JP2010082773A - Saw wire - Google Patents

Saw wire Download PDF

Info

Publication number
JP2010082773A
JP2010082773A JP2008256326A JP2008256326A JP2010082773A JP 2010082773 A JP2010082773 A JP 2010082773A JP 2008256326 A JP2008256326 A JP 2008256326A JP 2008256326 A JP2008256326 A JP 2008256326A JP 2010082773 A JP2010082773 A JP 2010082773A
Authority
JP
Japan
Prior art keywords
wire
saw wire
fixed
stainless steel
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008256326A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ogami
寛之 大上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008256326A priority Critical patent/JP2010082773A/en
Publication of JP2010082773A publication Critical patent/JP2010082773A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a saw wire having high tensile strength and large strength for twisting by preventing the occurrence of brittleness by hydrogen generated by electrolysis of water when abrasive particles are fixed by electrolytic plating in a fixed abrasive particle type saw wire. <P>SOLUTION: A core part is made of a metal containing iron having high tensile strength as a main component, and a surface layer part is covered by a metal excellent in hydrogen brittleness-resistance, preferably a stainless steel to prevent hydrogen brittleness. Thereby, the fixed abrasive particle type saw wire attaining high tensile strength and the twisting property are achieved. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、太陽電池や半導体のウエハ材料であるシリコンインゴット、人工水晶、超硬合金、磁石、セラミック等の硬脆性材料を切断するワイヤソー装置に用いられるワイヤソー用ワイヤにおいて、特にワイヤ表面に砥粒を固着させた固定砥粒式ソーワイヤの製造方法に関する。   The present invention relates to a wire saw wire used in a wire saw apparatus for cutting hard and brittle materials such as silicon ingots, artificial crystals, cemented carbides, magnets, and ceramics, which are wafer materials for solar cells and semiconductors. The present invention relates to a method for manufacturing a fixed-abrasive saw wire to which is fixed.

近年、細い金属線の表面にダイヤモンド等の微細な砥粒を固着した固定砥粒式ソーワイヤが使用され始めている。この固定砥粒式ソーワイヤにおいては、砥粒を吹き付けて切断を行う遊離砥粒式ソーワイヤに比べて遥かに切削能力が高く、注目されている。 In recent years, fixed-abrasive saw wires in which fine abrasive grains such as diamond are fixed on the surface of a thin metal wire have begun to be used. This fixed-abrasive saw wire has attracted attention because of its much higher cutting ability than a free-abrasive saw wire that is cut by blowing abrasive grains.

ソーワイヤは数十〜数百kmという長尺であり、且つ高強度であることが必要とされ、母材として一般的には硬鋼線が使用されている。またインゴット等の加工により除去される部分(加工しろ)をより小さくするべく、より細いワイヤであることが望まれている。更にワイヤはソーマシンに幾重にも巻き掛けられる為、ワイヤ自身に捻りが発生することが避けられないことから、捻回にも強くなければならず、断線が生じない高強度なワイヤであることが望まれている。 The saw wire is long, such as several tens to several hundreds km, and is required to have high strength, and a hard steel wire is generally used as a base material. Further, a thinner wire is desired in order to make a portion (working margin) removed by processing such as an ingot smaller. Furthermore, since the wire is wound several times on the saw machine, it is inevitable that the wire itself will be twisted. Therefore, the wire must be strong against twisting and must be a high-strength wire that does not break. It is desired.

更に固定砥粒式ソーワイヤにおいては、例えば樹脂等の非金属材料を接合媒体として砥粒をワイヤ表面に固着させたものと、金属を接合媒体として砥粒を固着させたものとがある。前者の非金属材料を接合媒体とするソーワイヤは、砥粒を混入させた樹脂中に金属線を通過させることで、金属線表面に砥粒が混入した樹脂を付着させ、これを冷却硬化させて製造される。また後者の金属を結合剤とするソーワイヤは、メッキ液に砥粒を浮遊させて、メッキ処理時にメッキとともに砥粒を金属線表面に固着させて製造される。上記メッキによる結合の場合は、まず金属表面に下地メッキを行い、その上に砥粒を含有した金属メッキを施す2層メッキ、あるいは砥粒の固着力をより高める為に、その上からさらに金属メッキを施した3層メッキとするのが一般的である。 Further, in the fixed abrasive type saw wire, there are, for example, one in which a non-metallic material such as a resin is used as a bonding medium and abrasive grains are fixed to the wire surface, and another type in which a metal is used as a bonding medium and abrasive grains are fixed. The former saw wire using a non-metallic material as a bonding medium allows a resin mixed with abrasive grains to adhere to the surface of the metal wire by allowing the metal wire to pass through the resin mixed with abrasive grains, which is then cooled and cured. Manufactured. Further, the saw wire using the latter metal as a binder is manufactured by floating abrasive grains in a plating solution and fixing the abrasive grains to the surface of the metal wire together with plating during the plating process. In the case of bonding by the above plating, first, a base metal plating is performed on the metal surface, and then a two-layer plating on which a metal plating containing abrasive grains is applied, or in order to further increase the adhesive strength of the abrasive grains, further metal is applied from above. In general, the plating is a three-layer plating.

その中で例えば引用文献1においては砥粒の固定を複合電解Niメッキによるものとするとともに、複合電解Niメッキ槽における電流密度を限界電流密度以上に設定することにより、多数の水素気泡を発生させると同時にこの異常メッキにより表面凹凸を現出させ、この凹凸と水素気泡とで砥粒をトラップさせて芯線の周方向に均一かつ強固に砥粒を固定する方法等がある。 Among them, for example, in Patent Document 1, the abrasive grains are fixed by composite electrolytic Ni plating, and a large number of hydrogen bubbles are generated by setting the current density in the composite electrolytic Ni plating tank to be equal to or higher than the limit current density. At the same time, there is a method in which surface irregularities appear by this abnormal plating, and abrasive grains are trapped by these irregularities and hydrogen bubbles to fix the abrasive grains uniformly and firmly in the circumferential direction of the core wire.

ところが引用文献1の如く限界電流密度以上の場合に限らず、限界電流密度以下の場合であっても電解メッキを行う際、必ず水の電気分解が同時に生じる。電解メッキにおいてはワイヤを陰極、例えばNiメッキにおいてはNi金属板を陽極とする為、陰極であるワイヤの表面においては、メッキ溶液中の水が分解されて水素を発生する。そうすると電解メッキ中に発生する水素が陰極であるワイヤ内部に浸入してしまう。このような水素を含浸したワイヤでは応力が加わった時に原子の移動が妨げられてワイヤ強度の低下や、特に捩れに対する弱体化が生じる、所謂水素脆化が発生する。さらに限界電流密度以上に設定したメッキにおいては、その影響はより顕著となり、細径であるもの程、水素脆性による影響が大きく、結果、限界電流密度以上に設定することは極めて難しい。 However, not only when the current density is higher than the limit current density as in the cited document 1, but even when the current density is lower than the limit current density, electrolysis of water always occurs at the same time. In electrolytic plating, a wire is a cathode, for example, in Ni plating, a Ni metal plate is used as an anode, so that water in the plating solution is decomposed and hydrogen is generated on the surface of the wire as the cathode. If it does so, the hydrogen which generate | occur | produces during electroplating will infiltrate the inside of the wire which is a cathode. In such a wire impregnated with hydrogen, when the stress is applied, the movement of atoms is hindered, so that the strength of the wire is reduced, and particularly weakening against twisting occurs, so-called hydrogen embrittlement occurs. Further, in the plating set to the limit current density or more, the effect becomes more remarkable. The smaller the diameter, the greater the influence of hydrogen embrittlement, and as a result, it is extremely difficult to set the limit current density or more.

また水素の発生を極力抑えるべく低電流密度で行うことが考えられるが、数十〜数百kmという長尺ワイヤを製造する上で非常に時間が掛かる為、大量生産を実現する為には製造設備が過大にならざるを得ず、結果ワイヤ単価を高くすることが避けられない。 Although it is conceivable to carry out at a low current density in order to suppress the generation of hydrogen as much as possible, it takes a very long time to manufacture a long wire of several tens to several hundreds km, so it is manufactured to realize mass production The equipment must be excessive, and as a result, it is inevitable to increase the wire unit price.

こうした課題に対して、水素脆性については引用文献2にあるようにステンレスワイヤを用いることが公知である。ステンレス表層においては安定した不動態膜を形成しており、メッキ工程で仮に水素が大量に発生する雰囲気であっても、水素脆化による強度低下は発生し得ない。
特開2005−46937 特開2000−71162
Regarding such a problem, it is known to use a stainless steel wire as disclosed in the cited document 2 for hydrogen embrittlement. A stable passive film is formed on the stainless steel surface layer, and even in an atmosphere in which a large amount of hydrogen is generated in the plating process, strength reduction due to hydrogen embrittlement cannot occur.
JP-A-2005-46937 JP2000-71162A

しかし、ステンレスワイヤを採用した場合には水素脆性による影響は防止できるが、例えばマルテンサイト系ステンレスであれば高強度であるが冷間加工性に乏しく、細径且つソーワイヤとして要求される長尺への伸線加工が困難である。一般に熱処理を行えば加工硬化を解消することができるが、工程数が増え生産性が低下してしまう。 However, when stainless steel wire is used, the effects of hydrogen embrittlement can be prevented. For example, martensitic stainless steel has high strength but poor cold workability, and has a small diameter and a long length required as a saw wire. Is difficult to draw. In general, heat treatment can eliminate work hardening, but the number of steps increases and productivity decreases.

また、冷間加工性に優れるオーステナイト系ステンレスであれば、伸線加工は行えるが、強度不足となり、ソーマシンでの使用下における張力に耐えうる程度の強度が得られない為、ワイヤ径を太くせざるを得えず、今後益々望まれる細径化が行えないという課題を有する。 In addition, austenitic stainless steel with excellent cold workability can be drawn, but the strength becomes insufficient and the strength sufficient to withstand the tension in use in a saw machine cannot be obtained. Inevitably, there is a problem that it is not possible to reduce the diameter as desired.

そこで本発明においては、生産性に優れた砥粒の固着を実現するべく、メッキ時の電流密度をより高く設定した場合であっても、水素による脆性が起こらず、且つ高強度を実現するワイヤを提供するべく、鋭意努力を重ね試行錯誤した結果、芯部と表層部が異種金属からなるクラッド鋼線で、芯部は高抗張力を有する金属で、且つ表層部はステンレス鋼から構成されるソーワイヤを提供することで課題を解決することができる。 Therefore, in the present invention, in order to realize the adhesion of abrasive grains with excellent productivity, even when the current density during plating is set higher, the wire does not cause brittleness due to hydrogen and realizes high strength. As a result of repeated trial and error, the core part and the surface layer part are clad steel wires made of different metals, the core part is a metal having a high tensile strength, and the surface layer part is a saw wire made of stainless steel. The problem can be solved by providing

本発明であるソーワイヤは、メッキ工程における水素脆性の影響を受ない為、捻回に強く、且つ使用時の引張強度に耐えうる程度の高強度を有するという優れた効果を発揮する。また、水素脆性を杞憂した限界電流密度の制限を設ける必要がない為、短時間で必要なメッキ厚を形成することができるという生産性にも優れた効果を発揮することができる。 Since the saw wire according to the present invention is not affected by hydrogen embrittlement in the plating process, it exhibits an excellent effect that it is strong against twisting and has a high strength that can withstand the tensile strength during use. In addition, since it is not necessary to provide a limit of the limit current density that is concerned about hydrogen embrittlement, it is possible to exert an excellent effect in productivity that a necessary plating thickness can be formed in a short time.

本発明の芯部の「高抗張力を有する金属線」とは、ソーマシンでの使用条件に耐え得るだけの高い抗張力を有する金属のことを指している。使用条件がソーマシンや設定条件により種々変わる為、規定され得るものではないが、一般的にはワイヤ品質として3000MPa以上を必要とされるのが通例である。よって本発明においても同等程度以上の抗張力を有し、且つ水素脆性が起こり得るものについて効果を奏する。代表的な構成としては、芯部として例えばピアノ線に代表される高炭素鋼線等があり、一方表層部としては例えばSUS304に代表されるオーステナイト系ステンレス鋼線等がある。 The “metal wire having a high tensile strength” of the core portion of the present invention refers to a metal having a high tensile strength enough to withstand the use conditions in the saw machine. Since the usage conditions vary depending on the saw machine and the setting conditions, it cannot be defined, but generally, the wire quality is generally required to be 3000 MPa or more. Therefore, the present invention is also effective for those having a tensile strength equal to or higher than that and capable of causing hydrogen embrittlement. As a typical configuration, there is a high carbon steel wire represented by a piano wire, for example, as the core portion, and an austenitic stainless steel wire represented by SUS304, for example, as the surface layer portion.

一例として、芯部となる高炭素鋼線材においては例えば炭素量が0.6〜1.0%、好ましくは0.7〜0.8%であるものが一般的に使用されている。ソーワイヤとして使用される必要強度が得られ、またコスト面からも適しており、本発明においても最適な材料と言えるが、例示した種の材料に限定されるものではなく、使用条件に必要な抗張力が得られる金属線であれば足りる。 As an example, in the high carbon steel wire used as the core, for example, carbon having a carbon content of 0.6 to 1.0%, preferably 0.7 to 0.8% is generally used. The required strength to be used as a saw wire is obtained, and it is also suitable from the viewpoint of cost, and it can be said that it is an optimal material in the present invention. A metal wire that can be obtained is sufficient.

また表層部を形成するステンレス鋼は本発明の目的からも水素脆性が起き難く、且つ数十〜数百kmへと長尺化する伸線加工をしなければならない為、伸線加工性の良いものであることが必要であることからオーステナイト系ステンレス鋼を用いるのが良い。 In addition, the stainless steel forming the surface layer part is less likely to cause hydrogen embrittlement for the purpose of the present invention, and has to be drawn to a length of several tens to several hundreds km, and therefore has good drawing workability. Since it is necessary to be a thing, it is good to use austenitic stainless steel.

表層を形成するステンレス鋼は水素脆性を防止する為に設けられており、厚みは極力薄くて良い。芯部の金属線径を一定と想定した場合、表層部のステンレス鋼の厚みが大きいと全体としての線径が大きくなってしまい、本発明の目的を達成することができない。また、ソーワイヤとしての外径を一定と想定した場合、表層部のステンレス鋼の厚みが大きいと芯部の金属線径が小さくなり高い抗張力を得ることができなくなってしまう。従って最終製品として必要な線径、及び引張強力を想定した上で表層部であるステンレス鋼の厚みを設計する必要がある。 The stainless steel forming the surface layer is provided to prevent hydrogen embrittlement, and the thickness may be as thin as possible. Assuming that the metal wire diameter of the core portion is constant, if the thickness of the stainless steel of the surface layer portion is large, the wire diameter as a whole becomes large and the object of the present invention cannot be achieved. Further, assuming that the outer diameter of the saw wire is constant, if the thickness of the stainless steel of the surface layer portion is large, the metal wire diameter of the core portion becomes small and high tensile strength cannot be obtained. Therefore, it is necessary to design the thickness of the stainless steel, which is the surface layer portion, assuming the wire diameter and tensile strength required for the final product.

炭素を0.8%含む高炭素鋼に表層がSUS304からなるビレットを圧延し、φ5mmの線材を得る。これを伸線加工及び熱処理(約1000℃)工程によりφ2mmの線材を得る。これを伸線による加工硬化を取り除く熱処理を施した後に、最終伸線にてφ0.14mmに伸線する。伸線後のワイヤは芯部である高炭素鋼線部がφ0.11、表層部であるSUS304の厚みがφ0.015である。次に下地金属メッキを行った後、ダイヤモンド砥粒を浮遊させた状態のニッケルメッキ液で、金属表面に砥粒を電解メッキにて仮固着させ、さらに固着力強化の為に電解ニッケルメッキを施す。 A billet having a surface layer made of SUS304 is rolled onto a high carbon steel containing 0.8% carbon to obtain a wire having a diameter of 5 mm. A wire with a diameter of 2 mm is obtained from this by a drawing process and a heat treatment (about 1000 ° C.) process. This is subjected to heat treatment for removing work hardening by wire drawing, and then drawn to φ0.14 mm in the final wire drawing. As for the wire after drawing, the high carbon steel wire part which is a core part is φ0.11, and the thickness of SUS304 which is a surface layer part is φ0.015. Next, after the base metal plating is performed, the abrasive grains are temporarily fixed to the metal surface by electrolytic plating with a nickel plating liquid in a state where the diamond abrasive grains are suspended, and further, electrolytic nickel plating is applied to strengthen the adhesive strength. .

こうして得た本発明のワイヤと、同じ外径で従来製法により製造したワイヤの各々について引張試験をJIS Z2241に基づき、及び捻回試験をJISG3522−8.4(1991)に基づいて行った。本発明である実施例1乃至4のうち、実施例1及び2については低電流密度(40A/mm2)で砥粒の仮固着〜固着強化メッキを行い、実施例3及び4については限界電流密度以上(120A/mm2)で砥粒の仮固着〜固着強化メッキを行った。更に比較の為に、従来例1乃至4を実施し、従来例1及び2は硬鋼線(φ0.14mm)で、従来例3及び4はステンレス線(SUS304/φ0.14mm)を用い、更に従来例1及び3は実施例1及び2と同じ電流密度で、従来例2及び4は実施例3及び4と同じ電流密度でメッキを行った。各種試験を行った結果を以下の表に記す。 A tensile test was performed based on JIS Z2241 and a twist test was performed based on JIS G3522-8.4 (1991) for each of the wire of the present invention thus obtained and a wire manufactured by a conventional manufacturing method with the same outer diameter. Among Examples 1 to 4 according to the present invention, Examples 1 and 2 were subjected to temporary fixation to adhesion strengthening plating of abrasive grains at a low current density (40 A / mm 2 ), and Examples 3 and 4 were limited in current limit. Temporary fixing to fixing strengthening plating of abrasive grains was performed at a density equal to or higher than (120 A / mm 2 ). For further comparison, Conventional Examples 1 to 4 were carried out, Conventional Examples 1 and 2 were made of hard steel wire (φ0.14 mm), Conventional Examples 3 and 4 were made of stainless steel wire (SUS304 / φ0.14 mm), Conventional examples 1 and 3 were plated at the same current density as in examples 1 and 2, and conventional examples 2 and 4 were plated at the same current density as in examples 3 and 4. The results of various tests are shown in the following table.

表1より引張強さについては、ステンレス線(従来例3及び4)においては低く実際の使用に支障が生じるが、本発明においてはステンレス部を有する為、硬鋼線のみ(従来例1及び2)に比べると若干低下しているが、実際の使用条件下においては何ら問題のない強度を有していると言える。また捻回値については従来例1及び2の通り、電流密度を高くすると捻回値が極端に低下することがわかる。しかし、表層部がステンレスで覆われた本発明である実施例1〜4はステンレス線と同等の捻回値であった。 According to Table 1, the tensile strength is low in the stainless steel wires (conventional examples 3 and 4), which causes a problem in actual use. However, it can be said that it has strength with no problem under actual use conditions. As for the twist value, as in conventional examples 1 and 2, it can be seen that when the current density is increased, the twist value is extremely lowered. However, Examples 1-4 which are this invention by which the surface layer part was covered with stainless steel were the twist values equivalent to a stainless steel wire.

本発明の代表的な固定砥粒式ソーワイヤの断面図Sectional view of a typical fixed abrasive saw wire of the present invention

符号の説明Explanation of symbols

1・・・固定砥粒ソーワイヤ
2・・・芯部
3・・・表層部(ステンレス部)
4・・・Niメッキ層
5・・・固着ダイヤモンド砥粒
DESCRIPTION OF SYMBOLS 1 ... Fixed abrasive saw wire 2 ... Core part 3 ... Surface layer part (stainless steel part)
4 ... Ni plating layer 5 ... Fixed diamond abrasive grains

Claims (2)

複数のローラーに幾重にも巻かれたワイヤを走行させて硬質材料を薄くスライスするワイヤソーに用いられるワイヤのうち、砥粒を固着させた固定砥粒式ソーワイヤにおいて、
ソーワイヤの芯部と表層部が異種金属からなるクラッド鋼線で、芯部は高抗張力を有する金属線で、且つ表層部はステンレス鋼からなる固定砥粒式ソーワイヤ。
Among the wires used in wire saws that thinly slice a hard material by running a wire wound several times around a plurality of rollers, in a fixed abrasive saw wire to which abrasive grains are fixed,
A fixed-abrasive saw wire in which a core portion and a surface layer portion of a saw wire are clad steel wires made of different metals, a core portion is a metal wire having high tensile strength, and a surface layer portion is made of stainless steel.
上記ソーワイヤの芯部がピアノ線、表層部がオーステナイト系ステンレスからなる請求項1の固定砥粒式ソーワイヤ。 The fixed abrasive saw wire according to claim 1, wherein the core portion of the saw wire is made of piano wire and the surface layer portion is made of austenitic stainless steel.
JP2008256326A 2008-10-01 2008-10-01 Saw wire Pending JP2010082773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008256326A JP2010082773A (en) 2008-10-01 2008-10-01 Saw wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256326A JP2010082773A (en) 2008-10-01 2008-10-01 Saw wire

Publications (1)

Publication Number Publication Date
JP2010082773A true JP2010082773A (en) 2010-04-15

Family

ID=42247236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256326A Pending JP2010082773A (en) 2008-10-01 2008-10-01 Saw wire

Country Status (1)

Country Link
JP (1) JP2010082773A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012055712A1 (en) 2010-10-29 2012-05-03 Nv Bekaert Sa A sawing wire with abrasive particles electrodeposited onto a substrate wire
JP5009439B2 (en) * 2010-06-15 2012-08-22 新日本製鐵株式会社 Saw wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5009439B2 (en) * 2010-06-15 2012-08-22 新日本製鐵株式会社 Saw wire
WO2012055712A1 (en) 2010-10-29 2012-05-03 Nv Bekaert Sa A sawing wire with abrasive particles electrodeposited onto a substrate wire

Similar Documents

Publication Publication Date Title
JP5548982B2 (en) Saw wire and manufacturing method thereof
JP4829626B2 (en) Saw wire and manufacturing method thereof
JPH09150314A (en) Wire saw and manufacture thereof
JP2006123024A (en) Fixed abrasive grain type wire saw and its manufacturing method
JP5066508B2 (en) Fixed abrasive wire saw
JPH09155631A (en) Diamond wire saw and its manufacture
JP2010082773A (en) Saw wire
JP2016517808A (en) Grinding sawing wire and its manufacturing method and use
JP5920691B2 (en) High-strength fine metal wire for saw wire, method for producing the same, and saw wire using the fine metal wire
JP2014196565A (en) Thin metallic wire for saw wire core material and method of producing the same
CN204565304U (en) A kind of diamond fretsaw
WO2013111642A1 (en) Bonding wire and method for manufacturing same
JP6119495B2 (en) Saw wire and core wire
CN113275659A (en) Superfine high-strength alloy tungsten wire diamond wire saw and preparation method thereof
JP5522604B2 (en) Wire tool
Huang et al. Grinding performance of electroplated diamond tools strengthened with Cr-C deposit using D-150 diamond particles
CN104647618B (en) Heterogeneous fixed abrasive wire saw for multi-line cutting
CN203600446U (en) Isomerism solidification material grinding saw line for multi-line cutting
TWI552820B (en) A fixed abrasive sawing wire and producing method thereof
JP2005193332A (en) Saw wire
JP2013043268A (en) Fixed abrasive grain wire and method of manufacturing semiconductor substrate
CN116900406B (en) Superfine diameter diamond wire saw and preparation method thereof
JP2017008420A (en) Manufacturing method of wire for etching cut and cutting method of inorganic brittle material using wire for etching cut obtained by the method
JP2006159304A (en) Electrode wire for wire electric discharge machining and its manufacturing method
JP2017128745A (en) High strength ultra fine steel wire and manufacturing method therefor