JP2010084097A - Soil conditioner - Google Patents
Soil conditioner Download PDFInfo
- Publication number
- JP2010084097A JP2010084097A JP2008257557A JP2008257557A JP2010084097A JP 2010084097 A JP2010084097 A JP 2010084097A JP 2008257557 A JP2008257557 A JP 2008257557A JP 2008257557 A JP2008257557 A JP 2008257557A JP 2010084097 A JP2010084097 A JP 2010084097A
- Authority
- JP
- Japan
- Prior art keywords
- lherzolite
- soil
- cadmium
- komatsuna
- radish
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
- Fertilizers (AREA)
Abstract
Description
本発明は、コマツナ、オオムギ、或いは、ハツカダイコン等の蔬菜を適用対象とした生育に用いるのに好適な土壌改良剤に関する。更に詳しくは、作物のカドミウムの吸収を抑制するとともにその生育促進効果に優れる土壌改良剤に関する。 The present invention relates to a soil conditioner suitable for use in growth targeting sugar beet such as komatsuna, barley, or radish. More specifically, the present invention relates to a soil conditioner that suppresses the absorption of cadmium in crops and is excellent in its growth promoting effect.
世界各地には鉱山廃水などに含まれるカドミウムをはじめとする重金属で汚染された農地が多数存在する。それら地域における農業活動により生産される作物のカドミウムは人体に有害である。そのためWHO/FAOのコーデックス(Codex)委員会は作物中のカドミウム含量の基準を2006年に策定しており、我が国においても、カドミウム含量を下げるために土壌改良資材の改良が急務となっている。更には、カドミウム等に汚染された土壌は植物の生育状況を悪化させるということが従来から知られている。
従来、特許文献1乃至3に開示されるように、土壌改良剤としてカルシウム資材を用いるもの、或いは、非特許文献1及び2に開示されるように、カドミウム吸収抑制効果を有するレルゾライトを用いるものなどが知られている。
There are many farms around the world that are contaminated with heavy metals such as cadmium contained in mine wastewater. Cadmium in crops produced by agricultural activities in these areas is harmful to the human body. For this reason, the WHO / FAO Codex Committee established a standard for cadmium content in crops in 2006, and in Japan it is an urgent task to improve soil improvement materials in order to reduce cadmium content. . Furthermore, it is conventionally known that soil contaminated with cadmium or the like deteriorates the growth of plants.
Conventionally, as disclosed in Patent Documents 1 to 3, using a calcium material as a soil improver, or as disclosed in Non-Patent Documents 1 and 2, using a lerzolite having a cadmium absorption suppression effect, etc. It has been known.
しかしながら、前記特許文献1等に開示されるようなカルシウム資材を用いる方法では、雨で溶脱しやすく、また、毎年施用する必要があるという不都合を有する。この点、非特許文献1等に開示されるようにレルゾライトを有効成分としたものは、前記カルシウム資材のような不都合を有せず、持続性があり、カドミウムの吸収抑制効果も高く、安価で、しかも、マグネシウムに富む肥料としての効果も高いため、注目されており、生育促進効果の増進が求められている。
そこで、本発明は、カドミウム吸収抑制効果に優れるレルゾライトを有効成分とする土壌改良剤について、その生育促進効果を更に増進させた土壌改良剤を提供することをその目的とする。
However, the method using a calcium material as disclosed in Patent Document 1 and the like has the disadvantage that it is easy to be leached due to rain and needs to be applied every year. In this regard, as disclosed in Non-Patent Document 1 and the like, the one containing lherzolite as an active ingredient has no inconveniences as the calcium material, is durable, has a high cadmium absorption suppression effect, and is inexpensive. Moreover, since it is highly effective as a fertilizer rich in magnesium, it has been attracting attention, and there is a need for an enhanced growth promoting effect.
Then, this invention makes it the objective to provide the soil improvement agent which further improved the growth promotion effect about the soil improvement agent which uses the lherzolite excellent in the cadmium absorption inhibitory effect as an active ingredient.
本発明者等は、前記目的を達成するために鋭意研究の結果、レルゾライトを特定温度で焼成することにより、焼成処理をしていない従来のレルゾライトに比べてカドミウム吸収抑制効果が顕著に優れているとともに、生育促進効果を顕著に増進させた土壌改良剤が得られることを知見した。
本発明の土壌改良剤は前記知見に基づきなされたもので、請求項1記載の通り、600〜725℃で焼成したレルゾライトを有効成分として含有することを特徴とする。
また、請求項2記載の土壌改良剤は、請求項1記載の土壌改良剤において、前記レルゾライトの粒径が0.01〜5.0mmであることを特徴とする。
また、請求項3記載の土壌改良剤は、請求項2記載の土壌改良剤において、前記レルゾライトをペレット化したことを特徴とする。
また、請求項4記載の土壌改良剤は、請求項1乃至3の何れかに記載の土壌改良剤において、蔬菜を適用対象とすることを特徴とする。
また、請求項5記載の土壌改良剤は、請求項4記載の土壌改良剤において、前記蔬菜がコマツナ、オオムギ、或いは、ハツカダイコンであることを特徴とする。
As a result of diligent research to achieve the above object, the present inventors, by firing the lherzolite at a specific temperature, have a remarkably superior effect of suppressing cadmium absorption compared to a conventional lherzolite that has not been fired. At the same time, it was found that a soil conditioner having a significantly enhanced growth promoting effect can be obtained.
The soil improver of the present invention has been made based on the above findings, and as described in claim 1, contains a lherzolite baked at 600 to 725 ° C. as an active ingredient.
The soil conditioner according to claim 2 is characterized in that, in the soil conditioner according to claim 1, the particle size of the lherzolite is 0.01 to 5.0 mm.
The soil conditioner according to claim 3 is the soil conditioner according to claim 2, wherein the lherzolite is pelletized.
In addition, the soil conditioner according to claim 4 is characterized in that, in the soil conditioner according to any one of claims 1 to 3, sugar beet is an application target.
A soil conditioner according to claim 5 is the soil conditioner according to claim 4, wherein the sugar beet is komatsuna, barley, or radish.
かんらん岩はケイ酸マグネシウムを多く含む塩基性岩であり、その粉末であるレルゾライトをカドミウム汚染土壌に土壌改良剤として施用することにより、蔬菜の生育が大きく改善され、土壌中の可動性カドミウムが不動性の形態に変えられるため蔬菜のカドミウム含量が低下することが従来より知られている。そして、本願発明のように、レルゾライトを600〜725℃で焼成することによりその生育促進作用を大きく増進させることができる。 Peridotite is a basic rock containing a large amount of magnesium silicate. By applying lherzolite, a powder, to cadmium-contaminated soil as a soil conditioner, the growth of sugar beet is greatly improved, and mobile cadmium in the soil is reduced. It has been conventionally known that the cadmium content of sugar beet is lowered because it can be changed to an immobile form. And the growth promotion effect | action can be greatly improved by baking a lherzolite at 600-725 degreeC like this invention.
本願発明の土壌改良剤は、600〜725℃で焼成したレルゾライトを有効成分として含有することを特徴とするものであり、焼成温度が、600℃未満、或いは、725℃を越えると顕著な生育促進作用は得られない。そのため、前記レルゾライトの焼成温度を600〜725℃とすることは必須である。
前記焼成は、レルゾライト砕石場からレルゾライト岩石を採取する際に発生するレルゾライト微細粉を集塵機等で採取したものを電気炉内に入れ、1時間程度焼成することが好ましい。この際の焼成時間は、焼成に要する投入エネルギーの費用対効果の観点から定められるものであり、焼成時間は1時間程度に限定されるものではない。また、焼成時の炉内で、レルゾライトを攪拌してもよい。
The soil conditioner of the present invention is characterized in that it contains a lerzolite fired at 600 to 725 ° C. as an active ingredient, and if the firing temperature is less than 600 ° C. or exceeds 725 ° C., significant growth promotion is achieved. There is no effect. Therefore, it is essential to set the firing temperature of the lherzolite to 600 to 725 ° C.
The firing is preferably carried out for about 1 hour by putting a fine powder of lherzolite, which is generated when collecting a lherzolite rock from a lherzolite quarry, with a dust collector or the like, into an electric furnace. The firing time at this time is determined from the viewpoint of cost effectiveness of the input energy required for firing, and the firing time is not limited to about 1 hour. In addition, the lherzolite may be stirred in a furnace during firing.
また、前記レルゾライトは、粒径0.01〜5.0mmとして用いるのが好ましく、粒径が微細なほど焼成効果は向上することから0.01〜2.5mmとして用いるが更に好ましい。該レルゾライト粒は、レルゾライト岩石をクラッシャーやミル等で微細化したものでもよい。
また、焼成後のレルゾライトは粒そのものとしての利用のほか、それらをペレット化、或いは、液体抽出して用いることも可能である。
Moreover, it is preferable to use the said lerzolite as a particle size of 0.01-5.0 mm, and since the baking effect improves so that a particle size is finer, it is more preferable to use as 0.01-2.5 mm. The lherzolite grains may be those obtained by refining lherzolite rock with a crusher or a mill.
In addition to the use of the lerzolite after calcination as a granule itself, it can be used by pelletizing or liquid extraction.
本発明の土壌改良剤は、前記レルゾライトを有効成分として含むことが必須であるが、苦土(マグネシウム)、ケイ酸、石灰(カルシウム)、鉄等をはじめとする一般的な肥料効果のある成分のほか、化学肥料等を含ませても構わない。 The soil conditioner of the present invention must contain the above-mentioned lherzolite as an active ingredient, but it is a general fertilizer-effect ingredient including bituminous (magnesium), silicic acid, lime (calcium), iron and the like. In addition, chemical fertilizers may be included.
本発明の土壌改良剤の適用対象は、蔬菜であれば特に限定されるものではないが、ホウレンソウ、キャベツ、ニンジン、ダイコン等を適用対象に含み、コマツナ、オオムギ、或いは、ハツカダイコンの生育に用いるのが好ましい。
尚、イネや麦をはじめとする穀物類等も、その適用対象から除かれるものではない。
The application target of the soil conditioner of the present invention is not particularly limited as long as it is a sugar beet, but includes spinach, cabbage, carrot, radish and the like, and is used for growing komatsuna, barley, or radish. Is preferred.
In addition, grains such as rice and wheat are not excluded from the application.
次に、本発明の実施例を比較例を参照して説明する。
(実施例1)
カドミウム汚染土壌として、鉱山の下流で、その排水が流入した川の氾濫によってカドミウム汚染されている土壌を使用した。また、生育対象として、コマツナ(品種「味彩」 株式会社トーホク)を用いた。また、レルゾライトとしては、岩手県釜石市宮守村産レルゾライト粉末を用い、本実施例では、粒径2mm程度の前記レルゾライト粉末を、焼成装置(商品名:電気マッフル、ADVANTEC社製、FUM322FB、内容積:約10L、ヒーター容量:3.2kW、炉内温度分布精度±5℃)の炉内に装填し、該焼成装置のパネル面にある温度調節器の設定温度を725℃に設定し、1時間焼成したものを用いた。
前記レルゾライトの焼成前の主な成分の単位質量当たりの含有量(%)は下記表1に示す通りであった。
Next, examples of the present invention will be described with reference to comparative examples.
Example 1
As cadmium contaminated soil, cadmium contaminated soil was used downstream of the mine due to the flooding of the river into which the drainage flowed. In addition, Komatsuna (variety “Ajisai” Tohoku Co., Ltd.) was used as a growth target. Further, as the lherzolite, a lherzolite powder produced in Miyamori-mura, Kamaishi City, Iwate Prefecture was used. In this example, the lherzolite powder having a particle size of about 2 mm was baked (trade name: Electric Muffle, manufactured by ADVANTEC, FUM322FB, internal volume). : About 10 L, heater capacity: 3.2 kW, furnace temperature distribution accuracy ± 5 ° C.), set the temperature controller setting temperature on the panel surface of the baking apparatus to 725 ° C., and 1 hour What was baked was used.
Table 1 below shows the content (%) of the main components before firing of the lherzolite per unit mass.
表1に示すように、レルゾライトの主成分はケイ酸マグネシウムで、その他は鉄、カルシウム、アルミニウムなどであるが、特徴として少量のニッケルを含んでいる。 As shown in Table 1, the main component of Lerzolite is magnesium silicate and the others are iron, calcium, aluminum, etc., but it contains a small amount of nickel as a feature.
次に、プラスチック製1リットルポット(1/150,00アール)を用い、前記土壌1リットルに対して前記焼成レルゾライトを1質量%、更に高度化成肥料(窒素:リン:カリウム=10:10:10)1gを混合してから前記ポットに入れた。
次に、前記コマツナの種子を前記土壌に直接播種し、覆土してから水道水を散布して、ガラス温室内の温度条件を20〜35℃の範囲となるように制御して栽培した。尚、種子数は6粒で、播種栽培して本葉展開時に3株となるように間引きを行った。
Next, using a 1 liter pot made of plastic (1 / 150,00 are), 1% by mass of the calcined lherzolite with respect to 1 liter of the soil, and further advanced chemical fertilizer (nitrogen: phosphorus: potassium = 10: 10: 10) ) 1g was mixed and put into the pot.
Next, the seeds of the komatsuna were sown directly on the soil, covered with soil, sprayed with tap water, and cultivated while controlling the temperature conditions in the glass greenhouse to be in the range of 20 to 35 ° C. In addition, the number of seeds was 6, and sowing was cultivated and thinning was performed so that there would be 3 strains when the true leaves were developed.
(実施例2)
前記焼成レルゾライトの土壌に対する混合量を2質量%とした以外は前記実施例1と同様にしてコマツナの栽培を行った。
(Example 2)
Komatsuna was cultivated in the same manner as in Example 1 except that the amount of the baked lherzolite mixed with the soil was 2% by mass.
(比較例1)
焼成温度を800℃としたレルゾライトを用いたこと以外は実施例1と同様にしてコマツナの栽培を行った。
(Comparative Example 1)
Komatsuna was cultivated in the same manner as in Example 1 except that lherzolite having a baking temperature of 800 ° C. was used.
(比較例2)
焼成温度を850℃としたレルゾライトを用いたこと以外は実施例1と同様にしてコマツナの栽培を行った。
(Comparative Example 2)
Komatsuna was cultivated in the same manner as in Example 1 except that lherzolite having a firing temperature of 850 ° C. was used.
(比較例3)
焼成温度を800℃としたレルゾライトを用いたこと以外は実施例2と同様にしてコマツナの栽培を行った。
(Comparative Example 3)
Komatsuna was cultivated in the same manner as in Example 2 except that lherzolite having a baking temperature of 800 ° C. was used.
(比較例4)
焼成温度を850℃としたレルゾライトを用いたこと以外は実施例2と同様にしてコマツナの栽培を行った。
(Comparative Example 4)
Komatsuna was cultivated in the same manner as in Example 2 except that lherzolite having a firing temperature of 850 ° C. was used.
(比較例5)
未焼成のレルゾライトを用いたこと以外は実施例1と同様にしてコマツナの栽培を行った。
(Comparative Example 5)
Komatsuna was cultivated in the same manner as in Example 1 except that unfired lherzolite was used.
(比較例6)
未焼成のレルゾライトを用いたこと以外は実施例2と同様にしてコマツナの栽培を行った。
(Comparative Example 6)
Komatsuna was cultivated in the same manner as in Example 2 except that unfired lherzolite was used.
(比較例7)
次に、対照のため、レルゾライトを用いず、高度化成肥料のみを混合した土壌を用いたこと以外は実施例1と同様にしてコマツナの栽培を行った。
(Comparative Example 7)
Next, for control, Komatsuna was cultivated in the same manner as in Example 1 except that the soil was mixed with only the advanced chemical fertilizer without using lherzolite.
前記実施例1及び2並びに比較例1乃至7は同じ汚染土壌と、同じコマツナの種子を用いて同時に栽培を開始し、3cm程度に成長した苗を移植して、その後35日間栽培した。 In Examples 1 and 2 and Comparative Examples 1 to 7, cultivation was started at the same time using the same contaminated soil and the same Komatsuna seeds, and seedlings grown to about 3 cm were transplanted, followed by cultivation for 35 days.
次に、栽培されたそれぞれのコマツナを収穫し、水道水、RO水、MQ水の順で洗浄した。次に、ナイフにて根部と地上部(葉部)に分離し、地上部をそれぞれ新聞紙製の紙袋に入れて、70℃の通風乾燥機内で48時間乾燥させてから乾燥質量を測定した。地上部の乾燥質量を比較した結果は図1に示す通りである。
尚、参考のため、図2に焼成レルゾライトを1質量%添加した場合のコマツナの生育状態を示す写真、図3に焼成レルゾライトを2質量%添加した場合のコマツナの生育状態を示す写真を示した。
Next, each cultivated komatsuna was harvested and washed in the order of tap water, RO water and MQ water. Next, the root part and the above-ground part (leaf part) were separated with a knife, and the above-ground part was put in a newspaper paper bag and dried in a ventilating dryer at 70 ° C. for 48 hours, and then the dry mass was measured. The result of comparing the dry mass of the above-ground part is as shown in FIG.
For reference, FIG. 2 shows a photograph showing the growth state of Komatsuna when 1% by mass of baked lherzolite is added, and FIG. 3 shows a photograph showing the growth state of Komatsuna when 2% by mass of baked lherzolite is added. .
図1乃至図3から明らかな通り、本実施例の焼成レルゾライトを用いた場合、未焼成レルゾライト、或いは、800℃以上の温度で焼成したレルゾライトを用いた場合に比し、生育促進効果に優れることが確認できた。また、焼成温度725℃のレルゾライトを用いた場合、少ない量で生育促効果が得られることが確認できた。 As is apparent from FIGS. 1 to 3, when the fired lherzolite of this example is used, the growth promoting effect is excellent as compared with the case of using unfired lherzolite or lerazolite fired at a temperature of 800 ° C. or higher. Was confirmed. Further, it was confirmed that the growth promoting effect was obtained in a small amount when using a lherzolite having a firing temperature of 725 ° C.
また、乾燥したコマツナの地上部を硝酸・過塩素酸分解し、原子吸光法でカドミウムの含有量を定量した。その結果を下記図4に示す。 Moreover, the above-ground part of dried Komatsuna was decomposed with nitric acid and perchloric acid, and the cadmium content was quantified by atomic absorption spectrometry. The results are shown in FIG.
図4から明らか通り、焼成されたレルゾライトにおいても未焼成のレルゾライトと同様に、優れたカドミウム吸収抑制効果を示すことが明らかである。
このように、本発明によれば、未焼成のレルゾライトのカドミウム吸収抑制効果を維持しつつ、生育促進効果に優れた土壌改良剤が得られることが明らかである。
As is clear from FIG. 4, it is clear that the fired lherzolite also exhibits an excellent cadmium absorption suppression effect, similarly to the unfired lerzolite.
Thus, according to the present invention, it is clear that a soil improver excellent in the growth promoting effect can be obtained while maintaining the cadmium absorption suppressing effect of the unfired lherzolite.
(実施例3)
焼成温度を600℃としたレルゾライトを用いたこと以外は実施例1と同様にしてコマツナの栽培を行った。
(Example 3)
Komatsuna was cultivated in the same manner as in Example 1 except that lherzolite with a firing temperature of 600 ° C. was used.
(実施例4)
焼成温度を650℃としたレルゾライトを用いたこと以外は実施例1と同様にしてコマツナの栽培を行った。
Example 4
Komatsuna was cultivated in the same manner as in Example 1 except that lherzolite having a baking temperature of 650 ° C. was used.
(実施例5)
焼成温度を725℃としたレルゾライトを用い、実施例1とは別に、実施例と同様にしてコマツナの栽培を行った。
(Example 5)
Using lherzolite with a firing temperature of 725 ° C., Komatsuna was cultivated in the same manner as in Example 1 separately from Example 1.
(比較例8)
次に、対照のため、レルゾライトを用いず、高度化成肥料のみを混合した土壌を用い、比較例7とは別に、比較例7と同様にしてコマツナの栽培を行った。
(Comparative Example 8)
Next, for control, Komatsuna was cultivated in the same manner as Comparative Example 7 separately from Comparative Example 7 using soil mixed with only advanced fertilizer without using lherzolite.
前記実施例3乃至5及び比較例8は同じ汚染土壌と、同じコマツナの種子を用いて同時に栽培を開始し、3cm程度に成長した苗を移植して、その後35日間栽培した。 In Examples 3 to 5 and Comparative Example 8, cultivation was started simultaneously using the same contaminated soil and the same Komatsuna seeds, transplanting seedlings grown to about 3 cm, and then cultivating for 35 days.
次に、栽培されたそれぞれのコマツナを収穫し、水道水、RO水、MQ水の順で洗浄した。次に、ナイフにて根部と地上部(葉部)に分離し、地上部をそれぞれ新聞紙製の紙袋に入れて、70℃の通風乾燥機内で48時間乾燥させてから乾燥質量を測定した。地上部の乾燥質量を比較した結果は図5に示す通りである。ここで、図1での焼成温度725℃の生育状況と図5の同条件の生育条件で生育状態が異なっているが、これは両者の栽培時期が異なることから日照量等の違いが影響しているものであり、あくまで各生育時における相対比較の検討を目的としている。
尚、参考のため、図6に焼成レルゾライトを1質量%添加した場合のコマツナの生育状態を示す写真を示した。
Next, each cultivated komatsuna was harvested and washed in the order of tap water, RO water and MQ water. Next, the root part and the above-ground part (leaf part) were separated with a knife, and the above-ground part was put in a newspaper paper bag and dried in a ventilating dryer at 70 ° C. for 48 hours, and then the dry mass was measured. The result of comparing the dry mass of the above-ground part is as shown in FIG. Here, the growth state is different between the growth condition at the firing temperature of 725 ° C. in FIG. 1 and the growth condition of the same condition in FIG. 5, but this is due to the difference in the amount of sunlight, etc., because the cultivation period of both is different. It is intended only for the purpose of examining relative comparisons at each growth stage.
For reference, FIG. 6 shows a photograph showing the growth state of Komatsuna when 1% by mass of calcined lherzolite is added.
図5及び図6から明らかな通り、本実施例の焼成レルゾライトを用いた場合、生育促進効果に優れることが確認できた。 As apparent from FIGS. 5 and 6, it was confirmed that when the fired lherzolite of this example was used, the growth promoting effect was excellent.
また、乾燥したコマツナの地上部を硝酸・過塩素酸分解し、原子吸光法でカドミウムの含有量を定量した。その結果を下記図7に示す。 Moreover, the above-ground part of dried Komatsuna was decomposed with nitric acid and perchloric acid, and the cadmium content was quantified by atomic absorption spectrometry. The results are shown in FIG.
図7から明らか通り、優れたカドミウム吸収抑制効果を示すことが明らかである。 As is clear from FIG. 7, it is clear that an excellent cadmium absorption suppression effect is exhibited.
(実施例6)
前記栽培種であるコマツナをハツカダイコン(品種「赤丸ハツカダイコン(チェリーメイト)、株式会社トーホク」)に替えたこと以外は前記実施例1と同様にして栽培を行った。
(Example 6)
Cultivation was carried out in the same manner as in Example 1 except that Komatsuna, which is the cultivated species, was replaced with radish (variety “Akamaru radish (Cherry Mate), Tohoku Co., Ltd.”).
(実施例7)
前記焼成レルゾライトの土壌に対する混合量を2質量%とした以外は前記実施例6と同様にしてハツカダイコンの栽培を行った。
(Example 7)
Japanese radish was cultivated in the same manner as in Example 6 except that the amount of the baked lherzolite mixed with the soil was 2% by mass.
(比較例9)
焼成温度を800℃としたレルゾライトを用いたこと以外は実施例6と同様にしてハツカダイコンの栽培を行った。
(Comparative Example 9)
Japanese radish was cultivated in the same manner as in Example 6 except that lherzolite having a baking temperature of 800 ° C. was used.
(比較例10)
焼成温度を850℃としたレルゾライトを用いたこと以外は実施例6と同様にしてハツカダイコンの栽培を行った。
(Comparative Example 10)
Japanese radish was cultivated in the same manner as in Example 6 except that lherzolite having a firing temperature of 850 ° C. was used.
(比較例11)
焼成温度を800℃としたレルゾライトを用いたこと以外は実施例7と同様にしてハツカダイコンの栽培を行った。
(Comparative Example 11)
Japanese radish was cultivated in the same manner as in Example 7 except that lherzolite having a baking temperature of 800 ° C. was used.
(比較例12)
焼成温度を850℃としたレルゾライトを用いたこと以外は実施例7と同様にしてハツカダイコンの栽培を行った。
(Comparative Example 12)
Japanese radish was cultivated in the same manner as in Example 7 except that lherzolite with a firing temperature of 850 ° C. was used.
(比較例13)
未焼成のレルゾライトを用いたこと以外は実施例6と同様にしてハツカダイコンの栽培を行った。
(Comparative Example 13)
The radish was cultivated in the same manner as in Example 6 except that unfired lherzolite was used.
(比較例14)
未焼成のレルゾライトを用いたこと以外は実施例7と同様にしてハツカダイコンの栽培を行った。
(Comparative Example 14)
The radish was cultivated in the same manner as in Example 7 except that unfired lherzolite was used.
(比較例15)
次に、対照のため、レルゾライトを用いず、高度化成肥料のみを混合した土壌と用いたこと以外は実施例6と同様にしてハツカダイコンの栽培を行った。
(Comparative Example 15)
Next, for control, radish was cultivated in the same manner as in Example 6 except that it was not used with lherzolite and was used with soil mixed only with highly chemical fertilizer.
前記実施例6及び7並びに比較例9乃至15は、同じ汚染土壌と、同じハツカダイコンの種子を用いて同時に栽培を開始し、3cm程度に成長した苗を移植して、その後60日間栽培した。 In Examples 6 and 7 and Comparative Examples 9 to 15, cultivation started simultaneously using the same contaminated soil and the same radish seeds, transplanted seedlings grown to about 3 cm, and then cultivated for 60 days.
次に、栽培されたハツカダイコンを収穫し、生育状況を比較した。図8に焼成レルゾライトを1質量%添加した場合のハツカダイコンの生育状態を示す写真、図9に焼成レルゾライトを2質量%添加した場合のハツカダイコンの生育状態を示す写真を示した。
更に、収穫したハツカダイコンを水道水、RO水、MQ水の順で洗浄した。次に、ナイフにて根部と葉部に切断し、根部と葉部をそれぞれ新聞紙製の紙袋に入れて、70℃の通風乾燥機内で48時間乾燥させてから乾燥質量を測定した。その結果は図10(地上部)及び図11(根部)に示す通りであり、ハツカダイコンの地上部及び根部ともに725℃で焼成されたレルゾライトで栽培されたものの乾燥質量が重く、生育が促進されていることが示されている。
Next, the cultivated radish was harvested and the growth status was compared. FIG. 8 shows a photograph showing the growth state of Japanese radish when 1% by mass of baked lherzolite is added. FIG. 9 shows a photograph showing the growth state of Japanese radish when 2% by mass of baked lherzolite is added.
Furthermore, the harvested radish was washed in order of tap water, RO water, and MQ water. Next, it cut | disconnected with the knife at the root part and the leaf part, put the root part and the leaf part in the paper bag made from a newspaper each, and dried it in a 70 degreeC ventilation dryer for 48 hours, Then, dry mass was measured. The results are as shown in FIG. 10 (above ground) and FIG. 11 (root). Both the above-ground and root parts of radish are cultivated with lherzolite baked at 725 ° C., and the growth is accelerated. It has been shown that
乾燥したハツカダイコンの地上部及び根部のそれぞれを硝酸・過塩素酸分解し、原子吸光法でカドミウムの含有量を定量した。その結果を図12(地上部)及び図13(根部)に示す。ハツカダイコンの地上部及び根部ともに725℃で焼成されたレルゾライトで栽培されたものの単位質量当たりのCd含有量が低減されていることが示されている。 Nitrogen and perchloric acid were decomposed in the above-ground part and root part of dried radish, and the cadmium content was quantified by atomic absorption spectrometry. The results are shown in FIG. 12 (ground part) and FIG. 13 (root part). It is shown that the Cd content per unit mass of the radish cultivated with lerzolite baked at 725 ° C. for both the radish and root parts of radish is reduced.
(実施例8)
表1に示されるように、焼成前のレルゾライトには植物の葉緑素の構成要素として重要な酸化マグネシウム(MgO)が多量に含まれている。更に、クエン酸可溶性酸化マグネシウム(C MgO)は植物に吸収され成長の肥となるものである。そこで、レルゾライトを焼成する温度の違いによる、トータル酸化マグネシウム(T MgO)並びにC MgOの成分比較を行った結果を表2に示す。それぞれのレルゾライトの焼成温度における焼成時間は1時間とした。焼成温度が高くなるにつれてT MgOの含有率が高くなる傾向にある。しかし、植物の成長に重要なC MgOの含有量は、レルゾライトの焼成温度が725℃の場合がピークになっていることが分かった。
As shown in Table 1, the lerzolite before firing contains a large amount of magnesium oxide (MgO) that is important as a constituent element of plant chlorophyll. Furthermore, citrate-soluble magnesium oxide (C MgO) is absorbed by plants and becomes a fertilizer for growth. Therefore, Table 2 shows the results of comparison of components of total magnesium oxide (TMgO) and CMgO depending on the temperature at which the lherzolite is fired. The firing time at the firing temperature of each lherzolite was 1 hour. As the firing temperature increases, the content of T MgO tends to increase. However, it has been found that the content of CMgO, which is important for plant growth, has a peak when the burning temperature of lherzolite is 725 ° C.
(実施例9)
実施例6及び7並びに比較例9乃至15のハツカダイコンの栽培を行う前後の土壌のpH、更には2作後、3作後における土壌pHの推移の測定結果を図14及び15に示す。ハツカダイコンの1作前の土壌pHは4.5の酸性土壌であったが、1作後には焼成レルゾライト1%及び2%のいずれにおいても、土壌pHが高くなり中性に近づいており、焼成レルゾライト含有量が多いほど中性化の効果が高くなっており、土壌のpH調整剤としての効果を有しているものと考えられる。土壌中のCdは土壌pHが高いほど植物への吸収がされにくいとされており、レルゾライトに含有されるMgOは土壌pHを高める効果があり、その結果植物のCd吸収を抑えているものと考えられる。
Example 9
FIGS. 14 and 15 show the measurement results of the pH of the soil before and after cultivation of the radish of Examples 6 and 7 and Comparative Examples 9 to 15, and also the transition of the soil pH after 2 crops and 3 crops. The soil pH before the first crop of radish was 4.5 acidic soil, but after 1 crop, the soil pH became high and the calcined lherzolite was close to neutral in both 1% and 2% of the calcined lherzolite. The more the content, the higher the neutralization effect, which is considered to have an effect as a soil pH adjuster. It is said that Cd in soil is less likely to be absorbed by plants as soil pH is higher, and MgO contained in lherzolite has an effect of increasing soil pH, and as a result, it is considered that Cd absorption by plants is suppressed. It is done.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008257557A JP5353171B2 (en) | 2008-10-02 | 2008-10-02 | Soil conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008257557A JP5353171B2 (en) | 2008-10-02 | 2008-10-02 | Soil conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010084097A true JP2010084097A (en) | 2010-04-15 |
JP5353171B2 JP5353171B2 (en) | 2013-11-27 |
Family
ID=42248367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008257557A Expired - Fee Related JP5353171B2 (en) | 2008-10-02 | 2008-10-02 | Soil conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5353171B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011111617A (en) * | 2009-11-24 | 2011-06-09 | Earth Kk | Harmful discharge treating agent and treating method using the same |
JP2013508256A (en) * | 2010-04-27 | 2013-03-07 | 広東省生態環境与土壌研究所 | Foliar composite silicon fertilizer used to reduce heavy metal and nitrate content in vegetables and its preparation method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58203901A (en) * | 1982-05-24 | 1983-11-28 | Hokko Chem Ind Co Ltd | Agricultural chemical dust |
JPS60127286A (en) * | 1983-12-09 | 1985-07-06 | 日本化学工業株式会社 | Manufacture of slow release fused potassium magnesium silicate fertilizer |
JPH05194951A (en) * | 1992-01-20 | 1993-08-03 | Sanpo Shoko:Kk | Soil conditioner for plant growth, and preparation and use thereof |
JP2002371277A (en) * | 2001-06-07 | 2002-12-26 | Samsung Everland Inc | Soil conditioner composition for stimulating lawn growth mainly composed of olivine, and topdressing soil |
JP2004166627A (en) * | 2002-11-21 | 2004-06-17 | National Institute For Rural Engineering | Weed growth-suppressing and mulching composition |
JP2007169127A (en) * | 2005-12-26 | 2007-07-05 | Dia Chemical Kk | Granular magnesium sulfate fertilizer |
JP2009242125A (en) * | 2008-03-28 | 2009-10-22 | Nozawa Corp | Inorganic material for fertilizer |
-
2008
- 2008-10-02 JP JP2008257557A patent/JP5353171B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58203901A (en) * | 1982-05-24 | 1983-11-28 | Hokko Chem Ind Co Ltd | Agricultural chemical dust |
JPS60127286A (en) * | 1983-12-09 | 1985-07-06 | 日本化学工業株式会社 | Manufacture of slow release fused potassium magnesium silicate fertilizer |
JPH05194951A (en) * | 1992-01-20 | 1993-08-03 | Sanpo Shoko:Kk | Soil conditioner for plant growth, and preparation and use thereof |
JP2002371277A (en) * | 2001-06-07 | 2002-12-26 | Samsung Everland Inc | Soil conditioner composition for stimulating lawn growth mainly composed of olivine, and topdressing soil |
JP2004166627A (en) * | 2002-11-21 | 2004-06-17 | National Institute For Rural Engineering | Weed growth-suppressing and mulching composition |
JP2007169127A (en) * | 2005-12-26 | 2007-07-05 | Dia Chemical Kk | Granular magnesium sulfate fertilizer |
JP2009242125A (en) * | 2008-03-28 | 2009-10-22 | Nozawa Corp | Inorganic material for fertilizer |
Non-Patent Citations (1)
Title |
---|
JPN6013034229; 日本土壌肥料学会講演要旨集 (53), 2007, 165 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011111617A (en) * | 2009-11-24 | 2011-06-09 | Earth Kk | Harmful discharge treating agent and treating method using the same |
JP2013508256A (en) * | 2010-04-27 | 2013-03-07 | 広東省生態環境与土壌研究所 | Foliar composite silicon fertilizer used to reduce heavy metal and nitrate content in vegetables and its preparation method |
Also Published As
Publication number | Publication date |
---|---|
JP5353171B2 (en) | 2013-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hafez et al. | Minimizing hazard impacts of soil salinity and water stress on wheat plants by soil application of vermicompost and biochar | |
Wang et al. | Impact of straw management on seasonal soil carbon dioxide emissions, soil water content, and temperature in a semi-arid region of China | |
Tiecher et al. | Soil fertility and nutrient budget after 23-years of different soil tillage systems and winter cover crops in a subtropical Oxisol | |
Sun et al. | Biochar altered native soil organic carbon by changing soil aggregate size distribution and native SOC in aggregates based on an 8-year field experiment | |
Cha-un et al. | Greenhouse gas emissions, soil carbon sequestration and crop yields in a rain-fed rice field with crop rotation management | |
Kim et al. | Effect of intermittent drainage on methane and nitrous oxide emissions under different fertilization in a temperate paddy soil during rice cultivation | |
CN105295943B (en) | Heavy metal deactivator and preparation method thereof that is a kind of while being passivated cadmium in agricultural land soil, lead, zinc | |
Yang et al. | Bioaccumulation and translocation of cadmium in wheat (Triticum aestivum L.) and maize (Zea mays L.) from the polluted oasis soil of Northwestern China | |
Wang et al. | Steel slag amendment reduces methane emission and increases rice productivity in subtropical paddy fields in China | |
Lee et al. | Different response of silicate fertilizer having electron acceptors on methane emission in rice paddy soil under green manuring | |
Lu et al. | Contrasting effects of silicates on cadmium uptake by three dicotyledonous crops grown in contaminated soil | |
Gathala et al. | Physical and chemical properties of a sandy loam soil under irrigated rice-wheat sequence in the Indo-Gangetic Plains of South Asia | |
Hu et al. | Effects of sulfur-rich biochar amendment on microbial methylation of mercury in rhizosphere paddy soil and methylmercury accumulation in rice | |
CN104031649B (en) | A kind of soil conditioner for hindering the zinc accumulation of control pakchoi heavy metal arsenic | |
Jin et al. | Response of rice and bacterial community to phosphorus-containing materials in soil-plant ecosystem of rare earth mining area | |
Kintché et al. | Long-term mineral fertiliser use and maize residue incorporation do not compensate for carbon and nutrient losses from a Ferralsol under continuous maize–cotton cropping | |
Wang et al. | Effects of different potassium fertilizers on cadmium uptake by three crops | |
Cantú et al. | Alternatives to regular urea for abating N losses in lettuce production under sub-tropical climate | |
CN105080950A (en) | Biological combined remediation method for heavy metal contaminated soil in acid diggings | |
JP5987672B2 (en) | Plant disease control agent and plant disease control method using the same | |
JP5353171B2 (en) | Soil conditioner | |
Aboelsoud et al. | Effect of biochar, vermicompost and polymer on wheat and maize productivity in sandy soils under drought stress | |
Sun et al. | Alleviation of lead toxicity and phytostimulation in perennial ryegrass by the Pb-resistant fungus Trichoderma asperellum SD-5 | |
Smith et al. | Long-term residue management effects on soil respiration in a wheat-soybean double-crop system | |
CN102504826A (en) | Soil conditioning agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110901 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110909 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130716 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20130812 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130812 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130813 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |