JP2010080719A - Semiconductor light-emitting element and method for manufacturing the same - Google Patents

Semiconductor light-emitting element and method for manufacturing the same Download PDF

Info

Publication number
JP2010080719A
JP2010080719A JP2008248201A JP2008248201A JP2010080719A JP 2010080719 A JP2010080719 A JP 2010080719A JP 2008248201 A JP2008248201 A JP 2008248201A JP 2008248201 A JP2008248201 A JP 2008248201A JP 2010080719 A JP2010080719 A JP 2010080719A
Authority
JP
Japan
Prior art keywords
semiconductor light
substrate
emitting device
light emitting
average roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008248201A
Other languages
Japanese (ja)
Inventor
Kazuyuki Tadatomo
一行 只友
Narihito Okada
成仁 岡田
Naohisa Iwamoto
直久 岩本
Yukinobu Tokunaga
行伸 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Fine Steel Co Ltd
Yamaguchi University NUC
Original Assignee
Japan Fine Steel Co Ltd
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Fine Steel Co Ltd, Yamaguchi University NUC filed Critical Japan Fine Steel Co Ltd
Priority to JP2008248201A priority Critical patent/JP2010080719A/en
Publication of JP2010080719A publication Critical patent/JP2010080719A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting element having high light extraction efficiency. <P>SOLUTION: In the configuration of a semiconductor light-emitting element 10, where a semiconductor layer 12 is laminated on the surface of a substrate 11, at least one side-surface 11a of the substrate 11 has an area of which the range of the center line average roughness (Ra) is 50 to 1,000 nm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、基板の表面に半導体層が積層されて構成された半導体発光素子及びその製造方法に関する。   The present invention relates to a semiconductor light emitting device configured by laminating a semiconductor layer on the surface of a substrate and a method for manufacturing the same.

半導体発光素子では、光取り出し効率が高いことが望まれる。   A semiconductor light emitting device is desired to have high light extraction efficiency.

特許文献1には、サファイア基板の半導体層が積層されたのとは反対側の裏面を粗面化した半導体発光素子が開示されており、これにより光取り出し効率の向上を図ることができる、と記載されている。また、特許文献1には、その製造方法として、複数の半導体発光素子が作り込まれたサファイアウエハの裏面の分割すべき箇所にダイヤモンドスクライブ法又はレーザスクライブ法により溝を形成し、その溝を含むサファイアウエハの裏面にサンドブラスト法により粗面化した後、機械的に個々の半導体発光素子に劈開して分割することが開示されている。   Patent Document 1 discloses a semiconductor light emitting device having a roughened back surface opposite to the side on which a semiconductor layer of a sapphire substrate is laminated, which can improve light extraction efficiency. Are listed. Further, Patent Document 1 includes, as a manufacturing method thereof, a groove is formed by a diamond scribe method or a laser scribe method at a portion to be divided on the back surface of a sapphire wafer in which a plurality of semiconductor light emitting elements are formed, and the groove is included. It is disclosed that the back surface of a sapphire wafer is roughened by a sandblasting method and then mechanically cleaved into individual semiconductor light emitting elements.

一方、ソーワイヤによりシリコンインゴットをスライスしてシリコンウエハを得る技術は広く知られている(例えば、特許文献2〜7)。
特開2006−245066号公報 特開2000−71160号公報 特開2001−105295号公報 特開2001−287146号公報 特開2006−179677号公報 特開2007−196312号公報 特開2007−203417号公報
On the other hand, techniques for obtaining a silicon wafer by slicing a silicon ingot with saw wires are widely known (for example, Patent Documents 2 to 7).
JP 2006-245066 A JP 2000-71160 A JP 2001-105295 A JP 2001-287146 A JP 2006-179677 A JP 2007-19631 A JP 2007-203417 A

本発明の目的は、光取り出し効率の高い半導体発光素子及びその製造方法を提供することである。   An object of the present invention is to provide a semiconductor light emitting device with high light extraction efficiency and a method for manufacturing the same.

本発明の半導体発光素子は、基板の表面に半導体層が積層されて構成されたものであって、
上記基板は、少なくとも1つの基板側面が中心線平均粗さ(Ra)が50〜1000nmである部分を有する。
The semiconductor light emitting device of the present invention is configured by laminating a semiconductor layer on the surface of a substrate,
In the substrate, at least one substrate side surface has a portion having a center line average roughness (Ra) of 50 to 1000 nm.

本発明の半導体発光素子の製造方法は、複数の半導体発光素子が作り込まれたウエハを、間隔をおいて並行して走行するソーワイヤでマルチ切断することにより個々の半導体発光素子に分割する工程を含む。   The method of manufacturing a semiconductor light emitting device according to the present invention includes a step of dividing a wafer on which a plurality of semiconductor light emitting devices are formed into individual semiconductor light emitting devices by multi-cutting with a saw wire that runs in parallel at intervals. Including.

本発明では、基板の少なくとも1つの基板側面が中心線平均粗さ(Ra)が50〜1000nmである部分を有する。半導体発光素子(基板及び半導体層)の屈折率と素子外部の屈折率との差異に起因する全反射角の制約から、発光した光の多くは素子内部に閉じ込められる。そして、その素子内部に閉じ込められた光の一部は、基板内を通過し、中心線平均粗さ(Ra)が50〜1000nmである基板の基板側面の部分と素子外部との界面に入射したとき、種々の反射角で界面から基板(半導体発光素子)側に反射される。種々の反射角で反射された光の一部は、全反射角の制約から解放され、素子内部に閉じ込められずに素子外部に出射する確率が高められることとなり、その結果、高い光取り出し効率を得ることができる。   In the present invention, at least one substrate side surface of the substrate has a portion having a center line average roughness (Ra) of 50 to 1000 nm. Most of the emitted light is confined inside the device due to the restriction of the total reflection angle caused by the difference between the refractive index of the semiconductor light emitting device (substrate and semiconductor layer) and the refractive index outside the device. A part of the light confined in the element passes through the substrate and enters the interface between the substrate side surface of the substrate whose center line average roughness (Ra) is 50 to 1000 nm and the outside of the element. When reflected from the interface to the substrate (semiconductor light emitting element) side at various reflection angles. A part of the light reflected at various reflection angles is released from the restriction of the total reflection angle, and the probability of being emitted outside the element without being confined inside the element is increased, and as a result, a high light extraction efficiency is achieved. Obtainable.

以下、実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments will be described in detail with reference to the drawings.

(実施形態1)
図1は実施形態1に係る半導体発光素子10を示す。
(Embodiment 1)
FIG. 1 shows a semiconductor light emitting device 10 according to the first embodiment.

実施形態1に係る半導体発光素子10は、基板11の表面に半導体層12が積層されて構成され、例えば発光ダイオード等として使用されるものである。   The semiconductor light emitting device 10 according to Embodiment 1 is configured by laminating a semiconductor layer 12 on the surface of a substrate 11, and is used as, for example, a light emitting diode.

基板11は、矩形板状に形成されている(つまり、半導体発光素子10として矩形板状に分割形成されている)。基板11は、縦及び横の寸法が厚さよりも大きい薄板状であってもよく、また、縦及び横の寸法が厚さよりも小さい厚板状であってもよい。後者の場合、後述のソーワイヤを用いてウエハを切断する特徴を生かすことができる。定量的には、基板11は、例えば、縦及び横が100〜1000μm、並びに厚さが50〜200μmであり、最大側辺の長さの基板厚さに対する比であるアスペクト比が0.3〜30であることが好ましい。なお、半導体層12の厚さは基板11の厚さに比べて非常に小さいので、このアスペクト比が半導体発光素子10にも相当する。   The substrate 11 is formed in a rectangular plate shape (that is, divided into a rectangular plate shape as the semiconductor light emitting element 10). The substrate 11 may have a thin plate shape whose vertical and horizontal dimensions are larger than the thickness, or may be a thick plate shape whose vertical and horizontal dimensions are smaller than the thickness. In the latter case, it is possible to take advantage of the feature of cutting the wafer using a saw wire described later. Quantitatively, the substrate 11 has, for example, a length and width of 100 to 1000 μm and a thickness of 50 to 200 μm, and an aspect ratio that is a ratio of the length of the maximum side to the substrate thickness is 0.3 to 0.3. 30 is preferable. Since the thickness of the semiconductor layer 12 is much smaller than the thickness of the substrate 11, this aspect ratio corresponds to the semiconductor light emitting element 10.

基板11としては、例えば、サファイア基板、SiC基板、及びGaN基板等が挙げられる。なお、サファイアはAlのコランダム構造の単結晶である。 Examples of the substrate 11 include a sapphire substrate, a SiC substrate, and a GaN substrate. Note that sapphire is a single crystal of Al 2 O 3 corundum structure.

基板11は、表面及び裏面の法線方向がa軸方向(a面<{11−20}面>の面方位)、c軸方向(c面<{0001}面>の面方位)、m軸方向(m面<{1−100}面>の面方位)、若しくはr軸方向(r面<{1−102}面>の面方位)であってもよく、又は他の結晶面の面方位であってもよい。基板11は、各基板側面11aの法線方向がa軸方向(a面<{11−20}面>の面方位)、c軸方向(c面<{0001}面>の面方位)、m軸方向(m面<{1−100}面>の面方位)、若しくはr軸方向(r面<{1−102}面>の面方位)であってもよく、又は他の結晶面の面方位であってもよい。   The normal direction of the front surface and the back surface of the substrate 11 is the a-axis direction (a-plane <{11-20} plane> plane orientation), the c-axis direction (c-plane <{0001} plane> plane orientation), and the m-axis Direction (plane orientation of m-plane <{1-100} plane>), r-axis direction (plane orientation of r-plane <{1-102} plane>), or plane orientation of other crystal planes It may be. In the substrate 11, the normal direction of each substrate side surface 11a is the a-axis direction (a-plane <{11-20} plane> plane orientation), the c-axis (c-plane <{0001} plane> plane orientation), m It may be in the axial direction (m-plane <{1-100} plane> plane orientation), r-axis direction (r-plane <{1-102} plane> plane orientation), or other crystal planes It may be an azimuth.

基板11は、少なくとも1つの基板側面11aが中心線平均粗さ(Ra)が50〜1000nmである粗面化した部分を有する(図1では基板側面11aの全面)。ここで、中心線平均粗さ(Ra)は、レーザー顕微鏡非接触式粗さ測定機によりJIS B 0601−2001規定に基づいて測定される。   The substrate 11 has a roughened portion in which at least one substrate side surface 11a has a center line average roughness (Ra) of 50 to 1000 nm (the entire surface of the substrate side surface 11a in FIG. 1). Here, the center line average roughness (Ra) is measured based on JIS B 0601-2001 regulations by a laser microscope non-contact type roughness measuring machine.

このように、基板11の少なくとも1つの基板側面11aが中心線平均粗さ(Ra)が50〜1000nmである部分を有する。半導体発光素子10(基板11及び半導体層12)の屈折率と素子外部の屈折率との差異に起因する全反射角の制約から、発光した光の多くは素子内部に閉じ込められる。そして、その素子内部に閉じ込められた光の一部は、基板11内を通過し、中心線平均粗さ(Ra)が50〜1000nmである基板11の基板側面11aの部分と素子外部との界面に入射したとき、種々の反射角で界面から基板11(半導体発光素子10)側に反射される。種々の反射角で反射された光の一部は、全反射角の制約から解放され、素子内部に閉じ込められずに素子外部に出射する確率が高められることとなり、その結果、高い光取り出し効率を得ることができる。   Thus, at least one substrate side surface 11a of the substrate 11 has a portion having a center line average roughness (Ra) of 50 to 1000 nm. Most of the emitted light is confined inside the device due to the restriction of the total reflection angle caused by the difference between the refractive index of the semiconductor light emitting device 10 (the substrate 11 and the semiconductor layer 12) and the refractive index outside the device. A part of the light confined inside the element passes through the substrate 11, and the interface between the portion of the substrate side surface 11a of the substrate 11 whose center line average roughness (Ra) is 50 to 1000 nm and the outside of the element. Is reflected from the interface toward the substrate 11 (semiconductor light emitting element 10) at various reflection angles. A part of the light reflected at various reflection angles is released from the restriction of the total reflection angle, and the probability of being emitted outside the element without being confined inside the element is increased, and as a result, a high light extraction efficiency is achieved. Obtainable.

このような観点からは、基板11は、基板側面11aの中心線平均粗さ(Ra)が50〜1000nmである部分が、当該基板側面11aの面積の10%以上であることが好ましく、50%以上であることがより好ましく、100%であること、つまり、当該基板側面11aの全面であることが最も好ましい。また、基板11は、全ての基板側面11aが中心線平均粗さ(Ra)が50〜1000nmである部分を有することが好ましく、全ての基板側面11aの全面の中心線平均粗さ(Ra)が50〜1000nmであることが最も好ましい。基板側面11aの全面の中心線平均粗さ(Ra)が50〜1000nmである場合、基板側面11aは、不規則であるが均一な単一の表面態様が表面に現れる。   From such a viewpoint, it is preferable that the portion of the substrate 11 whose center line average roughness (Ra) is 50 to 1000 nm is 10% or more of the area of the substrate side surface 11a. More preferably, it is 100%, that is, the entire surface of the substrate side surface 11a is most preferable. Moreover, it is preferable that the board | substrate 11 has a part whose centerline average roughness (Ra) is 50-1000 nm on all the board | substrate side surfaces 11a, and the centerline average roughness (Ra) of the whole surface of all the board | substrate side surfaces 11a. Most preferably, it is 50-1000 nm. When the center line average roughness (Ra) of the entire surface of the substrate side surface 11a is 50 to 1000 nm, the substrate side surface 11a appears irregular but uniform on the surface.

かかる中心線平均粗さ(Ra)が50〜1000nmである部分の具体的態様としては、例えば、当該基板側面11aにおいて横方向に帯状あるいは筋状に延びる部分が挙げられ、また、ソーワイヤ23による切断面がそれに相当する。   Specific examples of the portion having the center line average roughness (Ra) of 50 to 1000 nm include, for example, a portion extending in a strip shape or a stripe shape in the lateral direction on the substrate side surface 11 a, and cutting with the saw wire 23. The face corresponds to that.

半導体層12は、例えば、バッファ層、n型GaN層、発光層である多重量子井戸層、p型GaN層、及び電極が積層された構成を有する。半導体層12は、厚さが例えば4〜10μmである。   The semiconductor layer 12 has, for example, a configuration in which a buffer layer, an n-type GaN layer, a multiple quantum well layer that is a light emitting layer, a p-type GaN layer, and an electrode are stacked. The semiconductor layer 12 has a thickness of, for example, 4 to 10 μm.

半導体層12は、より高い光取り出し効率を得ることができる観点から、基板11における中心線平均粗さ(Ra)が50〜1000nmである部分を有する基板側面11aに対応した層側面12aが、基板11のその部分に連続して中心線平均粗さ(Ra)が50〜1000nmであることが好ましい。   From the viewpoint of obtaining higher light extraction efficiency, the semiconductor layer 12 has a layer side surface 12a corresponding to the substrate side surface 11a having a portion having a center line average roughness (Ra) of 50 to 1000 nm in the substrate 11. It is preferable that centerline average roughness (Ra) is 50 to 1000 nm continuously from that portion of 11.

次に、実施形態1に係る半導体発光素子10の製造方法について説明する。なお、半導体発光素子10は、基板11の全ての基板側面11aの全面及び半導体層12の全ての層側面12aの全面の中心線平均粗さ(Ra)が50〜1000nmである構成のものである。   Next, a method for manufacturing the semiconductor light emitting element 10 according to Embodiment 1 will be described. The semiconductor light emitting element 10 has a configuration in which the center line average roughness (Ra) of all the substrate side surfaces 11a of the substrate 11 and all the layer side surfaces 12a of the semiconductor layer 12 is 50 to 1000 nm. .

まず、有機金属気相成長法(Metal Organic Vapor Phase Epitaxy:MOVPE)、CVD(Chemical Vapor Deposition)等の技術を組み合わせて公知の方法によりウエハ11’の表面に半導体層12を形成し、電子ビーム蒸着装置、ドライエッチングなどの公知のウエハプロセスを使って複数の半導体発光素子10をマトリクス状に作り込む。   First, the semiconductor layer 12 is formed on the surface of the wafer 11 ′ by a known method by combining techniques such as metal organic vapor phase epitaxy (MOVPE) and CVD (Chemical Vapor Deposition), and electron beam evaporation is performed. A plurality of semiconductor light emitting elements 10 are formed in a matrix using a known wafer process such as an apparatus or dry etching.

ここで、ウエハ11’は、例えば、厚さが0.3〜3.0mm、及び直径が50〜300mmである。そして、直径50mmのウエハ11’の場合で、1枚のウエハ11’には5000〜12000個の半導体発光素子10を作り込むことができる。   Here, the wafer 11 ′ has, for example, a thickness of 0.3 to 3.0 mm and a diameter of 50 to 300 mm. In the case of a wafer 11 ′ having a diameter of 50 mm, 5000 to 12000 semiconductor light emitting elements 10 can be formed on one wafer 11 ′.

続いて、マルチワイヤソー装置20のワーク取付部21に粘着シート22でウエハ11’を貼設し、図2に示すように、ワーク取付部21を半導体発光素子10の1つ分の間隔をおいて並行して走行するソーワイヤ23に近づけてウエハ11’を当接させる。このとき、ウエハ11’及び半導体層12は、各々、半導体発光素子10間に延びる複数の切断部がストライプ状に形成され、粘着シート22に貼設された状態で、複数の半導体発光素子10が一列の並んだ短冊状にマルチ切断されて分割される。図3に示すように、ソーワイヤ23による切断面は半導体発光素子10の基板11の基板側面11a及び半導体層12の層側面12aとなるが、それらの基板側面11a及び層側面12aは中心線平均粗さ(Ra)が50〜1000nmとなる。なお、ワーク取付部21には、半導体層12が構成された表面側が粘着シート22に貼り付けられるようにウエハ11’を設けてもよく、また、その裏面側が粘着シート22に貼り付けられるようにウエハ11’を設けてもよい。また、ウエハ11’の厚さが例えば80〜200μmとなるように、事前に裏面側に研削加工を施してもよい。なお、図2及び3に示すようなウエハ11’を走行するソーワイヤ23の列に対して下降させる方式とは逆に、ウエハ11’をソーワイヤ23の列に対して上昇させる方式であってもよく、また、静止支持されたウエハ11’に対して走行するソーワイヤ23の列を上方から降下させる又は下方から上昇させる方式であってもよい。   Subsequently, the wafer 11 ′ is pasted to the work attachment portion 21 of the multi-wire saw device 20 with the adhesive sheet 22, and the work attachment portion 21 is spaced by one semiconductor light emitting element 10 as shown in FIG. The wafer 11 ′ is brought into contact with the saw wire 23 running in parallel. At this time, in the wafer 11 ′ and the semiconductor layer 12, each of the plurality of semiconductor light emitting elements 10 is formed in a state where a plurality of cut portions extending between the semiconductor light emitting elements 10 are formed in a stripe shape and attached to the adhesive sheet 22. It is divided into multiple strips in a line. As shown in FIG. 3, the cut surface by the saw wire 23 becomes the substrate side surface 11 a of the substrate 11 of the semiconductor light emitting element 10 and the layer side surface 12 a of the semiconductor layer 12, and these substrate side surface 11 a and layer side surface 12 a are centerline average roughness. The thickness (Ra) is 50 to 1000 nm. The workpiece attachment portion 21 may be provided with a wafer 11 ′ so that the surface side on which the semiconductor layer 12 is formed is attached to the adhesive sheet 22, and the back side thereof is attached to the adhesive sheet 22. A wafer 11 ′ may be provided. In addition, the back surface may be ground in advance so that the thickness of the wafer 11 ′ is, for example, 80 to 200 μm. 2 and 3, the method of raising the wafer 11 ′ relative to the row of saw wires 23 may be opposite to the method of lowering the row of saw wires 23 traveling on the wafer 11 ′. In addition, a system in which the row of saw wires 23 traveling with respect to the stationary wafer 11 ′ is lowered from above or raised from below is also possible.

ここで、このソーワイヤ23によるウエハ11’の切断加工は、遊離砥粒方式及び固定砥粒方式のいずれで行ってもよい。前者の場合、例えば、ソーワイヤ23として、ピアノ線、硬鋼線等のFe系金属線、或いは、タングステン線、インコネル(Ni−Cr−Fe系合金)等の金属線を用い、砥粒メディアとして、人工研磨石、ケイ石、砂、金属球等を用いればよい。後者の場合、例えば、ソーワイヤ23として、例えば、上記金属線にダイヤモンド砥粒等を固定したものを用いればよい。ソーワイヤ23の外径は例えば50〜200μmである。また、加工時におけるソーワイヤ23の張力は例えば3〜50N、線速は例えば100〜1000m/min、及びウエハ11’の厚さ方向の移動速度は例えば50〜1000μm/minである。   Here, the cutting processing of the wafer 11 ′ by the saw wire 23 may be performed by either the free abrasive grain method or the fixed abrasive grain method. In the former case, for example, as the saw wire 23, an Fe-based metal wire such as a piano wire or a hard steel wire, or a metal wire such as a tungsten wire or Inconel (Ni-Cr-Fe-based alloy) is used as an abrasive medium. Artificial polished stones, silica stones, sand, metal balls, etc. may be used. In the latter case, for example, as the saw wire 23, for example, a metal wire fixed with diamond abrasive grains or the like may be used. The outer diameter of the saw wire 23 is, for example, 50 to 200 μm. Further, the tension of the saw wire 23 during processing is, for example, 3 to 50 N, the linear velocity is, for example, 100 to 1000 m / min, and the moving speed in the thickness direction of the wafer 11 ′ is, for example, 50 to 1000 μm / min.

そして、ワーク取付部21に設けたウエハ11’をその法線方向を軸として90°回転させ、上記と同様にワーク取付部21を並行して走行するソーワイヤ23に近づけてウエハ11’を当接させる。このとき、ウエハ11’は、各々、半導体発光素子10間に延びる複数の切断部がストライプ状に形成され、その結果、縦横に複数の切断部が格子状に形成され、粘着シート22に貼設された状態でマルチ切断されて、複数の半導体発光素子10が個々に分割される。   Then, the wafer 11 ′ provided on the workpiece attachment portion 21 is rotated by 90 ° about the normal direction as an axis, and the wafer 11 ′ is brought into contact with the workpiece attachment portion 21 close to the saw wire 23 traveling in parallel as described above. Let At this time, in the wafer 11 ′, a plurality of cut portions extending between the semiconductor light emitting elements 10 are formed in a stripe shape, and as a result, a plurality of cut portions are formed in a lattice shape in the vertical and horizontal directions, and are attached to the adhesive sheet 22. The plurality of semiconductor light emitting elements 10 are individually divided by being multi-cut in the state of being performed.

なお、上記のようにソーワイヤ23によりウエハ11’の全厚さを切断せず、ソーワイヤ23によりウエハ11’の中間厚さまでを切断して、複数の半導体発光素子10を個々に分割するように格子状に溝部を形成し、その後、その溝部で機械的に劈開して分割するようにしてもよい。但し、この場合は、基板側面11aの一部だけがソーワイヤ23による切断面となる。   In addition, as described above, the entire thickness of the wafer 11 ′ is not cut by the saw wire 23, and the intermediate thickness of the wafer 11 ′ is cut by the saw wire 23, so that the plurality of semiconductor light emitting elements 10 are individually divided. A groove portion may be formed in a shape, and thereafter, the groove portion may be mechanically cleaved and divided. However, in this case, only a part of the substrate side surface 11 a becomes a cut surface by the saw wire 23.

(実施形態2)
図4は実施形態2に係る半導体発光素子10を示す。なお、実施形態1と同一名称の部分は実施形態1と同一符号で示す。
(Embodiment 2)
FIG. 4 shows a semiconductor light emitting device 10 according to the second embodiment. In addition, the part of the same name as Embodiment 1 is shown with the same code | symbol as Embodiment 1. FIG.

実施形態2に係る半導体発光素子10では、基板11の一方の対向する一対の基板側面11aが基板11の表面の法線方向に対して同じ角度だけ傾斜した平面に形成されている。そして、それらの一対の基板側面11a及びそれらに対応した半導体層12の層側面12aの中心線平均粗さ(Ra)は50〜1000nmである。この傾斜角度は基板11の表面の法線方向に対して例えば4〜60°である。   In the semiconductor light emitting device 10 according to the second embodiment, one pair of opposing substrate side surfaces 11 a of the substrate 11 is formed on a plane inclined by the same angle with respect to the normal direction of the surface of the substrate 11. The center line average roughness (Ra) of the pair of substrate side surfaces 11a and the layer side surface 12a of the semiconductor layer 12 corresponding to them is 50 to 1000 nm. This inclination angle is, for example, 4 to 60 ° with respect to the normal direction of the surface of the substrate 11.

この半導体発光素子10では、上記の構成により他方の対向する一対の基板側面11aが非矩形の平行四辺形に形成されている。光取り出し効率の向上の観点からは、このように半導体発光素子10が非矩形の面を有すことが好ましい。従って、一方の対向する一対の基板側面11aに加えて他方の対向する一対の基板側面11aもが基板11の表面の法線方向に対して同じ角度だけ傾斜した平面であって、全ての基板側面11aが非矩形の平行四辺形に形成された構成、或いは、一方の対向する一対の基板側面11aに加えて表面及び裏面の形状もが非矩形の平行四辺形に形成された構成であることが好ましく、表面、裏面、及び全ての基板側面11aのいずれもが非矩形の平行四辺形に形成された構成であることがより好ましい。   In the semiconductor light emitting device 10, the other pair of opposing substrate side surfaces 11a is formed in a non-rectangular parallelogram by the above configuration. From the viewpoint of improving the light extraction efficiency, it is preferable that the semiconductor light emitting element 10 has a non-rectangular surface as described above. Accordingly, in addition to the pair of opposing substrate side surfaces 11a, the other pair of opposing substrate side surfaces 11a is also a plane inclined at the same angle with respect to the normal direction of the surface of the substrate 11, and all the substrate side surfaces 11a may be configured to be a non-rectangular parallelogram, or the front and back surfaces may be configured to be a non-rectangular parallelogram in addition to a pair of opposing substrate side surfaces 11a. It is more preferable that the front surface, the back surface, and all the substrate side surfaces 11a are formed in a non-rectangular parallelogram.

この半導体発光素子10を製造するには、図5に示すように、ソーワイヤ23とウエハ11’とを横方向に所定の相対移動をさせながら、ソーワイヤ23によりウエハ11’及び半導体層12を厚さ方向に切断すればよい。   In order to manufacture the semiconductor light emitting device 10, as shown in FIG. 5, the thickness of the wafer 11 ′ and the semiconductor layer 12 is increased by the saw wire 23 while the saw wire 23 and the wafer 11 ′ are moved relative to each other in a predetermined direction. Cut in the direction.

その他の構成、製造条件、及び作用効果は実施形態1と同一である。   Other configurations, manufacturing conditions, and operational effects are the same as those of the first embodiment.

(実施形態3)
図6は実施形態3に係る半導体発光素子10を示す。なお、実施形態1と同一名称の部分は実施形態1と同一符号で示す。
(Embodiment 3)
FIG. 6 shows a semiconductor light emitting device 10 according to the third embodiment. In addition, the part of the same name as Embodiment 1 is shown with the same code | symbol as Embodiment 1. FIG.

実施形態3に係る半導体発光素子10では、基板11の対向する一対の基板側面11aの一方が断面くの字に突出し且つ他方が断面くの字に没入して形成されている。そして、それらの一対の基板側面11a及びそれらに対応した半導体層12の層側面12aの中心線平均粗さ(Ra)は50〜1000nmである。なお、もう1つの対向する一対の基板側面11a及び層側面12aも同様の構成を有していてもよい。   In the semiconductor light emitting device 10 according to the third embodiment, one of a pair of substrate side surfaces 11a opposed to the substrate 11 protrudes into a cross-sectional shape, and the other immerses into the cross-sectional shape. The center line average roughness (Ra) of the pair of substrate side surfaces 11a and the layer side surface 12a of the semiconductor layer 12 corresponding to them is 50 to 1000 nm. The other pair of opposing substrate side surfaces 11a and layer side surfaces 12a may have the same configuration.

この半導体発光素子10を製造するには、図7に示すように、ソーワイヤ23とウエハ11’とを横方向に所定の相対移動をさせながら、ソーワイヤ23によりウエハ11’を厚さ方向に切断すればよい。   To manufacture the semiconductor light emitting device 10, as shown in FIG. 7, the wafer 11 ′ is cut in the thickness direction by the saw wire 23 while the saw wire 23 and the wafer 11 ′ are moved in the horizontal direction by a predetermined relative movement. That's fine.

その他の構成、製造条件、及び作用効果は実施形態1と同一である。   Other configurations, manufacturing conditions, and operational effects are the same as those of the first embodiment.

(実施形態4)
図8は実施形態4に係る半導体発光素子10を示す。なお、実施形態1と同一名称の部分は実施形態1と同一符号で示す。
(Embodiment 4)
FIG. 8 shows a semiconductor light emitting device 10 according to the fourth embodiment. In addition, the part of the same name as Embodiment 1 is shown with the same code | symbol as Embodiment 1. FIG.

実施形態4に係る半導体発光素子10では、基板11の対向する一対の基板側面11aの一方が断面円弧状に突出し且つ他方が断面円弧状に没入した曲面に形成されている。そして、それらの一対の基板側面11a及びそれらに対応した半導体層12の層側面12aの中心線平均粗さ(Ra)は50〜1000nmである。なお、もう1つの対向する一対の基板側面11a及び層側面12aも同様の構成を有していてもよい。   In the semiconductor light emitting device 10 according to the fourth embodiment, one of the pair of substrate side surfaces 11a opposed to the substrate 11 protrudes in a circular arc shape and the other is formed in a curved surface immersed in the circular arc shape. The center line average roughness (Ra) of the pair of substrate side surfaces 11a and the layer side surface 12a of the semiconductor layer 12 corresponding to them is 50 to 1000 nm. The other pair of opposing substrate side surfaces 11a and layer side surfaces 12a may have the same configuration.

この半導体発光素子10を製造するには、図9に示すように、ソーワイヤ23とウエハ11’とを横方向に所定の相対移動をさせながら、ソーワイヤ23によりウエハ11’を厚さ方向に切断すればよい。   In order to manufacture the semiconductor light emitting device 10, as shown in FIG. 9, the wafer 11 ′ is cut in the thickness direction by the saw wire 23 while the saw wire 23 and the wafer 11 ′ are moved relative to each other in the horizontal direction. That's fine.

その他の構成、製造条件、及び作用効果は実施形態1と同一である。   Other configurations, manufacturing conditions, and operational effects are the same as those of the first embodiment.

(実施形態5)
図10は実施形態5に係る半導体発光素子10を示す。なお、実施形態1と同一名称の部分は実施形態1と同一符号で示す。
(Embodiment 5)
FIG. 10 shows a semiconductor light emitting device 10 according to the fifth embodiment. In addition, the part of the same name as Embodiment 1 is shown with the same code | symbol as Embodiment 1. FIG.

実施形態5に係る半導体発光素子10では、基板11の各基板側面11aは、半導体層12が構成された表面側の部分が基板11の法線方向と平行に延びる垂直面と、それに続く部分が曲率半径が例えば50〜1000μmの断面円弧状に内側に没入した曲面と、さらにそれに続く部分が裏面側に向かって基板11の法線方向と平行に延びる垂直面とで構成されている。そして、表面側の垂直面は平坦であり、曲面及び裏面側の垂直面は中心線平均粗さ(Ra)が50〜1000nmである。基板側面11aにおける表面側の垂直面と曲面及び裏面側の垂直面との面積割合は、前者よりも後者の方が多いことが好ましい。   In the semiconductor light emitting device 10 according to the fifth embodiment, each substrate side surface 11a of the substrate 11 has a vertical surface in which a portion on the surface side on which the semiconductor layer 12 is configured extends in parallel with the normal direction of the substrate 11, and a portion subsequent thereto. For example, a curved surface immersing inward in a circular arc shape with a radius of curvature of 50 to 1000 μm, for example, and a subsequent surface extending toward the back surface side in parallel with the normal direction of the substrate 11. The vertical surface on the front surface side is flat, and the vertical surface on the curved surface and the back surface side has a center line average roughness (Ra) of 50 to 1000 nm. In the substrate side surface 11a, the area ratio between the vertical surface on the front surface side and the curved surface and the vertical surface on the back surface side is preferably larger in the latter than in the former.

この半導体発光素子10を製造するには、図11に示すように、ソーワイヤ23によりウエハ11’を裏面側からの中間厚さ(例えば全厚さの10〜90%)まで切断して、複数の半導体発光素子10を個々に分割するように格子状に溝部を形成し、その後、その溝部で機械的に劈開して分割すればよい。   In order to manufacture the semiconductor light emitting device 10, as shown in FIG. 11, the wafer 11 ′ is cut to an intermediate thickness (for example, 10 to 90% of the total thickness) from the back surface side by the saw wire 23, and a plurality of the semiconductor light emitting devices 10 are manufactured. Grooves may be formed in a lattice shape so that the semiconductor light emitting element 10 is divided into individual pieces, and then the grooves are mechanically cleaved and divided.

その他の構成、製造条件、及び作用効果は実施形態1と同一である。   Other configurations, manufacturing conditions, and operational effects are the same as those of the first embodiment.

(実施形態6)
図12は実施形態6に係る半導体発光素子10を示す。なお、実施形態1と同一名称の部分は実施形態1と同一符号で示す。
(Embodiment 6)
FIG. 12 shows a semiconductor light emitting device 10 according to the sixth embodiment. In addition, the part of the same name as Embodiment 1 is shown with the same code | symbol as Embodiment 1. FIG.

実施形態6に係る半導体発光素子10では、基板11の各基板側面11aは、半導体層12が構成された表面側の周縁の部分が曲率半径が例えば50〜1000μmの断面円弧状の曲面と、それに続く部分が裏面側に向かって基板11の法線方向と平行に延びる垂直面とで構成されている。また、半導体層12の各層側面12aは、基板側面11aの曲面に連続した断面円弧状の曲面に形成されている。そして、基板側面11a及び層側面12aの曲面は中心線平均粗さ(Ra)が50〜1000nmであり、基板側面11aの垂直面は平坦である。   In the semiconductor light emitting device 10 according to the sixth embodiment, each substrate side surface 11a of the substrate 11 has a curved surface with an arcuate cross section with a radius of curvature of, for example, 50 to 1000 μm, on the surface side periphery where the semiconductor layer 12 is formed. The subsequent portion is composed of a vertical surface extending in parallel with the normal direction of the substrate 11 toward the back surface side. Further, each layer side surface 12a of the semiconductor layer 12 is formed in a curved surface having an arcuate cross section that is continuous with the curved surface of the substrate side surface 11a. The curved surfaces of the substrate side surface 11a and the layer side surface 12a have a center line average roughness (Ra) of 50 to 1000 nm, and the vertical surface of the substrate side surface 11a is flat.

この半導体発光素子10を製造するには、図13に示すように、ソーワイヤ23によりウエハ11’及び半導体層12を表面側からの中間厚さ(例えば全厚さの10〜80%)まで切断して、複数の半導体発光素子10を個々に分割するように格子状に溝部を形成し、その後、その溝部で機械的に劈開して分割すればよい。   In order to manufacture the semiconductor light emitting device 10, as shown in FIG. 13, the wafer 11 ′ and the semiconductor layer 12 are cut to an intermediate thickness (for example, 10 to 80% of the total thickness) from the surface side by the saw wire 23. Thus, the groove portions may be formed in a lattice shape so as to divide the plurality of semiconductor light emitting elements 10 individually, and thereafter, the grooves may be mechanically cleaved and divided.

その他の構成、製造条件、及び作用効果は実施形態1と同一である。   Other configurations, manufacturing conditions, and operational effects are the same as those of the first embodiment.

(その他の実施形態)
上記実施形態1〜6では、平面視で四角形の半導体発光素子10としたが、特にこれに限定されるものではなく、並行して走行するソーワイヤーの切断する方向の二つ以上の組み合わせで分割できればよく、平行四辺形、菱形、三角形等の平面視で非矩形の形状に形成されたものであってもよい。ソーワイヤ23により半導体発光素子10を分割する場合、ダイヤモンドスクライブやレーザスクライブの後に劈開して半導体発光素子10を分割する場合のように結晶方位によって分割方向の制約を受けないので、デザインの自由度が高くなる。
(Other embodiments)
In the said Embodiment 1-6, although it was set as the rectangular semiconductor light-emitting device 10 by planar view, it is not limited to this in particular, It divides | segments by the combination of two or more of the cutting direction of the saw wire which drive | works in parallel What is necessary is just to be able to form, and the thing formed in the non-rectangular shape by planar view, such as a parallelogram, a rhombus, and a triangle, may be sufficient. When the semiconductor light emitting device 10 is divided by the saw wire 23, since the semiconductor light emitting device 10 is cleaved after diamond scribe or laser scribe to divide the semiconductor light emitting device 10, the crystal orientation does not restrict the dividing direction. Get higher.

上記実施形態1〜6では、ソーワイヤ23を用いて半導体発光素子10を製造したが、特にこれに限定されるものではなく、ダイシング加工、バンドソー加工等の方法により、基板11の基板側面11aに中心線平均粗さ(Ra)が50〜1000nmである部分を形成加工することができる。   In the said Embodiment 1-6, although the semiconductor light-emitting device 10 was manufactured using the saw wire 23, it is not limited to this in particular, It is centered on the board | substrate side surface 11a of the board | substrate 11 by methods, such as a dicing process and a band saw process. A portion having a line average roughness (Ra) of 50 to 1000 nm can be formed and processed.

本発明は、基板の表面に半導体層が積層されて構成された半導体発光素子及びその製造方法について有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for a semiconductor light emitting device configured by laminating a semiconductor layer on the surface of a substrate and a manufacturing method thereof.

実施形態1の半導体発光素子の側面図である。1 is a side view of a semiconductor light emitting element according to Embodiment 1. FIG. ソーワイヤによるウエハの切断方法を示す説明図である。It is explanatory drawing which shows the cutting method of the wafer by a saw wire. 実施形態1の半導体発光素子の製造方法を示す説明図である。FIG. 6 is an explanatory view showing the method for manufacturing the semiconductor light emitting element of the first embodiment. 実施形態2の半導体発光素子の側面図である。FIG. 6 is a side view of the semiconductor light emitting element of Embodiment 2. 実施形態2の半導体発光素子の製造方法を示す説明図である。FIG. 6 is an explanatory view showing a method for manufacturing the semiconductor light emitting element of Embodiment 2. 実施形態3の半導体発光素子の側面図である。It is a side view of the semiconductor light emitting element of Embodiment 3. 実施形態3の半導体発光素子の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the semiconductor light-emitting device of Embodiment 3. 実施形態4の半導体発光素子の側面図である。It is a side view of the semiconductor light emitting element of Embodiment 4. 実施形態4の半導体発光素子の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the semiconductor light-emitting device of Embodiment 4. 実施形態5の半導体発光素子の側面図である。FIG. 10 is a side view of the semiconductor light emitting element of Embodiment 5. 実施形態5の半導体発光素子の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the semiconductor light-emitting device of Embodiment 5. 実施形態6の半導体発光素子の側面図である。It is a side view of the semiconductor light emitting element of Embodiment 6. 実施形態6の半導体発光素子の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the semiconductor light-emitting device of Embodiment 6.

符号の説明Explanation of symbols

10 半導体発光素子
11 基板
11’ ウエハ
11a 基板側面
12 半導体層
12a 層側面
20 マルチワイヤソー装置
21 ワーク取付部
22 粘着シート
23 ソーワイヤ
DESCRIPTION OF SYMBOLS 10 Semiconductor light-emitting element 11 Substrate 11 'Wafer 11a Substrate side surface 12 Semiconductor layer 12a Layer side surface 20 Multi-wire saw apparatus 21 Work attachment part 22 Adhesive sheet 23 Saw wire

Claims (13)

基板の表面に半導体層が積層されて構成された半導体発光素子であって、
上記基板は、少なくとも1つの基板側面が中心線平均粗さ(Ra)が50〜1000nmである部分を有する半導体発光素子。
A semiconductor light emitting device configured by laminating a semiconductor layer on the surface of a substrate,
The above-mentioned substrate is a semiconductor light emitting device in which at least one substrate side surface has a portion having a center line average roughness (Ra) of 50 to 1000 nm.
請求項1に記載された半導体発光素子において、
上記基板側面の中心線平均粗さ(Ra)が50〜1000nmである部分がソーワイヤによる切断面である半導体発光素子。
The semiconductor light emitting device according to claim 1,
A semiconductor light emitting device in which a portion having a center line average roughness (Ra) of 50 to 1000 nm on the side surface of the substrate is a cut surface by a saw wire.
請求項1又は2に記載された半導体発光素子において、
上記基板側面の中心線平均粗さ(Ra)が50〜1000nmである部分が該基板側面の全面である半導体発光素子。
In the semiconductor light-emitting device according to claim 1 or 2,
A semiconductor light emitting device wherein a portion having a center line average roughness (Ra) of 50 to 1000 nm on the side surface of the substrate is the entire surface of the side surface of the substrate.
請求項1乃至3のいずれかに記載された半導体発光素子において、
上記基板は、全ての基板側面が中心線平均粗さ(Ra)が50〜1000nmである部分を有する半導体発光素子。
The semiconductor light-emitting device according to claim 1,
The said board | substrate is a semiconductor light-emitting device which has a part whose centerline average roughness (Ra) is 50-1000 nm on all the substrate side surfaces.
請求項1乃至4のいずれかに記載された半導体発光素子において、
上記基板側面の中心線平均粗さ(Ra)が50〜1000nmである部分が上記基板の法線方向に対して傾斜した平面を含む半導体発光素子。
The semiconductor light-emitting device according to claim 1,
A semiconductor light emitting element comprising a plane in which a portion having a center line average roughness (Ra) of 50 to 1000 nm on the side surface of the substrate is inclined with respect to a normal direction of the substrate.
請求項1乃至5のいずれかに記載された半導体発光素子において、
上記基板側面の中心線平均粗さ(Ra)が50〜1000nmである部分が複数の平面を含む半導体発光素子。
The semiconductor light emitting device according to any one of claims 1 to 5,
The semiconductor light emitting element in which the part whose center line average roughness (Ra) on the side surface of the substrate is 50 to 1000 nm includes a plurality of planes.
請求項1乃至6のいずれかに記載された半導体発光素子において、
上記基板側面の中心線平均粗さ(Ra)が50〜1000nmである部分が曲面を含む半導体発光素子。
The semiconductor light-emitting device according to claim 1,
The semiconductor light emitting element in which the part whose center line average roughness (Ra) of the said substrate side surface is 50-1000 nm contains a curved surface.
請求項1乃至7のいずれかに記載された半導体発光素子において、
上記基板は、最大側辺の長さの基板厚さに対する比であるアスペクト比が0.3〜30である半導体発光素子。
The semiconductor light-emitting device according to claim 1,
The substrate is a semiconductor light emitting device having an aspect ratio of 0.3 to 30 which is a ratio of the length of the maximum side to the substrate thickness.
請求項1乃至8のいずれかに記載された半導体発光素子において、
上記基板は、非矩形の基板側面を有する半導体発光素子。
The semiconductor light-emitting device according to claim 1,
The substrate is a semiconductor light emitting device having a non-rectangular substrate side surface.
請求項1乃至9のいずれかに記載された半導体発光素子において、
上記基板は、平面視で非矩形の形状に形成されている半導体発光素子。
The semiconductor light-emitting device according to claim 1,
The substrate is a semiconductor light emitting element formed in a non-rectangular shape in plan view.
請求項1乃至10のいずれかに記載された半導体発光素子において、
上記基板が、サファイア基板、SiC基板、又はGaN基板である半導体発光素子。
The semiconductor light-emitting device according to claim 1,
A semiconductor light emitting device, wherein the substrate is a sapphire substrate, a SiC substrate, or a GaN substrate.
請求項1乃至10のいずれかに記載された半導体発光素子において、
上記半導体層は、上記基板における中心線平均粗さ(Ra)が50〜1000nmである部分を有する基板側面に対応した層側面が、該基板の該部分に連続して中心線平均粗さ(Ra)が50〜1000nmである半導体発光素子。
The semiconductor light-emitting device according to claim 1,
The semiconductor layer has a layer side surface corresponding to a substrate side surface having a portion having a center line average roughness (Ra) of 50 to 1000 nm in the substrate, and a center line average roughness (Ra ) Is a semiconductor light emitting device having a thickness of 50 to 1000 nm.
複数の半導体発光素子が作り込まれたウエハを、間隔をおいて並行して走行するソーワイヤでマルチ切断することにより個々の半導体発光素子に分割する工程を含む半導体発光素子の製造方法。   A method of manufacturing a semiconductor light emitting device, comprising: dividing a wafer in which a plurality of semiconductor light emitting devices are formed into individual semiconductor light emitting devices by multi-cutting with a saw wire that runs in parallel at intervals.
JP2008248201A 2008-09-26 2008-09-26 Semiconductor light-emitting element and method for manufacturing the same Pending JP2010080719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008248201A JP2010080719A (en) 2008-09-26 2008-09-26 Semiconductor light-emitting element and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008248201A JP2010080719A (en) 2008-09-26 2008-09-26 Semiconductor light-emitting element and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010080719A true JP2010080719A (en) 2010-04-08

Family

ID=42210822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008248201A Pending JP2010080719A (en) 2008-09-26 2008-09-26 Semiconductor light-emitting element and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010080719A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028444A (en) * 2010-07-21 2012-02-09 Mitsubishi Chemicals Corp Semiconductor element and manufacturing method thereof
JP2012028445A (en) * 2010-07-21 2012-02-09 Mitsubishi Chemicals Corp Semiconductor device and method of manufacturing the same
JP2012114377A (en) * 2010-11-26 2012-06-14 Mitsubishi Chemicals Corp Semiconductor light-emitting element
JP2016219470A (en) * 2015-05-14 2016-12-22 日亜化学工業株式会社 Light-emitting element
US9812622B2 (en) 2015-05-13 2017-11-07 Nichia Corporation Light emitting element with light transmissive substrate having recess in cross-sectional plane
CN110176493A (en) * 2014-03-31 2019-08-27 株式会社Flosfia Crystallinity laminate structure, semiconductor device
JP2019208067A (en) * 2019-08-07 2019-12-05 日亜化学工業株式会社 Light emitting element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028444A (en) * 2010-07-21 2012-02-09 Mitsubishi Chemicals Corp Semiconductor element and manufacturing method thereof
JP2012028445A (en) * 2010-07-21 2012-02-09 Mitsubishi Chemicals Corp Semiconductor device and method of manufacturing the same
JP2012114377A (en) * 2010-11-26 2012-06-14 Mitsubishi Chemicals Corp Semiconductor light-emitting element
CN110176493A (en) * 2014-03-31 2019-08-27 株式会社Flosfia Crystallinity laminate structure, semiconductor device
US9812622B2 (en) 2015-05-13 2017-11-07 Nichia Corporation Light emitting element with light transmissive substrate having recess in cross-sectional plane
US10069052B2 (en) 2015-05-13 2018-09-04 Nichia Corporation Light emitting element with light transmissive substrate having recess in cross-sectional plane
JP2016219470A (en) * 2015-05-14 2016-12-22 日亜化学工業株式会社 Light-emitting element
JP2019208067A (en) * 2019-08-07 2019-12-05 日亜化学工業株式会社 Light emitting element
JP7037080B2 (en) 2019-08-07 2022-03-16 日亜化学工業株式会社 Light emitting element

Similar Documents

Publication Publication Date Title
JP2010080719A (en) Semiconductor light-emitting element and method for manufacturing the same
JP5179068B2 (en) Method for manufacturing compound semiconductor device
US5627109A (en) Method of manufacturing a semiconductor device that uses a sapphire substrate
JP5040977B2 (en) Nitride semiconductor substrate, semiconductor device and manufacturing method thereof
JP4753628B2 (en) Method for manufacturing compound semiconductor device wafer
TWI316767B (en) Method for fabrication of semiconductor light-emitting device and the device fabricated by the method
JP5119463B2 (en) Light emitting device and manufacturing method thereof
TWI327340B (en) Production method for semiconductor device
JP2011129765A (en) Manufacturing method for semiconductor light-emitting element
KR20080035422A (en) Gallium nitride wafer
JP2011077325A (en) Method of manufacturing group iii nitride semiconductor substrate
JP2007258672A (en) Light-emitting diode and its manufacturing method
JP2001284293A (en) Chip division method for semiconductor wafer
EP2559791A1 (en) Single-crystal substrate, single-crystal substrate having crystalline film, crystalline film, method for producing single-crystal substrate having crystalline film, method for producing crystalline substrate, and method for producing element
JPWO2008152945A1 (en) Semiconductor light emitting device and manufacturing method thereof
JP2017228660A (en) Silicon carbide semiconductor device manufacturing method
TW200524185A (en) Method for production of semiconductor chip and semiconductor chip
JP2010056485A (en) Light emitting element, light emitting device, and method of processing sapphire substrate
JP5045292B2 (en) Manufacturing method of nitride semiconductor substrate
JP6230112B2 (en) Wafer manufacturing method and wafer manufacturing apparatus
JP2009267059A (en) Semiconductor light emitting element and method for manufacturing the same
JP2017022422A (en) Scribe method and scribe apparatus
JP2005302804A (en) Light emitting diode and its manufacturing method
JP5687864B2 (en) Method for dividing sapphire wafer
KR102501898B1 (en) How to segment a GaN substrate