JP2010084553A - Turbine blade and steam turbine - Google Patents

Turbine blade and steam turbine Download PDF

Info

Publication number
JP2010084553A
JP2010084553A JP2008252160A JP2008252160A JP2010084553A JP 2010084553 A JP2010084553 A JP 2010084553A JP 2008252160 A JP2008252160 A JP 2008252160A JP 2008252160 A JP2008252160 A JP 2008252160A JP 2010084553 A JP2010084553 A JP 2010084553A
Authority
JP
Japan
Prior art keywords
turbine
turbine blade
oxide
heat treatment
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008252160A
Other languages
Japanese (ja)
Other versions
JP4991669B2 (en
Inventor
Hiroshi Haruyama
博司 春山
Hiroyuki Doi
裕之 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008252160A priority Critical patent/JP4991669B2/en
Publication of JP2010084553A publication Critical patent/JP2010084553A/en
Application granted granted Critical
Publication of JP4991669B2 publication Critical patent/JP4991669B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive steam turbine stator blade without using alloy coating such as thermal spray and a sintered body, which is excellent in oxidation resistance, and of which efficiency is not decreased even after operation for a long period of time. <P>SOLUTION: A turbine blade uses stainless steel containing 8-15 mass% of chromium as base material, and has an oxide film on a surface of the base material. Members constituting the turbine blade are formed by processing a forging material. After surfaces of the members are polished to be 0.5a or less in surface roughness and the polished members are welded to be in a shape of a turbine stator blade, thermal processing is performed at an actual operation temperature or more. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、表面に保護性の酸化皮膜を有する蒸気タービン静翼に係り、表面に保護製の酸化皮膜を有する蒸気タービン静翼に関する。   The present invention relates to a steam turbine stationary blade having a protective oxide film on its surface, and relates to a steam turbine stationary blade having a protective oxide film on its surface.

近年、蒸気タービンにおいては、高い発電効率が要求されており、蒸気温度が上昇する傾向にある。蒸気温度が566℃以上の場合、静翼の材料として一般的に12%Cr系のステンレス鋼が使用されている。静翼の表面粗さが効率に及ぼす影響として、長時間運転中に静翼表面に酸化スケールが生成し、表面が粗くなることにより効率が低下することが知られている。高圧段側においては、高温蒸気による酸化を防止するために、クロムカーバイドのコーティングあるいは窒化処理を施すことにより、表面粗さの増大に従う効率の低下を防止している。特に、中低圧段側においては、表面研磨した鍛造材を溶接した後、応力除去焼鈍中に生成した酸化スケールを除去するために、再度表面研磨によって表面を滑らかにしたうえで使用されている。   In recent years, steam turbines are required to have high power generation efficiency, and the steam temperature tends to increase. When the steam temperature is 566 ° C. or higher, 12% Cr stainless steel is generally used as a material for the stationary blade. As an effect of the surface roughness of the stationary blade on the efficiency, it is known that an oxide scale is generated on the surface of the stationary blade during long-time operation, and the efficiency is lowered by roughening the surface. On the high-pressure stage side, in order to prevent oxidation due to high-temperature steam, a chromium carbide coating or nitriding treatment is applied to prevent a decrease in efficiency according to an increase in surface roughness. In particular, on the intermediate / low pressure stage side, after the surface-polished forged material is welded, it is used after the surface is smoothed again by surface grinding in order to remove the oxide scale generated during the stress relief annealing.

特開2002−309303号公報(特許文献1)には、微細な合金形成用金属粒子を塗布・焼結することによって、鋼表面に有機媒体を含有する金属粒子組成物を形成する方法が開示されている。   Japanese Patent Application Laid-Open No. 2002-309303 (Patent Document 1) discloses a method of forming a metal particle composition containing an organic medium on a steel surface by applying and sintering fine metal particles for forming an alloy. ing.

特表2007−507604号公報(特許文献2)には、耐食性のバインダーマトリックスを使用して、耐摩耗性及び耐エロージョン性の向上したナノ構造化コーティングを製造する方法が開示されている。   Japanese Patent Publication No. 2007-507604 (Patent Document 2) discloses a method for producing a nanostructured coating having improved wear resistance and erosion resistance using a corrosion-resistant binder matrix.

特開2002−309303号公報JP 2002-309303 A 特表2007−507604号公報Special table 2007-507604

溶射または焼結により合金コーティングを形成した場合には、耐酸化性・耐摩耗性に優れるものの、コストが高くなるという問題がある。また、窒化処理のように耐磨耗性を向上させることによって耐酸化性が低下する場合もある。   When an alloy coating is formed by thermal spraying or sintering, although it is excellent in oxidation resistance and wear resistance, there is a problem that costs increase. In addition, the oxidation resistance may be lowered by improving the wear resistance as in the nitriding treatment.

一方、表面に皮膜を形成しない表面研磨のみの静翼は、長時間運転中に酸化し、表面が粗くなることにより効率が低下する。   On the other hand, a stationary blade with only surface polishing that does not form a film on the surface is oxidized during long-time operation, and the surface becomes rough, thereby reducing efficiency.

以上のように、従来の技術は、いずれもタービン性能の維持とコストを満足すると言えるものではなかった。   As described above, none of the conventional techniques satisfy the maintenance of turbine performance and the cost.

本発明は、上記のような事情に鑑みてなされたものであり、その目的は、溶射や焼結体などの合金コーティングを用いることなく低コストで、耐酸化性に優れ、長時間運転後であっても効率が低下しない蒸気タービン静翼を提供する。   The present invention has been made in view of the circumstances as described above, and its purpose is low cost without using an alloy coating such as thermal spraying or sintered body, excellent oxidation resistance, and after a long time operation. Provided is a steam turbine stationary blade whose efficiency is not lowered even if it exists.

本発明は、重量でMnを0.1〜1.0%、Crを8〜15%含むステンレス鋼を基材とし、その表面にCr,Mn,Feを含む保護性の酸化皮膜を有し、酸化皮膜における酸化物の平均粒径が20〜70nmであることを特徴とする蒸気タービン静翼にある。   The present invention is based on stainless steel containing 0.1 to 1.0% Mn and 8 to 15% Cr by weight, and has a protective oxide film containing Cr, Mn and Fe on its surface, The steam turbine stationary blade is characterized in that the average particle size of the oxide in the oxide film is 20 to 70 nm.

また本発明は、前記の蒸気タービン静翼において、更に、表面粗さRaが1.6a以下であることを特徴とする蒸気タービン静翼にある。   The present invention also provides the steam turbine stationary blade according to the above-described steam turbine stationary blade, wherein the surface roughness Ra is 1.6a or less.

本発明者らは、蒸気タービン静翼の表面粗さと酸化物の平均粒径に着目し、蒸気タービン効率と表面の性状について検討した。その結果、重量でMnを0.1〜1.0%、Crを8〜15%含むCrステンレス鋼を基材とし、その表面にCr,Mn,Feを含む保護性の酸化皮膜を有し、酸化皮膜における酸化物の平均粒径が20〜70nmである蒸気タービン静翼は、耐酸化性が優れており、長時間運転後でも性能の低下が抑制されることを見出した。   The inventors focused on the surface roughness of the steam turbine vane and the average particle size of the oxide, and studied the steam turbine efficiency and surface properties. As a result, based on Cr stainless steel containing 0.1 to 1.0% Mn and 8 to 15% Cr by weight, and having a protective oxide film containing Cr, Mn, Fe on the surface, It has been found that a steam turbine stationary blade having an average oxide particle size of 20 to 70 nm in the oxide film has excellent oxidation resistance and suppresses performance degradation even after long-time operation.

基材の8〜15%Crステンレス鋼について、通常大気中で酸化させた場合には、Fe及びCrが酸化することによって、FeCr24のスケールが生成する。このスケールには保護性がないため、酸化を抑制することはできず、長時間運転後にはFeCr24スケールの外層にマグネタイトFe34のスケールが生成する。また、9〜13%Crステンレス鋼を低酸素分圧環境で酸化させた場合には、酸化物の標準生成自由エネルギーがFeよりもCrの方が低いため、Crが優先的に酸化するが、保護性のあるクロミアCr23皮膜を均一に生成するにはCr量が不足している。しかし、Mnを0.1〜1.0%含む9〜13%Crステンレス鋼では、Mn酸化物の標準生成自由エネルギーがFe及びCrよりもさらに低いため、これを低酸素分圧環境で酸化させた場合、ノジュール状にMn酸化物が生成し、その他の部分にCrリッチな酸化物が生成することにより、長時間運転中の酸化が抑制されることが分かった。 When the base 8-15% Cr stainless steel is oxidized in the normal atmosphere, Fe and Cr are oxidized to produce a scale of FeCr 2 O 4 . Since this scale is not protective, oxidation cannot be suppressed, and a scale of magnetite Fe 3 O 4 is formed in the outer layer of the FeCr 2 O 4 scale after long-time operation. In addition, when 9-13% Cr stainless steel is oxidized in a low oxygen partial pressure environment, Cr is preferentially oxidized because the standard free energy of formation of oxide is lower than that of Fe. The amount of Cr is insufficient to uniformly produce a protective chromia Cr 2 O 3 film. However, in 9-13% Cr stainless steel containing 0.1-1.0% Mn, the standard free energy of formation of Mn oxide is even lower than that of Fe and Cr, so that this is oxidized in a low oxygen partial pressure environment. In this case, it was found that Mn oxide was produced in a nodular form and Cr-rich oxide was produced in other parts, thereby suppressing oxidation during long-time operation.

表面粗さについては、表面の酸化物が成長することにより表面が粗くなるため、酸化物が生成しないことが望ましい。しかし、8〜15%Cr鋼において、合金またはセラミック等によるコーティングを施す以外の方法としては、酸化物の成長を抑制することが重要である。本発明者らは、保護性の酸化皮膜を構成する酸化物粒子の粒径が20〜70nmであれば、酸化スケールの成長が顕著に抑制されることを見出した。一方、どれだけ酸化物粒子の粒径をナノオーダーに維持しても、酸化物を生成する表面の粗さが大きいと、その効果が見られないことも分かった。各種検討の結果、長時間運転後であっても表面粗さの増大を抑制し、効率の低下を防止するには、保護性の酸化皮膜の粒径が20〜70nmであることと、表面粗さRaが1.6a以下であることが重要であり、本発明に至った。   As for the surface roughness, it is desirable that the oxide is not generated because the surface becomes rough as the surface oxide grows. However, in 8-15% Cr steel, it is important to suppress oxide growth as a method other than coating with an alloy or ceramic. The present inventors have found that the growth of oxide scale is remarkably suppressed when the particle diameter of the oxide particles constituting the protective oxide film is 20 to 70 nm. On the other hand, no matter how much the particle size of the oxide particles is maintained on the nano order, the effect is not seen if the roughness of the surface on which the oxide is generated is large. As a result of various studies, in order to suppress an increase in surface roughness and prevent a decrease in efficiency even after long-time operation, the protective oxide film has a particle size of 20 to 70 nm, It is important that Ra is 1.6a or less, and the present invention has been achieved.

本発明により、蒸気タービン静翼における運転中の酸化スケールの生成を抑制することが可能となり、低コストで、耐酸化性に優れ、長時間運転後であっても効率が低下しない蒸気タービン静翼を提供することが可能となった。   According to the present invention, it is possible to suppress generation of oxide scale during operation in a steam turbine stationary blade, which is low in cost, excellent in oxidation resistance, and does not decrease in efficiency even after long-time operation. It became possible to provide.

本発明は、上記の通りの特徴を持つものであり、以下、本発明の実施の形態について説明するが、本発明は以下の実施例に限定されるものではない。   The present invention has the features as described above, and embodiments of the present invention will be described below, but the present invention is not limited to the following examples.

まず、本願発明を使用した蒸気タービンについて説明する。   First, a steam turbine using the present invention will be described.

図1は、本発明の蒸気タービン翼を中圧静翼14及び高圧静翼15として適用した蒸気タービンプラントの一例である。ボイラより供給された566℃の蒸気は主蒸気配管28を通して、高圧車室18に導かれる。蒸気はノズル38を通り、高圧静翼15は蒸気の流れる方向を変えるとともに、圧力差により蒸気の速度を増加させ、高圧動翼16は蒸気エネルギーを回転エネルギーに変換し、ロータ33を回転させて、ロータ33に結合された発電機で発電を行う。   FIG. 1 is an example of a steam turbine plant in which the steam turbine blades of the present invention are applied as medium pressure stationary blades 14 and high pressure stationary blades 15. The steam at 566 ° C. supplied from the boiler is guided to the high-pressure casing 18 through the main steam pipe 28. The steam passes through the nozzle 38, the high pressure stationary blade 15 changes the direction of the flow of the steam and increases the speed of the steam due to the pressure difference, and the high pressure moving blade 16 converts the steam energy into rotational energy and rotates the rotor 33 Then, power is generated by a generator coupled to the rotor 33.

図2は、単翼型の蒸気タービン静翼を示す図である。鍛造材を加工した後、表面粗さRaを0.4aに表面研磨して作成した翼部50と内側シュラウド部51、及び翼部50と外側シュラウド部52を、それぞれ溶接し、タービン静翼形状とした後に、650℃,4時間の熱処理を行って製造した。溶接後の熱処理により、タービン翼の表面に本発明の酸化皮膜を形成するため、従来、表面粗さRaを1.6aに研磨して作成した場合に必要であった、溶接後のブラストや研磨などによる酸化スケールの除去、及びその後の洗浄工程が不要となる。   FIG. 2 is a view showing a single blade type steam turbine stationary blade. After processing the forged material, the blade portion 50 and the inner shroud portion 51, and the blade portion 50 and the outer shroud portion 52, which are prepared by polishing the surface to a surface roughness Ra of 0.4a, are welded to form a turbine stationary blade shape. Then, it was manufactured by performing a heat treatment at 650 ° C. for 4 hours. In order to form the oxide film of the present invention on the surface of the turbine blade by heat treatment after welding, blasting or polishing after welding, which was conventionally required when the surface roughness Ra was polished to 1.6a, was created. The removal of the oxide scale by the above and the subsequent cleaning step are unnecessary.

本発明の酸化膜は、タービン翼の表面に形成されたものであることを特徴とする。また、前記酸化膜は、酸化物粒子を含み、前記酸化物粒子の粒径が20〜70ナノメートルであることを特徴とする。   The oxide film of the present invention is formed on the surface of a turbine blade. The oxide film includes oxide particles, and the oxide particles have a particle size of 20 to 70 nanometers.

前記酸化膜の表面粗さRaは、1.6a以下であることを特徴するが、1.0a以下が望ましく、特に、0.5a以下がより好ましい。表面粗さは、その求め方によって、最大高さRy、十点平均粗さRz、算術平均粗さRaなどが使用されている。本発明における平均粗さは、算術平均粗さRaを示す。粗さ曲線からその平均線の方向に基準長さだけ抜き取り、この抜き取り部分における平均線から粗さ曲線までの偏差の絶対値を合計し、平均した値をマイクロメートルで表すことによって求める。   The oxide film has a surface roughness Ra of 1.6a or less, preferably 1.0a or less, and more preferably 0.5a or less. For the surface roughness, the maximum height Ry, the ten-point average roughness Rz, the arithmetic average roughness Ra, and the like are used depending on how to obtain the surface roughness. The average roughness in this invention shows arithmetic average roughness Ra. A reference length is extracted from the roughness curve in the direction of the average line, the absolute values of deviations from the average line to the roughness curve in this extracted part are summed, and the average value is obtained by expressing in micrometers.

前記酸化膜の成分は、主にCr,Fe,O,Mnを含むことを特徴とする。   The oxide film component mainly includes Cr, Fe, O, and Mn.

タービン翼が、本発明の酸化膜を有することにより、運転中の酸化スケールの生成を抑制することが可能となり、低コストで、耐酸化性に優れ、長時間運転後であっても効率が低下しないことが可能となる。   The turbine blade having the oxide film of the present invention makes it possible to suppress the generation of oxide scale during operation, and is low in cost, excellent in oxidation resistance, and reduced in efficiency even after prolonged operation. It is possible not to.

熱処理条件の雰囲気は、大気中であっても効果は見られるが、Arなどの不活性ガス雰囲気中または真空中の低酸素分圧であることが望ましい。特に、1×10-12atm以下であることが好ましい。熱処理温度は、実動温度以上の温度で行い、溶接構造を有する翼の場合には、製造時の溶接後応力除去焼鈍温度であることが望ましく、溶接構造のない翼の場合には、翼材の焼き戻し温度以下であることが望ましい。特に、650〜690℃が好ましい。熱処理時間は、低酸素雰囲気では長時間行うことによって、より保護性の高いCrリッチな酸化皮膜が形成されるが、現実的には工程上短時間であることが望ましい。特に、3〜12時間が好ましい。 Although the effect of the heat treatment condition can be seen even in the air, it is desirable to have a low oxygen partial pressure in an inert gas atmosphere such as Ar or in a vacuum. In particular, it is preferably 1 × 10 −12 atm or less. The heat treatment temperature is higher than the actual operating temperature. In the case of a blade having a welded structure, it is desirable to be a post-weld stress relief annealing temperature at the time of manufacture. In the case of a blade without a welded structure, the blade material is used. It is desirable that the temperature is not higher than the tempering temperature. 650-690 degreeC is especially preferable. The heat treatment is performed for a long time in a low-oxygen atmosphere, so that a Cr-rich oxide film with higher protection is formed. However, in practice, a short time is desirable in the process. In particular, 3 to 12 hours are preferable.

以下、本発明に用いたタービン翼の成分限定理由について説明する。   Hereinafter, the reasons for limiting the components of the turbine blade used in the present invention will be described.

Crは蒸気中の耐食性,耐酸化性を向上させる。また、焼入れ性を向上させ、靭性及び強度向上効果もある。8.0%未満ではこれらの効果が十分ではなく、15.0%を超える過剰な添加はδフェライト相を形成させるため、クリープ破断強度,靭性を低下させる。特に、9.0〜13.0の範囲とすることが好ましい。   Cr improves the corrosion resistance and oxidation resistance in steam. Moreover, hardenability is improved and there is also an effect of improving toughness and strength. If the content is less than 8.0%, these effects are not sufficient, and if it exceeds 15.0%, a δ ferrite phase is formed, so that the creep rupture strength and toughness are lowered. In particular, a range of 9.0 to 13.0 is preferable.

Mnは、Mn酸化物をノジュール上に生成するために0.1%以上にすべきである。一方、多量に添加するとクリープ脆化を生じやすくなるため、1.0%以下とする。特に、0.5〜1.0%の範囲とすることが好ましい。   Mn should be at least 0.1% in order to produce Mn oxide on the nodules. On the other hand, if added in a large amount, creep embrittlement tends to occur, so the content is made 1.0% or less. In particular, the range of 0.5 to 1.0% is preferable.

その他、含まれても良い元素として、C,Si,Ni,Mo,V,W,Nb,N,Cu,Al、及び不可避不純物のS,Pなどがあるが、いずれの元素も耐酸化性及び強度を損なわないことが好ましい。   Other elements that may be included include C, Si, Ni, Mo, V, W, Nb, N, Cu, Al, and unavoidable impurities S and P. It is preferable not to impair the strength.

表1に、本実施例における蒸気タービン静翼に用いるステンレス鋼の化学組成を示す。   Table 1 shows the chemical composition of the stainless steel used for the steam turbine stationary blade in this example.

Figure 2010084553
Figure 2010084553

上記組成の試験片にて、酸化被膜の評価を行った。   The oxide film was evaluated with a test piece having the above composition.

高周波溶解炉した鋼塊を850〜1150℃の温度で熱間鍛造し、30mm角とした。焼入れは、1024〜1052℃で1時間行った後に油冷し、焼き戻しは、620℃以上で2時間行った後に空冷した。30mm角の供試材から寸法20×20×5mmの試験片を切断し、表面を#600エメリー紙で研磨した後、アセトンで脱脂洗浄した。   The steel ingot subjected to the high frequency melting furnace was hot forged at a temperature of 850 to 1150 ° C. to obtain a 30 mm square. Quenching was performed at 1024 to 1052 ° C. for 1 hour, followed by oil cooling, and tempering was performed at 620 ° C. or higher for 2 hours and then air cooling. A test piece having a size of 20 × 20 × 5 mm was cut from a 30 mm square test material, the surface was polished with # 600 emery paper, and then degreased and washed with acetone.

次に温度690℃の大気中で4時間の熱処理を大気中で行った。昇温及び降温速度は、それぞれ1時間毎に100℃である。   Next, heat treatment was performed in the air at a temperature of 690 ° C. for 4 hours. The temperature increase and temperature decrease rates are 100 ° C. every hour.

図3は、大気中での熱処理後の表面性状の模式図を示す。倍率2000倍で観察したところ、表面に1μm程度の粒径の酸化物が均一に生成していた。酸化物の主な成分は、EDX分析の結果、Cr,Fe,O,Mnであった。また、表面粗さRaは、大気中の熱処理によって僅かに増大した。   FIG. 3 shows a schematic diagram of surface properties after heat treatment in the atmosphere. When observed at a magnification of 2000 times, an oxide having a particle size of about 1 μm was uniformly formed on the surface. As a result of EDX analysis, the main components of the oxide were Cr, Fe, O, and Mn. Further, the surface roughness Ra slightly increased by heat treatment in the atmosphere.

この試験片を用いて、温度650℃の大気中で1000時間の酸化試験を行い、鋼表面に生成した酸化物の性状を、走査型電子顕微鏡を用いて観察した。   Using this test piece, an oxidation test for 1000 hours was performed in the atmosphere at a temperature of 650 ° C., and the properties of the oxide formed on the steel surface were observed using a scanning electron microscope.

図4は、大気中での熱処理後に、650℃で1000時間の大気酸化試験をした後の表面性状の模式図である。倍率5000倍で観察したところ、2〜4μm程度の粒径の比較的大きな角型の酸化物と、1μm程度の粒径の酸化物が結合して形成された酸化物が確認された。図3で1μm程度の粒径であった酸化物が運転中の酸化によって2〜4μmに成長したと考えられる。   FIG. 4 is a schematic diagram of surface properties after an atmospheric oxidation test at 650 ° C. for 1000 hours after heat treatment in the atmosphere. When observed at a magnification of 5000, an oxide formed by combining a relatively large square oxide having a particle size of about 2 to 4 μm and an oxide having a particle size of about 1 μm was confirmed. It can be considered that the oxide having a particle size of about 1 μm in FIG. 3 has grown to 2 to 4 μm due to oxidation during operation.

また、上記試験片について、研磨後、熱処理後及び大気酸化試験後の表面粗さ測定を行った。   Moreover, about the said test piece, the surface roughness after grinding | polishing, after heat processing, and after an atmospheric oxidation test was performed.

図5は、熱処理前の表面粗さをそれぞれ1としたときの、表面粗さの相対値を示す図である。大気中熱処理では熱処理後及び運転時間中に表面粗さが増大するが、その増加は非常に小さいことが確認された。表面粗さが増大すると、タービンの効率が低下するため、静翼に大気中の熱処理を適用した場合であっても、表面粗さの増大が抑制されることが確認された。さらに、従来の工程で必要であった溶接後のブラストや研磨などによる酸化スケールの除去、及びその後の洗浄工程が不要となり、コスト低減の効果も得られる。   FIG. 5 is a diagram showing the relative values of the surface roughness when the surface roughness before heat treatment is 1 respectively. In the air heat treatment, the surface roughness increased after the heat treatment and during the operation time, but the increase was confirmed to be very small. When the surface roughness is increased, the efficiency of the turbine is decreased. Therefore, it was confirmed that the increase in the surface roughness was suppressed even when heat treatment in the atmosphere was applied to the stationary blade. Furthermore, the removal of the oxide scale by blasting or polishing after welding, which is necessary in the conventional process, and the subsequent cleaning process are unnecessary, and an effect of cost reduction can be obtained.

実施例1と同様の試験片を作成し、低酸素分圧中での熱処理を行った場合について説明する。   A case where a test piece similar to that of Example 1 is prepared and heat treatment is performed in a low oxygen partial pressure will be described.

高周波溶解炉した鋼塊を850〜1150℃の温度で熱間鍛造し、30mm角とした。焼入れは、1024〜1052℃で1時間行った後に油冷し,焼き戻しは、620℃以上で2時間行った後に空冷した。で30mm角の供試材から寸法20×20×5mmの試験片を切断し、表面を#600エメリー紙で研磨した後、アセトンで脱脂洗浄した。   The steel ingot subjected to the high frequency melting furnace was hot forged at a temperature of 850 to 1150 ° C. to obtain a 30 mm square. Quenching was performed at 1024 to 1052 ° C. for 1 hour, followed by oil cooling, and tempering was performed at 620 ° C. or higher for 2 hours and then air cooling. A test piece having a size of 20 × 20 × 5 mm was cut from a 30 mm square specimen, and the surface was polished with # 600 emery paper, and then degreased and washed with acetone.

次に温度690℃で4時間の熱処理を酸素分圧が1×10-12atm以下の低酸素分圧中で行った。昇温及び降温速度は、それぞれ1時間毎に100℃である。これらの試験片を用いて、温度650℃の大気中で1000時間の酸化試験を行い、鋼表面に生成した酸化物の性状を、走査型電子顕微鏡を用いて観察した。 Next, heat treatment was performed at a temperature of 690 ° C. for 4 hours in a low oxygen partial pressure with an oxygen partial pressure of 1 × 10 −12 atm or less. The temperature increase and temperature decrease rates are 100 ° C. every hour. Using these test pieces, an oxidation test was conducted for 1000 hours in the atmosphere at a temperature of 650 ° C., and the properties of the oxide formed on the steel surface were observed using a scanning electron microscope.

図6は、図1と同じ倍率2000倍で観察した、低酸素分圧中での熱処理後の表面性状の模式図を示す。表面における酸化物の生成は、図1の大気SR材と比較して非常に少ない。これは本発明に係る蒸気タービン静翼の初期の表面に相当する。   FIG. 6 shows a schematic view of the surface properties after heat treatment in a low oxygen partial pressure, observed at the same magnification of 2000 as in FIG. The generation of oxide on the surface is very small compared to the atmospheric SR material of FIG. This corresponds to the initial surface of the steam turbine stationary blade according to the present invention.

図7は、図6の表面を倍率80000倍で観察した、低酸素分圧中での熱処理後の表面性状の模式図を示す図である。表面には50nm程度の粒径の酸化物が均一に生成した。酸化物の主な成分は、EDX分析の結果、Cr,Fe,O,Mnであった。また、表面粗さRaは、低酸素分圧中の熱処理によって減少した。   FIG. 7 is a diagram showing a schematic view of the surface properties after heat treatment in a low oxygen partial pressure, with the surface of FIG. 6 observed at a magnification of 80000 times. An oxide having a particle size of about 50 nm was uniformly formed on the surface. As a result of EDX analysis, the main components of the oxide were Cr, Fe, O, and Mn. Further, the surface roughness Ra was reduced by the heat treatment in the low oxygen partial pressure.

図8は、低酸素分圧中での熱処理後に、650℃で1000時間の大気酸化試験をした後の表面性状の模式図である。図4と同じ倍率5000倍で観察したところ、酸化物の粒径は最大でも2μmより小さく、大部分は1μmよりも小さいことが確認された。図4と比較すると、長時間運転後の酸化物の粒径は、大気中熱処理よりも低酸素分圧中での熱処理の方が小さいことは明らかである。   FIG. 8 is a schematic diagram of the surface properties after an atmospheric oxidation test at 650 ° C. for 1000 hours after heat treatment in a low oxygen partial pressure. When observed at the same magnification of 5000 as in FIG. 4, it was confirmed that the particle size of the oxide was at most smaller than 2 μm and most smaller than 1 μm. Compared with FIG. 4, it is clear that the oxide particle size after long-time operation is smaller in the heat treatment at a low oxygen partial pressure than in the atmospheric heat treatment.

また、前述の図5中に、低酸素分圧中での熱処理について、熱処理前の表面粗さを1としたときの熱処理前後及び酸化試験後の表面粗さの相対値を示した。低酸素分圧中での熱処理では、熱処理後及び運転時間中の表面粗さが、熱処理前と比べて減少したことが明らかとなった。静翼に低酸素分圧中での熱処理を適用した場合、本発明に係る保護皮膜を有することによって、長時間運転後の酸化スケールの生成が抑制され、低コストでタービン性能を維持できることが確認された。   Further, in FIG. 5, the relative values of the surface roughness before and after the heat treatment and after the oxidation test when the surface roughness before the heat treatment is set to 1 for the heat treatment in a low oxygen partial pressure are shown. In the heat treatment at a low oxygen partial pressure, it became clear that the surface roughness after the heat treatment and during the operation time decreased compared with that before the heat treatment. When heat treatment in low oxygen partial pressure is applied to a stationary blade, it is confirmed that by having the protective coating according to the present invention, generation of oxide scale after long-time operation is suppressed, and turbine performance can be maintained at low cost. It was done.

また、熱処理の温度条件を変えて同様の試験を行った。実施例1,実施例2の熱処理温度を650℃に変え、4時間の熱処理を大気中及び酸素分圧が1×10-13atm以下の低酸素分圧中でそれぞれ行った。その結果、熱処理前後の表面粗さの比は、大気中の1.38に対して低酸素分圧中では1.28となった。本発明に係る保護皮膜は、650℃で行っても効果があることが確認された。 Moreover, the same test was performed by changing the temperature conditions of the heat treatment. The heat treatment temperature of Example 1 and Example 2 was changed to 650 ° C., and the heat treatment for 4 hours was performed in the atmosphere and at a low oxygen partial pressure of 1 × 10 −13 atm or less. As a result, the ratio of the surface roughness before and after the heat treatment was 1.28 in the low oxygen partial pressure with respect to 1.38 in the atmosphere. It was confirmed that the protective film according to the present invention was effective even when performed at 650 ° C.

本発明に係る高中圧一体型蒸気タービンの断面図である。1 is a cross-sectional view of a high / medium pressure integrated steam turbine according to the present invention. 単翼型の蒸気タービン静翼を示す図である。It is a figure which shows a single blade type | mold steam turbine stationary blade. 大気中での熱処理後の表面性状の模式図である。It is a schematic diagram of the surface property after heat processing in air | atmosphere. 大気中での熱処理後に大気酸化試験した後の表面性状の模式図である。It is a schematic diagram of the surface property after carrying out an atmospheric oxidation test after the heat treatment in the atmosphere. 熱処理前の表面粗さを1としたときの、表面粗さの相対値を示す図である。It is a figure which shows the relative value of surface roughness when the surface roughness before heat processing is set to 1. 低酸素分圧中での熱処理後の表面性状の模式図である。It is a schematic diagram of the surface property after heat processing in a low oxygen partial pressure. 低酸素分圧中での熱処理後の表面性状について、図5より高倍率で観察した場合の模式図である。It is a schematic diagram at the time of observing at higher magnification than FIG. 5 about the surface property after the heat processing in a low oxygen partial pressure. 低酸素分圧中での熱処理後に大気酸化試験した後の表面性状の模式図である。It is a schematic diagram of the surface property after carrying out an atmospheric oxidation test after the heat treatment in a low oxygen partial pressure.

符号の説明Explanation of symbols

14 中圧静翼
15 高圧静翼
16 高圧動翼
17 中圧動翼
18 高圧内部車室
19 高圧外部車室
20,21 中圧内部車室
22 中圧外部車室
25 フランジ,エルボ
28 主蒸気入口
33 高中圧ロータシャフト
38 ノズルボックス
43 軸受け
50 翼部
51 内側シュラウド部
52 外側シュラウド部
14 Medium-pressure stationary blade 15 High-pressure stationary blade 16 High-pressure moving blade 17 Medium-pressure moving blade 18 High-pressure internal compartment 19 High-pressure external compartment 20, 21 Medium-pressure internal compartment 22 Medium-pressure external compartment 25 Flange, elbow 28 Main steam inlet 33 High and medium pressure rotor shaft 38 Nozzle box 43 Bearing 50 Wing 51 Inner shroud 52 Outer shroud

Claims (11)

クロムを8〜15質量%含有するステンレス鋼を基材とするタービン翼であって、前記基材の表面に酸化膜を有することを特徴とするタービン翼。   A turbine blade having a base material of stainless steel containing 8 to 15% by mass of chromium, the surface of the base material having an oxide film. 請求項1に記載されたタービン翼であって、
前記酸化膜は酸化物粒子を含み、前記酸化物粒子の粒径が20〜70ナノメートルであることを特徴とするタービン翼。
The turbine blade according to claim 1,
The turbine blade according to claim 1, wherein the oxide film includes oxide particles, and the oxide particles have a particle size of 20 to 70 nanometers.
請求項1に記載されたタービン翼であって、
前記酸化膜の表面粗さRaが1.6a以下であることを特徴とするタービン翼。
The turbine blade according to claim 1,
The turbine blade according to claim 1, wherein the oxide film has a surface roughness Ra of 1.6a or less.
請求項1に記載されたタービン翼であって、
前記基材は、鉄を主成分とし、少なくともマンガン及びクロムを含有することを特徴とするタービン翼。
The turbine blade according to claim 1,
The turbine blade according to claim 1, wherein the base material contains iron as a main component and contains at least manganese and chromium.
請求項4に記載されたタービン翼であって、
前記基材は、Mnを0.1〜1.0%含むことを特徴とする蒸気タービン翼。
A turbine blade according to claim 4, wherein
The said base material contains 0.1-1.0% of Mn, The steam turbine blade characterized by the above-mentioned.
クロムを8〜15質量%含有するステンレス鋼を基材とするタービン用の静翼の製造方法であって、
タービン翼を構成する部材を鍛造材の加工により形作り、前記部材の表面を、表面粗さが0.5a以下に研磨し、前記研磨された各部材を溶接してタービン静翼形状とした後に実働中の温度以上で熱処理を行うことを特徴とするタービン用の静翼の製造方法。
A method for producing a vane for a turbine based on a stainless steel containing 8 to 15% by mass of chromium,
The members constituting the turbine blade are formed by forging processing, the surface of the member is polished to a surface roughness of 0.5a or less, and the polished members are welded to form a turbine vane shape. A method for producing a turbine vane, characterized in that the heat treatment is performed at a temperature higher than the inside temperature.
請求項6に記載されたタービン用の静翼の製造方法であって、前記研磨後の基材の表面粗さRaを1.6a以下とすることを特徴とするタービン用静翼の製造方法。   The method for producing a turbine vane according to claim 6, wherein the ground surface roughness Ra of the ground substrate is 1.6a or less. 請求項6に記載されたタービン用の静翼の製造方法であって、前記熱処理を前記部材表面に形成される酸化膜に粒径が20〜70ナノメートルの酸化物粒子が析出するまでの時間行うことを特徴とするタービン用静翼の製造方法。   It is a manufacturing method of the stationary blade for turbines described in Claim 6, Comprising: Time until an oxide particle with a particle size of 20-70 nanometer precipitates in the oxide film formed in the said member surface by the said heat processing The manufacturing method of the stationary blade for turbines characterized by performing. 請求項6に記載されたタービン用の静翼の製造方法であって、前記熱処理は、650℃〜690℃で行うことを特徴とするタービン用静翼の製造方法。   The method for manufacturing a turbine vane according to claim 6, wherein the heat treatment is performed at 650 ° C to 690 ° C. 請求項6に記載されたタービン用静翼の製造方法であって、前記熱処理を酸素分圧1×10-12atm以下で行うことを特徴とするタービン用静翼の製造方法。 7. The method for manufacturing a turbine vane according to claim 6, wherein the heat treatment is performed at an oxygen partial pressure of 1 × 10 −12 atm or less. 請求項6に記載されたタービン用の静翼の製造方法であって、翼の処理表面は、動作流体通路部を含む範囲とすることを特徴とするタービン用静翼の製造方法。   7. The method for manufacturing a turbine vane according to claim 6, wherein a processing surface of the blade is in a range including a working fluid passage portion.
JP2008252160A 2008-09-30 2008-09-30 Turbine blade and steam turbine Expired - Fee Related JP4991669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008252160A JP4991669B2 (en) 2008-09-30 2008-09-30 Turbine blade and steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008252160A JP4991669B2 (en) 2008-09-30 2008-09-30 Turbine blade and steam turbine

Publications (2)

Publication Number Publication Date
JP2010084553A true JP2010084553A (en) 2010-04-15
JP4991669B2 JP4991669B2 (en) 2012-08-01

Family

ID=42248767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008252160A Expired - Fee Related JP4991669B2 (en) 2008-09-30 2008-09-30 Turbine blade and steam turbine

Country Status (1)

Country Link
JP (1) JP4991669B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127103A (en) * 2011-12-19 2013-06-27 Babcock Hitachi Kk Anti-oxidation treatment method for ferritic heat resistant steel, ferritic heat resistant steel and boiler device
JP2014066145A (en) * 2012-09-25 2014-04-17 Toshiba Corp Component for turbine, turbine, and method for manufacturing component for turbine
JP2016217246A (en) * 2015-05-20 2016-12-22 株式会社東芝 Repair method of turbine component and turbine component
US10107113B2 (en) 2013-03-13 2018-10-23 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine vane manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179788A (en) * 1984-09-27 1986-04-23 Toyota Central Res & Dev Lab Inc Antioxidant for inhibiting abnormal oxidation of stainless steel at high temperature
JPH05311347A (en) * 1992-05-06 1993-11-22 Toshiba Corp Turbine blade
JPH10103006A (en) * 1996-09-24 1998-04-21 Hitachi Ltd High-low pressure integral type steam turbine and long blade thereof in addition to combined generating cycle
JP2000087259A (en) * 1998-09-16 2000-03-28 Sumitomo Metal Ind Ltd Stainless steel sheet and its production
JP2004245221A (en) * 2003-02-13 2004-09-02 Alstom Technology Ltd Hybrid blade for thermal turbo machine
JP2007187152A (en) * 2005-12-02 2007-07-26 General Electric Co <Ge> Corrosion inhibiting ceramic coating and method of application
JP2007262530A (en) * 2006-03-29 2007-10-11 Chubu Electric Power Co Inc Oxidation-resistant coating member and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179788A (en) * 1984-09-27 1986-04-23 Toyota Central Res & Dev Lab Inc Antioxidant for inhibiting abnormal oxidation of stainless steel at high temperature
JPH05311347A (en) * 1992-05-06 1993-11-22 Toshiba Corp Turbine blade
JPH10103006A (en) * 1996-09-24 1998-04-21 Hitachi Ltd High-low pressure integral type steam turbine and long blade thereof in addition to combined generating cycle
JP2000087259A (en) * 1998-09-16 2000-03-28 Sumitomo Metal Ind Ltd Stainless steel sheet and its production
JP2004245221A (en) * 2003-02-13 2004-09-02 Alstom Technology Ltd Hybrid blade for thermal turbo machine
JP2007187152A (en) * 2005-12-02 2007-07-26 General Electric Co <Ge> Corrosion inhibiting ceramic coating and method of application
JP2007262530A (en) * 2006-03-29 2007-10-11 Chubu Electric Power Co Inc Oxidation-resistant coating member and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127103A (en) * 2011-12-19 2013-06-27 Babcock Hitachi Kk Anti-oxidation treatment method for ferritic heat resistant steel, ferritic heat resistant steel and boiler device
JP2014066145A (en) * 2012-09-25 2014-04-17 Toshiba Corp Component for turbine, turbine, and method for manufacturing component for turbine
US10107113B2 (en) 2013-03-13 2018-10-23 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine vane manufacturing method
JP2016217246A (en) * 2015-05-20 2016-12-22 株式会社東芝 Repair method of turbine component and turbine component

Also Published As

Publication number Publication date
JP4991669B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP5578893B2 (en) Member having sliding portion of steam turbine
JP4908137B2 (en) Turbine rotor and steam turbine
EP2455496B1 (en) Precipitation hardening martensitic stainless steel and steam turbine component made thereof
JP4542491B2 (en) High-strength heat-resistant cast steel, method for producing the same, and uses using the same
JP2012503719A (en) Turbocharger and its adjustable blade
JP2006124830A (en) Erosion and wear resistant protective structure for turbine component
WO1999031365A1 (en) Gas turbine for power generation, and combined power generation system
JP2013147698A (en) Precipitation-hardening type martensitic stainless steel, and steam-turbine long blade, steam-turbine and power-plant using the same
JP4991669B2 (en) Turbine blade and steam turbine
JP3956602B2 (en) Manufacturing method of steam turbine rotor shaft
JP3921574B2 (en) Heat-resistant steel, gas turbine using the same, and various components
JP5981250B2 (en) Ni-base alloy for casting, method for producing Ni-base alloy for casting, and turbine cast component
JP2012503744A (en) Turbocharger and its adjustment ring
JP2010150585A (en) Ni-based alloy for casting part of steam turbine excellent in high-temperature strength, castability and weldability, turbine casing of steam turbine, valve casing of steam turbine, nozzle box of steam turbine, and pipe of steam turbine
JP2006022343A (en) Heat resistant steel, rotor shaft for steam turbine using it, steam turbine, and power plant with the use of steam turbine
JP5578916B2 (en) Ni-based alloy for cast components of steam turbine and cast components of steam turbine
US10260357B2 (en) Steam turbine rotor, steam turbine including same, and thermal power plant using same
US20150132144A1 (en) Precipitation hardening martensitic stainless steel, turbine component formed of said martensitic stainless steel, and turbine including said turbine component
JP3951928B2 (en) High temperature components for gas turbines
JP5389763B2 (en) Rotor shaft for steam turbine, steam turbine and steam turbine power plant using the same
JP2015218379A (en) Thermal barrier coating material for steam turbine, and steam apparatus for power generation
JP5646521B2 (en) Ni-based alloy for steam turbine casting and cast component for steam turbine
JP6815979B2 (en) Nozzle and its manufacturing method
JPS6283451A (en) Disk of gas turbine
JP5279630B2 (en) Steam turbine casing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

R151 Written notification of patent or utility model registration

Ref document number: 4991669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees