the gas flow path 27 and the cylindrical tube 30 communicate with each other. Is possible.

伝熱板40は、円筒管30に渦巻き状に捲回された状態で、容器20に収容されている。伝熱板40の巻き中心側(円筒管30側)の端部は、円筒管30と接合されている。これにより、円筒管30に捲回された伝熱板40にずれが生じることが抑制されている。伝熱板40を円筒管30に接合する方法としては、溶接が挙げられる。伝熱板40に用いられる材料としては、熱伝導性の良好な銅やアルミニウムなどが挙げられる。   The heat transfer plate 40 is accommodated in the container 20 while being wound around the cylindrical tube 30 in a spiral shape. The end of the heat transfer plate 40 on the winding center side (cylindrical tube 30 side) is joined to the cylindrical tube 30. Thereby, it is suppressed that a shift | offset | difference arises in the heat exchanger plate 40 wound by the cylindrical tube 30. FIG. As a method for joining the heat transfer plate 40 to the cylindrical tube 30, welding is mentioned. Examples of the material used for the heat transfer plate 40 include copper and aluminum having good thermal conductivity.

伝熱板40には、後述する貫通孔41を閉塞しないように水素吸蔵合金を含む合材50が塗布されている。以下の説明では、伝熱板40と合材50を合わせて合材シートと呼ぶことがある。この合材シートは、水素吸蔵合金粉末をカルボキシメチルセルロースやポリテトラフルオロエチレン(PTFE)などの結着剤、そして水を加えて混練してペースト状にして得られる合材50を、伝熱板40に塗布した後、乾燥しローラで加圧成形して作製される。伝熱板40としては、熱伝導性の良い銅やアルミニウム、ニッケル等の金属または合金が挙げられる。また、合材50に用いられる水素吸蔵合金としては、LaNi合金の他、ミッシュメタル系合金が挙げられる。水素吸蔵合金としては、熱伝導性の向上や微粉化抑制の観点から10〜30μmの粒子を用いることが好ましい。なお、伝熱板40と円筒管30との接合部分には合材50が塗布されておらず、伝熱板40が円筒管30に直に接合されている。また、胴部24の内壁に接する伝熱板40の最外周部分には、合材50が塗布されておらず、伝熱板40が胴部24の内壁に直に接触している。   The heat transfer plate 40 is coated with a composite material 50 containing a hydrogen storage alloy so as not to close a through hole 41 described later. In the following description, the heat transfer plate 40 and the composite material 50 may be collectively referred to as a composite material sheet. The composite sheet is obtained by mixing a hydrogen storage alloy powder into a paste form obtained by kneading a hydrogen storage alloy powder into a paste by adding a binder such as carboxymethyl cellulose or polytetrafluoroethylene (PTFE) and water. After being coated, it is dried and pressure-molded with a roller. Examples of the heat transfer plate 40 include metals or alloys such as copper, aluminum, and nickel having good thermal conductivity. Further, examples of the hydrogen storage alloy used for the composite material 50 include a LaNi alloy and a Misch metal alloy. As the hydrogen storage alloy, particles of 10 to 30 μm are preferably used from the viewpoint of improving thermal conductivity and suppressing pulverization. In addition, the mixture 50 is not applied to the joint portion between the heat transfer plate 40 and the cylindrical tube 30, and the heat transfer plate 40 is directly bonded to the cylindrical tube 30. In addition, the composite material 50 is not applied to the outermost peripheral portion of the heat transfer plate 40 in contact with the inner wall of the body portion 24, and the heat transfer plate 40 is in direct contact with the inner wall of the body portion 24.

図3は、実施の形態1で用いられる伝熱板40を伸張した状態を示す平面図である。図3に示すように、伝熱板40には、複数の貫通孔41が形成されている。伝熱板40が容器20に捲回して収容された状態で、各貫通孔41は、合材50によって閉塞されることなく開口している。なお、ここでいう「閉塞」とは、水素の流通が遮断された状態をいい、水素の流通が可能であれば、貫通孔41に合材50が入り込んでいてもよい。   FIG. 3 is a plan view showing a state in which the heat transfer plate 40 used in the first embodiment is extended. As shown in FIG. 3, a plurality of through holes 41 are formed in the heat transfer plate 40. In a state where the heat transfer plate 40 is wound and accommodated in the container 20, each through hole 41 is opened without being blocked by the composite material 50. Here, “blocking” refers to a state where the flow of hydrogen is interrupted, and the composite material 50 may enter the through hole 41 as long as the flow of hydrogen is possible.

