JP2010078375A - Radio active sensor - Google Patents

Radio active sensor Download PDF

Info

Publication number
JP2010078375A
JP2010078375A JP2008244779A JP2008244779A JP2010078375A JP 2010078375 A JP2010078375 A JP 2010078375A JP 2008244779 A JP2008244779 A JP 2008244779A JP 2008244779 A JP2008244779 A JP 2008244779A JP 2010078375 A JP2010078375 A JP 2010078375A
Authority
JP
Japan
Prior art keywords
radio wave
frequency
reception
active sensor
circuit unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008244779A
Other languages
Japanese (ja)
Other versions
JP5212941B2 (en
Inventor
Tamami Ono
たまみ 小野
Tadashi Murakami
忠 村上
Shigeo Goshima
成夫 五島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008244779A priority Critical patent/JP5212941B2/en
Publication of JP2010078375A publication Critical patent/JP2010078375A/en
Application granted granted Critical
Publication of JP5212941B2 publication Critical patent/JP5212941B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radio active sensor in which a radio wave is not remarkably attenuated, and deterioration in sensor performance does not occur even when the thickness of an outer case and an installation distance are of low accuracy. <P>SOLUTION: The active sensor reads one frequency out of a plurality of prestored test frequencies (S1), transmits a radio wave from a transmitting antenna with the frequency and receives a reception radio wave (S2), reads the reception level of the reception radio wave only in a period of time during which an object is not detected (S3), stores the average value of the read reception levels (S4), repeats the processes S1 to S4 for all the test frequencies (YES in S5), and selects a test frequency when the average value of the reception levels reaches a maximum as an operating frequency (S6). A detection operation is thereafter performed with the selected frequency. Thereby, a radio wave is not remarkably attenuated due to the thickness of an outer case, and deterioration in sensor performance does not occur even when the thickness of the outer case and the installation distance are of low accuracy. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電波式アクティブセンサに関する。   The present invention relates to a radio wave type active sensor.

従来から、電波のドップラ効果を利用して建物や部屋内への人の出入りを検知するアクティブセンサが知られている(例えば、特許文献1参照)。この種のアクティブセンサは、電気回路部分を埃や衝撃等から保護するため及び外観を整えるために、アンテナを含む電気回路部分の全体が外装ケース内に収納されている。
特開2006−244777号公報
2. Description of the Related Art Conventionally, an active sensor that detects a person entering or exiting a building or room using a radio wave Doppler effect is known (for example, see Patent Document 1). In this type of active sensor, the entire electric circuit portion including the antenna is housed in an outer case in order to protect the electric circuit portion from dust, impact, and the like and to adjust the appearance.
JP 2006-244777 A

ところが、上記のようにアンテナ自体を外装ケース内に収納すると、外装ケース自体が電波の障害物となるので、送受信する電波の電力レベルが外装ケースを透過するときに減衰する。電波の電力レベルが減衰すると、検知距離が短くなるといったセンサ性能の低下を招く。   However, when the antenna itself is housed in the outer case as described above, the outer case itself becomes an obstacle to radio waves, so that the power level of the transmitted and received radio waves is attenuated when passing through the outer case. When the power level of the radio wave is attenuated, the sensor performance is lowered such that the detection distance is shortened.

一方、電波が障害物を透過するときの電力レベルの減衰量は、電波の波長をλとしたとき、アンテナから障害物までの距離及び障害物の厚みが、λ/4の整数倍(波長の腹,節)になる場合、特に大きくなることが知られている。これは、上記の場合には、媒体の境界面での反射波が定在波になり、電波を干渉し易いためである。   On the other hand, the attenuation of the power level when the radio wave passes through the obstacle is such that the distance from the antenna to the obstacle and the thickness of the obstacle are integral multiples of λ / 4 (the wavelength It is known that it becomes particularly large when it becomes an abdomen. This is because in the above case, the reflected wave at the boundary surface of the medium becomes a standing wave and easily interferes with radio waves.

そこで、上記の外装ケースによる減衰の影響を極力抑えるために、アクティブセンサの製造時に、アンテナから外装ケースまでの距離及び外装ケースの厚みが、λ/4の整数倍を外れるように組み立てることが考えられる。   Therefore, in order to suppress the influence of attenuation due to the above-described outer case as much as possible, it is considered that the distance from the antenna to the outer case and the thickness of the outer case are assembled so as to deviate from an integral multiple of λ / 4 when manufacturing the active sensor. It is done.

図5(a)は、外装ケース101のアンテナ102からの設置距離d1、及び外装ケース101の厚みt1が電波wのλ/4の整数倍になる場合を示し、図5(b)は、外装ケース101のアンテナ102からの設置距離d2、及び外装ケース101の厚みt2がλ/4の整数倍を外れる場合を示す。図5(a)に示す状態では、アンテナ102から放出された電波wの節が外装ケース101と空気の境界面103に位置するので、境界面103による反射波が定在波になって電波wを干渉し、また、外装ケース101に進入した電波wの腹が他側の境界面104に位置するので、境界面104による反射波が外装ケース101内において定在波になって外装ケース101内を進む電波wを干渉する。一方、図5(b)に示す状態では、境界面103の位置に電波wの腹、又は節がないので、アンテナ102とケース101との間の空間、及びケース101の内部に定在波が発生せず、電波が大きく減衰することがない。   FIG. 5A shows a case where the installation distance d1 of the outer case 101 from the antenna 102 and the thickness t1 of the outer case 101 are an integral multiple of λ / 4 of the radio wave w. FIG. The case where the installation distance d2 from the antenna 102 of the case 101 and the thickness t2 of the exterior case 101 are out of an integral multiple of λ / 4 is shown. In the state shown in FIG. 5A, since the node of the radio wave w emitted from the antenna 102 is located at the boundary surface 103 between the outer case 101 and the air, the reflected wave from the boundary surface 103 becomes a standing wave and the radio wave w , And the antinode of the radio wave w that has entered the outer case 101 is located on the other boundary surface 104, so that the reflected wave from the boundary surface 104 becomes a standing wave in the outer case 101, and Interfering with the radio wave w traveling through On the other hand, in the state shown in FIG. 5B, since there is no antinode or node of the radio wave w at the position of the boundary surface 103, standing waves are generated in the space between the antenna 102 and the case 101 and in the case 101. It does not occur and radio waves do not attenuate significantly.

しかしながら、人検知用のアクティブセンサにあっては、用いられる電波が主にミリ波帯であるので、例えば波長λが12.5mmの電波を用いる場合は、λ/4≒3.1mmになり、大きな減衰を生じさせないようにするためには外装ケースの厚みを1mm程度の精度で成形すると共に、設置距離も1mm程度の精度で調整しなければならない。このように、外装ケースを高い精度で成形し、組み立てるには煩雑な調整が必要になり、コスト高となる。   However, in the active sensor for human detection, since the radio wave used is mainly in the millimeter wave band, for example, when using a radio wave with a wavelength λ of 12.5 mm, λ / 4≈3.1 mm, In order to prevent large attenuation, the thickness of the outer case must be formed with an accuracy of about 1 mm, and the installation distance must be adjusted with an accuracy of about 1 mm. As described above, complicated adjustment is required to form and assemble the outer case with high accuracy, resulting in high cost.

そこで、本発明は、上記課題を解決するものであり、製造時に煩雑な調整を行う必要がなく、外装ケースの厚みや設置距離が低い精度であっても、送受信する電波の電力レベルが大きく減衰することがなく、検知距離が短くなるといったセンサ性能の低下を招くことがない電波式アクティブセンサを提供することを目的とする。   Therefore, the present invention solves the above-described problems, and does not require complicated adjustments during manufacturing, and the power level of radio waves transmitted and received is greatly attenuated even when the thickness of the outer case and the installation distance are low. It is an object of the present invention to provide a radio wave type active sensor that does not cause deterioration in sensor performance such as a detection distance being shortened.

上記目的を達成するために、請求項1の発明は、送信電波を生成する送信回路部と、検知対象物により反射された電波を受信する受信回路部と、を備え、送信電波と受信電波の周波数差に基づいて対象物を検知する電波式アクティブセンサにおいて、前記送信回路部により生成される電波の周波数を複数に設定し、逐次、複数の周波数の電波を送信させると共に、これら各周波数での前記受信回路部による受信電波の強度を調べ、最も強度の高い周波数を動作周波数として選択する選択手段を備え、前記選択手段により選択した動作周波数でもって検知対象物の検知動作を行うようにしたことを特徴とする。   In order to achieve the above object, the invention of claim 1 includes a transmission circuit unit that generates a transmission radio wave and a reception circuit unit that receives a radio wave reflected by the object to be detected. In a radio wave type active sensor that detects an object based on a frequency difference, a plurality of radio wave frequencies generated by the transmission circuit unit are set, and radio waves of a plurality of frequencies are sequentially transmitted. Checking the intensity of the radio wave received by the receiving circuit unit, comprising a selection means for selecting the highest frequency as the operating frequency, and performing the detection operation of the detection object at the operating frequency selected by the selection means. It is characterized by.

請求項2の発明は、請求項1に記載の電波式アクティブセンサにおいて、前記選択手段は、受信電波の周波数の変動が少ないときに電波強度を調べることを特徴とする。   According to a second aspect of the present invention, in the radio wave type active sensor according to the first aspect, the selection means examines the radio wave intensity when the fluctuation of the frequency of the received radio wave is small.

請求項1の発明によれば、複数の周波数の電波を逐次送信し、受信電波の強度が最も高い周波数を動作周波数とするので、外装ケースの厚みや設置距離が低い精度であっても、検知動作時に電波が大きく減衰することがなく、検知距離が短くなるといったセンサ性能の低下を招くことがない。   According to the first aspect of the present invention, radio waves having a plurality of frequencies are sequentially transmitted, and the frequency with the highest received radio wave intensity is set as the operating frequency. During operation, the radio wave is not greatly attenuated, and the sensor performance is not deteriorated such that the detection distance is shortened.

請求項2の発明によれば、受信電波の状態が安定しているときに電波強度を調べることになるので、最も強度の高い周波数をより正しく判定することができ、ひいては電波の減衰を抑制するための周波数をより適正に選択することができる。   According to the invention of claim 2, since the radio wave intensity is checked when the state of the received radio wave is stable, the highest-intensity frequency can be determined more correctly, and thus the attenuation of the radio wave is suppressed. Frequency can be selected more appropriately.

以下、本発明の一実施形態に係る電波式アクティブセンサ(以下、センサ)について、図1乃至図4を参照して説明する。本実施形態のセンサ1は、図1に示すように、部屋内の人(検知対象物)2の存在を検知したときに照明器具3を自動点灯させる照明制御システム4の人感センサとして用いられる。   Hereinafter, a radio wave type active sensor (hereinafter referred to as a sensor) according to an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the sensor 1 of the present embodiment is used as a human sensor of a lighting control system 4 that automatically turns on a lighting fixture 3 when the presence of a person (detection target) 2 in a room is detected. .

センサ1は、例えば、部屋の天井面や照明器具3の筐体に一体に組み付けられ、人2の存在を検知したときに、照明器具3へ検知信号5を出力する。照明器具3は、点灯制御部6が検知信号5を受信したときに光源7を点灯させる。センサ1が人2の存在を検知しなくなると、検知信号5の出力が停止して光源7が消灯される。   For example, the sensor 1 is integrated with a ceiling surface of a room or a housing of the lighting fixture 3 and outputs a detection signal 5 to the lighting fixture 3 when the presence of the person 2 is detected. The lighting fixture 3 turns on the light source 7 when the lighting control unit 6 receives the detection signal 5. When the sensor 1 no longer detects the presence of the person 2, the output of the detection signal 5 stops and the light source 7 is turned off.

センサ1は、送信アンテナ8と受信アンテナ9を含む電気回路10の全体が樹脂製の外装ケース11内に収納されている。電気回路10は、送信電波12を生成する送信回路部13と、人2により反射された電波(受信電波)14を受信する受信回路部15と、送信回路部13へ周波数設定信号16を出力して送信回路部13で生成される送信電波の周波数を設定するマイクロプロセッサ(選択手段)17と、を備える。また、受信回路部15から分配器21により分配された受信電波14そのものを、その強度に応じた受信レベル信号23に変換する受信電力検出部22を備える。受信電力検出部22からの受信レベル信号23はマイクロプロセッサ17へ入力されるようになっている。マイクロプロセッサ17は、センサ1全体の動作を司っており、メモリ17aに記憶されたプログラムに従って動作周波数を選択するための動作や対象物の検知動作を実行させる。上記動作については後述する。   In the sensor 1, the entire electric circuit 10 including the transmission antenna 8 and the reception antenna 9 is accommodated in a resin outer case 11. The electrical circuit 10 outputs a frequency setting signal 16 to the transmission circuit unit 13 that generates the transmission radio wave 12, the reception circuit unit 15 that receives the radio wave (received radio wave) 14 reflected by the person 2, and the transmission circuit unit 13. And a microprocessor (selection means) 17 for setting the frequency of the transmission radio wave generated by the transmission circuit unit 13. In addition, a reception power detection unit 22 that converts the reception radio wave 14 itself distributed from the reception circuit unit 15 by the distributor 21 into a reception level signal 23 corresponding to the intensity thereof is provided. The reception level signal 23 from the reception power detection unit 22 is input to the microprocessor 17. The microprocessor 17 is responsible for the overall operation of the sensor 1, and executes an operation for selecting an operating frequency and an object detection operation in accordance with a program stored in the memory 17a. The above operation will be described later.

送信回路部13は、基準の周波数信号131を出力する発振子132と、該発振子132からの周波数信号131をもとに、電圧制御発振器(VCO)133が出力する高周波信号18をマイクロプロセッサ17からの周波数設定信号16に応じた周波数にロックさせるPLL(Phase Locked Loop)IC134と、を備える。高周波信号18が送信アンテナ8から空中へ放出されて送信電波12になる。   The transmission circuit unit 13 includes an oscillator 132 that outputs a reference frequency signal 131 and a high-frequency signal 18 that is output from a voltage-controlled oscillator (VCO) 133 based on the frequency signal 131 from the oscillator 132. And a PLL (Phase Locked Loop) IC 134 that locks to a frequency corresponding to the frequency setting signal 16 from. A high frequency signal 18 is emitted from the transmission antenna 8 into the air and becomes a transmission radio wave 12.

受信回路部15は、送信回路部13から分配器19により分配された高周波信号18と受信アンテナ9が受信する受信電波14を掛け合わせてその差分周波数に相当する電圧151(以下、ドップラ周波数)を生成するミキサ152と、アンプ153により増幅された該ドップラ周波数151の波形に基づいて人2が存在するか否かを判定する信号処理部154と、を備える。信号処理部154からの検知信号5は、照明器具3へ出力されると共に、マイクロプロセッサ17へも出力される。   The reception circuit unit 15 multiplies the high-frequency signal 18 distributed by the distributor 19 from the transmission circuit unit 13 and the reception radio wave 14 received by the reception antenna 9, and generates a voltage 151 (hereinafter referred to as Doppler frequency) corresponding to the difference frequency. And a signal processing unit 154 that determines whether or not the person 2 exists based on the waveform of the Doppler frequency 151 amplified by the amplifier 153. The detection signal 5 from the signal processing unit 154 is output to the lighting fixture 3 and also to the microprocessor 17.

次に、マイクロプロセッサ17が、センサ1への電源投入時に実行する周波数選択手順について、図2のフローチャートを参照して説明する。マイクロプロセッサ17は、まずメモリ17aに予め記憶された複数のテスト周波数の中から最も低い1つの周波数を読出し、その周波数を周波数設定信号16として送信回路部13へ出力し、その周波数の高周波信号18を生成させる(S1)。なお、マイクロプロセッサ17が最初に読み出す周波数は、最も低い周波数に限られず、最も高い周波数であってもよいし中間の周波数であってもよい。また、複数のテスト周波数は、一定間隔のものであってもよいし、異なった間隔で離散した値のものであってもよい。   Next, the frequency selection procedure executed by the microprocessor 17 when the power to the sensor 1 is turned on will be described with reference to the flowchart of FIG. The microprocessor 17 first reads out the lowest one of the plurality of test frequencies stored in advance in the memory 17a, outputs the frequency to the transmission circuit unit 13 as the frequency setting signal 16, and outputs the high frequency signal 18 of that frequency. Is generated (S1). Note that the frequency read first by the microprocessor 17 is not limited to the lowest frequency, and may be the highest frequency or an intermediate frequency. Further, the plurality of test frequencies may have a constant interval, or may have discrete values at different intervals.

そして、送信回路部13が生成した高周波信号18が送信アンテナ8から電波として送信され、受信アンテナ9が周囲から反射されて戻ってくる電波14を受信する(S2)。ここで、部屋内に人2が存在するときには、受信電波14の周波数が人2の動きによって変化されるので、ドップラ周波数151が短い間隔で大きく変化する。具体的には、図3の上段に示すように時間帯A、Cにおいては、ドップラ周波数151が大きく変化しており人2が存在する。時間帯B、Dにおいては、受信電波14の周波数の変化が小さく、ドップラ周波数151の変化も小さく、人2が存在しない。   Then, the high-frequency signal 18 generated by the transmission circuit unit 13 is transmitted as a radio wave from the transmission antenna 8, and the reception antenna 9 receives the radio wave 14 reflected from the surroundings and returning (S2). Here, when the person 2 is present in the room, the frequency of the received radio wave 14 is changed by the movement of the person 2, so the Doppler frequency 151 changes greatly at short intervals. Specifically, as shown in the upper part of FIG. 3, in the time zones A and C, the Doppler frequency 151 changes greatly and there is a person 2. In the time zones B and D, the change in the frequency of the received radio wave 14 is small, the change in the Doppler frequency 151 is also small, and the person 2 does not exist.

ドップラ周波数151が人2の存在の有無に応じて上記のように変化するので、信号処理部154は、ドップラ周波数の波形が大きく変化する時間帯A、Cにおいて検知信号5を出力し、時間帯B、Dでは出力しない(図3の中段参照)。一方、受信電波14の電力レベルも、人2が存在する時間帯A、Cでは人2が存在しない時間帯B、Dよりも変化幅が大きくなり、受信レベル信号23は、例えば図3の下段のように変化する。   Since the Doppler frequency 151 changes as described above depending on the presence or absence of the person 2, the signal processing unit 154 outputs the detection signal 5 in the time zones A and C in which the waveform of the Doppler frequency changes greatly, and the time zone No output at B and D (see the middle of FIG. 3). On the other hand, the power level of the reception radio wave 14 is larger in the time zones A and C in which the person 2 exists than in the time zones B and D in which the person 2 does not exist. It changes as follows.

上記のように、マイクロプロセッサ17は、検知信号5の受信・非受信により人2の存在の有無を認識し、本実施形態では、検知信号5を受信しない時間帯B、Dでのみ、受信レベル信号23の読み込みを行う(S3)。時間帯B、Dは、受信レベル信号23が比較的安定している時間帯であり、マイクロプロセッサ17は、受信電波14の電力をより正確に調べることができる。   As described above, the microprocessor 17 recognizes the presence / absence of the person 2 by receiving / not receiving the detection signal 5, and in this embodiment, the reception level only in the time zones B and D in which the detection signal 5 is not received. The signal 23 is read (S3). Time zones B and D are time zones in which the reception level signal 23 is relatively stable, and the microprocessor 17 can check the power of the reception radio wave 14 more accurately.

マイクロプロセッサ17は、上記のようにして読み込んだ受信レベルの平均値を算出すると共に記憶する(S4)。そして、複数のテスト周波数の全てについてS1からS4の工程を繰り返したか否かを判定して(S5)、NOである場合には、S1に戻って複数のテスト周波数の中から次のテスト周波数を読み出し、その周波数の高周波信号18を生成する。このようにして、送信電波12の周波数を逐次変化させる。   The microprocessor 17 calculates and stores the average value of the reception levels read as described above (S4). Then, it is determined whether or not the steps S1 to S4 have been repeated for all of the plurality of test frequencies (S5). If NO, the process returns to S1 and the next test frequency is selected from the plurality of test frequencies. Reading and generating a high-frequency signal 18 of that frequency. In this way, the frequency of the transmission radio wave 12 is sequentially changed.

S5における判定の結果、YESである場合には、全てのテスト周波数毎の受信レベルの平均値を比較し、受信レベルの平均値が最も大きい(受信電波の強度が最も高い)テスト周波数を動作周波数として選択する(S6)。   If the result of determination in S5 is YES, the average values of the received levels for all test frequencies are compared, and the test frequency with the highest received level average value (the highest received radio wave intensity) is selected as the operating frequency. (S6).

次に、上記のようにして選択した動作周波数によりマイクロプロセッサ17が実行する対象物の検知手順について、図4のフローチャートを参照して説明する。マイクロプロセッサ17は、選択した周波数に相当する周波数設定信号16を送信回路部13へ出力し、その周波数の高周波信号18を生成させる(S11)。この周波数は、検知動作中変化せず一定値に固定される。そして、送信アンテナ8が当該周波数の送信電波12を送信し、受信アンテナ9が受信電波14を受信し(S12)、信号処理部154がドップラ周波数151に基づいて人2の有無を判定する(S13)。判定の結果、人2が検知された場合には(S14でYES)、検知信号5が出力されて照明器具3が点灯される(S15)。   Next, the object detection procedure executed by the microprocessor 17 at the operating frequency selected as described above will be described with reference to the flowchart of FIG. The microprocessor 17 outputs the frequency setting signal 16 corresponding to the selected frequency to the transmission circuit unit 13, and generates the high frequency signal 18 of the frequency (S11). This frequency does not change during the detection operation and is fixed to a constant value. Then, the transmission antenna 8 transmits the transmission radio wave 12 of the frequency, the reception antenna 9 receives the reception radio wave 14 (S12), and the signal processing unit 154 determines the presence or absence of the person 2 based on the Doppler frequency 151 (S13). ). As a result of the determination, when the person 2 is detected (YES in S14), the detection signal 5 is output and the lighting fixture 3 is turned on (S15).

周波数の選択手順により選択された周波数は、受信電波14の強度が最も高くなる周波数であるので、外装ケース11の厚みや設置距離の精度が低くても、アクティブセンサ1の検知距離が短くなるといったセンサ性能の低下が生じず、ひいては照明器具3を正しく点灯制御することができる。   Since the frequency selected by the frequency selection procedure is the frequency at which the intensity of the received radio wave 14 is highest, the detection distance of the active sensor 1 is shortened even if the thickness of the exterior case 11 and the accuracy of the installation distance are low. The sensor performance is not deteriorated, and as a result, the lighting fixture 3 can be correctly controlled to be lit.

なお、図2のフローチャートのS3において、検知信号5の非受信時にのみ受信レベル信号23を読み込むことによって、受信電波強度が安定しているときに電波強度を調べることになるので、電波強度の判定をより正確に行うことができ、電波の減衰量を抑制するためのより適正な周波数を選択することができる。   In S3 of the flowchart of FIG. 2, the radio wave intensity is checked when the reception radio wave intensity is stable by reading the reception level signal 23 only when the detection signal 5 is not received. Can be performed more accurately, and a more appropriate frequency for suppressing the attenuation of radio waves can be selected.

以上のように、本実施形態のセンサ1では、複数のテスト周波数の電波を逐次送信し、受信電波14の強度が最も高いテスト周波数を動作周波数とするので、外装ケース11の厚みや設置距離が低い精度であっても、検知動作時に電波が大きく減衰することがなく、検知距離が短くなるといったセンサ性能の低下を招くことがない。   As described above, in the sensor 1 of the present embodiment, radio waves having a plurality of test frequencies are sequentially transmitted, and the test frequency with the highest intensity of the received radio wave 14 is used as the operating frequency. Even with low accuracy, radio waves are not greatly attenuated during the detection operation, and the sensor performance is not deteriorated such that the detection distance is shortened.

なお、本実施形態では、送信回路部13へ周波数設定信号16を与えるマイクロプロセッサ17がセンサ全体の動作を司り周波数の選択手順を実行したが、マイクロプロセッサ17とは別に設けた回路が周波数の選択手順を実行するようにしてもよい。   In this embodiment, the microprocessor 17 that gives the frequency setting signal 16 to the transmission circuit unit 13 controls the operation of the entire sensor and executes the frequency selection procedure. However, a circuit provided separately from the microprocessor 17 selects the frequency. You may make it perform a procedure.

また、本実施形態では、センサ1への電源投入があったときに周波数の選択手順を実行したが、周波数の選択手順の実行は、ユーザが入力するトリガ信号に応じて適宜行われるものであってもよい。   Further, in the present embodiment, the frequency selection procedure is executed when the power to the sensor 1 is turned on. However, the frequency selection procedure is appropriately performed according to a trigger signal input by the user. May be.

本発明の一実施形態に係る電波式アクティブセンサを人感センサとして用いる照明制御システムのブロック図。The block diagram of the illumination control system which uses the radio wave type active sensor which concerns on one Embodiment of this invention as a human sensitive sensor. 同電波式アクティブセンサにおける周波数選択手順を示すフローチャート。The flowchart which shows the frequency selection procedure in the same radio wave type active sensor. 同電波式アクティブセンサにおける周波数選択時のドップラ周波数、対象物の検知信号、及び受信レベル信号を示す図。The figure which shows the Doppler frequency at the time of the frequency selection in the same radio wave type active sensor, the detection signal of a target object, and a reception level signal. 同電波式アクティブセンサにおける対象物検知手順を示すフローチャート。The flowchart which shows the target object detection procedure in the same radio wave type active sensor. (a)は外装ケースの厚み及び設置距離が共に電波のλ/4の整数倍である場合の態様を示す図、(b)は外装ケースの厚み及び設置距離が共に電波のλ/4の整数倍を外れる場合の態様を示す図。(A) is a figure which shows the aspect in case the thickness and installation distance of an exterior case are both integral multiples of (lambda) / 4 of an electromagnetic wave, (b) is the integer of (lambda) / 4 of both the thickness and installation distance of an exterior case. The figure which shows the aspect in the case of deviating from double.

符号の説明Explanation of symbols

1 電波式アクティブセンサ
2 人(検知対象物)
12 送信電波
13 送信回路部
14 受信電波
15 受信回路部
17 マイクロプロセッサ(選択手段)
1 Radio wave type active sensor 2 people (detection target)
12 Transmission radio wave 13 Transmission circuit unit 14 Reception radio wave 15 Reception circuit unit 17 Microprocessor (selection means)

Claims (2)

送信電波を生成する送信回路部と、検知対象物により反射された電波を受信する受信回路部と、を備え、送信電波と受信電波の周波数差に基づいて対象物を検知する電波式アクティブセンサにおいて、
前記送信回路部により生成される電波の周波数を複数に設定し、逐次、複数の周波数の電波を送信させると共に、これら各周波数での前記受信回路部による受信電波の強度を調べ、最も強度の高い周波数を動作周波数として選択する選択手段を備え、
前記選択手段により選択した動作周波数でもって検知対象物の検知動作を行うようにしたことを特徴とする電波式アクティブセンサ。
In a radio wave type active sensor that includes a transmission circuit unit that generates a transmission radio wave and a reception circuit unit that receives a radio wave reflected by a detection target, and detects an object based on a frequency difference between the transmission radio wave and the reception radio wave ,
The frequency of radio waves generated by the transmission circuit unit is set to a plurality, and radio waves of a plurality of frequencies are sequentially transmitted, and the strength of the received radio wave by the reception circuit unit at each frequency is examined, and the highest intensity Comprising a selection means for selecting the frequency as the operating frequency;
A radio wave type active sensor characterized in that a detection object is detected at an operation frequency selected by the selection means.
前記選択手段は、受信電波の周波数の変動が少ないときに電波強度を調べることを特徴とする請求項1に記載の電波式アクティブセンサ。   The radio wave type active sensor according to claim 1, wherein the selection unit checks the radio wave intensity when the frequency fluctuation of the received radio wave is small.
JP2008244779A 2008-09-24 2008-09-24 Radio wave type active sensor Active JP5212941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008244779A JP5212941B2 (en) 2008-09-24 2008-09-24 Radio wave type active sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008244779A JP5212941B2 (en) 2008-09-24 2008-09-24 Radio wave type active sensor

Publications (2)

Publication Number Publication Date
JP2010078375A true JP2010078375A (en) 2010-04-08
JP5212941B2 JP5212941B2 (en) 2013-06-19

Family

ID=42209011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008244779A Active JP5212941B2 (en) 2008-09-24 2008-09-24 Radio wave type active sensor

Country Status (1)

Country Link
JP (1) JP5212941B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216363A1 (en) * 2017-05-25 2018-11-29 コニカミノルタ株式会社 Care support system and radio wave control method
WO2020059767A1 (en) * 2018-09-20 2020-03-26 京セラ株式会社 Electronic device, electronic device control method, and electronic device control program
WO2020059481A1 (en) * 2018-09-20 2020-03-26 京セラ株式会社 Electronic device, electronic device control method, and electronic device control program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002251694A (en) * 2001-02-21 2002-09-06 Matsushita Electric Ind Co Ltd Ultrasonic vehicle sensor and method of controlling ultrasonic frequency
JP2003185734A (en) * 2001-12-17 2003-07-03 Matsushita Electric Ind Co Ltd Ultrasonic sensor, and method of controlling ultrasonic frequency
JP2004125598A (en) * 2002-10-02 2004-04-22 Mitsubishi Electric Corp Vehicle surrounding monitoring device
JP2006003124A (en) * 2004-06-15 2006-01-05 Nippon Soken Inc Ultrasonic sensor device
JP2006317162A (en) * 2005-05-10 2006-11-24 Matsushita Electric Ind Co Ltd Radar system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002251694A (en) * 2001-02-21 2002-09-06 Matsushita Electric Ind Co Ltd Ultrasonic vehicle sensor and method of controlling ultrasonic frequency
JP2003185734A (en) * 2001-12-17 2003-07-03 Matsushita Electric Ind Co Ltd Ultrasonic sensor, and method of controlling ultrasonic frequency
JP2004125598A (en) * 2002-10-02 2004-04-22 Mitsubishi Electric Corp Vehicle surrounding monitoring device
JP2006003124A (en) * 2004-06-15 2006-01-05 Nippon Soken Inc Ultrasonic sensor device
JP2006317162A (en) * 2005-05-10 2006-11-24 Matsushita Electric Ind Co Ltd Radar system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216363A1 (en) * 2017-05-25 2018-11-29 コニカミノルタ株式会社 Care support system and radio wave control method
WO2020059767A1 (en) * 2018-09-20 2020-03-26 京セラ株式会社 Electronic device, electronic device control method, and electronic device control program
WO2020059481A1 (en) * 2018-09-20 2020-03-26 京セラ株式会社 Electronic device, electronic device control method, and electronic device control program
CN112654890A (en) * 2018-09-20 2021-04-13 京瓷株式会社 Electronic device, control method for electronic device, and control program for electronic device
CN112654882A (en) * 2018-09-20 2021-04-13 京瓷株式会社 Electronic device, control method for electronic device, and control program for electronic device
JPWO2020059481A1 (en) * 2018-09-20 2021-08-30 京セラ株式会社 Electronic devices, control methods for electronic devices, and control programs for electronic devices
JPWO2020059767A1 (en) * 2018-09-20 2021-08-30 京セラ株式会社 Electronic devices, control methods for electronic devices, and control programs for electronic devices
JP7011729B2 (en) 2018-09-20 2022-02-10 京セラ株式会社 Electronic devices, control methods for electronic devices, and control programs for electronic devices
JP7032556B2 (en) 2018-09-20 2022-03-08 京セラ株式会社 Electronic devices, control methods for electronic devices, and control programs for electronic devices
JP2022065171A (en) * 2018-09-20 2022-04-26 京セラ株式会社 Electronic apparatus, control method for electronic apparatus, and control program for electronic apparatus
EP3855204A4 (en) * 2018-09-20 2022-06-29 Kyocera Corporation Electronic device, electronic device control method, and electronic device control program
JP7097519B2 (en) 2018-09-20 2022-07-07 京セラ株式会社 Electronic devices, control methods for electronic devices, and control programs for electronic devices
JP2022118273A (en) * 2018-09-20 2022-08-12 京セラ株式会社 Electronic device, electronic device control method, and program
JP7161076B2 (en) 2018-09-20 2022-10-25 京セラ株式会社 ELECTRONIC DEVICE, ELECTRONIC DEVICE CONTROL METHOD, AND PROGRAM

Also Published As

Publication number Publication date
JP5212941B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
TWI753282B (en) A microwave detector and a radiation interference prevention method based on the doppler effect principle
EP2696332B1 (en) Presence detection system, presence detection method, and program
CN108781487B (en) Microwave processing apparatus
KR20100007975A (en) Antenna unit
JP5212941B2 (en) Radio wave type active sensor
EP2669702B1 (en) Sensor device
US20090243915A1 (en) Microwave sensor apparatus and microwave sensor system
DE60107630D1 (en) Self tuning in the frequency range for a motor controller
JP2017220316A (en) Luminaire
JP6975923B2 (en) lighting equipment
JP2006317162A (en) Radar system
TWI734148B (en) Method of microwave motion detection with adaptive frequency control and related devices
JP2005283384A (en) Microwave sensor and system for preventing mutual interference of microwave sensor
US8922284B2 (en) Atomic oscillator and control method of atomic oscillator
JP2011044400A (en) Lighting fixture
JP4054704B2 (en) Microwave level meter
JP2007170990A (en) Minute movement detector
JP2010103056A (en) Lighting fixture
JP4558629B2 (en) Microwave Doppler sensor
JP2009187842A (en) Microwave heating device
JP2007208718A (en) Switching power supply
JP2013157098A (en) Illuminating device
JP5112186B2 (en) Load control device
JP2010223623A (en) Doppler sensor
JP2006080741A (en) Networked home appliance and communication device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110920

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

R150 Certificate of patent or registration of utility model

Ref document number: 5212941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3