JP2010084676A - Structure of blade for three blade type vertical shaft wind turbine device - Google Patents

Structure of blade for three blade type vertical shaft wind turbine device Download PDF

Info

Publication number
JP2010084676A
JP2010084676A JP2008255992A JP2008255992A JP2010084676A JP 2010084676 A JP2010084676 A JP 2010084676A JP 2008255992 A JP2008255992 A JP 2008255992A JP 2008255992 A JP2008255992 A JP 2008255992A JP 2010084676 A JP2010084676 A JP 2010084676A
Authority
JP
Japan
Prior art keywords
blade
wind
wind turbine
windmill
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008255992A
Other languages
Japanese (ja)
Inventor
Fumio Kaneda
文郎 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008255992A priority Critical patent/JP2010084676A/en
Publication of JP2010084676A publication Critical patent/JP2010084676A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a structure mode capable of improving the efficiency of the rotor of a three blade type vertical shaft wind turbine device and converting the rotational energy into a different energy. <P>SOLUTION: In order to efficiently use an energy of wind in the vertical direction of a conventional three blade type vertical shaft wind turbine device, the vertical direction of a blade is curved so as to be squeezed, so that the flow of wind in the vertical direction is smooth and contributes to the rotational force of the wind turbine device. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、風力によって回転し、その回転エネルギを電気エネルギ等の他のエネルギに変換する風車装置を効率的に回転させる構造に関する。 The present invention relates to a structure that efficiently rotates a windmill device that is rotated by wind power and converts the rotational energy into other energy such as electric energy.

一般的なプロペラ形風車装置は、理論的効率は高いが、プロペラを風上に向けていなければならないとか、騒音の問題等がある。従来の抗力形垂直軸式風車では理論的にはプロペラ形より効率が得られない。従来の抗力形垂直軸式風車の通常構造を図1に示す。三枚翼式垂直軸型風車ロータは、ロータ回転軸1の上方に水平上板2、下方に水平下板3を配置し、垂直の三枚のブレード4がそれらをつなぐ。ブレード4と水平板の接続曲線5は空気力学的に効率のよい曲線である。ロータ回転軸1がローター保持支柱7に取り付けられて、ロータ軸回転方向6で回転する。しかし、垂直方向の断面形状は同じである。図2に上からみた翼の形状と配置を示す。三枚のブレードA8,ブレードB9,ブレードC10があり、ブレードA8に当る風11はブレードA8の内縁に当ってブレードA8を押す力を発生させる。ブレードB9に当る風12はブレードB9の外縁2に沿って曲げられ押す力を発生させるが、図2から明らかなように、ブレードAに当る風11による押す力はブレードBに当る風12による押す力より大きい。この差によりこの風車は図2では、時計回りに回転する。
特許第4117247号
A general propeller-type windmill device has high theoretical efficiency, but there are problems such as the fact that the propeller must be directed to the windward and noise. The conventional drag type vertical axis wind turbine cannot theoretically achieve efficiency compared to the propeller type. The normal structure of a conventional drag type vertical axis wind turbine is shown in FIG. In the three-blade vertical axis wind turbine rotor, a horizontal upper plate 2 is arranged above the rotor rotating shaft 1 and a horizontal lower plate 3 is arranged below, and three vertical blades 4 connect them. The connection curve 5 between the blade 4 and the horizontal plate is an aerodynamically efficient curve. The rotor rotation shaft 1 is attached to the rotor holding column 7 and rotates in the rotor shaft rotation direction 6. However, the vertical cross-sectional shape is the same. FIG. 2 shows the shape and arrangement of the wing viewed from above. There are three blades A8, B9, and C10, and the wind 11 hitting the blade A8 hits the inner edge of the blade A8 to generate a force that pushes the blade A8. The wind 12 hitting the blade B9 is bent along the outer edge 2 of the blade B9 to generate a pushing force. As is clear from FIG. 2, the pushing force by the wind 11 hitting the blade A is pushed by the wind 12 hitting the blade B. Greater than power. This difference causes the windmill to rotate clockwise in FIG.
Patent No. 4117247

従来の方式では、水平方向の風の力を利用することしか考慮していない。しかしながら、風車のローターに侵入した風は垂直方向にも流れることが確かめられた。本発明では、この垂直方向の風の力も利用してさらに効率上げるための構造に関するものである。 The conventional method only considers using the wind force in the horizontal direction. However, it was confirmed that the wind that entered the rotor of the windmill also flowed vertically. The present invention relates to a structure for further increasing the efficiency by utilizing this vertical wind force.

三枚翼のブレードの形状を垂直方向にも曲げ、上下方向の風による力から回転力を発生させる形状とする。この方式は抗力効果でだけではく、プロペラ効果も兼ね備えるため効率が向上する。 The blade shape of the three blades is also bent in the vertical direction to generate a rotational force from the force of the wind in the vertical direction. This method not only has a drag effect, but also has a propeller effect, thus improving efficiency.

この発明による三枚翼式垂直軸がた風車装置は風向に作用されず、風力より効率よく回転エネルギを得られ、電力など他のに変換することが可能になり、その効果は大きい。   The three-blade vertical axis windmill device according to the present invention does not act on the wind direction, can obtain rotational energy more efficiently than wind power, and can be converted into other power and the like, and the effect is great.

本発明の一般的実施例を図3から図7にしめす。 A general embodiment of the present invention is shown in FIGS.

図3は本発明の風車装置のブレードを上から見た図と横から垂直断面で切った曲線を示したものである。水平の風13は従来の風車と同様にブレード曲面14に当り水平の風による力15を発生する。垂直方向に曲る風16はブレード曲面14に当りプロペラ効果をもたらし、垂直の風による力17を発生する。ブレード曲面14の上下方向の曲線は空気の分子がスムーズに曲るような曲線にすることより乱気流を防ぎ、効率をあげられる。 FIG. 3 shows a view of the blade of the wind turbine apparatus according to the present invention as viewed from above and a curve cut along the vertical section from the side. The horizontal wind 13 hits the blade curved surface 14 and generates a force 15 due to the horizontal wind, as in the conventional wind turbine. The wind 16 that bends in the vertical direction hits the blade curved surface 14 to produce a propeller effect, and generates a force 17 by the vertical wind. The curved surface in the vertical direction of the blade curved surface 14 is a curve in which air molecules bend smoothly, thereby preventing turbulence and improving efficiency.

さらに解かりやすくするため、図4に本風車装置のブレード曲面の6分の1を立体的に示す。ブレードD18は上部になると絞られる3次元曲面になっている。風車内に水平に入ってきた風19はブレード曲面に当り上部に曲げられ上昇する。この時、ブレードD18を押す力20を発生する。この力は水平方向成分の抗力と垂直成分によるプロペラ効果による力の合成力である。この力により、風車回転軸21の周りに回転力22が生じる。ブレードE23、ブレードF24は他の2枚のブレードで効果は同様である。 For easier understanding, FIG. 4 shows one-third of the blade curved surface of the wind turbine device in three dimensions. The blade D18 has a three-dimensional curved surface that is squeezed at the top. The wind 19 entering the windmill horizontally hits the curved surface of the blade and is bent upward and rises. At this time, a force 20 for pressing the blade D18 is generated. This force is the combined force of the drag due to the horizontal component and the propeller effect due to the vertical component. This force generates a rotational force 22 around the windmill rotating shaft 21. The blade E23 and the blade F24 are the other two blades, and the effect is the same.

図5は実際の実施例に基づいた、本発明の全体図である。風車は回転軸25の回りを回る。水平に侵入してきた風26が風車上部に抜ける風27と下部に抜ける風28とに分かれて、風車回転軸25のまわりに回転29を生じる。風車の最大径、先端部系と長さの関係は、用途や構造により決定される。 FIG. 5 is an overall view of the present invention based on an actual embodiment. The windmill rotates around the rotation shaft 25. The wind 26 that has invaded horizontally is divided into a wind 27 that escapes to the top of the windmill and a wind 28 that escapes to the bottom, and a rotation 29 is generated around the windmill rotating shaft 25. The relationship between the maximum diameter of the wind turbine, the tip system and the length is determined by the application and structure.

図6に上下方向に抜ける風がスムーズに流れるためのブレードの垂直断面の曲線の実施例を示す。風車を上からみた図とブレードの垂直断面曲線を示している。風がスムースに流れるための曲線は曲率が除々に変化する放物線が好ましいと考えられる。風車の回転軸30を通るブレードのある断面での中央部半径31の部分で垂直な接線32を持ち、風車の高さ33での先端部半径34で接線と水平線の角度35を決めると、放物線36は一義的に決まる。一般的には、中央部半径31と先端部半径34の比は3対1程度が良く、接線と水平線の角度35はプロペラ効果が有効である45度程度が考えられる。図6での放物線36はブレードが垂直断面39によって決められた曲線である。実際のブレードを形成する放物線は放物線軸37とする放物線の一部38である。中央部半径31は回転軸30を通る各垂直断面40により変化する。このようにして決められた各垂直断面での放物線の連続が本実施例でのブレードの三次元曲面を形成する。 FIG. 6 shows an example of the curve of the vertical cross section of the blade for smoothly flowing the wind that passes vertically. The figure which looked at the windmill from the top and the vertical section curve of a braid | blade are shown. It is considered that a parabola with a gradually changing curvature is preferable for a curve for smoothly flowing the wind. When a vertical tangent line 32 is present at the central radius 31 in the cross section of the blade passing through the rotating shaft 30 of the windmill, and the angle 35 between the tangent line and the horizontal line is determined by the tip radius 34 at the height 33 of the windmill, a parabola 36 is uniquely determined. In general, the ratio between the center radius 31 and the tip radius 34 is preferably about 3 to 1, and the angle 35 between the tangent line and the horizontal line can be about 45 degrees at which the propeller effect is effective. The parabola 36 in FIG. 6 is a curve in which the blade is defined by a vertical section 39. The parabola that forms the actual blade is a part 38 of the parabola with the parabola axis 37. The central radius 31 varies with each vertical section 40 passing through the rotation axis 30. A series of parabolas in each vertical section determined in this way forms a three-dimensional curved surface of the blade in this embodiment.

実施例1ではブレードは複雑な3次元曲面になるので少量生産の場合費用がかかる。少量製作の場合の簡易方式として、直線で組み合わせる実施例2を示したのが図7である。 In Example 1, since the blade has a complicated three-dimensional curved surface, it is expensive in the case of small-scale production. FIG. 7 shows Example 2 combined in a straight line as a simple method in the case of small-scale production.

従来の3枚翼式垂直軸型風車ロータの構造図を示すA structural diagram of a conventional three-blade vertical axis wind turbine rotor is shown. 従来の3枚翼風車ロータの構造で、上部から見た図である。It is the figure of the structure of the conventional 3 blade windmill rotor seen from the upper part. 本発明の風車ローターの平面図である。It is a top view of the windmill rotor of this invention. 本発明の風車ローターのブレードの一部の立体図である。It is a three-dimensional figure of a part of blade of a windmill rotor of the present invention. 本発明の風車ローターの全体図である。(実施例1)It is a general view of the windmill rotor of this invention. (Example 1) 本発明の風車ローターブレードの放物線例の断面図である。It is sectional drawing of the example of the parabola of the windmill rotor blade of this invention. 本発明の風車ローターで直線式の全体図である。(実施例2)It is a linear type general view with the windmill rotor of this invention. (Example 2)

符号の説明Explanation of symbols

1 風車ローター回転軸
2 水平上板
3 水平下板
4 ブレード
5 ブレードと水平板の接続曲線
6 ローター軸回転方向
7 保持支柱
8 ブレードA
9 ブレードB
10 ブレードC
11 ブレードAに当たる風
12 ブレードBに当たる風
13 水平の風
14 ブレード曲面
15 水平の風による力
16 垂直方向に曲る風
17 垂直の風による力
18 ブレードD
19 水平に入ってきた風
20 ブレードDを押す力
21 風車の回転軸
22 回転力
23 ブレードE
24 ブレードF
25 回転軸
26 水平に侵入してきた風
27 上部に抜ける風
28 下部に抜ける風
29 回転
30 風車回転軸
31 中央部半径
32 垂直な接線
33 風車高さ
34 先端部半径
35 接線と水平線の角度
36 放物線
37 放物線軸
38 放物線の一部
39 垂直断面
40 各垂直断面
DESCRIPTION OF SYMBOLS 1 Windmill rotor rotating shaft 2 Horizontal upper board 3 Horizontal lower board 4 Blade 5 Connection curve 6 of a blade and a horizontal board 6 Rotor shaft rotation direction 7 Holding support | pillar 8 Blade A
9 Blade B
10 Blade C
11 Wind hitting blade A 12 Wind hitting blade B 13 Horizontal wind 14 Blade curved surface 15 Horizontal wind force 16 Vertically bending wind 17 Vertical wind force 18 Blade D
19 Wind coming in horizontally 20 Force to push blade D 21 Windmill rotating shaft 22 Rotating force 23 Blade E
24 Blade F
25 Rotating shaft 26 Wind that has entered horizontally 27 Wind that escapes to the top 28 Wind that exits to the bottom 29 Rotation 30 Windmill rotation shaft 31 Radius of the central part 32 Vertical tangent line 33 Windmill height 34 Tip radius 35 Angle of tangent line and horizontal line 36 Parabola 37 Parabolic axis 38 Part of parabola 39 Vertical section 40 Each vertical section

Claims (3)

風力によって回転し、その回転エネルギを他のエネルギーに変換する垂直軸型風車装置にあって、上下方向に抜ける風の力も利用して回転力に寄与させるため、上下方向を細くした翼形状をもつ風車装置。         A vertical-axis type windmill device that rotates by wind power and converts the rotational energy into other energy, and uses the force of the wind that goes up and down to contribute to the rotational force, so it has a wing shape that narrows the vertical direction Windmill device. 上記構造で、上下方向にブレードの径を細める構造とし、特に風がスムーズに流すために曲率を徐々に変化させる構造をもつ風車装置。         A windmill device having a structure in which the diameter of the blade is narrowed in the vertical direction with the above structure, and in particular, the curvature is gradually changed to allow the wind to flow smoothly. 上記構造で、上下方向にブレードの径を細める構造とし、請求項2の曲線の代わりに、構造的に簡単な、折れ線構造をもつ風車装置         A wind turbine apparatus having a structure in which the diameter of the blade is narrowed in the vertical direction in the above-described structure and having a broken line structure instead of the curved line of claim 2
JP2008255992A 2008-10-01 2008-10-01 Structure of blade for three blade type vertical shaft wind turbine device Pending JP2010084676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008255992A JP2010084676A (en) 2008-10-01 2008-10-01 Structure of blade for three blade type vertical shaft wind turbine device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008255992A JP2010084676A (en) 2008-10-01 2008-10-01 Structure of blade for three blade type vertical shaft wind turbine device

Publications (1)

Publication Number Publication Date
JP2010084676A true JP2010084676A (en) 2010-04-15

Family

ID=42248878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008255992A Pending JP2010084676A (en) 2008-10-01 2008-10-01 Structure of blade for three blade type vertical shaft wind turbine device

Country Status (1)

Country Link
JP (1) JP2010084676A (en)

Similar Documents

Publication Publication Date Title
US8128337B2 (en) Omnidirectional vertical-axis wind turbine
US7802967B2 (en) Vertical axis self-breaking wind turbine
JP5785181B2 (en) Turbine
JP5400887B2 (en) Turbine and rotor for turbine
KR100895038B1 (en) Swept turbine blade assembly for vertical wind turbine system
EP3029315A1 (en) Wind power generation tower provided with gyromill type wind turbine
WO2010116983A9 (en) Wind wheel
JP2010065676A (en) Wind power energy system, wind power energy conversion system, and wind tunnel module
KR102471788B1 (en) rotor for electric generator
JP5346000B2 (en) Windmill
EP3029316B1 (en) Wind power generation tower
JP6800030B2 (en) Wings and windmills using them
WO2016030821A1 (en) Three-vane double rotor for vertical axis turbine
JP2010084676A (en) Structure of blade for three blade type vertical shaft wind turbine device
KR101503358B1 (en) Horizontal wind power generator
JP5670591B1 (en) Axial impeller and turbine
JP6178550B2 (en) Power generation impeller and windmill equipped with the impeller
WO2022054800A1 (en) Vertical-axis wind turbine and vertical-axis wind turbine power generator
CN201339541Y (en) Air vane
JP3164446U (en) Spiral loop wind turbine blade structure with good power generation efficiency
Chong et al. Design, development and testing of a novel power augmented cross-axis-wind-turbine
TWM325389U (en) Windmill structure
RU2293211C1 (en) Windmill rotor
JP2005344728A (en) Horizontal shaft type impeller
JP2016094926A (en) Axial flow water turbine power generation device