図3において、個々の貫通孔41を識別するため、貫通孔41a1のように符号を付した。複数の貫通孔41は、伝熱板40を円筒管30に捲回した状態で、円筒管30に設けられた各開口31に対応して、容器20の中心から半径方向に連通する気体流路60(図2(B)参照)の一部を構成するように配置されている。円筒管30に設けられた各開口31に対応して伝熱板40に設けられた貫通孔41は、気体流路60が直線的になるように、配設されていることが望ましい。ただし、各開口31に対応して気体流路60が形成されれば、各開口31に対応して伝熱板40に設けられた貫通孔41の中心は必ずしも一致していなくてもよい。これによれば、気体流路60の距離が短くなるため、水素の吸蔵、放出をより速やかに進行させることができる。なお、胴部24の内壁と対向する伝熱板40の領域には、貫通孔41を設けなくてよい。これによれば、水素が無駄な経路を経由せずに、水素吸蔵合金と開口31との間を流通するため、容器20内における水素の拡散性を向上させることができる。   In FIG. 3, in order to identify each through-hole 41, the code | symbol was attached | subjected like the through-hole 41a1. The plurality of through holes 41 correspond to the openings 31 provided in the cylindrical tube 30 in a state where the heat transfer plate 40 is wound around the cylindrical tube 30 and communicate with each other in the radial direction from the center of the container 20. 60 (see FIG. 2 (B)). The through holes 41 provided in the heat transfer plate 40 corresponding to the openings 31 provided in the cylindrical tube 30 are preferably arranged so that the gas flow path 60 is linear. However, if the gas flow paths 60 are formed corresponding to the respective openings 31, the centers of the through holes 41 provided in the heat transfer plate 40 corresponding to the respective openings 31 may not necessarily coincide with each other. According to this, since the distance of the gas flow path 60 becomes short, occlusion and discharge | release of hydrogen can be advanced more rapidly. Note that the through hole 41 does not have to be provided in the region of the heat transfer plate 40 facing the inner wall of the body portion 24. According to this, since hydrogen circulates between the hydrogen storage alloy and the opening 31 without going through a useless path, the diffusibility of hydrogen in the container 20 can be improved.

具体的には、図3のB−B’線に沿った貫通孔41では、図2(B)に示した−X方向、+X方向、−Y方向、+Y方向に関して、それぞれ下記のように開口31が連通している。
−X方向:貫通孔41b1、貫通孔41b5、貫通孔41b9
+X方向:貫通孔41b3、貫通孔41b7、貫通孔41b11
−Y方向:貫通孔41b2、貫通孔41b6、貫通孔41b10
+Y方向:貫通孔41b4、貫通孔41b8、貫通孔41b12
円筒管30に捲回された状態の伝熱板40では、巻き中心から外側になるにつれて、一周分の長さが長くなるため、外側に位置する貫通孔41の間隔は、巻き中心側に位置する貫通孔41の間隔より、徐々に長くなっている。
Specifically, in the through hole 41 along the line BB ′ in FIG. 3, openings are respectively made as follows with respect to the −X direction, + X direction, −Y direction, and + Y direction shown in FIG. 31 communicates.
-X direction: Through hole 41b1, Through hole 41b5, Through hole 41b9
+ X direction: Through hole 41b3, Through hole 41b7, Through hole 41b11
-Y direction: through hole 41b2, through hole 41b6, through hole 41b10
+ Y direction: Through hole 41b4, Through hole 41b8, Through hole 41b12
In the heat transfer plate 40 wound around the cylindrical tube 30, the length of one round becomes longer from the winding center to the outer side, so the interval between the through holes 41 located on the outer side is located on the winding center side. The interval between the through holes 41 is gradually longer.

以上のような構成の水素貯蔵容器10では、伝熱板40に塗布された合材50内を伝熱板40に沿って周方向に水素が流通する流れと、貫通孔41を含む気体流路60を半径方向に水素が流通する流れとが生じ、貫通孔41により伝熱板40の一方の側から他方の側への水素の拡散が容易になっている。   In the hydrogen storage container 10 configured as described above, a gas flow path including a flow in which hydrogen circulates in the circumferential direction along the heat transfer plate 40 in the mixture 50 applied to the heat transfer plate 40 and a through hole 41. A flow in which hydrogen flows in the radial direction through 60 is generated, and the through holes 41 facilitate the diffusion of hydrogen from one side of the heat transfer plate 40 to the other side.

(水素貯蔵容器の作製方法)
実施の形態1に係る水素貯蔵容器の作製方法について以下により具体的に説明する。
(Method for producing hydrogen storage container)
The method for manufacturing the hydrogen storage container according to Embodiment 1 will be described more specifically below.

<合材の作製と塗布>
まず、水素吸蔵合金を伝熱板に塗布するために、合材(ペースト)を作製する。LaNi5合金を機械粉砕して平均粒径30μmの合金粉末を作製し、この合金粉末に対して、カルボキシルメチルセルロースの1.2%水溶液を合金粉末重量と重量1:1の割合で混合して合材を作製した。この合材をローラで銅製の厚み0.2mmの伝熱板に塗布を行った。この後、乾燥工程を経て、プレス装置を用いて伝熱板を厚み0.5mmに圧延し、合材シートを得た。
<Production and application of compound material>
First, a composite material (paste) is produced in order to apply the hydrogen storage alloy to the heat transfer plate. A LaNi5 alloy is mechanically pulverized to produce an alloy powder having an average particle size of 30 μm. A 1.2% aqueous solution of carboxymethyl cellulose is mixed with the alloy powder in a ratio of 1: 1 to the weight of the alloy powder. Was made. This mixture was applied to a copper heat transfer plate having a thickness of 0.2 mm with a roller. Thereafter, after passing through a drying step, the heat transfer plate was rolled to a thickness of 0.5 mm using a press device to obtain a composite sheet.

<合材シートへの穴作製と巻き芯への捲回>
上述の手順により作製した合材シートを、幅4cm、長さ50cmに切り出し、一端を外形4mmの円筒管に接合した。円筒管には、軸方向の三箇所において、円周方向に等間隔な4箇所の位置に内径0.8mmの貫通孔を予め形成した。
<Creating a hole in the composite sheet and winding it around the core>
The composite material sheet produced by the above procedure was cut into a width of 4 cm and a length of 50 cm, and one end was joined to a cylindrical tube having an outer diameter of 4 mm. In the cylindrical tube, through holes having an inner diameter of 0.8 mm were formed in advance at four positions at equal intervals in the circumferential direction at three positions in the axial direction.

また、切り出した合材シートの所定位置に、プレス装置を用いて直径1.6mmの貫通孔を開けた。貫通孔の形状は、丸穴に限定される必要はなく、矩形や長円等であってもよい。また、円筒管の長手方向あるいは半径方向の位置によって、このような形状や大きさを変化させることにより、水素の流通分布をさらに均一化させるための工夫を行ってもよい。そして、貫通孔を開けた合材シートを加圧しながら、円筒管に設けられた貫通孔と伝熱板に設けられた貫通孔とが連通するように巻き芯である円筒管に伝熱板を捲回した。   Further, a through hole having a diameter of 1.6 mm was opened at a predetermined position of the cut material sheet using a press device. The shape of the through hole need not be limited to a round hole, and may be a rectangle or an ellipse. Further, by changing the shape and size according to the position of the cylindrical tube in the longitudinal direction or the radial direction, a device for further uniforming the hydrogen flow distribution may be used. Then, while pressurizing the composite sheet having the through holes, the heat transfer plate is attached to the cylindrical tube that is the winding core so that the through holes provided in the cylindrical tube communicate with the through holes provided in the heat transfer plate. I turned around.

円筒管に捲回された伝熱板を内径18mm、高さ5cm、肉厚0.8mmのニッケルめっきした鋼板製の円筒の容器に固定して収容した。具体的には、蓋部の中央に捲回した合材シートの巻き芯である円筒管を溶接して固定し、蓋部と容器を封止して収容した。   The heat transfer plate wound around the cylindrical tube was fixed and accommodated in a nickel-plated steel cylindrical vessel having an inner diameter of 18 mm, a height of 5 cm, and a thickness of 0.8 mm. Specifically, a cylindrical tube that is a winding core of a composite sheet wound around the center of the lid portion was welded and fixed, and the lid portion and the container were sealed and accommodated.

以上説明した水素貯蔵容器10によれば、容器20に伝熱板40が捲回されて収容されているため、容器20内部の伝熱性を向上させることができる。また、伝熱板40には、円筒管30に設けられた開口31から容器20の半径方向に向けて、貫通孔41により形成された気体流路が形成されているため、捲回された伝熱板40の一方の側から他方の側への水素の流通が容易となり、容器20の半径方向の水素の拡散性が向上する。   According to the hydrogen storage container 10 described above, since the heat transfer plate 40 is wound and accommodated in the container 20, the heat transfer inside the container 20 can be improved. Further, since the gas flow path formed by the through hole 41 is formed in the heat transfer plate 40 from the opening 31 provided in the cylindrical tube 30 toward the radial direction of the container 20, the wound heat transfer is performed. Hydrogen flow from one side of the hot plate 40 to the other side is facilitated, and the hydrogen diffusibility in the radial direction of the container 20 is improved.

また、伝熱板40が底部22および蓋部26に接合されているので、容器20内部と容器20外部との熱伝達を容易にすることができる。   Further, since the heat transfer plate 40 is joined to the bottom portion 22 and the lid portion 26, heat transfer between the inside of the container 20 and the outside of the container 20 can be facilitated.

(実施の形態2)
実施の形態2に係る水素貯蔵容器10の基本的な構成は、実施の形態1と同様であり、実施の形態1と同様な構成については説明を適宜省略し、実施の形態1と相違する構成を中心に説明する。
(Embodiment 2)
The basic configuration of the hydrogen storage container 10 according to the second embodiment is the same as that of the first embodiment, the description of the same configuration as the first embodiment is omitted as appropriate, and the configuration is different from the first embodiment. The explanation will be focused on.

図4は、実施の形態2で用いられる伝熱板40を伸張した状態を示す平面図である。図5は、実施の形態2に係る水素貯蔵容器10の構成を示す、図4のC−C’線に沿った断面図である。図4および図5に示すように、本実施の形態の水素貯蔵容器10には、円筒管30に設けられた開口31(図2参照)に対応せず、開口31と連通しない気体流路62を形成するような、貫通孔42が設けられている。   FIG. 4 is a plan view showing a state in which the heat transfer plate 40 used in the second embodiment is extended. FIG. 5 is a cross-sectional view taken along line C-C ′ of FIG. 4, showing the configuration of the hydrogen storage container 10 according to the second embodiment. As shown in FIGS. 4 and 5, the hydrogen storage container 10 of the present embodiment does not correspond to the opening 31 (see FIG. 2) provided in the cylindrical tube 30 and does not communicate with the opening 31. A through hole 42 is provided so as to form

貫通孔42によって形成される気体流路62は、容器20の軸方向において、開口31が設けられた位置とはずれていることが好ましい。より好ましくは、貫通孔42によって形成される気体流路62は、容器20の軸方向において、隣接する開口31の中間に位置することが好ましい。また、貫通孔42によって形成される気体流路62は、円筒管30の半径方向において、開口31が設けられた位置とはずれていることが好ましい。より好ましくは、貫通孔42によって形成される気体流路62は、容器20の半径方向において、隣接する開口31の中間に位置することが好ましい。   The gas flow path 62 formed by the through hole 42 is preferably deviated from the position where the opening 31 is provided in the axial direction of the container 20. More preferably, the gas flow path 62 formed by the through hole 42 is preferably located in the middle of the adjacent openings 31 in the axial direction of the container 20. Further, the gas flow path 62 formed by the through hole 42 is preferably deviated from the position where the opening 31 is provided in the radial direction of the cylindrical tube 30. More preferably, the gas flow path 62 formed by the through hole 42 is preferably located in the middle of the adjacent openings 31 in the radial direction of the container 20.

これによれば、貫通孔42によって形成される気体流路62が貫通孔41によって形成される気体流路60に対して補助的な役割を果たすことにより、容器20内の水素吸蔵合金と円筒管30に設けられた開口31との間の水素の流通をより効率的に行うことができる。   According to this, since the gas flow path 62 formed by the through hole 42 plays an auxiliary role with respect to the gas flow path 60 formed by the through hole 41, the hydrogen storage alloy and the cylindrical tube in the container 20 Hydrogen can be circulated more efficiently with the opening 31 provided at 30.

具体的には、図4に示したC−C’線に沿った貫通孔42では、図5に示したθ=45度方向、θ=135度方向、θ=225度方向、θ=315度方向に関して、それぞれ下記のように開口31が連通している。
θ=45度方向:貫通孔42a3、貫通孔42a7
θ=135度方向:貫通孔42a4、貫通孔42a8
θ=225度方向:貫通孔42a1、貫通孔42a5
θ=315度方向:貫通孔42a2、貫通孔42a6
Specifically, in the through hole 42 along the line CC ′ shown in FIG. 4, the θ = 45 degree direction, the θ = 135 degree direction, the θ = 225 degree direction, and the θ = 315 degree shown in FIG. With respect to the direction, the openings 31 communicate with each other as follows.
θ = 45 degrees direction: through hole 42a3, through hole 42a7
θ = 135 degrees direction: through hole 42a4, through hole 42a8
θ = 225 degrees direction: through hole 42a1, through hole 42a5
θ = 315 degrees direction: through hole 42a2, through hole 42a6

本発明は、上述の各実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。   The present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added based on the knowledge of those skilled in the art. The form can also be included in the scope of the present invention.

例えば、上述の各実施の形態において、円筒管30に設けられた開口31に対応して伝熱板40に設けられた貫通孔41は、外周になるほど直径が大きくてもよい。これによれば、捲回された状態の伝熱板40にゆるみが生じた場合であっても、伝熱板40の積層方向において隣接する貫通孔41に関して、外側の貫通孔41の直径が内側の貫通孔41の直径に対して余裕があるため、伝熱板40の積層方向において隣接する貫通孔41同士の連通状態が確保され、各開口31に対応する気体流路60を維持することができる。同様に、補助的な気体流路62を形成する貫通孔42は、外周になるほど直径が大きくてもよい。   For example, in each of the above-described embodiments, the diameter of the through hole 41 provided in the heat transfer plate 40 corresponding to the opening 31 provided in the cylindrical tube 30 may be increased toward the outer periphery. According to this, even if the heat transfer plate 40 in the wound state is loosened, the diameter of the outer through hole 41 is set to the inner side with respect to the adjacent through holes 41 in the stacking direction of the heat transfer plates 40. Since there is a margin with respect to the diameter of the through-holes 41, it is possible to maintain the communication state between the adjacent through-holes 41 in the stacking direction of the heat transfer plates 40 and maintain the gas flow path 60 corresponding to each opening 31. it can. Similarly, the diameter of the through hole 42 that forms the auxiliary gas flow path 62 may be larger toward the outer periphery.

また、捲回された状態の伝熱板40にゆるみが生じた場合を見越して、伝熱板40の巻き方向、より具体的には、図2(B)のような断面で見た場合に、円筒管30に対して反時計回りに伝熱板40が捲回されている場合には、伝熱板40の積層方向において隣接する貫通孔41に関して、外側の貫通孔41が反時計回りの方向、すなわち、伝熱板40の捲回方向と同じ方向にずれていてもよい。これによれば、捲回された状態の伝熱板40にゆるみが生じた場合であっても、伝熱板40の積層方向において隣接する貫通孔41に関して、外側の貫通孔41の中心が内側の貫通孔41の中心に合う方向に外側の貫通孔41がずれるため、伝熱板40の積層方向において隣接する貫通孔41同士の連通状態が確保され、各開口31に対応する気体流路60を維持することができる。同様に、補助的な気体流路62を形成する貫通孔42は、隣接する貫通孔42に関して外側の貫通孔42が伝熱板40の捲回方向と同じ方向にずれていてもよい。このように、伝熱板40に貫通孔41、42を開ける箇所や大きさ等のパターンは、様々な形態が考えられ、図示されたパターンに限定されない。   In addition, in anticipation of loosening of the wound heat transfer plate 40, the winding direction of the heat transfer plate 40, more specifically, when viewed in a cross section as shown in FIG. When the heat transfer plate 40 is wound counterclockwise with respect to the cylindrical tube 30, the outer through hole 41 is counterclockwise with respect to the adjacent through holes 41 in the stacking direction of the heat transfer plates 40. The direction may be shifted in the same direction as the winding direction of the heat transfer plate 40. According to this, even if the heat transfer plate 40 in the wound state is loosened, the center of the outer through hole 41 is the inner side with respect to the adjacent through holes 41 in the stacking direction of the heat transfer plates 40. Since the outer through-hole 41 is displaced in a direction that matches the center of the through-hole 41, a communication state between the adjacent through-holes 41 in the stacking direction of the heat transfer plates 40 is ensured, and the gas flow path 60 corresponding to each opening 31. Can be maintained. Similarly, the through holes 42 forming the auxiliary gas flow paths 62 may be displaced in the same direction as the winding direction of the heat transfer plate 40 with respect to the adjacent through holes 42. As described above, the patterns such as locations and sizes of the through holes 41 and 42 in the heat transfer plate 40 may be various forms and are not limited to the illustrated patterns.

また、上述した実施の形態では、円筒管30の両方の端部が、底部22、蓋部26に接合されているが、円筒管30のいずれかの端部が、底部22、蓋部26に接合されていても、容器20の内部と外部との熱のやりとりを容易にすることができる。   In the above-described embodiment, both end portions of the cylindrical tube 30 are joined to the bottom portion 22 and the lid portion 26, but either end portion of the cylindrical tube 30 is connected to the bottom portion 22 and the lid portion 26. Even if they are joined, heat exchange between the inside and outside of the container 20 can be facilitated.

(実施の形態3)
実施の形態3に係る水素貯蔵容器10の基本的な構成は、接続部28および蓋部26と円筒管30とが一体化された部品である点を主な違いとする他は、実施の形態1と同様であり、実施の形態1と同様な構成については説明を適宜省略し、実施の形態1と相違する構成を中心に説明する。
(Embodiment 3)
The basic configuration of the hydrogen storage container 10 according to the third embodiment is the same as the embodiment except that the connection part 28, the lid part 26, and the cylindrical tube 30 are integrated parts. The description of the configuration similar to that of the first embodiment is omitted as appropriate, and the configuration different from that of the first embodiment will be mainly described.

図6は、実施の形態3に係る水素貯蔵容器10の外観を示す斜視図である。実施の形態3に係る水素貯蔵容器10では、蓋部26が胴部24の中に挿入され、蓋部26と胴部24との間が封止されている。   FIG. 6 is a perspective view showing an appearance of the hydrogen storage container 10 according to the third embodiment. In the hydrogen storage container 10 according to Embodiment 3, the lid portion 26 is inserted into the trunk portion 24, and the gap between the lid portion 26 and the trunk portion 24 is sealed.

図7は、接続部28および蓋部26と円筒管30とが一体化された部品を示す図である。円筒管30は、接続部28に予め溶接などにより一体化されており、円筒管30と接続部28に設けられた気体流路27とがガス気密に連通している。   FIG. 7 is a diagram showing components in which the connecting portion 28 and the lid portion 26 and the cylindrical tube 30 are integrated. The cylindrical tube 30 is integrated with the connection portion 28 in advance by welding or the like, and the cylindrical tube 30 and the gas flow path 27 provided in the connection portion 28 communicate with each other in a gas-tight manner.

実施の形態3に係る水素貯蔵容器10を作製する場合には、図7に示した部品を用意し、図8に示すように、合材が塗布された伝熱板40を円筒管30の周りに捲回する。伝熱板40に設ける貫通孔の配置、構造およびこの貫通孔を用いた気体流路の形成については、実施の形態1と同様である。   When producing the hydrogen storage container 10 according to the third embodiment, the components shown in FIG. 7 are prepared, and the heat transfer plate 40 to which the composite material is applied is placed around the cylindrical tube 30 as shown in FIG. Wrap around. The arrangement and structure of the through holes provided in the heat transfer plate 40 and the formation of the gas flow path using the through holes are the same as in the first embodiment.

次に、図9に示すような、胴部24と底部22とが一体化された部品を用意する。胴部24と底部22とは溶接により接合されていてもよい。胴部24の開口部分の内径は、図7に示した蓋部26の円盤部分を挿入可能な程度に蓋部26の円盤部分の外径と同等かわずかに小さい。   Next, as shown in FIG. 9, a component in which the body portion 24 and the bottom portion 22 are integrated is prepared. The trunk | drum 24 and the bottom part 22 may be joined by welding. The inner diameter of the opening part of the body part 24 is equal to or slightly smaller than the outer diameter of the disk part of the lid part 26 to such an extent that the disk part of the lid part 26 shown in FIG. 7 can be inserted.

次に、図8に示したような、伝熱板40が円筒管30に捲回された部材を胴部24に挿入し、固定する。円筒管30を胴部24に挿入したときに、円筒管30と底部22とが嵌め合わせ式で固定される構造を有することが好ましい。円筒管30が底部22に固定されたとき、蓋部26の円盤部分の外周と胴部24の開口部分の内周とが接するように各部材を設計する。そして、蓋部26の円盤部分と胴部24との隙間を溶接により封止することにより容器20内の気密性を確保する。以上の手順により実施の形態3に係る水素貯蔵容器10が得られる。
実施の形態3に係る水素貯蔵容器10では、接続部28および蓋部26と円筒管30とが一体化された部品となっているため、水素貯蔵容器10をより簡便かつ確実に作製することができるという利点が得られる。
Next, a member in which the heat transfer plate 40 is wound around the cylindrical tube 30 as shown in FIG. 8 is inserted into the body portion 24 and fixed. When the cylindrical tube 30 is inserted into the body portion 24, it is preferable to have a structure in which the cylindrical tube 30 and the bottom portion 22 are fixed by fitting. When the cylindrical tube 30 is fixed to the bottom portion 22, each member is designed so that the outer periphery of the disk portion of the lid portion 26 is in contact with the inner periphery of the opening portion of the trunk portion 24. And the airtightness in the container 20 is ensured by sealing the clearance gap between the disk part of the cover part 26, and the trunk | drum 24 by welding. The hydrogen storage container 10 according to Embodiment 3 is obtained by the above procedure.
In the hydrogen storage container 10 according to the third embodiment, since the connecting portion 28, the lid portion 26, and the cylindrical tube 30 are integrated parts, the hydrogen storage container 10 can be more easily and reliably manufactured. The advantage that it can be obtained.

なお、上述した各実施の形態では、伝熱板40の巻き中心として円筒管30が用いられているが、伝熱板40が捲回された状態を保持できれば、円筒管30がなくてもよい。   In each of the above-described embodiments, the cylindrical tube 30 is used as the winding center of the heat transfer plate 40. However, the cylindrical tube 30 may not be provided as long as the heat transfer plate 40 can be kept wound. .

また、上述した各実施の形態では、円筒管30および容器20は、円筒状であるが、円筒管30および容器20の形状は円筒状に限られない。たとえば、円筒管30および容器20は、多角形状であってもよく、より具体的には六角柱などの角柱状であってもよい。   Moreover, in each embodiment mentioned above, although the cylindrical tube 30 and the container 20 are cylindrical, the shape of the cylindrical tube 30 and the container 20 is not restricted to a cylindrical shape. For example, the cylindrical tube 30 and the container 20 may have a polygonal shape, and more specifically, may have a prismatic shape such as a hexagonal column.

実施の形態1に係る水素貯蔵容器の外観を示す斜視図である。1 is a perspective view showing an appearance of a hydrogen storage container according to Embodiment 1. FIG. 図2(A)実施の形態1に係る水素貯蔵容器の外観を示す側面図である。図2(B)は、図2(A)の側面図に示したA−A’線に沿った断面図である。FIG. 2 (A) is a side view showing the appearance of the hydrogen storage container according to Embodiment 1. FIG. FIG. 2B is a cross-sectional view along the line A-A ′ shown in the side view of FIG. 実施の形態1で用いられる伝熱板を伸張した状態を示す平面図である。FIG. 3 is a plan view showing a state where a heat transfer plate used in Embodiment 1 is extended. 実施の形態2で用いられる伝熱板を伸張した状態を示す平面図である。6 is a plan view showing a state in which a heat transfer plate used in Embodiment 2 is extended. FIG. 実施の形態2に係る水素貯蔵容器の構成を示す、図4のC−C’線に沿った断面図である。FIG. 5 is a cross-sectional view taken along line C-C ′ of FIG. 4, showing a configuration of a hydrogen storage container according to Embodiment 2. 実施の形態3に係る水素貯蔵容器の外観を示す斜視図である。FIG. 6 is a perspective view showing an appearance of a hydrogen storage container according to Embodiment 3. 接続部および蓋部と円筒管とが一体化された部品を示す斜視図である。It is a perspective view which shows the components with which the connection part, the cover part, and the cylindrical tube were integrated. 伝熱板を円筒管の周りに捲回された状態を示す斜視図である。It is a perspective view which shows the state by which the heat exchanger plate was wound around the cylindrical tube. 胴部と底部とが一体化された部品を示す斜視図である。It is a perspective view which shows the components with which the trunk | drum and the bottom part were integrated.

符号の説明Explanation of symbols

10 水素貯蔵容器、20 容器、22 底部、24 胴部、26 蓋部、30 円筒管、40 伝熱板   DESCRIPTION OF SYMBOLS 10 Hydrogen storage container, 20 container, 22 bottom part, 24 trunk | drum, 26 lid part, 30 cylindrical tube, 40 heat-transfer plate

Claims (5)

筒状の収容部材と、
水素を流通させるための複数の貫通孔が設けられ、捲回した状態で前記収容部材に収容された伝熱板と、
前記伝熱板に塗布された水素吸蔵合金と、
を備え、
前記複数の貫通孔は、捲回された前記伝熱板の積層方向において連通する気体流路の一部を構成することを特徴とする水素貯蔵容器。
A cylindrical housing member;
A plurality of through-holes for circulating hydrogen are provided, and the heat transfer plate accommodated in the accommodating member in a wound state;
A hydrogen storage alloy applied to the heat transfer plate;
With
The plurality of through holes constitute a part of a gas flow path communicating in the stacking direction of the wound heat transfer plates.
前記水素吸蔵合金は、前記複数の貫通孔を閉塞しないように前記伝熱板に塗布されている請求項1に記載の水素貯蔵容器。   The hydrogen storage container according to claim 1, wherein the hydrogen storage alloy is applied to the heat transfer plate so as not to block the plurality of through holes. 前記収容部材の軸方向に沿って前記収容部材に収められ、側面に複数の開口が設けられた中空の筒状の管をさらに備え、
前記筒状の管は、前記収容部材の外部へ接続される管とガス気密に固定されており、
前記伝熱板は、前記筒状の管の周りに捲回されており、
前記気体流路は、個々の前記開口に対応して、捲回された前記伝熱板の積層方向にそれぞれ設けられている請求項1または2に記載の水素貯蔵容器。
A hollow cylindrical tube that is housed in the housing member along the axial direction of the housing member and has a plurality of openings on the side surface;
The cylindrical tube is gas-tightly fixed to a tube connected to the outside of the housing member,
The heat transfer plate is wound around the cylindrical tube,
3. The hydrogen storage container according to claim 1, wherein the gas flow path is provided in a stacking direction of the wound heat transfer plates corresponding to each of the openings.
前記気体流路は、個々の前記開口に対応しない位置に、捲回された前記伝熱板の積層方向に併設されている請求項3に記載の水素貯蔵容器。   The hydrogen storage container according to claim 3, wherein the gas flow path is provided side by side in a stacking direction of the wound heat transfer plates at a position not corresponding to each opening. 前記筒状の管は、外部と前記収容部材の内部とを接続する管と一体となっている請求項3または4に記載の水素貯蔵容器。   The hydrogen storage container according to claim 3 or 4, wherein the cylindrical tube is integrated with a tube that connects the outside and the inside of the housing member.
JP2008251269A 2008-09-29 2008-09-29 Hydrogen storage container Pending JP2010084783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008251269A JP2010084783A (en) 2008-09-29 2008-09-29 Hydrogen storage container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008251269A JP2010084783A (en) 2008-09-29 2008-09-29 Hydrogen storage container

Publications (1)

Publication Number Publication Date
JP2010084783A true JP2010084783A (en) 2010-04-15

Family

ID=42248953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008251269A Pending JP2010084783A (en) 2008-09-29 2008-09-29 Hydrogen storage container

Country Status (1)

Country Link
JP (1) JP2010084783A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132561A (en) * 2010-12-23 2012-07-12 Asia Pacific Fuel Cell Technology Ltd Storage cartridge
JP2012132562A (en) * 2010-12-23 2012-07-12 Asia Pacific Fuel Cell Technology Ltd Storage canister
JP5978338B1 (en) * 2015-03-16 2016-08-24 日本碍子株式会社 Method for producing product and method for measuring three-dimensional shape
JP2018031448A (en) * 2016-08-26 2018-03-01 合同会社 ハイケアー灯 Hydrogen storage alloy container
CN116143071A (en) * 2023-03-02 2023-05-23 氢源风新动力科技(苏州)有限公司 Solid hydrogen source reactor adopting briquetting type metal hydride

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289397A (en) * 2000-04-10 2001-10-19 Japan Metals & Chem Co Ltd Hydrogen storage alloy storing container
JP2001289396A (en) * 2000-04-10 2001-10-19 Japan Metals & Chem Co Ltd Hydrogen storage alloy storing container capable of quick release
JP2007170604A (en) * 2005-12-26 2007-07-05 Taiheiyo Cement Corp Hydrogen storage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289397A (en) * 2000-04-10 2001-10-19 Japan Metals & Chem Co Ltd Hydrogen storage alloy storing container
JP2001289396A (en) * 2000-04-10 2001-10-19 Japan Metals & Chem Co Ltd Hydrogen storage alloy storing container capable of quick release
JP2007170604A (en) * 2005-12-26 2007-07-05 Taiheiyo Cement Corp Hydrogen storage device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132561A (en) * 2010-12-23 2012-07-12 Asia Pacific Fuel Cell Technology Ltd Storage cartridge
JP2012132562A (en) * 2010-12-23 2012-07-12 Asia Pacific Fuel Cell Technology Ltd Storage canister
JP5978338B1 (en) * 2015-03-16 2016-08-24 日本碍子株式会社 Method for producing product and method for measuring three-dimensional shape
JP2016173242A (en) * 2015-03-16 2016-09-29 日本碍子株式会社 Method for producing article and method for measuring three-dimensional shape
JP2018031448A (en) * 2016-08-26 2018-03-01 合同会社 ハイケアー灯 Hydrogen storage alloy container
CN116143071A (en) * 2023-03-02 2023-05-23 氢源风新动力科技(苏州)有限公司 Solid hydrogen source reactor adopting briquetting type metal hydride

Similar Documents

Publication Publication Date Title
US6742650B2 (en) Metal hydride storage canister design and its manufacture
EP1962358B1 (en) Fuel cell stack and fuel cell system having the same
US8062800B2 (en) Catalyst for reformer used in fuel cell system, reformer, and fuel cell system comprising same
US8227144B2 (en) Cellular reservoir and methods related thereto
EP3208877B1 (en) Solid state hydrogen storage device
JP2007524562A (en) Annular fuel processing apparatus and method
JP5760000B2 (en) Hydrogen storage tank with metal hydride
JP4732008B2 (en) Reforming apparatus and fuel cell system using the same
JP2010084783A (en) Hydrogen storage container
US20150260342A1 (en) Hydrogen storage tank comprising metal hydrides produced through simplified manufacture and storage device comprising at least such a tank
JP6285867B2 (en) Tanks that store hydrogen in the form of metal hydrides
US7754164B2 (en) Reformer and fuel cell system having the same
EP1286406B1 (en) Metal hydride storage canister and its manufacture
US8739858B2 (en) Evaporator and vapor production method
KR101472335B1 (en) gas storage tank
JPS6249703B2 (en)
JP4261918B2 (en) Fuel cartridge for fuel cell and fuel cell
JP2007317496A (en) Fuel cell power generation system
US8673233B2 (en) Solid reactant sheet, solid reactant stack, and fuel cartridge
JP2001289397A (en) Hydrogen storage alloy storing container
US10476089B2 (en) Reducing heat loss from a lightweight vacuum insulated vessel
JP2006294624A (en) Reformer for fuel cell system
CN209857717U (en) Waste heat utilization device suitable for combined heat and power supply reformer
JP5077384B2 (en) Fuel cell
KR20090068703A (en) Reactor for fuel cell and fuel cell comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423