JP2010078578A - Radioactive waste treatment system - Google Patents

Radioactive waste treatment system Download PDF

Info

Publication number
JP2010078578A
JP2010078578A JP2008271394A JP2008271394A JP2010078578A JP 2010078578 A JP2010078578 A JP 2010078578A JP 2008271394 A JP2008271394 A JP 2008271394A JP 2008271394 A JP2008271394 A JP 2008271394A JP 2010078578 A JP2010078578 A JP 2010078578A
Authority
JP
Japan
Prior art keywords
radioactive waste
plate member
powder
hopper
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008271394A
Other languages
Japanese (ja)
Inventor
Hideo Katayama
秀雄 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008271394A priority Critical patent/JP2010078578A/en
Publication of JP2010078578A publication Critical patent/JP2010078578A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce radiation from radioactive waste and minimize the volume of it. <P>SOLUTION: After the radioactive waste is burned/dissolved or gasified at 1,500°C or higher and carbon powder, lead powder, dysprosium powder or titanium oxide/bismuth hybridized powder are used as an absorption and leakage inhibitor for the gamma rays and gadolinium, hafnium, rhodium and the like are used as an absorption and leakage inhibitor for the neutron beam to mix and stir the treated powder or dissolution of the radioactive waste obtained in the previous process; the radioactive waste is compressed to reduce the volume of it and is encapsulated in storage canisters or drums in order to prevent radiation from leaking outside and maintain the safety to human bodies by absorbing gamma rays and a neutron beam from the radioactive waste, especially. In some cases, each powder and the treated waste are mixed and stirred by using a titanium oxide solubilization liquid in order to bond the former with the latter in the compression. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、放射性廃棄物処理に関する。  The present invention relates to radioactive waste treatment.

従来の原子炉からの低レベル放射性廃棄物の処理は、その放射性エネルギーを減衰しないままキャニスタ、またはドラム缶に入れて地中に保管している。特に、低レベル放射性廃棄物の内、アルファ線、ベータ線、ガンマ線、または中性子線の放射等を出している使用済みの衣類、手袋、靴等、人体に着用している着装及び使用工具等があるが、特に減衰時間の長いガンマ線又は中性子線の放射されている廃棄物の処理が完全に人体に対しての規制レベル以下になっていない場合が多い。また、放射性廃棄物の保管には、体積の減少を考慮に入れているが、圧縮しても原形の十分の一位であり、保管するための面積、または体積に限度があり、また圧縮しても放射線の減少は変化しない欠点を有する。  In the treatment of low-level radioactive waste from conventional nuclear reactors, the radioactive energy is stored in the ground in canisters or drums without being attenuated. In particular, used clothing, gloves, shoes, etc. that emit alpha, beta, gamma, or neutron radiation among low-level radioactive waste, etc. There are many cases where the treatment of wastes that are emitted with gamma rays or neutrons with particularly long decay times is not completely below the regulatory level for the human body. Although radioactive waste is stored in consideration of volume reduction, it is only a first place in its original form even when compressed, and there is a limit to the area or volume for storage. However, the reduction of radiation has the disadvantage that it does not change.

前記した従来の処理方法、またはシステムでは、放射性廃棄物の処理が完全ではなく、常に放射線、特に、ガンマ線、または中性子線を放射していることと、放射性廃棄物の体積をできるだけ小さくすると共に、放射性廃棄物からの放射線を規制値以下にすることであり、保管時においても外部への放射線の漏洩を防止することである。また、保管上、放射性廃棄物が発生する熱により、保管用のキャニスタ、またはドラム缶の損傷による外部への放射線の放射を防止することで、人体への損傷を防止することである。  In the conventional processing method or system described above, the radioactive waste is not completely processed, and always emits radiation, particularly gamma rays or neutron rays, and the volume of the radioactive waste is made as small as possible. This is to reduce the radiation from the radioactive waste below the regulation value, and to prevent leakage of radiation to the outside even during storage. In addition, the heat generated by the radioactive waste during storage prevents radiation to the outside due to damage to the storage canister or the drum can, thereby preventing damage to the human body.

従って、本発明は、前記のような従来の問題を解決することであり、放射性廃棄物の処理を従来の処理方法より、確実に人体への傷害を防止することと、処理後の保管面積を減少させると共に、安全に保管することである。  Therefore, the present invention is to solve the conventional problems as described above, and the treatment of radioactive waste more reliably prevents injury to the human body and the storage area after the treatment than the conventional treatment method. Reduce and store safely.

本発明は上記の目的を達成するために、放射線を外部に放射することを防止する材料からなる放射性廃棄物投入用ホッパー、放射性廃棄物を処理するための電気抵抗高温炉、混合撹拌機、自動圧縮機等を設けると共に、放射性廃棄物の放射性を減少するために必要なカーボン粒体ホッパー、鉛粉体ホッパー、ジスプロシウム粉体ホッパー、酸化チタン・ビスマス混成化粉体ホッパー、ハフニウム粉体ホッパー、ガドリニウム粉体ホッパー及びロジウム粉体ホッパー等を設けると共に、各ホッパーの送出管に電磁弁を設け、電気的制御用の制御装置を設けたことである。  In order to achieve the above-mentioned object, the present invention achieves the above-mentioned object, a radioactive waste charging hopper made of a material that prevents radiation from being radiated to the outside, an electric resistance high-temperature furnace for treating radioactive waste, a mixing stirrer, an automatic Carbon particle hopper, lead powder hopper, dysprosium powder hopper, titanium oxide / bismuth hybrid powder hopper, hafnium powder hopper, gadolinium necessary to reduce the radioactivity of radioactive waste while providing a compressor etc. In addition to providing a powder hopper, a rhodium powder hopper, and the like, an electromagnetic valve is provided in a delivery pipe of each hopper, and a control device for electrical control is provided.

また、放射性廃棄物の処理時及び処理後の放射線エネルギー量を測定する放射線検知装置を放射性廃棄物投入ホッパー、混合撹拌機、電気抵抗高温炉からの排気中にある放射性微粉体を吸収処理するフィルタ及びマイクロ波プラズマ排気処理装置等の排気部に設けた排気処理システムと、電気抵抗高温炉で高熱処理し、この高温処理後の処理物を各粉体と混合撹拌する混合撹拌機及び混合撹拌機から排出された処理物を圧縮して小型体積にする自動圧縮機と、圧縮された処理物をキャニスタに封入して保管するためのキャニスタ、及びキャニスタを任意の保管箇所に送出するバルトコンベアを設けたことである。  Also, a radiation detector that measures the amount of radiation energy during and after processing of radioactive waste is a filter that absorbs radioactive fine powder in the exhaust from the radioactive waste input hopper, mixing stirrer, and electric resistance high-temperature furnace. And a mixing stirrer and a mixing stirrer for performing high heat treatment in an electric resistance high temperature furnace and mixing and stirring the processed material after the high temperature treatment with each powder. An automatic compressor that compresses the processed product discharged from the machine into a small volume, a canister for storing the compressed processed product in a canister, and a baltic conveyor that sends the canister to any storage location That is.

上記の各システム及び装置、機器等により、放射性廃棄物からの放射線、特に外部被曝に多いガンマ線、中性子線とウランやプルトニウム等が人体の体内に侵入して内部被爆になるアルファ線、ベータ線の吸収は、または遮蔽防御して人体に安全的規制値以下とし、放射性廃棄物処理後の体積をできるだけ小体積として保管時の保管に必要な面積及び体積を減少すると共に、保管に使用したキャニスタまたはドラム缶等から外部に放射線の漏洩を防止すると共に、キャニスタまたはドラム缶内での放射線による高温発熱被害を防止することである。  With the above systems, devices, and equipment, radiation from radioactive waste, especially gamma rays, neutron rays and uranium, plutonium, etc., which are often exposed to external exposure, penetrate into the human body and are exposed to internal radiation. Absorption or shielding protection to keep the human body safe below the regulation value, reducing the volume after storage of radioactive waste as much as possible to reduce the area and volume required for storage, and the canister used for storage or It is to prevent leakage of radiation from the drum can or the like to the outside, and to prevent high temperature heat damage due to radiation in the canister or drum can.

以下、本発明の実施の形態を図1〜図10に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1に示す放射性廃棄物投入用ホッパー2の外面の金属材及び内面に使用する部材を図4に示す。即ち、放射し廃棄物投入用ホッパー2は、外面全体に図4に示したステンレス鋼板部材2−1、このステンレス鋼板部材2−1の内面側全体に鉛板部材2−2、順次、タリウム板部材2−3及びジスプロシウム板部材2−4等を密着したホッパーとして、投入した放射性廃棄物からの放射線の外部への漏洩を防止している。  FIG. 4 shows a metal material on the outer surface of the radioactive waste charging hopper 2 shown in FIG. 1 and members used on the inner surface. That is, the radiating waste charging hopper 2 has a stainless steel plate member 2-1 shown in FIG. 4 on the entire outer surface, a lead plate member 2-2 on the entire inner surface side of the stainless steel plate member 2-1, and a thallium plate. As a hopper in which the member 2-3, the dysprosium plate member 2-4, and the like are in close contact with each other, leakage of radiation from the input radioactive waste is prevented.

放射性廃棄物投入用ホッパー2の内部に、放射性廃棄物そのままか、または任意形状に切断された放射性廃棄物を任意量投入した後、放射性廃棄物投入用ホッパー2に設置してある放射線検知装置23を使用して、どの種類の放射線を放射しているかを検知し、放射線の種類に応じて、カーボン粉体を貯蔵しているカーボン粉体ホッパー5、鉛粉体を貯蔵している鉛粉体ホッパー6、酸化チタン・ビスマス混成化粒体を貯蔵している酸化チタン・ビスマス混成化粒体ホッパー7、ジスプロニウム粉体を貯蔵しているジスプロニウム粉体ホッパー8、ガドリニウム粉体を貯蔵しているガドリニウム粉体ホッパー9、ハフニウム粉体を貯蔵しているハフニウム粉体ホッパー10及びロジウム粉体を貯蔵しているロジウム粉体ホッパー11等から、放射性を吸収減少するために必要とする放射線吸収粉体を廃棄物投入ホッパー2の内部に、各粉体が放射性廃棄物投入ホッパー2の内部に投入し易いように、任意角度の傾斜を有する傾斜管P1、P2を通して投入することで、放射性廃棄物からの放射線を減少させることである。また、放射線のエネルギー量の減少率は、図1及び図8に示した制御装置28に設けてある放射線表示器で表示される。  A radioactive ray detection device 23 installed in the radioactive waste injection hopper 2 after introducing an arbitrary amount of radioactive waste as it is or cut into an arbitrary shape into the radioactive waste injection hopper 2. Is used to detect which type of radiation is emitted, and depending on the type of radiation, carbon powder hopper 5 storing carbon powder, lead powder storing lead powder Hopper 6, Titanium oxide / bismuth hybrid granule hopper 7 storing titanium oxide / bismuth hybrid granule, Dyspronium powder hopper 8 storing dyspronium powder, Gadolinium storing gadolinium powder From a powder hopper 9, a hafnium powder hopper 10 storing hafnium powder, a rhodium powder hopper 11 storing rhodium powder, etc. Radiation absorbing powder required for absorbing and reducing the radiation properties is inclined at an arbitrary angle so that each powder can be easily put into the waste input hopper 2 and each powder is easily put into the radioactive waste input hopper 2. It is to reduce the radiation from the radioactive waste by introducing it through the inclined pipes P1 and P2. Further, the rate of decrease in the amount of radiation energy is displayed by a radiation indicator provided in the control device 28 shown in FIGS.

即ち、実施例としてアルファ線、ベータ線及びガンマ線に対しての安全性以上の放射線を放射しているとすれば、放射性廃棄物投入用ホッパー2の内部に、カーボン粉体ホッパー5、鉛粉体ホッパー6、酸化チタン・ビスマス混成化粉体ホッパー7又はジスプロニウム粉体ホッパー8等に接続している各管に設けてある各電磁弁V5、V6、V7またはV8等を順次、制御装置28によって、短時間の間隔で開放状態にして、各粉体を放射性廃棄物投入用ホッパー2の内部に投入して行き、放射性廃棄物投入用ホッパー2の内部及至外部まで設けてある放射線探知装置23の表示により、アルファ線、ベータ線、またはガンマ線等の放射線エネルギー量が減衰した時に、必要以外の粉体ホッパーに接続している電磁弁は、制御装置28によって閉鎖状にする。従って、各放射線のエネルギー量の減衰量を知ることができる。その場合の放射線エネルギー量は人体の安全規制値以下とすることでる。  That is, as an example, if radiation more than safe with respect to alpha rays, beta rays, and gamma rays is radiated, a carbon powder hopper 5 and lead powder are disposed inside the radioactive waste charging hopper 2. Each solenoid valve V5, V6, V7 or V8 provided in each pipe connected to the hopper 6, the titanium oxide / bismuth hybrid powder hopper 7 or the dyspronium powder hopper 8 is sequentially controlled by the control device 28. An indication of the radiation detector 23 provided inside and outside the radioactive waste injection hopper 2 is made in an open state at short intervals, and each powder is introduced into the radioactive waste injection hopper 2. When the amount of radiation energy such as alpha rays, beta rays, or gamma rays is attenuated, the solenoid valve connected to the powder hopper other than necessary is controlled by the control device 28. To the closed form. Therefore, the attenuation amount of the energy amount of each radiation can be known. In that case, the amount of radiation energy should be less than the human safety regulation value.

また、中性子線の場合は、ガドリニウム粉体ホッパー9、ハフニウム粉体ホッパー10及びロジウム粉体ホッパー11等のホッパーに接続してある各管に設けてある各電磁弁V9、V10及びV11等を上記のように順次、制御装置28によって、短時間の間隔で開放状態にして、各粉体を放射性廃棄物投入用ホッパー2の内部に投入して行き、放射性廃棄物投入用ホッパー2に設けてある放射線探知装置23の表示により、中性子線エネルギー量が減衰した時に、必要以外の粉体ホッパーに接続している管に設けた電磁弁は、制御装置28によって閉鎖状にする。従って、中性子線エネルギー量の減衰量は、人体の安全規制以下とすることである。  In the case of a neutron beam, the electromagnetic valves V9, V10, V11 and the like provided in the tubes connected to the hoppers such as the gadolinium powder hopper 9, the hafnium powder hopper 10, and the rhodium powder hopper 11 are described above. In this manner, the control device 28 sequentially opens the powder at short intervals, and each powder is introduced into the radioactive waste charging hopper 2 and provided in the radioactive waste charging hopper 2. When the amount of neutron beam energy is attenuated by the display of the radiation detector 23, the solenoid valve provided in the tube connected to the powder hopper other than that required is closed by the controller 28. Therefore, the amount of attenuation of the neutron beam energy amount should be less than the safety regulation of the human body.

上記のアルファ線、ベータ線、ガンマ線等と中性子線等が別々に放射していない場合は、電磁弁V5、V6、V7、V8、V9、V10及びV11を同時に作動して開放状態または閉鎖状態にして、各種の粉体を一種類、二種類、三種類等、希望による粉体を投入することができる。放射性廃棄物投入用ホッパー2内で各放射線エネルギーの減衰を確認した後、図1または図2に示す電気抵抗高温炉1の内部に、制御装置28によって投入用ダクト2Aに設けてある投入用開閉部2Cを開放状態にし、放射性廃棄物投入用ホッパー2の内部にある放射性廃棄物投を投入し、投入後、投入口開閉部2Cを閉鎖状にする。投入用ダクト2Aは図4に示すように、外面部材に任意厚のステンレス鋼板部材2−1、鉛板部材2−2、タリウム板部材2−3及びジスプロシウム板部材2−4を密接した構成にして、耐放射性を有している。また、投入口開閉部2Cは、耐熱・断熱材からなっており、温度2000℃まで使用できる特性を持っている。  When the above alpha, beta, gamma, and neutrons are not radiated separately, the solenoid valves V5, V6, V7, V8, V9, V10, and V11 are simultaneously operated to open or close. Thus, one kind, two kinds, three kinds, etc. of various kinds of powders can be charged as desired. After confirming the attenuation of each radiation energy in the radioactive waste charging hopper 2, the opening and closing for charging provided in the charging duct 2A by the control device 28 in the electric resistance high temperature furnace 1 shown in FIG. 1 or FIG. The part 2C is opened, the radioactive waste thrown inside the radioactive waste charging hopper 2 is charged, and the charging port opening / closing part 2C is closed after the charging. As shown in FIG. 4, the charging duct 2 </ b> A has a structure in which a stainless steel plate member 2-1, a lead plate member 2-2, a thallium plate member 2-3 and a dysprosium plate member 2-4 having an arbitrary thickness are in close contact with the outer surface member. And has radiation resistance. The inlet opening / closing part 2C is made of a heat-resistant and heat-insulating material and has a characteristic that can be used up to a temperature of 2000 ° C.

図1及び図2に示す電気抵抗高温炉1は、図3に示すように炉の外面部全体をステンレス鋼板部材1B−1を使用し、順次、内部に鉛板部材1B−2、タリウム板部材1B−3、ジスプロシウム板部材1B−4及び黒鉛板部材1B−5等を密接構成とした耐放射性特性を炉外面構成部1Bと、耐熱断熱煉瓦部材1A−1及びレニウム板部材1A−2とからなる温度2000℃に耐えられる特性を有した内部耐熱・断熱構成部1Aとからなると共に、炉底部の排出口開閉部1Dは、耐熱・断熱煉瓦部材1A1と上面部に任意層のレニウム板部材1Eとからなり、温度2000℃に耐えられる特性を有する。  As shown in FIG. 3, the electric resistance high temperature furnace 1 shown in FIG. 1 and FIG. 2 uses a stainless steel plate member 1B-1 for the entire outer surface portion of the furnace, and sequentially contains a lead plate member 1B-2 and a thallium plate member. 1B-3, the dysprosium plate member 1B-4, the graphite plate member 1B-5, and the like have the radiation resistance characteristics in close contact with each other from the furnace outer surface constituting portion 1B, the heat-resistant and heat-insulating brick member 1A-1 and the rhenium plate member 1A-2. And a heat-resistant / heat-insulating component 1A having a characteristic that can withstand a temperature of 2000 ° C., and a discharge port opening / closing part 1D at the bottom of the furnace includes a heat-resistant / heat-insulating brick member 1A1 and an arbitrary layer of rhenium plate member 1E. And has a characteristic that can withstand a temperature of 2000 ° C.

また、図1及び図2に示した電気抵抗高温炉1に接続している排気用ダクト1Gに接続してあるフィルタ14は、炉からの排気中に混入している微粒子に放射線または中性子線を放射しているこれ等の放射性または中性子の微粒子を吸収するカーボン細片、鉛細片、ジスプロシウム細片、酸化チタン・ビスマス混成化部材、ガドリニウム細片、ハフニウム細片及びロジウム細片等を封入しあり、このフィルタ14の排出部に接続してある排気管1Hに接続した放射線検知装置24を接続し、制御装置28で放射線、中性子線を監視して、できるだけ人体に対する規制値以下とすることである。また、次に接続してあるマイクロ波プラズマ装置16は、電気抵抗高温炉1から排気中の有害性ガスを無害性にするための装置である。また、マイクロ波プラズマ装置16の出力側に接続してある放射線検知装置26を制御装置28に接続して、マイクロ波プラズマ装置の出力ガス中に存在しているアルファ線、ベータ線、ガンマ線及び中性子線等の放射エネルギー量を測定している。マイクロ波プラズマ装置16からの排気は、排気用ファン17でスプリンクラー式排気処理装置18に送られて、スプリンクラー式排気処理装置18の内部に設けてある排気吸収体である活性炭材及びマグネシウム材及び水によって処理されて、処理後の排気は外部に排出される。このスプリンクラー式排気処理方法により、ダイオキシン、その他の有害排気は規制値以下となって外部に排出される。  Further, the filter 14 connected to the exhaust duct 1G connected to the electric resistance high temperature furnace 1 shown in FIGS. 1 and 2 applies radiation or neutron rays to the fine particles mixed in the exhaust from the furnace. Enclose carbon strips, lead strips, dysprosium strips, titanium oxide / bismuth hybrids, gadolinium strips, hafnium strips and rhodium strips that absorb these radioactive or neutron particulates. Yes, by connecting the radiation detection device 24 connected to the exhaust pipe 1H connected to the discharge portion of the filter 14, and monitoring the radiation and neutron rays with the control device 28 to make it below the regulation value for the human body as much as possible. is there. The microwave plasma device 16 connected next is a device for making harmful gas in the exhaust gas from the electric resistance high temperature furnace 1 harmless. Further, the radiation detection device 26 connected to the output side of the microwave plasma device 16 is connected to the control device 28, and alpha rays, beta rays, gamma rays and neutrons present in the output gas of the microwave plasma device. The amount of radiant energy such as wire is measured. Exhaust gas from the microwave plasma device 16 is sent to a sprinkler exhaust treatment device 18 by an exhaust fan 17, and an activated carbon material, a magnesium material, and water, which are exhaust absorbers provided inside the sprinkler exhaust treatment device 18. The processed exhaust gas is discharged to the outside. By this sprinkler type exhaust treatment method, dioxins and other harmful exhausts are discharged below the regulation value.

図5は電気抵抗高温炉1の上部平面図を示し、放射性廃棄物投入用ホッパー2から電気抵抗高温炉1の内部に投入するための投入用2Aの断面を示し、アクチュエータ30を使用して、アクチュエータ30に設けてある作動ピストン30Aで電気抵抗高温炉1に通ずる投入口2Bに通ずる投入用ダクト2Aの内部の投入口2Bに設けてある投入口開閉部2Cを開閉させることである。  FIG. 5 shows a top plan view of the electric resistance high temperature furnace 1, shows a cross section of the charging 2 </ b> A for charging the radioactive waste high temperature furnace 1 from the radioactive waste charging hopper 2, and using the actuator 30, The operation piston 30A provided in the actuator 30 opens and closes the input port opening / closing part 2C provided in the input port 2B inside the input duct 2A connected to the input port 2B connected to the electric resistance high temperature furnace 1.

電極21及び22間に流れる電流により、カーボン粉体・放射線処理混合物32が発生する温度を1500℃以上にすることができる。発生された温度により、熱処理された放射性廃棄物は完全燃焼、または溶解、気体化されることになる。また、発生した温度を上下に多少する場合は、電極21及び22に接続してあるアクチュエータ33を制御装置28により電極21及び22を同時に上下することで制御して、希望の温度とすることができる。炉の温度は、炉内に設けたレニウム板部材からの放射熱をレニウム・タングステン合金材センサをもって測定する。測定温度は最高2500℃である。従って、温度計測器34は、温抵抗値を利用していることになる。1500℃〜2000℃で熱処理された放射線処理混合物、即ち、放射性廃棄物は、原形の体積の二十分の一以下となり、金属性物質以外はカーボン体になるか気体化された状態になる。また、放射性廃棄物に付着していた各種の粉体は1500℃〜2000℃の温度で燃焼、溶解、または気体化されることになる。電極21及び22の外部に設けてある21C及び22は、電極21及び22の耐熱性電気的絶縁部材である。  Due to the current flowing between the electrodes 21 and 22, the temperature at which the carbon powder / radiation treatment mixture 32 is generated can be made 1500 ° C. or higher. Depending on the generated temperature, the heat-treated radioactive waste will be completely burned or dissolved and gasified. When the generated temperature is slightly increased or decreased, the actuator 33 connected to the electrodes 21 and 22 may be controlled by the controller 28 by simultaneously moving the electrodes 21 and 22 up and down to a desired temperature. it can. The temperature of the furnace is measured by using a rhenium / tungsten alloy material sensor for radiant heat from a rhenium plate member provided in the furnace. The maximum measurement temperature is 2500 ° C. Therefore, the temperature measuring instrument 34 uses the temperature resistance value. The radiation processing mixture heat-treated at 1500 ° C. to 2000 ° C., that is, the radioactive waste, becomes less than one-twentieth of the original volume, and becomes a carbon body or a gasified state except for the metallic substance. Moreover, the various powders adhering to the radioactive waste are burned, dissolved, or gasified at a temperature of 1500 ° C. to 2000 ° C. 21C and 22 provided outside the electrodes 21 and 22 are heat-resistant electrical insulating members for the electrodes 21 and 22, respectively.

電気抵抗高温炉1に設けた空気吸入用ダクト1Fは、図1に示した空気吸入用ファン19により外部の空気を炉内部空間部1Cに送入させるダクトである。従って、送入空気により、カーボン粉体・放射線処理混合物32の内、燃焼される廃棄物は完全燃焼状態となる。また、排気排出用ダクト1Gは、電気抵抗高温炉1の内部に発生した燃焼排気とカーボン粉体・放射線処理混合物32から発生した排気等を炉外部に設けてある排気処理システムに送り出すダクトである。  The air suction duct 1F provided in the electric resistance high temperature furnace 1 is a duct for sending external air into the furnace internal space 1C by the air suction fan 19 shown in FIG. Therefore, the waste to be combusted in the carbon powder / radiation treatment mixture 32 is completely burned by the air supplied. Further, the exhaust discharge duct 1G is a duct for sending combustion exhaust generated inside the electric resistance high temperature furnace 1 and exhaust generated from the carbon powder / radiation processing mixture 32 to an exhaust processing system provided outside the furnace. .

また、図6は、電気抵抗高温炉1の底面部に設けた任意層のレニウム板部材を固定した耐熱・断熱材からなる排出口開閉部1Dを設けた排出用ダクト2Dの平面の断面図を示し、アクチュエータ31の作動ピストン31Aで排出口開閉部1Dを開閉する。従って、排出口2−Eを開状にして、電気抵抗高温炉1の内部にある放射性廃棄物を処理した残滓物を排出用ダクト2−Dの排出口2−Eから次の機械混合撹拌機3の内部に入れる。  FIG. 6 is a plan sectional view of a discharge duct 2D provided with a discharge port opening / closing part 1D made of a heat-resistant and heat-insulating material to which an arbitrary layer of rhenium plate member provided on the bottom part of the electric resistance high temperature furnace 1 is fixed. The discharge port opening / closing part 1D is opened and closed by the operating piston 31A of the actuator 31. Therefore, the discharge port 2-E is opened, and the residue after processing the radioactive waste in the electric resistance high temperature furnace 1 is discharged from the discharge port 2-E of the discharge duct 2-D to the next mechanical mixing stirrer. Put inside 3.

図1及び図7に示す機械混合撹拌機3の外面は、図8に示すように外面全体をステンレス鋼板部材3−1からなり、内面に向かって、順次、タリウム板部材3−2、鉛板部材3−3、ジスプロシウム板部材3−4及びチタン金属板部材3−5からなる構造で、内部に混合撹拌板3Cを設けてある。  The outer surface of the mechanical mixing stirrer 3 shown in FIG. 1 and FIG. 7 consists of a stainless steel plate member 3-1, as shown in FIG. 8, and the thallium plate member 3-2, lead plate in order toward the inner surface. In the structure composed of the member 3-3, the dysprosium plate member 3-4 and the titanium metal plate member 3-5, the mixing stirring plate 3C is provided inside.

電気抵抗高温炉1から高温で処理した放射性廃棄物の残滓物を上記の機械混合撹拌機3の内部に排出用ダクト2−Dより入れられる。投入された放射性廃棄物の高温による処理後の残滓の放射状態は、放射線検知装置25によって検知され、制御装置28に放射線の有無が表示される。もし放射線、または中性子線の放射線が人体の規制値以上の場合は、制御装置28により、アルファ線、ベータ線、またはガンマ線の放射線の種類により、カーボン粉体、鉛粉体、酸化チタン・ビスマス混成化粉体、またはジスプロニウム粉体等の一部または複数の粉体を混合撹拌機3内に、電磁弁V15を開放状にして、任意の放射線吸収粉体を投入用ダクト3Aから投入して、放射線のエネルギーまたは量を人体の規制値以下にすることである。また、液体を使用して放射性廃棄物の残滓物を軟性状の練物体としたい場合は、酸化チタンを混入した溶化液体を酸化チタン液体ホッパー12から電磁弁V12及びV14を開放状態にして投入用ダクト3Bより機械混合撹拌機3の内部3Iに適当量を投入して、回転軸3Gに固定してある複数の混合撹拌板3Cによって、投入された各放射線を吸収または遮蔽する各粉体と電気抵抗高温炉1で処理された残滓物とが軟性状の練物体とすることができる。また、残滓物の中に中性子エネルギーを放射することが検知される場合は、ガドリニウム粉体、ハフニウム粉体及びロジウム粉体を順次投入するよう、ガドリニウム粉体ホッパー9、ハフニウム粉体ホッパー10、ロジウム粉体ホッパー11等の電磁弁V9、V10及びV11を順次開放し、電磁弁V14を開放して、上記の粉体を投入用ダクト3Bによって機械混合撹拌機3の内部に投入して、混合撹拌板3Cで混合撹拌して、中性子線の放射エネルギー量を減衰させる。上記の各放射線エネルギー量が人体に対する安全規制値になった時は、混合撹拌機3の運転を停止して、次の自動圧縮機4に投入する。  A residue of radioactive waste treated at high temperature from the electric resistance high temperature furnace 1 is put into the inside of the mechanical mixing stirrer 3 through the discharge duct 2-D. The radiation state of the residue after the high-temperature treatment of the input radioactive waste is detected by the radiation detection device 25, and the presence or absence of radiation is displayed on the control device. If the radiation or neutron radiation exceeds the regulation value of the human body, the controller 28 controls the carbon powder, lead powder, titanium oxide / bismuth hybrid depending on the type of alpha, beta or gamma radiation. Or a part or a plurality of powders such as dyspronium powder, the electromagnetic valve V15 is opened in the mixing stirrer 3, and any radiation absorbing powder is charged from the charging duct 3A. To reduce the energy or amount of radiation below the regulation value of the human body. In addition, when it is desired to use a liquid to make a radioactive waste residue as a soft kneaded object, a solubilized liquid mixed with titanium oxide is charged from the titanium oxide liquid hopper 12 with the solenoid valves V12 and V14 opened. An appropriate amount is charged into the interior 3I of the mechanical mixing stirrer 3 from the duct 3B, and each powder and electricity that absorbs or shields the input radiation by a plurality of mixing stirring plates 3C fixed to the rotating shaft 3G. The residue processed in the resistance high-temperature furnace 1 can be a soft kneaded body. Further, when it is detected that neutron energy is radiated into the residue, gadolinium powder hopper 9, hafnium powder hopper 10, rhodium is used so that gadolinium powder, hafnium powder and rhodium powder are sequentially introduced. The electromagnetic valves V9, V10 and V11 such as the powder hopper 11 are sequentially opened, the electromagnetic valve V14 is opened, and the powder is introduced into the mechanical mixing agitator 3 through the charging duct 3B, and mixed and stirred. Mixing and stirring are performed with the plate 3C to attenuate the amount of radiant energy of the neutron beam. When each of the above-mentioned radiation energy amounts reaches the safety regulation value for the human body, the operation of the mixing agitator 3 is stopped and put into the next automatic compressor 4.

機械撹拌機3に設けてある排出ダクト3Dより、自動圧縮機4に投入された混合撹拌物を規定の圧力をもって圧縮し、保管用の空キャニスタBの内に圧縮された混合撹拌物を投入し、規定量投入された後は、キャニスタAのように前方向にベルトコンベア29によって目的の保管場所まで移動される。また、別の空キャニスタC及びDは順次、圧縮された混合撹拌物を投入されることになる。電動機29Aはベルトコンベア29の運転用である。前記キャニスタA〜D等は、外面全体を任意厚のステンレス鋼板部材を使用し、内面に任意厚のチタン金属板部材を密着したことを特徴としている。  From the discharge duct 3D provided in the mechanical agitator 3, the mixed agitated material charged into the automatic compressor 4 is compressed with a specified pressure, and the compressed mixed agitated material is charged into an empty canister B for storage. After the specified amount has been charged, it is moved forward to the intended storage location by the belt conveyor 29 like the canister A. The other empty canisters C and D are sequentially charged with the compressed mixed agitated material. The electric motor 29 </ b> A is for driving the belt conveyor 29. The canisters A to D and the like are characterized in that a stainless steel plate member having an arbitrary thickness is used for the entire outer surface, and a titanium metal plate member having an arbitrary thickness is adhered to the inner surface.

本発明の実施形態を示す放射性廃棄物処理システムのブロックダイアグラム図  The block diagram figure of the radioactive waste processing system which shows embodiment of this invention 電気抵抗高温炉の断面図  Cross section of electric resistance high temperature furnace 電気抵抗高温炉の外面及び順次内側に使用した部材及び耐熱・断熱部材の一断面図  Cross-sectional view of members and heat- and heat-insulating members used on the outer surface and the inner side of the electric resistance high-temperature furnace 放射性廃棄物投入用ホッパーの外面及び順次内側に使用した部材一断面図  Cross-sectional view of members used on the outer surface and the inner side of the radioactive waste hopper 電気抵抗高温炉の上面図及びアクチュエータ表示図  Top view of electric resistance high temperature furnace and actuator display diagram 電気抵抗高温炉の底面図及びアクチュエータ表示図  Bottom view of electric resistance high temperature furnace and actuator display diagram 機械混合撹拌機の断面図  Cross section of mechanical mixing stirrer 機械混合撹拌機の外面及び順次内側に使用した部材の一断面図  Cross-sectional view of members used on the outer surface and the inner side of the mechanical mixer 電気抵抗高温炉の電極に通電するための電気回路図  Electrical circuit diagram for energizing the electrode of the electric resistance high temperature furnace 各電磁弁の作動用電気回路及び各放射線検知装置及び電極作動用アクチュエータの電気回路表示図  Electric circuit display diagram of each electromagnetic valve operation electric circuit, each radiation detection device and electrode operation actuator

符号の説明Explanation of symbols

1 電気抵抗高温炉
1A 内部耐熱・断熱構成部
1A−1耐熱・断熱煉瓦部材
1A−2レニウム板部材
1B 炉外面構成部
1B−1ステンレス鋼板部材
1B−2鉛板部材
1B−3タリウム板部材
1B−4ジスプロシウム板部材
1B−5黒鉛板部材
1C 炉内空間部
1D 排出口開閉部
1E レニウム板部材
1F 空気吸入用ダクト
1G 排気用ダクト
1H 排出管
2 放射性廃棄物投入用ホッパー
2A 投入用ダクト
2B 投入口
2C 投入口開閉部
2D 排出用ダクト
2E 排出口
2−1 ステンレス鋼板部材
2−2 鉛板部材
2−3 タリウム板部材
2−4 ジスプロシウム板部材
3 機械混合撹拌機
3A 投入用ダクト
3B 投入用ダクト
3C 混合撹拌板
3D 排出用ダクト
3E 内部
3F 開閉部
3G 回転軸
3H 軸受
3I 内部
3−1 ステンレス鋼板部材
3−2 タリウム板部材
3−3 鉛板部材
3−4 ジスプロシウム板部材
3−5 チタン金属板部材
4 自動圧縮機
5 カーボン粉体ホッパー
5A カーボン粉体投入用ダクト
6 鉛粉体ホッパー
7 酸化チタン・ビスマス混成化粉体ホッパー
8 ジスプロシウム粉体ホッパー
9 ガドリニウム粉体ホッパー
10 ハフニウム粉体ホッパー
11 ロジウム粉体ホッパー
12 酸化チタン溶化液ホッパー
14 フィルタ
15 排気用ファン
16 マイクロ波プラズマ装置
17 排気用ファン
18 スプリンクラー式排気処理装置
21 電極
21A 導体接続部
21B 導体線
21C 耐熱性電気的絶縁部材
22 電極
22A 導体接続部
22B 導体線
22C 耐熱性電気的絶縁部材
23 放射線検知装置
24 放射線検知装置
25 放射線検知装置
26 放射線検知装置
28 制御装置
29 ベルトコンベア
29A 電動機
30 アクチュエータ
30A 作動ピストン
31 アクチュエータ
31A 作動ピストン
32 カーボン粉体・放射線処理混合物
33 アクチュエータ
34 温度計測センサ
35 負荷開閉器
36 変圧器
37 電圧計
38 電流計
A キャニスタ
B キャニスタ
C キャニスタ
D キャニスタ
P1 傾斜管
P2 傾斜管
V5 電磁弁
V6 電磁弁
V7 電磁弁
V8 電磁弁
V9 電磁弁
V10 電磁弁
V11 電磁弁
V12 電磁弁
V13 電磁弁
V14 電磁弁
V15 電磁弁
DESCRIPTION OF SYMBOLS 1 Electric resistance high temperature furnace 1A Internal heat-resistant / heat insulation component 1A-1 Heat-resistant / heat-insulated brick member 1A-2 Rhenium plate member 1B Furnace outer surface component 1B-1 Stainless steel plate member 1B-2 Lead plate member 1B-3 Thallium plate member 1B -4 Dysprosium plate member 1B-5 Graphite plate member 1C Furnace space 1D Drain opening / closing portion 1E Rhenium plate member 1F Air intake duct 1G Exhaust duct 1H Discharge pipe 2 Radioactive waste input hopper 2A Input duct 2B Input 2C outlet 2C outlet duct 2E outlet 2-1 stainless steel plate member 2-2 lead plate member 2-3 thallium plate member 2-4 dysprosium plate member 3 mechanical mixing agitator 3A input duct 3B input duct 3C mixing stirring plate 3D discharge duct 3E inside 3F opening and closing part 3G rotating shaft 3H bearing 3I inside 3-1 stainless steel plate member 3-2 TARIU Plate member 3-3 Lead plate member 3-4 Dysprosium plate member 3-5 Titanium metal plate member 4 Automatic compressor 5 Carbon powder hopper 5A Carbon powder charging duct 6 Lead powder hopper 7 Titanium oxide / bismuth hybrid Powder hopper 8 Dysprosium powder hopper 9 Gadolinium powder hopper 10 Hafnium powder hopper 11 Rhodium powder hopper 12 Titanium oxide solution hopper 14 Filter 15 Exhaust fan 16 Microwave plasma device 17 Exhaust fan 18 Sprinkler type exhaust treatment device 21 Electrode 21A Conductor connection portion 21B Conductor wire 21C Heat resistant electrical insulation member 22 Electrode 22A Conductor connection portion 22B Conductor wire 22C Heat resistant electrical insulation member 23 Radiation detection device 24 Radiation detection device 25 Radiation detection device 26 Radiation detection device 28 Control Device 29 Beltcon A 29A Electric motor 30 Actuator 30A Actuating piston 31 Actuator 31A Actuating piston 32 Carbon powder / radiation treatment mixture 33 Actuator 34 Temperature measurement sensor 35 Load switch 36 Transformer 37 Voltmeter 38 Ammeter A Canister B Canister C Canister D Canister P1 Inclination Pipe P2 Tilting pipe V5 Solenoid valve V6 Solenoid valve V7 Solenoid valve V8 Solenoid valve V9 Solenoid valve V10 Solenoid valve V12 Solenoid valve V12 Solenoid valve V13 Solenoid valve V14 Solenoid valve V15 Solenoid valve

Claims (7)

外面全体を任意厚のステンレス鋼板部材(2−1)の内面に、順次、任意厚の鉛板部材(2−2)、タリウム板部材(2−3)及びジスプロシウム板部材(2−4)等を密着した放射性廃棄物投入用ホッパー(2)に任意の傾斜を有する傾斜管(P1)及び(P2)を接続し、前記傾斜管(P1)に、順次、電磁弁(V5)を有する管を接続したカーボン粉体ホッパー(5)、電磁弁(V6)を有する管を接続した鉛粉体ホッパー(6)、電磁弁(7)を有する管を接続した酸化チタン・ビスマス混成化粉体ホッパー(7)及び電磁弁(V8)を有する管を接続したジスプロシウム粉体ホッパー(8)等を接続し、前記傾斜管(P2)に、順次、電磁弁(9)を有する管を接続したガドリニウム粉体ホッパー(9)、電磁弁(10)を有する管を接続したハフニウム粉体ホッパー(10)、電磁弁(11)を有する管を接続したロジウム粉体ホッパー(11)及び電磁弁(V12)を有する管を接続した酸化チタン溶化液ホッパー(12)等からなる貯蔵システムを設けた放射性廃棄物処理システム。  Arbitrarily thick lead plate member (2-2), thallium plate member (2-3), dysprosium plate member (2-4), etc. An inclined pipe (P1) and (P2) having an arbitrary inclination are connected to the radioactive waste charging hopper (2) in close contact with the pipe, and a pipe having an electromagnetic valve (V5) is sequentially connected to the inclined pipe (P1). Connected carbon powder hopper (5), lead powder hopper (6) connected to a pipe having a solenoid valve (V6), titanium oxide / bismuth hybrid powder hopper (to which a pipe having a solenoid valve (7) is connected ( 7) and a dysprosium powder hopper (8) connected with a pipe having a solenoid valve (V8), etc., and a gadolinium powder with a pipe having a solenoid valve (9) sequentially connected to the inclined pipe (P2). Has hopper (9), solenoid valve (10) A hafnium powder hopper (10) connected to a pipe, a rhodium powder hopper (11) connected to a pipe having a solenoid valve (11), a titanium oxide solution hopper (12) connected to a pipe having a solenoid valve (V12), etc. A radioactive waste treatment system provided with a storage system comprising: 外壁部全体に任意厚のステンレス鋼板部材(1B−1)、内側に順次、任意厚の鉛板部材(1B−2)、タリウム板部材(1B−3)、ジスプロシウム板部材(1B−4)及び黒鉛板部材(1B−5)等を密着した炉外壁構成部(1B)と前記黒鉛板部材(1B−5)の内側に耐熱及び断熱性を有する耐熱・断熱煉瓦部材(1A−1)と、この耐熱・断熱煉瓦部材(1A−1)の外面にレニウム板部材(1A−2)を密着した内部耐熱・断熱構成部(1A)とからなる電気抵抗高温炉(1)を設けた放射性廃棄物処理システム。  Arbitrary thickness stainless steel plate member (1B-1) on the entire outer wall portion, inner lead plate member (1B-2), thallium plate member (1B-3), dysprosium plate member (1B-4) and A furnace outer wall constituent part (1B) in close contact with a graphite plate member (1B-5) and the like, and a heat-resistant and heat-insulating brick member (1A-1) having heat resistance and heat insulation inside the graphite plate member (1B-5), A radioactive waste provided with an electric resistance high temperature furnace (1) comprising an internal heat and heat insulation component (1A) in which a rhenium plate member (1A-2) is adhered to the outer surface of the heat and heat insulation brick member (1A-1). Processing system. カーボン粉体投入用ダクト(5A)と、前記炉外壁構成部(1B)及び耐熱・断熱煉瓦部材(1A−1)からなる放射性廃棄物の投入口(2B)を有する投入用ダクト(2A)に、アクチュエータ(30)によって開閉作動をする耐熱・断熱煉瓦材からなる投入口開閉部(2C)を設けた投入用ダクト(2A)の任意箇所に、前記電気抵抗高温炉(1)の内部に投入するためのカーボン粉体投入用ダクト(5A)を設け、アクチュエータ(31)によって開閉作動をする上面部に任意厚のレニウム板部材(1E)を固定した耐熱・断熱煉瓦部材(1A−1)からなる排出口開閉部(1D)を設け、任意位置に空気の吸入用ダクト(1F)と排気用ダクト(1G)とを前記電気抵抗高温炉(1)に設けてなる放射性廃棄物処理システム。  A carbon powder charging duct (5A) and a charging duct (2A) having a radioactive waste charging port (2B) composed of the furnace outer wall constituent part (1B) and a heat-resistant and heat-insulating brick member (1A-1) The inside of the electric resistance high temperature furnace (1) is inserted into an arbitrary portion of the charging duct (2A) provided with the inlet opening / closing part (2C) made of heat-resistant and heat-insulating brick material that is opened and closed by the actuator (30). A heat-resistant and heat-insulating brick member (1A-1) provided with a carbon powder charging duct (5A) for fixing, and an rhenium plate member (1E) of an arbitrary thickness fixed to the upper surface portion that is opened and closed by an actuator (31) A discharge port opening / closing section (1D), and a radioactive waste treatment system in which an air suction duct (1F) and an exhaust duct (1G) are provided at an arbitrary position in the electric resistance high-temperature furnace (1). 外面全体に任意厚のステンレス鋼板部材(3−1)の内面に、順次、任意厚のタリウム板部材(3−2)、鉛板部材(3−3)、ジスプロシウム(3−4)及びチタン金属部材(3−5)等を密着し、前記電気抵抗高温炉(1)の底面部に設けた排出用ダクト(2D)を機械混合撹拌機(3)の上部に接続し、カーボン粉体ホッパー(5)、鉛粉体ホッパー(6)、酸化チタン・ビスマス混成化粉体ホッパー(7)及びジスプロシウム粉体ホッパー(8)等に接続している投入用ダクト(3A)と、ガドリニウム粉体ホッパー(9)、ハフニウム粉体ホッパー(10)、ロジウム粉体ホッパー(11)及び酸化チタン溶化液ホッパー(12)等に接続している傾斜管(P2)から電磁弁(V14)を通して、前記各ホッパーからの粉体を投入する投入用ダクト(3B)と、前記機械混合撹拌機(3)の内部(3I)に、回転軸(3H)に固定した複数の混合撹拌板(3C)と前記機械混合撹拌機(3)の底部に排出用ダクト(3D)等を設けた前記機械混合撹拌機(3)を設けた放射性廃棄物処理システム。  Arbitrarily thick thallium plate member (3-2), lead plate member (3-3), dysprosium (3-4) and titanium metal on the inner surface of stainless steel plate member (3-1) of arbitrary thickness over the entire outer surface A member (3-5) or the like is brought into close contact, and a discharge duct (2D) provided at the bottom of the electric resistance high temperature furnace (1) is connected to an upper portion of the mechanical mixing stirrer (3), and a carbon powder hopper ( 5), lead powder hopper (6), titanium oxide / bismuth hybrid powder hopper (7), dysprosium powder hopper (8) and other connecting ducts (3A), gadolinium powder hopper ( 9) From the inclined pipe (P2) connected to the hafnium powder hopper (10), the rhodium powder hopper (11), the titanium oxide solution hopper (12), etc., through the solenoid valve (V14), from each of the hoppers. Of powder A plurality of mixing stirring plates (3C) fixed to a rotating shaft (3H) and a mechanical mixing stirrer (3) of the charging duct (3B) and the inside (3I) of the mechanical mixing stirrer (3). A radioactive waste treatment system provided with the mechanical mixing stirrer (3) provided with a discharge duct (3D) or the like at the bottom. 前記電気抵抗高温炉(1)の排気用ダクト(1G)に、カーボン細片、鉛細片、ジスプロシウム細片、酸化チタン・ビスマス混成化部材、ガドリニウム細片、ハフニウム細片及びロジウム細片等を封入したフィルタ(14)を接続し、このフィルタ(14)の排気用ダクト(1G)に放射線検知装置(24)を接続し、この排気用ダクト(14)の終端部に排気用ファン(15)を介してマイクロ波プラズマ装置(16)を接続し、前記マイクロ波プラズマ装置(16)の終端部に放射線検知装置(26)を接続し、排気用ファン(17)を介してスプリンクラー式排気装置(18)を接続した前記電気抵抗高温炉(1)の排気処理システムを設けた放射性廃棄物処理システム。  Carbon strip, lead strip, dysprosium strip, titanium oxide / bismuth hybrid member, gadolinium strip, hafnium strip, rhodium strip, etc., in the exhaust duct (1G) of the electric resistance high temperature furnace (1) The enclosed filter (14) is connected, the radiation detector (24) is connected to the exhaust duct (1G) of the filter (14), and the exhaust fan (15) is connected to the end of the exhaust duct (14). A microwave plasma device (16) is connected via a radiation detector, a radiation detection device (26) is connected to the end of the microwave plasma device (16), and a sprinkler type exhaust device (17) is connected via an exhaust fan (17). A radioactive waste treatment system provided with an exhaust treatment system of the electric resistance high temperature furnace (1) to which 18) is connected. 前記機械混合撹拌機(3)の底面に設けた排気用ダクト(3D)より、放射性廃棄物を順次、電気抵抗高温炉(1)及び機械混合撹拌機(3)等で処理した放射性廃棄物の混合撹拌物を任意形状に圧縮する自動圧縮機(4)と圧縮された前記放射性廃棄物の混合撹拌物を封入保管用の任意数のキャニスタを移動するベルトコンベア(29)を設けてなる放射性廃棄物処理システム。  From the exhaust duct (3D) provided on the bottom surface of the mechanical mixing stirrer (3), the radioactive waste processed in the electric resistance high temperature furnace (1), the mechanical mixing stirrer (3), etc. Radioactive waste comprising an automatic compressor (4) for compressing the mixed agitated material into an arbitrary shape and a belt conveyor (29) for moving an arbitrary number of canisters for enclosing and storing the mixed agitated material of the compressed radioactive waste Material processing system. 各ホッパーの接続管に接続している各電磁弁(V5)、(V6)、(V7)、(V8)、(V9)、(V10)、(V11)及び(V12)と粉体投入用の各電磁弁(V13)、(V14)及び(V15)と各放射線検知装置(23)、(24)、(25)及び(26)と電極(21)及び(22)を可動させるアクチュエータ(33)と前記電気抵抗高温炉(1)に設けた温度計測センサ(34)とを電気的に接続された制御装置(28)を設けた放射性廃棄物処理システム。  Each solenoid valve (V5), (V6), (V7), (V8), (V9), (V10), (V11) and (V12) connected to the connecting pipe of each hopper and for powder injection Actuators (33) for moving the solenoid valves (V13), (V14) and (V15), the radiation detection devices (23), (24), (25) and (26) and the electrodes (21) and (22) A radioactive waste processing system provided with a control device (28) electrically connected to a temperature measuring sensor (34) provided in the electric resistance high temperature furnace (1).
JP2008271394A 2008-09-24 2008-09-24 Radioactive waste treatment system Pending JP2010078578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008271394A JP2010078578A (en) 2008-09-24 2008-09-24 Radioactive waste treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008271394A JP2010078578A (en) 2008-09-24 2008-09-24 Radioactive waste treatment system

Publications (1)

Publication Number Publication Date
JP2010078578A true JP2010078578A (en) 2010-04-08

Family

ID=42209186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008271394A Pending JP2010078578A (en) 2008-09-24 2008-09-24 Radioactive waste treatment system

Country Status (1)

Country Link
JP (1) JP2010078578A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111463A1 (en) * 2011-02-15 2012-08-23 富士電機株式会社 Resin volume reduction treatment system and resin volume reduction treatment method
JP2016142531A (en) * 2015-01-29 2016-08-08 三菱日立パワーシステムズ株式会社 Combustion system and combustion system operation method
CN107435935A (en) * 2016-05-27 2017-12-05 深圳市汇清科技股份有限公司 Incinerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111463A1 (en) * 2011-02-15 2012-08-23 富士電機株式会社 Resin volume reduction treatment system and resin volume reduction treatment method
JP5168437B2 (en) * 2011-02-15 2013-03-21 富士電機株式会社 Resin volume reduction treatment system and resin volume reduction treatment method
US9040767B2 (en) 2011-02-15 2015-05-26 Fuji Electric Co., Ltd. Resin volume reduction processing system and resin volume reduction processing method
JP2016142531A (en) * 2015-01-29 2016-08-08 三菱日立パワーシステムズ株式会社 Combustion system and combustion system operation method
CN107435935A (en) * 2016-05-27 2017-12-05 深圳市汇清科技股份有限公司 Incinerator

Similar Documents

Publication Publication Date Title
US8905909B2 (en) System for filling a container with hazardous waste
US8993989B1 (en) Apparatuses and methods employing multiple layers for attenuating ionizing radiation
EP1394813A2 (en) Cement composite, concrete, concrete cask and method of manufacturing concrete
JP2010078578A (en) Radioactive waste treatment system
CN104575647B (en) Radioactive waste resin shielding transfer method and device
EP2977990B1 (en) Coating type radiation-shielding material and radiation-shielding elastomeric material
JP2013516612A (en) Multi-layer lightweight clothing material that provides scattered radiation protection with low radiation accumulation
KR100738123B1 (en) Radiation Shielding Case for CT Apparatus
CN111153643A (en) Shielding material for shielding radioactive ray and preparation method thereof
JP2008082779A (en) Complex type waste object confirming system
CN108648844A (en) A kind of novel spentnuclear fuel transporting equipment
TR201710896T1 (en) Method of loading raw material into blast furnace.
CN110785820A (en) X-ray radiation shielding device
JP6701104B2 (en) Mechanical seal condition monitoring system and mechanical seal condition monitoring method
US20120219100A1 (en) Iodine-125 production system and method
CN1946991A (en) Transceiver unit, apparatus, system and method for detecting the level of waste in a furnace
EP1600985A2 (en) Radiation shields and methods of making the same
JP2002221600A (en) Target for irradiation system, and irradiation system
JP3820503B2 (en) Method and apparatus for decontamination of tritium contaminated metals
CN111603623A (en) Automatic continuous medical blood irradiation equipment and blood irradiation treatment method
CN216026962U (en) Novel fume chamber
You et al. Design and construction of an advanced spent fuel conditioning process facility (ACPF)
Jung et al. Radiation shielding design of the PAL-XFEL
KR810001514B1 (en) Nuclear fuel element leak detection system
KR100314998B1 (en) Composition for radiation shield

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20100423

Free format text: JAPANESE INTERMEDIATE CODE: A711

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100423

A521 Written amendment

Effective date: 20100526

Free format text: JAPANESE INTERMEDIATE CODE: A523