JP2010082587A - Leakage detection method and leakage detector of hollow fiber membrane module - Google Patents

Leakage detection method and leakage detector of hollow fiber membrane module Download PDF

Info

Publication number
JP2010082587A
JP2010082587A JP2008256454A JP2008256454A JP2010082587A JP 2010082587 A JP2010082587 A JP 2010082587A JP 2008256454 A JP2008256454 A JP 2008256454A JP 2008256454 A JP2008256454 A JP 2008256454A JP 2010082587 A JP2010082587 A JP 2010082587A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
membrane module
gas
leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008256454A
Other languages
Japanese (ja)
Inventor
Toru Uda
徹 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2008256454A priority Critical patent/JP2010082587A/en
Publication of JP2010082587A publication Critical patent/JP2010082587A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/102Detection of leaks in membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a leakage detection method and leakage detector of a hollow fiber membrane module allowing easy highly-accurate detection of leakage due to defect or damage of the hollow fiber membrane module without using liquid, dye or the like. <P>SOLUTION: Gas heated to 60°C or more or cooled 5°C or less is fed to a hollow fiber membrane front surface side from a gas feed port on the cylindrical module side face, in the hollow fiber membrane module with at least one ends of a hollow fiber membrane group comprising a plurality of hollow fiber membranes fixed in a respectively opened state. Temperature difference of gas passing through the hollow membranes and discharged from end openings thereof is detected by photographing using an infrared camera, preferably an infrared camera mounted with a microscope lens, to detect presence or absence of leakage of the hollow fiber membrane module. The infrared camera mounted with the microscope lens is used as a leakage detector of the hollow fiber membrane module. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、中空糸膜モジュールのリーク検出方法およびリーク検出装置に関する。さらに詳しくは、高精度かつ容易に中空糸膜モジュールのリークを検出可能とする中空糸膜モジュールのリーク検出方法およびリーク検出装置に関する。   The present invention relates to a leak detection method and a leak detection apparatus for a hollow fiber membrane module. More specifically, the present invention relates to a leak detection method and a leak detection apparatus for a hollow fiber membrane module that can detect a leak of the hollow fiber membrane module with high accuracy and ease.

中空糸膜モジュールは、純水の製造、用水の除菌や除濁、廃水処理、脱気、脱水、ガス分離など様々な気体、液体、固体の分離に広く利用されている。このため、中空糸膜の欠陥や損傷によるリークは、中空糸膜モジュールを使用するシステムに致命的な影響を与える。   Hollow fiber membrane modules are widely used for the separation of various gases, liquids, and solids such as pure water production, sterilization and turbidization of water, wastewater treatment, degassing, dehydration, and gas separation. For this reason, a leak due to a defect or damage of the hollow fiber membrane has a fatal effect on a system using the hollow fiber membrane module.

中空糸膜の欠陥(リーク)を検出する方法としては、中空糸膜モジュールの各中空糸膜の端面の開口部より減圧吸引し、中空糸膜の外表面より微粒子を含む空気を流入させ、開口部から吸引した空気をパーティクルカウンタに透過させ、その吸引空気の微粒子の数を測定して欠陥の有無を検出するといった方法が提案されている。しかるに、かかる方法では中空糸膜群についてのリークの有無を検出することはできても、欠陥のある中空糸膜の特定は困難であった。
特公平2−14084号公報
As a method for detecting defects (leakage) in the hollow fiber membrane, vacuum suction is performed from the opening on the end face of each hollow fiber membrane of the hollow fiber membrane module, air containing fine particles is introduced from the outer surface of the hollow fiber membrane, and the opening is opened. A method has been proposed in which air sucked from a part is transmitted through a particle counter and the number of fine particles in the sucked air is measured to detect the presence or absence of a defect. However, even though such a method can detect the presence or absence of leakage in the group of hollow fiber membranes, it is difficult to identify a defective hollow fiber membrane.
Japanese Examined Patent Publication No. 2-14084

一方、開口部の面方向にレーザービームを走査することにより、レーザービームが欠陥の存在する中空糸膜から流出した微粒子に当たった際に発生する散乱光を、CCDカメラ等の検出器により検出し、欠陥箇所を特定する方法もあるものの、検出精度の点で満足のいくものではなく、その信頼性に問題があった。   On the other hand, by scanning the laser beam in the surface direction of the opening, the scattered light generated when the laser beam hits the fine particles flowing out of the hollow fiber membrane where the defect exists is detected by a detector such as a CCD camera. Although there is a method for identifying a defective portion, it is not satisfactory in terms of detection accuracy, and there is a problem in its reliability.

この他、中空糸膜モジュールの開口面を水やアルコール等の液体で濡らした状態で、中空糸膜の外側から内側へ所定圧力の空気を印加し、その際の開口面の気泡の発生箇所を特定することで、リーク箇所を検出する方法も提案されている。しかるに、気泡の発生箇所を目視で識別するため、作業者の判断に負うところが多いのが実情である。特に、中空糸膜径が非常に小さくなると、中空糸膜径より気泡が大きくなるため、リークしている中空糸膜と隣接している中空糸膜の識別が容易ではなく、リーク箇所の特定がより一層困難となるものであった。また、検査後に濡れた中空糸膜モジュールを乾燥する必要があるため、工程が増えて作業時間も長くなっていた。
特開昭55−70258号公報
In addition, with the opening surface of the hollow fiber membrane module wet with a liquid such as water or alcohol, air of a predetermined pressure is applied from the outside to the inside of the hollow fiber membrane, and the occurrence of bubbles on the opening surface at that time is determined. A method for detecting a leak location by specifying the number has also been proposed. However, in order to visually identify the location where bubbles are generated, the actual situation is often subject to the judgment of the operator. In particular, if the hollow fiber membrane diameter is very small, the bubbles become larger than the hollow fiber membrane diameter, so it is not easy to identify the leaking hollow fiber membrane and the adjacent hollow fiber membrane, and the leak location can be specified. It became even more difficult. Further, since it is necessary to dry the wet hollow fiber membrane module after the inspection, the number of processes is increased and the working time is also long.
JP-A-55-70258

さらに、中空糸膜モジュールに染料を添加した供給水を圧入し、漏洩する染料をで確認する方法もあるが、これは中空糸膜に染料が残留するという問題があり、また中空糸膜の外側にガスを供給し、その中空糸膜の接着端部のリーク箇所よりガスを漏洩させ、光学システムを用いてその漏洩ガスの流出状況に応じた屈折現象により、欠陥の有無を検出する方法も提案されているが、屈折現象が欠陥中空糸膜の周辺にまでわたるため、欠陥中空糸膜のみを明確に特定することが難しいといった問題を有するものであった。
特開昭53−134776号公報
Furthermore, there is a method in which the supply water with added dye is injected into the hollow fiber membrane module and the leaked dye is confirmed by this, but this has a problem that the dye remains in the hollow fiber membrane, and the outside of the hollow fiber membrane. A method is also proposed in which gas is leaked from the leaked portion of the bonded end of the hollow fiber membrane and the presence or absence of defects is detected using a refraction phenomenon according to the outflow status of the leaked gas using an optical system. However, since the refraction phenomenon extends to the periphery of the defective hollow fiber membrane, it is difficult to clearly identify only the defective hollow fiber membrane.
JP-A-53-13476

本発明の目的は、液体あるいは染料などを用いることなく、中空糸膜モジュールの欠陥や損傷によるリークの高い精度の検出を容易に行うことを可能とする中空糸膜モジュールのリーク検出方法およびリーク検出装置を提供することにある。   An object of the present invention is to provide a leak detection method and leak detection for a hollow fiber membrane module that can easily detect a leak with high accuracy due to defects or damage of the hollow fiber membrane module without using a liquid or a dye. To provide an apparatus.

かかる本発明の目的は、複数本よりなる中空糸膜群の少なくとも一方の端面が各々開口状態で固定されている中空糸膜モジュールに、60℃以上に加熱または5℃以下に冷却したガスを円筒状モジュール側面のガス供給口より中空糸膜外表面側に供給し、中空糸膜を透過してその端面開口部より放出されるガスの温度差を赤外線カメラ、好ましくは顕微鏡レンズを装着した赤外線カメラを用いて撮影することにより測定し、中空糸膜モジュールのリークの有無を検出することによって達成される。また、赤外線カメラに顕微鏡レンズを装着したものが、中空糸膜モジュールのリーク検出装置として用いられる。   An object of the present invention is to provide a hollow fiber membrane module in which at least one end face of a plurality of hollow fiber membrane groups is fixed in an open state, with a gas heated to 60 ° C. or higher or cooled to 5 ° C. or lower as a cylinder. The temperature difference between the gas supplied from the gas supply port on the side of the cylindrical module to the outer surface of the hollow fiber membrane and permeated through the hollow fiber membrane and released from the opening of the end surface is infrared camera, preferably an infrared camera equipped with a microscope lens This is achieved by detecting the presence or absence of leakage of the hollow fiber membrane module. An infrared camera equipped with a microscope lens is used as a leak detection device for a hollow fiber membrane module.

本発明に係る中空糸膜モジュールのリーク検出方法により、中空糸膜モジュールの欠陥や損傷を、中空糸膜毎にリークの検出を容易に行うことを可能とするといったすぐれた効果を奏する。かかる検出方法は、液体あるいは染料などを使用していないため、中空糸膜に異物が残留することもなく、乾燥等の工程も必要がない。また、検出精度も高いため、欠陥部を有する中空糸膜モジュールの検出漏れといったおそれもない。   With the leak detection method for a hollow fiber membrane module according to the present invention, there is an excellent effect that it is possible to easily detect a leak or a defect of the hollow fiber membrane module for each hollow fiber membrane. Such a detection method does not use a liquid or a dye, so that no foreign matter remains in the hollow fiber membrane and a step such as drying is not necessary. Moreover, since the detection accuracy is high, there is no fear of detection omission of the hollow fiber membrane module having a defective portion.

中空糸膜としては、多孔質膜であれば、有機多孔質膜、無機多孔質膜のいずれをも検出対象とすることができ、有機多孔質膜としてはセルロース系、PVA系、EVA系、ポリメチルメタクリル系、ポリアクリロニトリル系等のものが、また無機多孔質膜としては炭素製、セラミックス製のものなどが挙げられる。   As the hollow fiber membrane, any organic porous membrane or inorganic porous membrane can be detected as long as it is a porous membrane. Cellulose-based, PVA-based, EVA-based, Examples thereof include methylmethacrylic and polyacrylonitrile-based materials, and examples of the inorganic porous film include carbon-made and ceramic-made materials.

供給されるガスの種類は、特に限定されないが、好ましくは熱容量の大きいガス、例えば六弗化硫黄ガスや二酸化炭素ガス等が用いられる。熱容量の大きいガスを用いると、中空糸膜欠陥部からのガス放出箇所とその周辺部分の温度差が大きくなるため、欠陥を有する中空糸膜が検出し易くなる。   The type of gas to be supplied is not particularly limited, but a gas having a large heat capacity, such as sulfur hexafluoride gas or carbon dioxide gas, is preferably used. When a gas having a large heat capacity is used, the temperature difference between the gas discharge location from the defective portion of the hollow fiber membrane and the peripheral portion thereof becomes large, so that the hollow fiber membrane having the defect is easily detected.

ガスの供給に際しては、60℃以上、好ましくは100〜140℃に加熱または5℃以下、好ましくは-30〜0℃に冷却したガスが用いられる。特に、熱により変質しやすい中空糸膜モジュールの場合には、供給ガスを冷却して、温度差を検出することが行われる。ここで、上記温度以外のガス、特に15〜35℃のガスを供給した場合には、ガス放出量の差を赤外線カメラによる温度差画像として捉えることが困難となる。   In supplying the gas, a gas heated to 60 ° C. or higher, preferably 100 to 140 ° C. or cooled to 5 ° C. or lower, preferably -30 to 0 ° C. is used. In particular, in the case of a hollow fiber membrane module that is easily denatured by heat, the temperature difference is detected by cooling the supply gas. Here, when a gas other than the above temperature, particularly a gas of 15 to 35 ° C., is supplied, it is difficult to capture the difference in the amount of gas emission as a temperature difference image by an infrared camera.

中空糸膜へのガスの供給は、円筒状モジュール側面の中空糸膜外表面側より行われる。供給されたガスは、中空糸膜表面の多孔質膜を透過してそこから流入するとともに、ポッティング不良あるいは中空糸膜の破損等の欠陥部が存在する場合には、これらを通じて中空糸膜の内管側に流入し、中空糸膜端面の開口部から外部に放出される。このとき、多孔質膜からの正常なガス流入量よりも、欠陥部からのガス流入量が圧倒的に多くなるとともに、ガスは加熱または冷却されているため、モジュール開口部を赤外線カメラにより撮影すると、欠陥部からのガス放出箇所が温度差画像として検出される。   The gas is supplied to the hollow fiber membrane from the outer surface of the hollow fiber membrane on the side of the cylindrical module. The supplied gas permeates through the porous membrane on the surface of the hollow fiber membrane and flows in from there, and if there are defective parts such as poor potting or breakage of the hollow fiber membrane, the inside of the hollow fiber membrane is passed through them. It flows into the tube side and is discharged to the outside through the opening on the end surface of the hollow fiber membrane. At this time, since the gas inflow from the defective portion is overwhelmingly larger than the normal gas inflow from the porous membrane, and the gas is heated or cooled, the module opening is photographed with an infrared camera. The gas discharge location from the defective part is detected as a temperature difference image.

ガスの供給に際しては、中空糸膜モジュールのガス出口側を閉塞し、デッドエンドでガス全量を供給することもでき、またガス出口側を解放し、モジュール内をガスが流れるように供給することもできる。いずれの場合であっても、好ましくはガスを例えば0.05〜0.3MPa程度に加圧し、中空糸膜外表面と内管部に差圧がでるようにすることで、欠陥部からガスが流入し易くなるので、検出が容易になる。   When supplying the gas, the gas outlet side of the hollow fiber membrane module can be closed and the entire amount of gas can be supplied at the dead end, or the gas outlet side can be released and supplied so that the gas flows in the module. it can. In any case, the gas is preferably pressurized to, for example, about 0.05 to 0.3 MPa so that a differential pressure is generated between the outer surface of the hollow fiber membrane and the inner tube portion, so that the gas can easily flow from the defective portion. Therefore, detection becomes easy.

中空糸膜端面の開口部から外部に放出されるガスの放出量は、温度差と相関するものであり、赤外線カメラにより中空糸膜端面の温度を撮影することにより測定される。すなわち、加熱したガスを供給して撮影した場合には、より多くのガスが放出されるモジュール端末の開口部は、他の開口部よりも多くのガスが放出されるので、より高い温度を示すようになる。ここで、赤外線カメラに顕微鏡レンズを装着すると、微小領域の温度差検出も可能となるため、径が小さい中空糸膜や、中空糸膜が密集した部分においても、容易に欠陥の検出が可能となる。顕微鏡レンズとしては、空間分解能が10〜63μmのものが用いられる。   The amount of gas released to the outside from the opening of the hollow fiber membrane end face correlates with the temperature difference, and is measured by photographing the temperature of the hollow fiber membrane end face with an infrared camera. That is, when shooting with heated gas supplied, the opening of the module terminal from which more gas is released exhibits higher temperature because more gas is released than other openings. It becomes like this. Here, if a microscope lens is attached to an infrared camera, it becomes possible to detect a temperature difference in a minute region, so that a defect can be easily detected even in a hollow fiber membrane having a small diameter or a portion where the hollow fiber membranes are densely packed. Become. A microscope lens having a spatial resolution of 10 to 63 μm is used.

リーク検出対象となる中空糸膜モジュールは、乾燥状態のものが用いられるが、例えば精密ろ過クラスの孔径(100nm以上)の大きい中空糸膜モジュールの場合には、多孔質膜からのガス流入量も多く、欠陥部との温度差が生じがたいため、予め中空糸膜の外表面を水等の液体で濡らし、中空糸膜孔内部を液体で閉塞した状態とし、温度差を生じさせやすくしたうえでリークの検出を行うことが好ましい。   The hollow fiber membrane module that is the target of leak detection is used in a dry state.For example, in the case of a hollow fiber membrane module having a large pore size (100 nm or more) of the microfiltration class, the amount of gas inflow from the porous membrane is also large. In many cases, the temperature difference from the defect is difficult to occur, so the outer surface of the hollow fiber membrane is wetted with a liquid such as water in advance, so that the inside of the hollow fiber membrane hole is closed with a liquid to make it easy to cause a temperature difference. It is preferable to detect leaks.

次に、実施例について本発明を説明する。   Next, the present invention will be described with reference to examples.

実施例
外径200μm、内径150μmの炭素製中空糸膜500本からなる図1に示される円筒型中空糸膜モジュール1(中空糸膜有効長:100mm)を製作した。中空糸膜モジュールのガス出口2を閉じたデットエンド状態として、中空糸膜モジュールのガス入口3から、0.1MPaの圧力で、100℃に加熱した六弗化硫黄ガスを供給した。かかる状態で、中空糸膜端面の開口部を、空間分解能18μmの顕微鏡レンズを装着した赤外線カメラ4(日本アビオニクス製品TVS-500EX)により撮影したところ、中空糸膜の2本が他の領域と異なり、明瞭な赤色として観察された。これにより、他の中空糸膜よりもガス放出量の多いこれらの中空糸膜2本が欠陥を有し、欠陥部からも六弗化硫黄ガスが流入していることが確認された。
Example A cylindrical hollow fiber membrane module 1 (effective hollow fiber membrane length: 100 mm) shown in FIG. 1 comprising 500 carbon hollow fiber membranes having an outer diameter of 200 μm and an inner diameter of 150 μm was produced. In a dead end state in which the gas outlet 2 of the hollow fiber membrane module was closed, sulfur hexafluoride gas heated to 100 ° C. was supplied from the gas inlet 3 of the hollow fiber membrane module at a pressure of 0.1 MPa. In this state, the opening of the end surface of the hollow fiber membrane was photographed with an infrared camera 4 (Japan Avionics product TVS-500EX) equipped with a microscope lens with a spatial resolution of 18 μm. Observed as a clear red color. As a result, it was confirmed that these two hollow fiber membranes having a larger gas release amount than the other hollow fiber membranes had defects, and sulfur hexafluoride gas also flowed in from the defective portions.

実施例で用いられた中空糸膜モジュールおよび赤外線カメラを示す図であるIt is a figure which shows the hollow fiber membrane module and infrared camera which were used in the Example.

符号の説明Explanation of symbols

1 中空糸膜モジュール
2 赤外線カメラ
3 ガス入口
4 ガス出口
1 Hollow fiber membrane module 2 Infrared camera 3 Gas inlet 4 Gas outlet

Claims (3)

複数本よりなる中空糸膜群の少なくとも一方の端面が各々開口状態で固定されている中空糸膜モジュールに、60℃以上に加熱または5℃以下に冷却したガスを円筒状モジュール側面のガス供給口より中空糸膜外表面側に供給し、中空糸膜を透過してその端面開口部より放出されるガスの温度差を赤外線カメラを用いて撮影することにより測定し、中空糸膜モジュールのリークの有無を検出することを特徴とする中空糸膜モジュールのリーク検出方法。   A gas supply port on the side of the cylindrical module is supplied with a gas heated to 60 ° C. or higher or cooled to 5 ° C. or lower to a hollow fiber membrane module in which at least one end face of a plurality of hollow fiber membrane groups is fixed in an open state. The temperature difference of the gas supplied to the outer surface of the hollow fiber membrane and permeated through the hollow fiber membrane and released from the opening of the end face is measured by photographing with an infrared camera, and leakage of the hollow fiber membrane module is measured. A leak detection method for a hollow fiber membrane module, characterized by detecting presence or absence. ガスが、六弗化硫黄ガスまたは二酸化炭素ガスである請求項1記載の中空糸膜モジュールのリーク検出方法。   The leak detection method for a hollow fiber membrane module according to claim 1, wherein the gas is sulfur hexafluoride gas or carbon dioxide gas. 赤外線カメラに顕微鏡レンズを装着した、請求項1記載の中空糸膜モジュールのリーク検出方法に用いられる中空糸膜モジュールのリーク検出装置。   The leak detection apparatus of the hollow fiber membrane module used for the leak detection method of the hollow fiber membrane module of Claim 1 which attached the microscope lens to the infrared camera.
JP2008256454A 2008-10-01 2008-10-01 Leakage detection method and leakage detector of hollow fiber membrane module Pending JP2010082587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008256454A JP2010082587A (en) 2008-10-01 2008-10-01 Leakage detection method and leakage detector of hollow fiber membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256454A JP2010082587A (en) 2008-10-01 2008-10-01 Leakage detection method and leakage detector of hollow fiber membrane module

Publications (1)

Publication Number Publication Date
JP2010082587A true JP2010082587A (en) 2010-04-15

Family

ID=42247073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256454A Pending JP2010082587A (en) 2008-10-01 2008-10-01 Leakage detection method and leakage detector of hollow fiber membrane module

Country Status (1)

Country Link
JP (1) JP2010082587A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049790A1 (en) * 2009-10-19 2011-04-28 Dow Global Technologies Llc Method of testing the integrity of spiral wound modules
WO2011087536A1 (en) * 2010-01-12 2011-07-21 Dow Global Technologies Llc Method of testing spiral wound modules by thermal imaging
WO2012134896A1 (en) 2011-03-30 2012-10-04 Dow Global Technologies Llc Method for inspecting hollow fiber filtration modules
CN103364147A (en) * 2012-04-02 2013-10-23 神讯电脑(昆山)有限公司 Waterproof and leakage detecting device for machine benches
CN103424426A (en) * 2012-05-01 2013-12-04 捷通国际有限公司 Device and method for testing block filters
KR20200114656A (en) * 2019-03-29 2020-10-07 이엠코리아주식회사 test device for Nitrogen seperator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124403A (en) * 1980-03-04 1981-09-30 Kuraray Co Ltd Detection for leakage of fluid-treating device
JPH0674854A (en) * 1992-08-28 1994-03-18 Mitsubishi Denki Bill Techno Service Kk Leaked water detection method
JP2004325141A (en) * 2003-04-22 2004-11-18 Rikogaku Shinkokai Thermal analysis method and thermal analysis device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124403A (en) * 1980-03-04 1981-09-30 Kuraray Co Ltd Detection for leakage of fluid-treating device
JPH0674854A (en) * 1992-08-28 1994-03-18 Mitsubishi Denki Bill Techno Service Kk Leaked water detection method
JP2004325141A (en) * 2003-04-22 2004-11-18 Rikogaku Shinkokai Thermal analysis method and thermal analysis device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049790A1 (en) * 2009-10-19 2011-04-28 Dow Global Technologies Llc Method of testing the integrity of spiral wound modules
US8571296B2 (en) 2009-10-19 2013-10-29 Dow Global Technologies Llc Method of testing the integrity of spiral wound modules
WO2011087536A1 (en) * 2010-01-12 2011-07-21 Dow Global Technologies Llc Method of testing spiral wound modules by thermal imaging
US8348499B2 (en) 2010-01-12 2013-01-08 Dow Global Technologies Llc Method of testing spiral wound modules by thermal imaging
WO2012134896A1 (en) 2011-03-30 2012-10-04 Dow Global Technologies Llc Method for inspecting hollow fiber filtration modules
CN103364147A (en) * 2012-04-02 2013-10-23 神讯电脑(昆山)有限公司 Waterproof and leakage detecting device for machine benches
CN103424426A (en) * 2012-05-01 2013-12-04 捷通国际有限公司 Device and method for testing block filters
KR20200114656A (en) * 2019-03-29 2020-10-07 이엠코리아주식회사 test device for Nitrogen seperator
KR102164696B1 (en) * 2019-03-29 2020-10-12 이엠코리아주식회사 test device for Nitrogen seperator

Similar Documents

Publication Publication Date Title
JP2010082587A (en) Leakage detection method and leakage detector of hollow fiber membrane module
CN101600958B (en) Method for inspecting defect of hollow fiber porous membrane, defect inspection equipment and production method
JP3111101B2 (en) Leak inspection method for membrane separation equipment
JP5561369B2 (en) Porous hollow fiber membrane defect inspection apparatus and defect inspection method, and porous hollow fiber membrane manufacturing method
US8234909B2 (en) Method and apparatus for inspecting ceramic wall flow filters
JP2001190938A (en) Method of detecting breakage of water treating membrane
CN101646482A (en) Method of membrane separation and membrane separation apparatus
JP6450563B2 (en) Ultrafiltration membrane diagnostic method, diagnostic device and ultrapure water production system
JP2007017171A (en) Method and apparatus for detecting leak of hollow fiber membrane module
JP4058657B2 (en) Method for inspecting leak of selectively permeable membrane module
US4188117A (en) Method and apparatus for detecting leaks in hollow fiber membrane modules
US20140216138A1 (en) Inspection method of hollow fiber membrane module
KR20120138748A (en) Filter and membrane defect detection system
JPH10225628A (en) Crossed filter
TW200839223A (en) Method and apparatus for defect test of hollow fiber porous membrane and production method of the same
JP2007007539A (en) Leak detection method of membrane separator
JP2000342937A (en) Device and method for detecting membrane damage of hollow fiber membrane filter apparatus
KR100950218B1 (en) Breakage sensing apparatus of hollow-fiber membrane module
KR101280355B1 (en) Portable detecter for membrane module flaw and detecting method
JP6236736B2 (en) Anomaly detection apparatus and anomaly detection method for film forming stock solution
WO2023064546A1 (en) Detection of performance irregularities within multi-element vessels
JP2000342936A (en) Method and device for detecting membrane damage of hollow fiber membrane filter apparatus
JP2005013947A (en) Membrane separation device
JP5089414B2 (en) Hollow fiber membrane module leak inspection method
JP6943119B2 (en) Membrane module evaluation method, evaluation equipment and ultrapure water production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702