JP3921574B2 - Heat-resistant steel, gas turbine using the same, and various components - Google Patents

Heat-resistant steel, gas turbine using the same, and various components Download PDF

Info

Publication number
JP3921574B2
JP3921574B2 JP2003101401A JP2003101401A JP3921574B2 JP 3921574 B2 JP3921574 B2 JP 3921574B2 JP 2003101401 A JP2003101401 A JP 2003101401A JP 2003101401 A JP2003101401 A JP 2003101401A JP 3921574 B2 JP3921574 B2 JP 3921574B2
Authority
JP
Japan
Prior art keywords
amount
turbine
disk
heat
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003101401A
Other languages
Japanese (ja)
Other versions
JP2004307910A (en
Inventor
将彦 新井
啓嗣 川中
裕之 土井
竹原  勲
英俊 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003101401A priority Critical patent/JP3921574B2/en
Priority to US10/757,847 priority patent/US20050074356A1/en
Priority to DE602004005910T priority patent/DE602004005910T2/en
Priority to EP04001026A priority patent/EP1466993B1/en
Publication of JP2004307910A publication Critical patent/JP2004307910A/en
Application granted granted Critical
Publication of JP3921574B2 publication Critical patent/JP3921574B2/en
Priority to US12/153,552 priority patent/US20090068052A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Description

【0001】
【発明の属する技術分野】
本発明は新規な耐熱鋼とそれを用いたガスタービン及びその各種部材に関する。
【0002】
【従来の技術】
【特許文献1】
特開2001−49398号公報
【特許文献2】
特開平11−209851号公報
【特許文献3】
PCT/JP97/04609号公報
【特許文献4】
特開2001−49398号公報
【特許文献5】
特開平10−251809号公報
現在、ガスタービン用ディスクには、Cr−Mo−V鋼、12Cr−Mo−Ni−V−N鋼が使用されている。近年、省エネルギーの観点からガスタービンの熱効率の向上が望まれている。高効率発電をすることで化石燃料の節約、排出ガスの発生量を抑えることが可能となり、地球環境保全に貢献できる。熱効率を向上させるにはガス温度及び圧力を上げるのが最も有効な手段である。ガス温度を1300℃級から1500℃級に高めることにより、大幅な効率向上が期待できる。また、燃焼温度の上昇を伴わない場合でも、部材の冷却に使用している圧縮空気量の一部を削減することにより、効率向上が期待できる。
【0003】
しかし、これらの高温・高圧化にともない、従来のCr−Mo−V鋼、12Cr−Mo−Ni−V−N鋼では強度不足で、より強度の高い材料が必要である。強度としては、高温特性を最も大きく左右するクリープ破断強度が要求される。またガスタービンディスクではクリープ強度と共に高引張強さ、高靭性も要求され、特に高温で使用中に生ずる脆化を抑制しなければならない。
【0004】
クリープ破断強度が高い構造材料としては、オーステナイト鋼、Ni基合金、Co基合金、マルテンサイト鋼等が一般に知られている。熱間加工性、切削性及び振動減衰特性の点でNi基合金及びCo基合金は望ましくない。また、オーステナイト鋼は400〜450℃付近の強度がそれほど高くないこと、更にガスタービン全体システムから望ましくない。一方、マルテンサイト鋼は他の構成部品とのマッチングが良く、高温強度も十分である。
【0005】
【特許文献1】には高低圧一体型の蒸気タービンロータとして高強度及び高靭性の耐熱鋼が開示されている。又、【特許文献2】、【特許文献3】、【特許文献4】及び【特許文献5】にはガスタービンディスク材用の耐熱鋼が開示されている。
【0006】
【発明が解決しようとする課題】
しかし、これらの公報に記載の耐熱鋼ではガスタービンディスクに要求される高クリープ破断強度、高引張強度、高靭性、低脆化の特性等の内、特に高クリープ破断強度及び低脆化の特性を同時に満足できず、より高効率のガスタービンディスクとしては十分でない。ガスタービンの高温・高圧化に対して従来の単に強度の高い材料を用いるだけではガス温度の更なる上昇は出来ない。また、高温部を大量の冷却空気等によって冷却することによりガス温度の更なる上昇が期待できるが、熱効率が著しく低下する。そのため熱効率の低下を防ぐには冷却空気の削減が必要となるが、上述の高い材料特性が得られなければその削減ができない。そして一般に高温強度を向上させると靱性が低下するので、両者を同時に達成することが困難である。
【0007】
本発明の目的は、より高温度に対応できる高クリープ破断強度と高温長時間加熱後においても高い靭性を有する耐熱鋼とそれを用いたガスタービン及びその各種部材を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、重量で、C0.05〜0.30%、Si0.50%以下、Mn0.60%以下、Cr8.0〜13.0%、Ni0.5〜3.0%、Mo1.0〜3.0%、W0.1〜1.5%、Co 0.5〜4%、V0.20〜0.35% 、Nb及びTaの1種又は2種の合計量が0.08〜0.30%、及びN0.052〜0.10%を含み、 Ni 量と Co 量の差)の 2 乗で示される値は 1.8 以下であり、前記(Ni量とCo量の差)の2乗で示される値とNi量とが直交座標の点A(1.0、2.7%)及び点B(2.5、1.0%)の各点を直線で結んで得られる値以下及び{Mo量/(Mo量+0.5W量)}で求められる値が0.5以上であり、残部がFe及び不可避的不純物からなるマルテンサイト鋼からなることを特徴とする耐熱鋼にある
【0009】
更に、本発明は、前述の組成において、Mn量と(W量/Mo量)比とが直交座標の点C(0.15%、1.3)及び点D(0.37%、2.5)の各点を直線で結んで得られる値以下とすること、{Mo量/(Mo量+0.5W量)}で求められる値とMn量とが直交座標の点E(0.25、0.4%)及び点F(0.7、0.15%)の各点を直線で結んで得られる値以上とすることが好ましい
【0010】
本発明は、重量で、Re2%以下及びB0.001〜0.015%を少なくとも一種を含むことができる。又、重量で、Cu0.5%以下、Ti0.5%以下、Al0.2%以下、Zr0.1%以下、Hf0.1%以下、Ca0.01%以下、Mg0.01%以下、Y0.01%以下及び希土類元素0.01%以下の少なくとも一種を含むことができる。
【0011】
本発明に係る耐熱鋼は、次式で計算されるCr当量が10以下になるように成分調整され、δフェライト相を実質的に含まないようにすることが好ましい。各元素は、耐熱鋼の含有量(重量%)である。
【0012】
Cr当量=Cr+6Si+4Mo+1.5W+11V+5Nb−40C−30N−30B−2Mn− 4Ni−2Co+2.5Ta
本発明においては、室温における引張強さが1180MPa以上、好ましくは1200MPa以上、510℃、105時間クリープ破断強度が420MPa以上、好ましくは430MPa以上、530℃で104時間加熱後の25℃Vノッチシャルピー衝撃値が19.6J/cm2以上であることが好ましい。
【0013】
本発明は、タービンスタブシャフトと、該シャフトにタービンスタッキングボルトによって互いにタービンスペーサを介して連結された複数個のタービンディスクと、該ディスクに植込まれ、燃焼器によって発生した高温の燃焼ガスによって回転するタービンブレードと、前記ディスクに連結されたディスタントピースと、該ディスタントピースに連結された複数個のコンプレッサロータと、該ロータに植込まれ空気を圧縮するコンプレッサブレードと、前記コンプレッサロータに連結されたコンプレッサスタブシャフトを備えたガスタービンにおいて、前記タービンディスクと、ディスタントピース、タービンスペーサ、コンプレッサディスクの最終段及びタービンスタッキングボルトの少なくとも1つが、前述に記載の耐熱鋼からなるものである。
【0014】
更に、本発明は、円盤状部材で、該円盤状部材の円周部にタービンブレードの植え込み部と、複数の前記円盤状部材をスタッキングボルトによって一体に締結する複数の前記ボルトの挿入用孔とを有し、前述に記載の組成及び特性を有する耐熱鋼からなることを特徴とするガスタービンディスクにある。尚、円盤状部材の円中心部には中心孔があってもよいし、なくてもよい。
【0015】
ガスタービンディスクは高速回転による高い遠心応力と振動応力に耐えるため、引張強さが高いと同時に疲労強度が高くなければならない。そのためにガスタービンディスク材の金属組織は、有害なδフェライトが存在すると、疲労強度を著しく低下させるので、前述のCr当量が10以下になるように調整し、全焼戻しマルテンサイト組織とするのが好ましい。
【0016】
本発明は、円筒状部材で、該部材の両端部に設けられた突出部と、該突出部の一方に前記円筒状部材をタービンディスクにスタッキングボルトによって一体に締結する複数の前記ボルトの挿入用孔と、前記突出部の他方に前記円筒状部材をコンプレッサディスクにスタッキングボルトによって一体に締結する複数の前記ボルトの挿入用孔とを有し、前述に記載の組成を有する耐熱鋼からなることを特徴とするガスタービン用ディスタントピースにあり、前述と同様の特性を有する耐熱鋼を用いることが好ましい。
【0017】
本発明は、円盤状部材で、該円盤状部材の円周部にコンプレッサブレードの植え込み部と、前記複数の円盤状部材をスタッキングボルトによって一体に締結する複数の前記ボルトの挿入用孔とを有し、前述に記載の耐熱鋼からなることを特徴とするガスタービン用コンプレッサディスクにあり、前述と同様の特性を有する耐熱鋼を用いることが好ましい。
【0018】
本発明は、棒状部材で、その一端にネジ部と、他端に角状頭部とを有し、前述に記載の耐熱鋼からなることを特徴とするガスタービン用スタッキングボルトにあり、前述と同様の特性を有する耐熱鋼を用いることが好ましい。
【0019】
本発明の耐熱鋼の成分範囲限定理由について説明する。
【0020】
Cは高い引張強さと耐力を得るために0.05% 以上とする。しかし、0.30%を超えるC量では高温に長時間さらされた場合に金属組織が不安定になり、クリープ破断強度を低下させ、また靭性を低下させるので0.30%以下とする。特に、0.07〜0.23%が好ましく、より0.10〜0.20%が好ましい。
【0021】
Siは脱酸剤、Mnは脱硫・脱酸剤で耐熱鋼の溶解の際に添加するものであり、少量でも効果がある。Siはδフェライト生成元素であり、多量の添加は、疲労及び靭性を低下させる有害なδフェライト生成の原因になるので、0.50% 以下とする。なお、カーボン真空脱酸法及びエレクトロスラグ再溶解法などによればSi添加の必要がなく、Si無添加がよい。特に、0.10% 以下が好ましく、より0.05% 以下が好ましい。
【0022】
少量のMn添加は靭性を向上するが多量の添加は靭性を低下させるので、0.60%以下とする。特に、Mnは脱硫剤として有効なので、靭性向上の点から0.30%以下が好ましく、特に0.25%以下、更により0.20%以下が好ましい。0.05%以上含有させることは靭性の点から好ましい。
【0023】
Crは耐食性と引張強さを高めるが、13%を超える添加はδフェライト組織生成の原因になる。8%より少ないと耐食性と高温強度が不十分なので、Crは8〜13%とする。特に強度の点から10.0〜12.8%が好ましく、より10.5〜12.5%が好ましい。
【0024】
Moは固溶強化及び炭化物・窒化物析出強化作用によってクリープ破断強度を高める効果がある。Moは1.0%以下ではクリープ破断強度向上効果が不十分であり、3%以上になるとδフェライト生成原因になるので1.0〜3.0%とする。特に、1.2〜2.7%が好ましく、より1.3〜2.5%が好ましい。
【0025】
WもMoと同様の効果が有る。より高強度化のためにMoと同等の含有量まで含有させることができる。Wは0.1%以下ではクリープ破断強度向上効果が不十分であり、1.5%を超えると靭性が低下するので、0.1〜1.5%とする。特に0.2〜1.4%が好ましく、より0.3〜1.3%が好ましい。
【0026】
Coはより高温での強度を高めるので、高温化に対応させて含有量を高めるのが好ましい。0.5%未満ではその効果が十分ではなく、4.0%を超えると加熱脆化を促進するので、4%を上限とする。特に、0.8〜3.5%が好ましい。
【0027】
V及びNbは炭化物を析出し引張強さを高めると同時に靭性向上効果がある。V0.20%以下、Nb0.08%以下ではその効果が不十分であり、又、V0.35%以下 、Nb0.3%以下がδフェライト生成の抑制から好ましい。特に、V 0.20〜0.30%、Nbは0.08〜0.22%、より0.10〜0.20% が好ましい。Nbの代わりにTaを全く同様に添加でき、複合添加においても合計量で同様の含有量とすることができる。
【0028】
Niは低温靭性を高めると共に、δフェライト生成の防止効果がある。この効果は、Ni0.5%以上が好ましく、3.0% を越える添加で効果が飽和する。またNiの多量の添加はクリープ破断強度を下げる。特に、0.5〜2.5%が好ましく、より0.7〜2.3%が好ましい。
【0029】
Nはクリープ破断強度の向上及びδフェライトの生成防止に効果があるが0.052% 未満ではその効果が十分でなく、0.10% を越えると靭性を低下させる。特に、0.052〜0.080%の範囲で優れた特性が得られる。
【0030】
Reは固溶強化作用によってクリープ破断強度を高める効果がある。過剰な添加は脆化を促進するため2%以下の添加が好ましいが、Reは希少な元素であり、実用上から1.5%以下が好ましく、より1.2%以下が好ましい。
【0031】
Bは粒界強度を高くする作用が有り、クリープ破断強度を高める効果がある。0.001%以下ではこの効果が不十分で、0.015%を越える添加で靱性が低下する。特に0.002〜0.008%が望ましい。
【0032】
P及びSの低減は、クリープ破断強度を損なわず、低温靭性を高める効果があり、極力低減することが望ましい。低温靭性向上の点から、P0.015%以下、S0.015%以下が好ましい。特に、P0.010%以下、S0.010% 以下が望ましい。
【0033】
Sb、Sn及びAsの低減も、低温靭性を高める効果があり、極力低減することが望ましいが、現状製鋼技術レベルの点から、Sb0.0015%以下、Sn0.01%以下及びAs0.02%以下に限定した。特に、Sb0.001% 以下、Sn0.005%及びAs0.01%以下が望ましい。
【0034】
又、Ti Zr、Hf MC炭化物形成元素少なくとも1種を合計で0.5% 以下含むものが好ましい。Alは脱酸材及び結晶粒微細化材として0.0005%以上とし、0.2%を超えるとクリープ強度に有効に働く窒素を固着することにより、クリープ破断強度を下げるので、それ以下が良い。
【0035】
本発明においては、NiとCoの添加バランスに着目した。その結果、 Ni 量と Co 量の差)の 2 乗で示される値を 1.8 以下とし、更に(Ni量とCo量の差)の2乗で示される値とNi量との関係で表わされる点A(1.0、2.7%)及び点B(2.5、1.0%)の各点を直線で結んで得られる値以下及び{Mo量/(Mo量+0.5W量)}で求められる値を0.5以上とすることによって、前述の特性が得られるものである。特に、W量が1.5%以下において顕著である。更に W量が1.5%を超えるものは前述の高いクリープ強度が得られるが、高温長時間加熱後において靭性が低下するので好ましくない。
【0036】
即ち、マルテンサイト鋼の靭性に寄与する元素として、Ni及びCoが有る。Niは靭性を向上させる効果が有るが、クリープ強度を低下させる。Coはクリープ強度向上に効果が有るが、使用中の脆化を促進し、靭性を低下させる。従って、靭性及びクリープ強度を保ち、さらに加熱脆化を抑制するため、本発明はNi量とCo量の差がNiとCoの添加量の釣り合いを示す好ましいバランスを示す有効な指標であることを見出したものである。
【0037】
更に、本発明は、(W量/Mo量)比との関係で表わされる値とMn量とを、点C(1.3、0.15%)及び点D(2.5、0.37%)の各点を直線で結んで得られる値以下とすることにより前述の高温長時間加熱後においても高い靭性が得られるものである。
【0038】
又、本発明は、{Mo量/(Mo量+0.5W量)}で求められる値とMn量との関係で示される点E(0.25、0.4%)及び点F(0.7、0.15%) の各点を直線で結んで得られる値以上とすることにより特に前述の高温長時間加熱後においても高い靭性が得られるものである。
【0039】
即ち、本発明においては、MoとWの添加についても両者の添加量の特定の比が好ましいバランスを示す有効な指標であることを見出した。マルテンサイト鋼の高温強度向上に寄与する元素として、Mo及びWは、それぞれ固溶強化元素として作用し、その効果はMo当量={Mo(%)+0.5W(%)}、又は(W量/Mo量)で表わされる。しかし、これらの元素は高温長時間加熱後において靭性を低下させるが、少量のMnにおいては高温長時間加熱後において靭性を高める重要な役目を有し、それぞれを前述のMn量との関係から特定の含有量で複合添加することでその効果が顕著に得られる。MoとWではそれらの効果が異なり、高温ではWの添加が強度向上により有効であるが、Wの比率が大きい場合は前述のように靭性が低下する傾向にある。
【0040】
特に、600℃を超える使用環境下ではW添加が有効であるが、ガスタービンディスクはそれよりも使用温度が低く、高靭性が必要なため、本発明ではMo添加がより好ましく、従って {Mo量/(Mo量+0.5W量)}の値を0.5以上、好ましくは0.6〜0.95、より好ましくは0.75〜0.95とすることにより高温長時間加熱後においても高い靭性が得られるものである。
【0041】
本発明材の熱処理は、まず完全なオーステナイトに変態するに十分な温度、最低1000℃、最高1150℃に均一加熱し、急冷し(好ましくは油冷または水噴霧)、次いで540〜600℃の温度に加熱保持・冷却し(第1次焼戻し)、次いで550〜650℃の温度に加熱保持・冷却(第2次焼戻し)を行い、全焼戻しマルテンサイト組織とするものが好ましい。第2次焼戻しは第1次焼戻し温度より高い温度とするものである。焼入れにあたっては、Mf点直上の温度に止めることが焼き割れを防止する点で好ましい。具体的温度は150℃以上に止めるのが良い。第1次焼戻しはその温度より加熱する。
【0042】
【発明の実施の形態】
(実施例1)
表1はガスタービンディスク材に係る12%Cr耐熱鋼の化学組成(重量%)を示し、残部はFeである。各試料はそれぞれ150kg真空アーク溶解し、1150℃に加熱し鍛造して素材とした。この素材を1050℃で2時間の加熱後油冷し、560℃で5時間加熱後空冷の一次焼戻しを行い、次いで580℃で5時間加熱後炉冷の二次焼戻しを行った。熱処理後の素材からクリープ破断試験片、引張試験片及びVノッチシャルピー衝撃試験片を採取し実験に供した。衝撃試験は熱処理のままの材料と、530℃、10000時間加熱脆化材について行った。この脆化材はラルソン・ミラーのパラメータより510℃で10万時間加熱されたものと同等の条件である。
【0043】
【表1】

Figure 0003921574
【0044】
表2はこれら試料の機械的性質を示す。試料No.7〜13は本発明材であり、高温・高圧ガスタービンディスク材として要求される室温引張強さが1180MPa以上、510℃、105時間クリープ破断強度が420MPa以上、及び脆化処理後の25℃Vノッチシャルピー衝撃値が19.6J/cm2以上の値を示し、充分満足するものであることが確認された。これに対し、比較材の試料No.1〜6は、高温・高圧ガスタービンディスク材として要求される機械的特性を同時に満足出来ないものである。比較材の試料No.1、3、4及び5は(Ni量とCo量の差)の2乗の値がいずれも大きくなっており、NiとCoとにおいて一方の添加量が大きいことを示している。Ni添加量の大きい比較材のNo.1及びNo.5では、引張強さ及び加熱脆化前後の25℃Vノッチシャルピー衝撃値は満足するが、クリープ強度を満足できない。Co添加量の多い比較材No.3及びNo.4は、クリープ破断強度は満足するが、加熱脆化後の25℃Vノッチシャルピー衝撃値の低下が著しい。
【0045】
Mo当量の{Mo量/(Mo量+0.5W量)}の値が0.5未満の試料No.3及びNo.6は、衝撃値が低い。Moの単独添加(W添加量=0)の試料No.2はクリープ破断強度が低い。
【0046】
【表2】
Figure 0003921574
【0047】
さらに、表3に示す化学組成の試料を溶解及び鍛造によって製造し、同じ熱処理を行い実験に供した。試験結果を表4に示す。表4に示すように、本発明材の試料No.17〜19は高温・高圧ガスタービンディスク材として要求される室温引張強さが1180MPa以上、510℃、105時間クリープ破断強度が420MPa以上及び脆化処理後の25℃Vノッチシャルピー衝撃値が19.6J/cm2以上を充分満足する特性が得られることが確認された。これに対して、Bが過剰に添加された比較材の試料No.14及びNo.15は引張試験の伸び及び衝撃値が低く、高温・高圧ガスタービンディスク材として要求される機械的特性を同時に満足出来ない。また、Moの単独添加(W添加量=0)の比較材の試料No.14は、クリープ強度がやや低い。Reを過剰添加した比較材の試料No.16は、引張強さ、クリープ強度は十分であるが、絞りの値が低かった。
【0048】
【表3】
Figure 0003921574
【表4】
Figure 0003921574
【0049】
図1は、クリープ破断強度と(Ni量とCo量の差)の2乗との関係を示す図である。図1に示すように、クリープ破断強度は(Ni量とCo量の差)の2乗の値が大きくなるに従って著しく低下する。特に、Ni量との関係が大きく、Ni量が1.0〜1.2%のものは2.2〜3.2%のものに比較して高いクリープ破断強度を有するが、高Niのものは(Ni量とCo量の差)の2乗の値が大きくなると急激にクリープ破断強度を低下させる。
【0050】
特に、Co量がNi量より多い場合には、クリープ強度の低下が僅かであり、(Ni量とCo量の差)の2乗の値による影響は小さい。
【0051】
図2は、図1の関係から、510℃、105時間クリープ破断強度が420MPa以上を有する(Ni量とCo量の差)の2乗の値とNi量との関係を示す線図である。前述のように、クリープ破断強度は(Ni量とCo量の差)の2乗とNi量との間に密接な関係を有するものであり、本発明の組成を有する合金においては、(Ni量とCo量の差)の2乗で求められる値とNi量との関係で表わされる値が点A(1.0、2.7%)及び点B(2.5、1.0%)の各点を直線で結んで得られる値以下にすることにより420MPa以上のクリープ破断強度が得られるものである。
【0052】
図3は、脆化処理後の25℃Vノッチシャルピー衝撃値と(W量/Mo量)比との関係を示す線図である。図3に示すように、その衝撃値は(W量/Mo量)比が大きくなるに従って急激に低下する。その衝撃値はMn量が0.15%のものに対して0.32〜0.4%と多いほど高く、更に高C量ほど高い。更に、いずれも(W量/Mo量)比が大きくなるにつれてその衝撃値はいずれのMn量においても顕著に低下する。
【0053】
図4は脆化処理後の25℃Vノッチシャルピー衝撃値が19.6J/Cm2以上の値を有する(W量/Mo量)比とMn量との関係を示す線図である。図4に示すように、本発明の組成を有する合金において C 量として 0.17 %以下においては、(W量/Mo量)比とMn量との関係で表わされる点C(1.3、0.15%)及び点D(2.5、0.37%)の各点を直線で結んで得られる値以下にすることにより19.6J/cm2以上の25℃Vノッチシャルピー衝撃値が得られるものである
【0054】
図5は、脆化処理後の25℃Vノッチシャルピー衝撃値と(Mo量/Mo量+0.5W量)比との関係を示す線図である。図5に示すように、その比をより大きくすることにより高温長時間加熱後においても高い靭性が得られるものである。その衝撃値はMn量が0.15%のものに対して0.32〜0.4%と多いほど、更に高C量ほど高く、(Mo量/Mo量+0.5W量)比が大きくなるにつれて高くなる。Mn量が0.15%のものはC量が0.15%以下のものであり、Mn量が0.32〜0.4%のものがC量が0.11〜0.17%のものである。
【0055】
図6は、脆化処理後の25℃Vノッチシャルピー衝撃値が19.6J/Cm2以上が得られる(Mo量/Mo量+0.5W量)とMn量との関係を示す線図である。本発明の組成を有する合金において C 量として 0.17 %以下においては、これらの関係で表わされる点E(0.25、0.4%)及び点F(0.7、0.15%)の各点を直線で結んで得られる値以上とすることにより前述の衝撃値が得られるものである
【0056】
(実施例2)
図7は空気冷却方式を有する空気圧縮型3段タービンのタービン上半部の断面図である。図7に示すように、本実施例のガスタービンは、ケーシング80、圧縮機ロータ2と外周部の翼列からなる圧縮機、燃焼器84、タービンノズル81〜83及びタ―ビンブレード51〜53が交互に配置され、タービンロータ1等によって構成されている。タ一ビンロータ1は3個のタービンディスク11、12、13及びタービンスタブシャフト4を有し、高速回転体として密着結合されている。各タービンデイスクの外周にはタービンブレード51〜53が植設されているほか、デイスタントピース3を介して圧縮機ロータ2、コンプレッサスタブシャフトに連結されており、軸受によって回転支持されている。かかる構成において、圧縮機で圧縮された空気を用いて燃焼器84で生成された高温・高圧の作動ガスが、膨脹しながら流れることによってタービンロータ1が回転され、動力が発生される。タービン部を出た燃焼ガスは排熱回収ボイラ(HRSG)に送られ、それにより水蒸気が作られる。
【0057】
図示されていない部分もあるが、本実施例におけるガスタービンの主な構成は前述の他、更に、タービンスタブシャフト4、タービンスタッキングボルト5、タービンスペーサ18、デイスタントピース3、コンプレッサディスク17、コンプレッサブレード、コンプレッサスタツキングボルト、コンプレッサスタブシャフトを有し、コンプレツサディスク17が17段以上、タービンブレードが3段である。4段に対しても同様に実施できる。
【0058】
本実施例では、圧縮機にて圧縮された空気を用いて、図7中に矢印で示した空気の流れによって各部品が冷却される。初段タービンノズル81、第2段タービンノズル82では空気は外側のサイドゥオールよリ流入し、翼部よリ排出される。第2段タービンノズル82は内側のサイドゥオールに渡って冷却される。第3段タービンノズル83では空気は外側のサイドゥオールよリ流入し、内側のサイドゥオールよリ出てスペーサ部分より外側に排出される。初段タービンブレード51は圧縮された空気がタービンディスク11の中心部からその側壁を通り、スペーサ18部分を通って、ブレード内部に設けられた冷却孔を通ってその先端と翼部のトレーリング部より排出されることによりブレード及びディスクがともに冷却される。ブレードにおいてはそのシャンク部に設けられたシールフインによリ燃焼ガスが内部に流入しないようシールされる。第2段タービンブレード52も同様にタービンディスク12からスペーサ18を通ってブレード内部に設けられた冷却孔を通って先端部よリ排出され、冷却される。第3段タービンブレード53には冷却孔はないが、タービンディスク13の中心部からその側壁を通り、シールフィンを通ってこれらを冷却しながら燃焼ガスと共に排熱回収ボイラに入リ、そこで水蒸気が形成され、蒸気タービンの動力源となる。
【0059】
本実施例におけるタービンディスク1l、12、13に用いる材料として実施例1の表1に示すNo.10の組成の大型試料を溶解し、1150℃に加熱し鍛造して実験素材とした。この素材を、1050℃で8h加熱後衝風冷却を行い、冷却温度を150℃で止め、その温度より580℃で12h加熱後空冷の2次焼戻しを行い、次いで605℃で5h加熱後炉冷の2次焼戻しを行った。熱処理後の素材からクリープ破断試験片、引張試験片及びVノッチシャルピー衝撃試験片を採取し実験に供した。衝撃試験は熱処理のままの材料を実施例1と同様の加熱脆化材について行った。本実施例におけるこれらの特性は実施例1と同等の特性を有するものであった。
【0060】
本実施例ではタービンデイスク11、12、13の他、ディスタントピース3、タービンスタッキングボルト5にも実施例1に示したNo.7〜13、No.17〜19の全焼戻しマルテンサイト鋼をいずれも使用可能である。
【0061】
また、これらのマルテンサイト鋼はフェライト系の結晶構造を持つが、フェライト系材料は、Ni基合金のようなオーステナイト系材料に比べて熱膨脹率が小さい。タービンディスクにNi基合金を用いるよりも耐熱鋼を使用する本実施例の方が、更にディスク材の熱脹張率が小さいのでディスクに発生する熱応力を低減し、亀裂の発生、破壊を抑制できる。コンプレッサーブレードは17段で、得られる空気圧縮比は18である。
【0062】
更に、本実施例においては、ガスタービンの初段タービンノズル81及び初段タービンブレード51にはNi基超合金が用いられ、燃焼ガス温度によって1300℃級には多結晶鋳造物、1500℃級にはその単結晶鋳造物が用いられる。単結晶鋳造物には、重量でCr4〜10%、Mo0.5〜1.5%、W4〜10%、Re1〜4%、Al3〜6%、Ta4〜10%、Co0.5〜10%及びHf0.03〜0.2%を有するNi基超合金、多結晶鋳造物にはCr10〜15%を有するこれと同等の合金が用いられる。
【0063】
第2段タービンノズルおよび第3段タービンノズルには重量で、Cr21〜24%、Co18〜23%、C0.05〜O.20%、W1〜8%、Al1〜2%、Ti2〜3%、Ta0.5〜1.5%及びBO.05〜0.15%を含有するNi基超合金で構成する。これらのノズルは通常の鋳造により得られる等軸晶組織である。
【0064】
第2段タービンブレード52及び第3段タービンブレード53には、Ni基超合金が用いられ、燃焼ガス温度によって1300℃級には多結晶鋳造物、1500℃級にはその一方向凝固柱状晶Ni基超合金鋳造物が用いられる。いずれも重量で、Cr5〜18%、Mo0.3〜6%、W2〜10%、Al2.5〜6%、Ti0.5〜5%、Ta1〜4%、NbO.1〜3%、Co0〜10%、C0.05〜0.21%、B0.005〜O.025%、HfO.03〜2%、Re0.1〜5%を有するNi基超合金で構成する。一方向凝固柱状晶Ni基超合金のブレードは全体が一方向に先端部からダブティルの方向に凝固させることにより得られる。
【0065】
本実施例においては、高強度化及び加熱脆化においても高い靭性を有するため、それによって特にタービンデイスクの材料温度を高く設定することができるので前述の冷却を少なくでき、更に前述の使用部材の薄肉化、小径化が可能となり軽量化も達成され、起動特性が向上する。
【0066】
以上の構成によって、総合的により信頼性が高くバランスされたガスタービンが得られ、使用燃料として、天然ガス、軽油等を使用し、初段タービンノズルヘのガス入り口温度が1500℃、初段タ一ビンブレードのメタル温度が900℃、ガスタービンの排ガス温度は650℃であり、発電効率がLHV表示で37%以上の発電用ガスタービンが達成できる。又、初段タービンノズルヘのガス入り口温度が1300℃においても同様である。
【0067】
又、本実施例では、ガスタービン1台と初段タービンブレードへの蒸気入口温度566℃の高中低圧一体型蒸気タ一ビン1台との各々に発電機を備えた組合せの多軸型コンバインドサイクル発電システムを構成することができ、より高い発電効率を得ることができる。
【0068】
【発明の効果】
本発明によれば、高効率高温ガスタービンとしてガス温度1300〜1500℃級における特にタービンディスクに要求されるクリープ破断強度及び加熱脆化後の衝撃値が高いものが得られる。さらに、加熱脆化域の高温に晒されるタービンスタッキングボルト、タービンスペーサ、ディスタントピースへの適用も可能である。従って、本発明により、ガスタービン発電プラントの燃焼温度並びに部材温度を上げることができるので、高温部における冷却を少なくできること、更に一方では回転部の軽量化も達成できるので、一層の高効率化が達成される。そして、化石燃料の節約、排出ガスの発生量を抑えることが可能となり、地球環境保全にも貢献できる。
【図面の簡単な説明】
【図1】 クリープ破断強度と(Ni量とCo量の差)の2乗との関係を示す図である。
【図2】 図1の関係から、510℃、105時間クリープ破断強度が420MPa以上を有するNi量と(Ni量とCo量の差)の2乗の値との関係を示す線図である。
【図3】 脆化処理後の25℃Vノッチシャルピー衝撃値と(W量/Mo量)比との関係を示す線図である。
【図4】 脆化処理後の25℃Vノッチシャルピー衝撃値が19.6J/cm2以上の値を有する(W量/Mo量)比とMn量との関係を示す線図である。
【図5】 脆化処理後の25℃Vノッチシャルピー衝撃値と(Mo量/Mo量+0.5W量)比との関係を示す線図である。
【図6】 脆化処理後の25℃Vノッチシャルピー衝撃値が19.6J/cm2以上が得られる(Mo量/Mo量+0.5W量)とMn量との関係を示す線図である。
【図7】 本発明に係るガスタービンの回転部の断面図である。
【符号の説明】
1…タービンロータ、2…コンプレッサロータ、3…ディスタントピース、4…タービンスタブシャフト、5…タービンスタッキングボルト、11、12、13…タービンディスク、17…コンプレッサディスク、81、82、83…静翼、51、52、53…動翼、18…タービンスペーサ、80…ケーシング、84…燃焼器。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel heat resistant steel, a gas turbine using the same, and various members thereof.
[0002]
[Prior art]
[Patent Document 1]
JP 2001-49398 A
[Patent Document 2]
JP-A-11-209851
[Patent Document 3]
PCT / JP97 / 04609
[Patent Document 4]
JP 2001-49398 A
[Patent Document 5]
JP-A-10-251809
Currently, Cr-Mo-V steel and 12Cr-Mo-Ni-V-N steel are used for gas turbine disks. In recent years, it has been desired to improve the thermal efficiency of gas turbines from the viewpoint of energy saving. High-efficiency power generation can save fossil fuels and reduce the amount of exhaust emissions, contributing to global environmental conservation. Increasing gas temperature and pressure is the most effective means for improving thermal efficiency. A significant improvement in efficiency can be expected by increasing the gas temperature from the 1300 ° C class to the 1500 ° C class. Even when the combustion temperature is not increased, efficiency can be expected by reducing a part of the amount of compressed air used for cooling the member.
[0003]
However, with these high temperatures and high pressures, conventional Cr-Mo-V steel and 12Cr-Mo-Ni-V-N steel are insufficient in strength and require a material with higher strength. As the strength, the creep rupture strength that most greatly affects the high temperature characteristics is required. In addition, the gas turbine disk is required to have high tensile strength and high toughness as well as creep strength. In particular, embrittlement that occurs during use at high temperatures must be suppressed.
[0004]
As structural materials having high creep rupture strength, austenitic steel, Ni-based alloy, Co-based alloy, martensitic steel, and the like are generally known. Ni-base alloys and Co-base alloys are undesirable in terms of hot workability, machinability and vibration damping characteristics. In addition, austenitic steel is not so strong in the vicinity of 400 to 450 ° C., and is undesirable from the whole gas turbine system. On the other hand, martensitic steel has good matching with other components and has high temperature strength.
[0005]
Patent Document 1 discloses a high-strength and high-toughness heat-resistant steel as a high-low pressure integrated steam turbine rotor. [Patent Document 2], [Patent Document 3], [Patent Document 4] and [Patent Document 5] disclose heat-resistant steels for gas turbine disk materials.
[0006]
[Problems to be solved by the invention]
However, among the heat-resistant steels described in these publications, among the properties of high creep rupture strength, high tensile strength, high toughness, low embrittlement, etc. required for gas turbine disks, particularly high creep rupture strength and low embrittlement properties. Cannot be satisfied at the same time, and it is not sufficient as a more efficient gas turbine disk. The gas temperature cannot be further increased by simply using a conventional high-strength material for increasing the temperature and pressure of the gas turbine. Further, by further cooling the high temperature portion with a large amount of cooling air or the like, a further increase in gas temperature can be expected, but the thermal efficiency is significantly reduced. For this reason, it is necessary to reduce the cooling air in order to prevent a decrease in thermal efficiency. However, the reduction cannot be achieved unless the above-mentioned high material properties are obtained. And generally, when the high temperature strength is improved, the toughness is lowered, so that it is difficult to achieve both at the same time.
[0007]
An object of the present invention is to provide a heat-resistant steel having high creep rupture strength that can cope with higher temperatures and high toughness even after high-temperature and long-time heating, a gas turbine using the heat-resistant steel, and various members thereof.
[0008]
[Means for Solving the Problems]
  The present invention is, by weight, C0.05-0.30%, Si0.50% or less, Mn0.60% or less, Cr8.0-13.0%, Ni0.5-3.0%, Mo1.0-3.0%, W0.1 ~ 1.5%, Co 0.5 ~ 4%, V0.20~ 0.35%, the total amount of one or two of Nb and Ta is 0.08~ 0.30%, and N0.052Including ~ 0.10%,( Ni With quantity Co Difference in quantity) 2 The value indicated by the power is 1.8 And saidThe value indicated by the square of (the difference between the Ni amount and Co amount) and the Ni amount are obtained by connecting points A (1.0, 2.7%) and B (2.5, 1.0%) in Cartesian coordinates with straight lines. The heat-resistant steel is characterized in that the value determined by the following value and {Mo amount / (Mo amount + 0.5W amount)} is 0.5 or more, and the balance is made of martensite steel composed of Fe and inevitable impurities..
[0009]
  Further, according to the present invention, in the above-described composition, the point C (0.15%, 1.3) and the point D (0.37%, 2.5) in which the Mn amount and the (W amount / Mo amount) ratio are orthogonal coordinates are linear. Less than the value obtained by tyingAndor,The value obtained by {Mo amount / (Mo amount + 0.5W amount)} and the Mn amount are connected by connecting the points E (0.25, 0.4%) and F (0.7, 0.15%) in Cartesian coordinates with straight lines. More than the value obtainedPreferably.
[0010]
  The present invention, by weight,2% Or less and B0.001 to 0.015% may be included. Also, by weight, Cu 0.5% or less, Ti 0.5% or less, Al 0.2% or less, Zr 0.1% or less, Hf 0.1% or less, Ca 0.01% or less, Mg 0.01% or less, Y0.01 % Or less and at least one rare earth element 0.01% or less.
[0011]
In the heat resistant steel according to the present invention, it is preferable that the components are adjusted so that the Cr equivalent calculated by the following formula is 10 or less so as not to substantially contain the δ ferrite phase. Each element is the content (% by weight) of the heat-resistant steel.
[0012]
Cr equivalent = Cr + 6Si + 4Mo + 1.5W + 11V + 5Nb-40C-30N-30B-2Mn-4Ni-2Co + 2.5Ta
In the present invention, the tensile strength at room temperature is 1180 MPa or more, preferably 1200 MPa or more, 510 ° C., 10FiveTime creep rupture strength is 420 MPa or more, preferably 430 MPa or more, 10 at 530 ° C.Four25 ° C V notch Charpy impact value after heating for 19.6 J / cm2The above is preferable.
[0013]
The present invention relates to a turbine stub shaft, a plurality of turbine disks connected to each other by turbine stacking bolts via a turbine spacer, and a high temperature combustion gas generated by a combustor that is implanted in the disk. Turbine blades, a distant piece connected to the disc, a plurality of compressor rotors connected to the distant piece, a compressor blade implanted in the rotor and compressing air, and connected to the compressor rotor In the gas turbine provided with the compressor stub shaft, at least one of the turbine disk, the distant piece, the turbine spacer, the final stage of the compressor disk, and the turbine stacking bolt is made of the heat-resistant steel described above. It is.
[0014]
Further, the present invention is a disk-shaped member, a turbine blade implantation portion on a circumferential portion of the disk-shaped member, and a plurality of bolt insertion holes for fastening the plurality of the disk-shaped members together by stacking bolts. The gas turbine disk is made of a heat-resistant steel having the composition and characteristics described above. In addition, the center hole may or may not be in the center of the circle of the disk-shaped member.
[0015]
The gas turbine disk must withstand high centrifugal and vibrational stresses caused by high-speed rotation, so that it must have high tensile strength and high fatigue strength. Therefore, the metal structure of the gas turbine disk material significantly reduces fatigue strength when harmful δ ferrite is present. Therefore, the aforementioned Cr equivalent should be adjusted to 10 or less to obtain a fully tempered martensite structure. preferable.
[0016]
The present invention is a cylindrical member for inserting a plurality of bolts, which are provided at both ends of the member, and the cylindrical member is integrally fastened to a turbine disk by stacking bolts at one of the protrusions. A hole and a plurality of bolt insertion holes for fastening the cylindrical member to the compressor disk integrally with a stacking bolt on the other of the protrusions, and made of heat-resistant steel having the composition described above. It is preferable to use heat-resistant steel that is in the characteristic gas turbine distance piece and has the same characteristics as described above.
[0017]
The present invention is a disk-shaped member, and has a compressor blade implantation portion on a circumferential portion of the disk-shaped member, and a plurality of bolt insertion holes for fastening the plurality of disk-shaped members integrally with stacking bolts. However, it is preferable to use a heat-resistant steel which is in the compressor disk for gas turbines and is characterized by being made of the heat-resistant steel described above and having the same characteristics as described above.
[0018]
The present invention relates to a stacking bolt for a gas turbine, characterized in that it is a rod-shaped member having a threaded portion at one end and a square head at the other end and made of the heat-resistant steel described above. It is preferable to use heat-resistant steel having similar characteristics.
[0019]
The reason for limiting the component range of the heat resistant steel of the present invention will be described.
[0020]
C is 0.05% or more in order to obtain high tensile strength and yield strength. However, if the amount of C exceeds 0.30%, the metal structure becomes unstable when exposed to high temperature for a long time, and the creep rupture strength is lowered and the toughness is lowered. In particular, 0.07 to 0.23% is preferable, and 0.10 to 0.20% is more preferable.
[0021]
Si is a deoxidizing agent, and Mn is a desulfurizing / deoxidizing agent which is added when heat-resistant steel is dissolved. Si is a δ ferrite-forming element. If a large amount of Si is added, it causes the formation of harmful δ ferrite that reduces fatigue and toughness. In addition, according to a carbon vacuum deoxidation method, an electroslag remelting method, etc., Si addition is unnecessary and Si addition is good. In particular, it is preferably 0.10% or less, more preferably 0.05% or less.
[0022]
Addition of a small amount of Mn improves toughness, but addition of a large amount decreases toughness, so it is made 0.60% or less. In particular, since Mn is effective as a desulfurization agent, it is preferably 0.30% or less, particularly 0.25% or less, and more preferably 0.20% or less from the viewpoint of improving toughness. Containing 0.05% or more is preferable from the viewpoint of toughness.
[0023]
Cr increases corrosion resistance and tensile strength, but addition over 13% causes the formation of δ-ferrite structure. If less than 8%, corrosion resistance and high-temperature strength are insufficient, so Cr is 8 to 13%. In particular, 10.0 to 12.8% is preferable from the viewpoint of strength, and more preferably 10.5 to 12.5%.
[0024]
Mo has the effect of increasing the creep rupture strength by solid solution strengthening and carbide / nitride precipitation strengthening action. If the Mo content is 1.0% or less, the effect of improving the creep rupture strength is insufficient, and if it exceeds 3%, δ ferrite is produced, so 1.0 to 3.0%. In particular, 1.2 to 2.7% is preferable, and 1.3 to 2.5% is more preferable.
[0025]
W has the same effect as Mo. For higher strength, it can be contained up to the same content as Mo. If W is 0.1% or less, the effect of improving creep rupture strength is insufficient, and if it exceeds 1.5%, the toughness decreases, so 0.1 to 1.5%. In particular, 0.2 to 1.4% is preferable, and 0.3 to 1.3% is more preferable.
[0026]
Since Co increases the strength at higher temperatures, it is preferable to increase the content in response to higher temperatures. If it is less than 0.5%, the effect is not sufficient, and if it exceeds 4.0%, heat embrittlement is promoted, so 4% is made the upper limit. In particular, 0.8 to 3.5% is preferable.
[0027]
  V and Nb precipitate carbides and increase the tensile strength, while at the same time improving the toughness. V0.20% Or less, Nb0.08% Or less, the effect is insufficient, and V 0.35% or less and Nb 0.3% or less are preferable from the suppression of the formation of δ ferrite. In particular, VIs 0.20-0.30%, Nb is 0.08~ 0.22%, more preferably 0.10-0.20%. Ta can be added in the same manner in place of Nb, and the same content can be obtained in the total amount even in the composite addition.
[0028]
Ni increases the low temperature toughness and has the effect of preventing the formation of δ ferrite. This effect is preferably 0.5% Ni or more, and the effect is saturated when it exceeds 3.0%. Addition of a large amount of Ni lowers the creep rupture strength. In particular, 0.5 to 2.5% is preferable, and 0.7 to 2.3% is more preferable.
[0029]
  N is effective in improving creep rupture strength and preventing the formation of δ ferrite.52If it is less than%, the effect is not sufficient, and if it exceeds 0.10%, the toughness is lowered. In particular, 0.052Excellent characteristics are obtained in the range of ~ 0.080%.
[0030]
Re has the effect of increasing the creep rupture strength by the solid solution strengthening action. Excessive addition promotes embrittlement, so addition of 2% or less is preferable, but Re is a rare element, and is practically preferably 1.5% or less, more preferably 1.2% or less.
[0031]
B has the effect of increasing the grain boundary strength, and has the effect of increasing the creep rupture strength. If it is 0.001% or less, this effect is insufficient, and if it exceeds 0.015%, the toughness decreases. 0.002 to 0.008% is particularly desirable.
[0032]
Reduction of P and S has the effect of increasing low temperature toughness without impairing the creep rupture strength, and it is desirable to reduce it as much as possible. From the viewpoint of improving low-temperature toughness, P is preferably 0.015% or less and S0.015% or less. In particular, P0.010% or less and S0.010% or less are desirable.
[0033]
Reduction of Sb, Sn and As also has the effect of increasing low temperature toughness, and it is desirable to reduce it as much as possible. However, from the viewpoint of the current steelmaking technology level, Sb is 0.0015% or less, Sn 0.01% or less, and As0.02% or less. Limited to. In particular, Sb 0.001% or less, Sn 0.005% and As 0.01% or less are desirable.
[0034]
  Ti, Zr, Hf ofMC carbide forming elementofThose containing at least one total of 0.5% or less are preferred. Al is 0.0005% or more as a deoxidizing material and a grain refining material, and if it exceeds 0.2%, the creep rupture strength is lowered by fixing nitrogen that works effectively on the creep strength.
[0035]
  In the present invention, attention was focused on the balance of addition of Ni and Co. as a result,( Ni With quantity Co Difference in quantity) 2 The value indicated by the power 1.8 And belowPoint A (1.0, 2.7%) and point B (2.5, 1.0%) represented by the relationship between the value indicated by the square of (the difference between Ni amount and Co amount) and Ni amount are connected by straight lines. The above-described characteristics can be obtained by setting the value obtained by the following value or less and {Mo amount / (Mo amount + 0.5 W amount)} to 0.5 or more. This is particularly noticeable when the W content is 1.5% or less. More, WWhen the amount exceeds 1.5%, the above-mentioned high creep strength can be obtained, but the toughness is lowered after heating at high temperature for a long time, which is not preferable.
[0036]
That is, Ni and Co are elements that contribute to the toughness of martensitic steel. Ni has the effect of improving toughness, but decreases the creep strength. Co is effective in improving creep strength, but promotes embrittlement during use and lowers toughness. Therefore, in order to maintain toughness and creep strength and further suppress heat embrittlement, the present invention is an effective index showing a favorable balance indicating the balance between the added amount of Ni and Co, the difference between the Ni amount and the Co amount. It is what I found.
[0037]
Further, according to the present invention, the value represented by the relationship with the (W amount / Mo amount) ratio and the Mn amount are represented by straight lines at points C (1.3, 0.15%) and D (2.5, 0.37%). By setting the value to be equal to or less than the value obtained by knotting, high toughness can be obtained even after heating at the above-mentioned high temperature and long time.
[0038]
Further, the present invention relates to the point E (0.25, 0.4%) and the point F (0.7, 0.15%) indicated by the relationship between the value obtained by {Mo amount / (Mo amount + 0.5 W amount)} and the Mn amount. By setting the points to be equal to or higher than those obtained by connecting the points with straight lines, high toughness can be obtained even after the above-described high-temperature and long-time heating.
[0039]
That is, in the present invention, it has been found that a specific ratio of the addition amounts of Mo and W is an effective index showing a preferable balance for addition of Mo and W. As elements contributing to the improvement of high-temperature strength of martensitic steel, Mo and W act as solid solution strengthening elements, respectively, and the effect is Mo equivalent = {Mo (%) + 0.5 W (%)}, or (W content) / Mo amount). However, these elements reduce toughness after high-temperature and long-time heating, but a small amount of Mn plays an important role in increasing toughness after high-temperature and long-time heating. The effect is conspicuously obtained by adding in a complex amount. Mo and W have different effects. At high temperatures, the addition of W is effective for improving the strength, but when the W ratio is large, the toughness tends to decrease as described above.
[0040]
In particular, the addition of W is effective in a use environment exceeding 600 ° C. However, since the gas turbine disk has a lower use temperature and requires high toughness, the addition of Mo is more preferable in the present invention. By setting the value of / (Mo amount + 0.5 W amount)} to 0.5 or more, preferably 0.6 to 0.95, more preferably 0.75 to 0.95, high toughness can be obtained even after high temperature and long time heating.
[0041]
The heat treatment of the material of the present invention is first performed at a temperature sufficient to transform into complete austenite, uniformly heated to a minimum of 1000 ° C and a maximum of 1150 ° C, rapidly cooled (preferably oil-cooled or water sprayed), and then a temperature of 540 to 600 ° C It is preferable to heat and hold (cool) (first tempering) and then hold and cool (second tempering) to a temperature of 550 to 650 ° C. to obtain a fully tempered martensite structure. The secondary tempering is a temperature higher than the primary tempering temperature. In quenching, it is preferable to stop at a temperature just above the Mf point from the viewpoint of preventing quench cracking. The specific temperature should be kept at 150 ° C or higher. The first tempering is heated from that temperature.
[0042]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
Table 1 shows the chemical composition (% by weight) of the 12% Cr heat-resisting steel according to the gas turbine disk material, and the balance is Fe. Each sample was melted in a 150 kg vacuum arc, heated to 1150 ° C. and forged into a material. The material was heated at 1050 ° C. for 2 hours and then oil-cooled, heated at 560 ° C. for 5 hours and then air-cooled for primary tempering, then heated at 580 ° C. for 5 hours and then furnace-cooled for secondary tempering. Creep rupture test pieces, tensile test pieces, and V-notch Charpy impact test pieces were collected from the heat-treated material and subjected to experiments. The impact test was performed on the heat-treated material and the heat embrittled material at 530 ° C. for 10,000 hours. This embrittled material has the same conditions as those heated at 510 ° C for 100,000 hours from the parameters of Larson Miller.
[0043]
[Table 1]
Figure 0003921574
[0044]
Table 2 shows the mechanical properties of these samples. Sample Nos. 7 to 13 are the materials of the present invention, and the room temperature tensile strength required as a high-temperature / high-pressure gas turbine disk material is 1180 MPa or more, 510 ° C., 10FiveTime creep rupture strength is 420 MPa or more, and 25 ° C V notch Charpy impact value after embrittlement is 19.6 J / cm2The above values were shown and confirmed to be sufficiently satisfactory. On the other hand, Comparative Samples Nos. 1 to 6 cannot simultaneously satisfy the mechanical properties required as a high-temperature / high-pressure gas turbine disk material. Samples Nos. 1, 3, 4 and 5 of the comparative material have a large square value of (difference between Ni amount and Co amount), indicating that one of Ni and Co has a large addition amount. ing. In comparative materials No. 1 and No. 5 with a large Ni addition amount, the tensile strength and the 25 ° C. V-notch Charpy impact value before and after heat embrittlement are satisfied, but the creep strength cannot be satisfied. Comparative materials No. 3 and No. 4 with a large amount of Co addition satisfy the creep rupture strength, but the decrease in the 25 ° C. V notch Charpy impact value after heat embrittlement is remarkable.
[0045]
Samples No. 3 and No. 6 in which the value of Mo equivalent {Mo amount / (Mo amount + 0.5 W amount)} is less than 0.5 have low impact values. Sample No. 2 with Mo added alone (W added amount = 0) has low creep rupture strength.
[0046]
[Table 2]
Figure 0003921574
[0047]
Further, samples having chemical compositions shown in Table 3 were manufactured by melting and forging, subjected to the same heat treatment, and subjected to experiments. The test results are shown in Table 4. As shown in Table 4, samples Nos. 17 to 19 of the present invention material have a room temperature tensile strength required as a high temperature / high pressure gas turbine disk material of 1180 MPa, 510 ° C., 10FiveTime creep rupture strength is 420MPa or more, and 25 ° C V-notch Charpy impact value after embrittlement is 19.6J / cm2It was confirmed that characteristics sufficiently satisfying the above were obtained. In contrast, samples No. 14 and No. 15 of the comparative material to which B is added excessively have low tensile test elongation and impact values, and at the same time have the mechanical properties required for high temperature / high pressure gas turbine disk materials. I can't be satisfied. Sample No. 14, which is a comparative material with Mo alone (W added amount = 0), has a slightly low creep strength. Sample No. 16 of the comparative material to which Re was added excessively had sufficient tensile strength and creep strength, but the drawing value was low.
[0048]
[Table 3]
Figure 0003921574
[Table 4]
Figure 0003921574
[0049]
FIG. 1 is a diagram showing the relationship between creep rupture strength and the square of (difference between Ni amount and Co amount). As shown in FIG. 1, the creep rupture strength decreases remarkably as the square value of (the difference between the Ni amount and the Co amount) increases. In particular, the relationship with the Ni content is large, and those with a Ni content of 1.0 to 1.2% have a higher creep rupture strength than those with a Ni content of 2.2 to 3.2%. When the square value of (difference) increases, the creep rupture strength decreases rapidly.
[0050]
In particular, when the amount of Co is larger than the amount of Ni, the creep strength is slightly reduced, and the influence of the square value of (the difference between the amount of Ni and the amount of Co) is small.
[0051]
  FIG. 2 shows the relationship between FIG.FiveIt is a diagram which shows the relationship between the square value of the time creep rupture strength (difference of Ni amount and Co amount) which has 420 MPa or more, and Ni amount. As described above, the creep rupture strength has a close relationship between the square of (difference between Ni amount and Co amount) and the Ni amount,In the alloy having the composition of the present invention,The value obtained by the square of (the difference between the Ni amount and Co amount) and the value expressed by the relationship between the Ni amount is a straight line at points A (1.0, 2.7%) and B (2.5, 1.0%). A creep rupture strength of 420 MPa or more can be obtained by making the value less than the value obtained by knotting.
[0052]
FIG. 3 is a diagram showing the relationship between the 25 ° C. V-notch Charpy impact value after embrittlement and the (W content / Mo content) ratio. As shown in FIG. 3, the impact value decreases rapidly as the (W content / Mo content) ratio increases. The impact value is higher as the Mn content is 0.15%, 0.32 to 0.4%, and higher as the C content is higher. Furthermore, as the ratio (W amount / Mo amount) increases, the impact value decreases remarkably at any Mn amount.
[0053]
  Figure 4 shows a 25 ° C V-notch Charpy impact value of 19.6 J / Cm after embrittlement.2It is a diagram which shows the relationship between (W amount / Mo amount) ratio which has the above value, and Mn amount. As shown in FIG.In an alloy having the composition of the present invention C As quantity 0.17 % Or less,By making the points C (1.3, 0.15%) and D (2.5, 0.37%) represented by the relationship between the (W content / Mo content) ratio and the Mn content less than the values obtained by connecting the points with straight lines. 19.6J / cm2The above 25 ° C V-notch Charpy impact value can be obtained..
[0054]
FIG. 5 is a diagram showing the relationship between the 25 ° C. V-notch Charpy impact value after embrittlement and the (Mo amount / Mo amount + 0.5 W amount) ratio. As shown in FIG. 5, by increasing the ratio, high toughness can be obtained even after high temperature and long time heating. The impact value is 0.32 to 0.4% with respect to the Mn content of 0.15%, the higher the C content, the higher the value, and the higher the (Mo content / Mo content + 0.5W content) ratio. When the Mn amount is 0.15%, the C amount is 0.15% or less, and when the Mn amount is 0.32 to 0.4%, the C amount is 0.11 to 0.17%.
[0055]
  Figure 6 shows a 25 ° C V-notch Charpy impact value of 19.6 J / Cm after embrittlement.2FIG. 6 is a diagram showing the relationship between the above obtained (Mo amount / Mo amount + 0.5 W amount) and Mn amount.In an alloy having the composition of the present invention C As quantity 0.17 % Or less,The above-mentioned impact value can be obtained by setting the points E (0.25, 0.4%) and F (0.7, 0.15%) represented by these relationships to be equal to or greater than the values obtained by connecting the points with straight lines..
[0056]
(Example 2)
FIG. 7 is a cross-sectional view of the upper half of the turbine of an air compression type three-stage turbine having an air cooling system. As shown in FIG. 7, the gas turbine according to the present embodiment includes a casing 80, a compressor composed of the compressor rotor 2 and the outer peripheral blade row, a combustor 84, turbine nozzles 81 to 83, and turbine blades 51 to 53. Are alternately arranged and configured by the turbine rotor 1 and the like. The turbine rotor 1 has three turbine disks 11, 12, 13 and a turbine stub shaft 4, and is tightly coupled as a high-speed rotating body. Turbine blades 51 to 53 are planted on the outer periphery of each turbine disk, and are connected to the compressor rotor 2 and the compressor stub shaft via the distant piece 3, and are rotatably supported by bearings. In such a configuration, the high-temperature and high-pressure working gas generated in the combustor 84 using the air compressed by the compressor flows while expanding, whereby the turbine rotor 1 is rotated and power is generated. Combustion gas that exits the turbine section is sent to a heat recovery steam generator (HRSG), which produces steam.
[0057]
Although there are parts not shown, the main configuration of the gas turbine in this embodiment is the same as that described above, and further, the turbine stub shaft 4, the turbine stacking bolt 5, the turbine spacer 18, the distance piece 3, the compressor disk 17, and the compressor It has blades, compressor stacking bolts, and compressor stub shafts, with 17 or more stages of compressor disk 17 and three stages of turbine blades. The same can be applied to four stages.
[0058]
In the present embodiment, each component is cooled by the air flow indicated by an arrow in FIG. 7 using the air compressed by the compressor. In the first-stage turbine nozzle 81 and the second-stage turbine nozzle 82, air flows into the outside side from the side, and is discharged from the blades. The second stage turbine nozzle 82 is cooled across the inside side-all. In the third stage turbine nozzle 83, the air flows into the outer side from the outer side, exits from the inner side, and is discharged outside the spacer portion. In the first stage turbine blade 51, compressed air passes from the central part of the turbine disk 11 through the side wall thereof, through the spacer 18 part, through the cooling hole provided in the blade, and from the leading end and the trailing part of the blade part. By discharging, both the blade and the disk are cooled. The blade is sealed so that the combustion gas does not flow into the inside by a seal fin provided in the shank portion. Similarly, the second stage turbine blade 52 is discharged from the turbine disk 12 through the spacer 18 through the cooling hole provided in the blade, and discharged from the tip portion to be cooled. The third stage turbine blade 53 does not have a cooling hole, but passes from the center of the turbine disk 13 through its side wall, passes through the seal fins, cools them, and enters the exhaust heat recovery boiler together with the combustion gas. It is formed and becomes the power source of the steam turbine.
[0059]
As a material used for the turbine disks 1l, 12 and 13 in this example, a large sample having the composition No. 10 shown in Table 1 of Example 1 was melted, heated to 1150 ° C, and forged as an experimental material. This material was heated at 1050 ° C for 8 hours and then cooled by blast, the cooling temperature was stopped at 150 ° C, heated at 580 ° C for 12 hours and then air-cooled by secondary tempering, then heated at 605 ° C for 5 hours and then cooled in the furnace. Secondary tempering was performed. Creep rupture test pieces, tensile test pieces, and V-notch Charpy impact test pieces were collected from the heat-treated material and subjected to experiments. The impact test was performed on the heat embrittled material as in Example 1 using the heat treated material. These characteristics in this example had characteristics equivalent to those in Example 1.
[0060]
In this embodiment, in addition to the turbine disks 11, 12, and 13, all of the tempered martensitic steels of No. 7 to 13 and No. 17 to 19 shown in Example 1 are used for the distance piece 3 and the turbine stacking bolt 5. Can also be used.
[0061]
Moreover, although these martensitic steels have a ferrite-based crystal structure, the ferrite-based material has a smaller thermal expansion coefficient than an austenitic material such as a Ni-based alloy. This example, which uses heat-resistant steel rather than a Ni-based alloy for the turbine disk, further reduces the thermal stress generated in the disk because the thermal expansion coefficient of the disk material is small, and suppresses the generation and breakage of cracks. it can. The compressor blade has 17 stages and the resulting air compression ratio is 18.
[0062]
Further, in this embodiment, Ni-base superalloy is used for the first stage turbine nozzle 81 and the first stage turbine blade 51 of the gas turbine, and depending on the combustion gas temperature, it is a polycrystalline casting for the 1300 ° C class, and for the 1500 ° C class Single crystal castings are used. Single crystal castings include Cr4-10% by weight, Mo0.5-1.5%, W4-10%, Re1-4%, Al3-6%, Ta4-10%, Co0.5-10% and Hf0. Ni-based superalloys having 03-0.2% and equivalent alloys having Cr 10-15% are used for polycrystalline castings.
[0063]
The second stage turbine nozzle and the third stage turbine nozzle are, by weight, Cr 21-24%, Co 18-23%, C 0.05-20.20%, W 1-8%, Al 1-2%, Ti 2-3%, It is composed of a Ni-base superalloy containing Ta 0.5 to 1.5% and BO.05 to 0.15%. These nozzles have an equiaxed crystal structure obtained by ordinary casting.
[0064]
Ni-base superalloy is used for the second stage turbine blade 52 and the third stage turbine blade 53. Depending on the combustion gas temperature, a polycrystalline cast product for the 1300 ° C class and a unidirectionally solidified columnar crystal Ni for the 1500 ° C class A base superalloy casting is used. All are by weight, Cr5-18%, Mo0.3-6%, W2-10%, Al2.5-6%, Ti0.5-5%, Ta1-4%, NbO. 1-3%, Co0- It is composed of a Ni-base superalloy having 10%, C 0.05 to 0.21%, B 0.005 to O.025%, HfO.03 to 2%, and Re 0.1 to 5%. The unidirectionally solidified columnar Ni-base superalloy blade is obtained by solidifying in the direction from the tip to the dovetail in one direction.
[0065]
In this embodiment, since it has high toughness even in high strength and heat embrittlement, the material temperature of the turbine disk can be set particularly high, thereby reducing the above-mentioned cooling, and further, Thinning and diameter reduction are possible, weight reduction is achieved, and startup characteristics are improved.
[0066]
With the above configuration, a more reliable and balanced gas turbine can be obtained. Natural gas, light oil, etc. are used as the fuel, the gas inlet temperature to the first stage turbine nozzle is 1500 ° C, and the first stage bin is used. The metal temperature of the blade is 900 ° C, the exhaust gas temperature of the gas turbine is 650 ° C, and a power generation gas turbine with a power generation efficiency of 37% or more in LHV display can be achieved. The same applies when the gas inlet temperature to the first stage turbine nozzle is 1300 ° C.
[0067]
Further, in this embodiment, a multi-shaft combined cycle power generation in which one gas turbine and one high, medium, and low pressure integrated steam turbine bin with a steam inlet temperature of 566 ° C to the first stage turbine blade are each provided with a generator. A system can be configured and higher power generation efficiency can be obtained.
[0068]
【The invention's effect】
According to the present invention, a high-efficiency high-temperature gas turbine having a high creep rupture strength and a high impact value after heating embrittlement particularly required for a turbine disk at a gas temperature of 1300 to 1500 ° C. can be obtained. Furthermore, application to turbine stacking bolts, turbine spacers, and distant pieces that are exposed to high temperatures in the heat embrittlement region is also possible. Therefore, according to the present invention, the combustion temperature and the member temperature of the gas turbine power plant can be raised, so that the cooling in the high temperature part can be reduced, and on the other hand, the weight of the rotating part can be reduced, so that further efficiency improvement can be achieved. Achieved. And it becomes possible to save fossil fuels and reduce the amount of exhaust gas generated, which can contribute to global environmental conservation.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between creep rupture strength and the square of (difference between Ni amount and Co amount).
[Fig. 2] From the relationship of FIG.FiveIt is a diagram which shows the relationship between the amount of Ni which has time creep rupture strength of 420 MPa or more, and the square value of (difference of Ni amount and Co amount).
FIG. 3 is a diagram showing the relationship between the 25 ° C. V-notch Charpy impact value after embrittlement and the (W content / Mo content) ratio.
[Fig.4] 25 ° C V-notch Charpy impact value after embrittlement is 19.6 J / cm2It is a diagram which shows the relationship between (W amount / Mo amount) ratio which has the above value, and Mn amount.
FIG. 5 is a diagram showing the relationship between the 25 ° C. V-notch Charpy impact value after embrittlement and the (Mo amount / Mo amount + 0.5 W amount) ratio.
[Figure 6] 25 ° C V-notch Charpy impact value after embrittlement is 19.6 J / cm2FIG. 6 is a diagram showing the relationship between the above obtained (Mo amount / Mo amount + 0.5 W amount) and Mn amount.
FIG. 7 is a cross-sectional view of a rotating part of a gas turbine according to the present invention.
[Explanation of symbols]
1 ... Turbine rotor, 2 ... Compressor rotor, 3 ... Distant piece, 4 ... Turbine stub shaft, 5 ... Turbine stacking bolt, 11, 12, 13 ... Turbine disk, 17 ... Compressor disk, 81, 82, 83 ... Stator blade , 51, 52, 53 ... blades, 18 ... turbine spacer, 80 ... casing, 84 ... combustor.

Claims (7)

重量で、C0.05〜0.30%、Si0.50%以下、Mn0.60%以下、Cr8.0〜13.0%、Ni0.5〜3.0%、Mo1.0〜3.0%、W0.1〜1.5%、Co 0.5〜4%、V0.20〜0.35% 、Nb及びTaの1種又は2種の合計量が0.08〜0.30%、及びN0.052〜0.10%を含み、 Ni 量と Co 量の差)の 2 乗で示される値が 1.8 以下であり、前記(Ni量とCo量の差)の2乗で示される値とNi量とが両者の関係を示す直交座標の点A(1.0、2.7%)及び点B(2.5、1.0%)の各点を直線で結んで得られる値以下及び{Mo量/(Mo量+0.5W量)}で示される値が0.5以上であり、残部がFe及び不可避的不純物からなるマルテンサイト鋼からなることを特徴とする耐熱鋼。By weight, C0.05 ~ 0.30%, Si0.50% or less, Mn0.60% or less, Cr8.0 ~ 13.0%, Ni0.5 ~ 3.0%, Mo1.0 ~ 3.0%, W0.1 ~ 1.5%, Co 0.5 to 4% V0. 20 to 0.35% total amount of one or two kinds of Nb and Ta 0.0 8 to 0.30%, and include N0.0 52 ~0.10%, of (Ni amount and Co amount difference) when the value represented by the square of 1.8 or less of the (Ni amount and Co amount difference) squared at the indicated values and the Ni content and the terms of Cartesian coordinates showing the relationship between the two a (1.0, 2.7%) and point B (2.5, 1.0%) are obtained by connecting each point with a straight line, and the value indicated by {Mo amount / (Mo amount + 0.5W amount)} is 0.5 or more, and the remainder is A heat-resistant steel comprising martensitic steel composed of Fe and inevitable impurities. 請求項1において、重量で、Re2%以下及びB0.001〜0.015%の少なくとも一方を含むことを特徴とする耐熱鋼。  The heat-resistant steel according to claim 1, comprising at least one of Re 2% or less and B0.001 to 0.015% by weight. タービンスタブシャフトと、該シャフトにタービンスタッキングボルトによって互いにタービンスペーサを介して連結された複数個のタービンディスクと、該ディスクに植込まれ燃焼器によって発生した高温の燃焼ガスによって回転するタービンブレードと、前記ディスクに連結されたディスタントピースと、該ディスタントピースに連結された複数個のコンプレッサロータと、該ロータに植込まれ空気を圧縮するコンプレッサブレードと、前記コンプレッサロータに連結されたコンプレッサスタブシャフトを備えたガスタービンにおいて、前記タービンディスクと、ディスタントピース、タービンスペーサ、コンプレッサディスクの最終段及びタービンスタッキングボルトの少なくとも1つとが、請求項1に記載の耐熱鋼からなることを特徴とするガスタービン。  A turbine stub shaft, a plurality of turbine disks connected to each other by turbine stacking bolts via a turbine spacer, and a turbine blade rotated by high-temperature combustion gas implanted in the disk and generated by a combustor; A distant piece connected to the disc, a plurality of compressor rotors connected to the distant piece, a compressor blade implanted in the rotor and compressing air, and a compressor stub shaft connected to the compressor rotor The turbine disk, and at least one of the distant piece, the turbine spacer, the final stage of the compressor disk, and the turbine stacking bolt are made of the heat-resistant steel according to claim 1. Gas turbine with. 円盤状部材で、該円盤状部材の円周部にタービンブレードの植え込み部と、複数の前記円盤状部材をスタッキングボルトによって一体に締結する複数の前記ボルトの挿入用孔とを有し、請求項1に記載の耐熱鋼からなることを特徴とするガスタービン用ディスク。  A disk-shaped member having a turbine blade implantation portion on a circumferential portion of the disk-shaped member, and a plurality of bolt insertion holes for fastening the plurality of the disk-shaped members together by stacking bolts. 1. A gas turbine disk comprising the heat-resistant steel according to 1. 円筒状部材で、該部材の両端部に設けられた突出部と、該突出部の一方に前記円筒状部材をタービンディスクにスタッキングボルトによって一体に締結する複数の前記ボルトの挿入用孔と、前記突出部の他方に前記円筒状部材をコンプレッサディスクにスタッキングボルトによって一体に締結する複数の前記ボルトの挿入用孔とを有し、請求項1に記載の耐熱鋼からなることを特徴とするガスタービンディスタントピース。  A cylindrical member, projecting portions provided at both ends of the member, a plurality of bolt insertion holes for fastening the cylindrical member to a turbine disk integrally with a stacking bolt on one of the projecting portions; A gas turbine assembly comprising the heat-resistant steel according to claim 1, further comprising: a plurality of bolt insertion holes for integrally fastening the cylindrical member to the compressor disk by stacking bolts on the other of the protrusions. Stunt piece. 円盤状部材で、該円盤状部材の円周部にコンプレッサブレードの植え込み部と、複数の前記円盤状部材をスタッキングボルトによって一体に締結する複数の前記ボルトの挿入用孔とを有し、請求項1に記載の耐熱鋼からなることを特徴とするガスタービンコンプレッサディスク。  A disk-shaped member, comprising: an implanted portion of a compressor blade in a circumferential portion of the disk-shaped member; and a plurality of bolt insertion holes for fastening the plurality of the disk-shaped members together by stacking bolts. A gas turbine compressor disk comprising the heat-resistant steel according to 1. 棒状部材で、その一端にネジ部と、他端に角状頭部とを有し、請求項1に記載の耐熱鋼からなることを特徴とするガスタービンスタッキングボルト。  A gas turbine stacking bolt, comprising a rod-like member, having a threaded portion at one end and a square head at the other end, and made of the heat-resistant steel according to claim 1.
JP2003101401A 2003-04-04 2003-04-04 Heat-resistant steel, gas turbine using the same, and various components Expired - Fee Related JP3921574B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003101401A JP3921574B2 (en) 2003-04-04 2003-04-04 Heat-resistant steel, gas turbine using the same, and various components
US10/757,847 US20050074356A1 (en) 2003-04-04 2004-01-16 Heat resisting steel, gas turbine using the steel, and components thereof
DE602004005910T DE602004005910T2 (en) 2003-04-04 2004-01-19 Heat-resistant steel and gas turbine and components made thereof
EP04001026A EP1466993B1 (en) 2003-04-04 2004-01-19 Heat resisting steel, gas turbine using the steel, and components thereof
US12/153,552 US20090068052A1 (en) 2003-04-04 2008-05-21 Heat resisting steel, gas turbine using the steel, and components thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003101401A JP3921574B2 (en) 2003-04-04 2003-04-04 Heat-resistant steel, gas turbine using the same, and various components

Publications (2)

Publication Number Publication Date
JP2004307910A JP2004307910A (en) 2004-11-04
JP3921574B2 true JP3921574B2 (en) 2007-05-30

Family

ID=32866695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003101401A Expired - Fee Related JP3921574B2 (en) 2003-04-04 2003-04-04 Heat-resistant steel, gas turbine using the same, and various components

Country Status (4)

Country Link
US (2) US20050074356A1 (en)
EP (1) EP1466993B1 (en)
JP (1) JP3921574B2 (en)
DE (1) DE602004005910T2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4887506B2 (en) * 2008-03-26 2012-02-29 防衛省技術研究本部長 Method for producing ferritic heat resistant steel
CH704427A1 (en) * 2011-01-20 2012-07-31 Alstom Technology Ltd Welding additive material.
JP6113456B2 (en) * 2012-10-17 2017-04-12 三菱日立パワーシステムズ株式会社 Precipitation hardened martensitic stainless steel and steam turbine long blades using it
US11634803B2 (en) 2012-10-24 2023-04-25 Crs Holdings, Llc Quench and temper corrosion resistant steel alloy and method for producing the alloy
US20140140883A1 (en) 2012-10-24 2014-05-22 Crs Holdings, Inc. Quench and temper corrosion resistant steel alloy
KR102197204B1 (en) * 2013-06-25 2021-01-04 테나리스 커넥션즈 비.브이. High-chromium heat-resistant steel
US10094007B2 (en) 2013-10-24 2018-10-09 Crs Holdings Inc. Method of manufacturing a ferrous alloy article using powder metallurgy processing
JP6317566B2 (en) * 2013-11-08 2018-04-25 三菱日立パワーシステムズ株式会社 Precipitation hardening type martensitic stainless steel, turbine member using the stainless steel, and turbine using the turbine member
RU2585591C1 (en) * 2014-11-28 2016-05-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Heat-resistant steel of martensitic class
RU2598725C2 (en) * 2014-11-28 2016-09-27 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Heat-resistant steel of martensitic class and preparation method thereof
CN104831160B (en) * 2015-03-26 2016-09-28 哈尔滨汽轮机厂有限责任公司 For 630 DEG C of ultra-supercritical turbine blade containing Re Steel material and manufacture method thereof
RU2615931C1 (en) * 2016-06-16 2017-04-11 Юлия Алексеевна Щепочкина Iron-based alloy
RU2757923C1 (en) * 2020-12-25 2021-10-25 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Heat-resistant steel of the martensitic class

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018242A1 (en) * 1993-12-28 1995-07-06 Nippon Steel Corporation Martensitic heat-resisting steel having excellent resistance to haz softening and process for producing the steel
JPH083697A (en) * 1994-06-13 1996-01-09 Japan Steel Works Ltd:The Heat resistant steel
DE69601340T2 (en) * 1995-04-12 1999-08-26 Mitsubishi Heavy Ind Ltd HIGH-STRENGTH, HIGH-STRENGTH HEAT-RESISTANT STEEL AND METHOD FOR THE PRODUCTION THEREOF
JPH1036944A (en) * 1996-07-19 1998-02-10 Mitsubishi Heavy Ind Ltd Martensitic heat resistant steel
JP3354832B2 (en) * 1997-03-18 2002-12-09 三菱重工業株式会社 High toughness ferritic heat-resistant steel

Also Published As

Publication number Publication date
EP1466993B1 (en) 2007-04-18
DE602004005910T2 (en) 2007-12-06
US20090068052A1 (en) 2009-03-12
US20050074356A1 (en) 2005-04-07
EP1466993A1 (en) 2004-10-13
JP2004307910A (en) 2004-11-04
DE602004005910D1 (en) 2007-05-31

Similar Documents

Publication Publication Date Title
US20090068052A1 (en) Heat resisting steel, gas turbine using the steel, and components thereof
JP3793667B2 (en) Method for manufacturing low-pressure steam turbine final stage rotor blade
EP0831203B1 (en) Blading for a steam turbine of a combined cycle power generation system
US6546713B1 (en) Gas turbine for power generation, and combined power generation system
JP4542491B2 (en) High-strength heat-resistant cast steel, method for producing the same, and uses using the same
US5536146A (en) Combined generator system
US6574966B2 (en) Gas turbine for power generation
US5906096A (en) Compressor for turbine and gas turbine
JPH0959747A (en) High strength heat resistant cast steel, steam turbine casing, steam turbine electric power plant, and steam turbine
EP0881360A1 (en) Steam turbine power generating plant and steam turbine
JPH07233704A (en) Steam turbine power plant and steam turbine
US5360318A (en) Compressor for gas turbine and gas turbine
JP2005171339A (en) High strength high toughness high corrosion resistance martensite steel, steam turbine blade, and steam turbine power plant
JPH10331659A (en) Power generating gas turbine and combined power generating system
JP4256311B2 (en) Rotor shaft for steam turbine, steam turbine, and steam turbine power plant
JPS6054385B2 (en) heat resistant steel
US5428953A (en) Combined cycle gas turbine with high temperature alloy, monolithic compressor rotor
JPH03130502A (en) Steam turbine and rotor shaft and heat resisting steel thereof
JP3362369B2 (en) Steam turbine power plant and steam turbine
JP3716684B2 (en) High strength martensitic steel
JP3661456B2 (en) Last stage blade of low pressure steam turbine
JPH09287402A (en) Rotor shaft for steam turbine, steam turbine power generating plant, and steam turbine thereof
JP3800630B2 (en) Final stage blades for steam turbine power plant and low pressure steam turbine and their manufacturing method
JP2503180B2 (en) High efficiency gas turbine
JPH10317105A (en) High strength steel, steam turbine long blade and steam turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070205

R150 Certificate of patent or registration of utility model

Ref document number: 3921574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees