JP2010078242A - Method of melting incineration residue of waste - Google Patents

Method of melting incineration residue of waste Download PDF

Info

Publication number
JP2010078242A
JP2010078242A JP2008247884A JP2008247884A JP2010078242A JP 2010078242 A JP2010078242 A JP 2010078242A JP 2008247884 A JP2008247884 A JP 2008247884A JP 2008247884 A JP2008247884 A JP 2008247884A JP 2010078242 A JP2010078242 A JP 2010078242A
Authority
JP
Japan
Prior art keywords
incineration residue
melting
melting furnace
furnace
carbon source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008247884A
Other languages
Japanese (ja)
Other versions
JP5374105B2 (en
Inventor
Koji Sunada
浩志 砂田
Yoshiaki Shimizu
由章 清水
Shigeyoshi Tagashira
成能 田頭
Eiji Kaneo
英治 金尾
Masako Segawa
雅子 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2008247884A priority Critical patent/JP5374105B2/en
Publication of JP2010078242A publication Critical patent/JP2010078242A/en
Application granted granted Critical
Publication of JP5374105B2 publication Critical patent/JP5374105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce Pb content in generated molten slug and NOx generation amount while suppressing generation of CO when incineration residue etc. of waste is molten by using plasma. <P>SOLUTION: This method for melting incineration residue of waste by using plasma includes: a process of melting incineration residue supplied to inside of a melting furnace 10 by plasma generated by a plasma generating device 30 using gas including oxygen as operation gas; a process of discharging the molten slug 12 generated by the melting treatment to outside of the melting furnace 10 and collecting the slug 12; and a process of adding a carbon source to the molten residue supplied to inside of the melting furnace 10. The addition amount is determined so that oxygen concentration within the melting furnace 10 is 4-10% due to absorption of oxygen within the melting furnace 10 by the carbon source. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、都市ゴミや産業廃棄物の焼却残渣などをプラズマトーチ等のプラズマ発生装置を用いて溶融処理するための方法に関するものである。   The present invention relates to a method for melting municipal waste, industrial waste incineration residue, and the like using a plasma generator such as a plasma torch.

従来、都市ゴミや産業廃棄物の焼却残渣などを溶融処理する方法として、例えば特許文献1に記載されるようにプラズマを用いるものが知られている。この方法では、プラズマトーチを具備する溶融炉内に前記焼却残渣等が投入され、この溶融炉内で当該焼却残渣等の溶融処理がなされる。この溶融により発生した排ガスは溶融炉外の排ガス処理装置に送られ、溶融スラグは前記排ガスとは別に前記溶融炉から搬出される。
特公平7−52006号公報
2. Description of the Related Art Conventionally, as a method for melting municipal waste, industrial waste incineration residue, or the like, a method using plasma as described in Patent Document 1, for example, is known. In this method, the incineration residue or the like is put into a melting furnace equipped with a plasma torch, and the incineration residue or the like is melted in the melting furnace. The exhaust gas generated by this melting is sent to an exhaust gas treatment device outside the melting furnace, and the molten slag is carried out of the melting furnace separately from the exhaust gas.
Japanese Patent Publication No. 7-52006

前記溶融炉から排出される溶融スラグは再利用に供されることが好ましいが、当該溶融スラグ中におけるPb(鉛)の含有量が多いと当該再利用は著しく制限されることになる。従って、かかる溶融スラグ中の鉛含有量の低減が重要な課題となる。   The molten slag discharged from the melting furnace is preferably used for reuse, but if the content of Pb (lead) in the molten slag is large, the reuse is significantly limited. Therefore, reduction of the lead content in the molten slag becomes an important issue.

また、前記のようなプラズマを利用した溶融炉では、きわめて高温(例えば1300℃)での加熱が行われるため、当該プラズマを発生させるための作動ガスに含まれる酸素の化学反応によるNOxの発生は避けられず、その抑制も重要な課題となる。   Further, in a melting furnace using plasma as described above, heating at an extremely high temperature (for example, 1300 ° C.) is performed. Therefore, generation of NOx due to a chemical reaction of oxygen contained in a working gas for generating the plasma is not generated. Inevitably, its suppression is an important issue.

前記溶融スラグ中のPb含有量及びNOx発生量を低減させる手段として、前記特許文献1に記載されるように前記溶融炉内に別途炭素源を添加して炉内雰囲気を還元化することが考えられる。この還元は、スラグ中の鉛の還元によりその揮発を促進するとともに、NOxの発生の抑制にもつながる。   As a means for reducing the Pb content and the NOx generation amount in the molten slag, it is considered that a carbon source is separately added to the melting furnace to reduce the furnace atmosphere as described in Patent Document 1. It is done. This reduction promotes volatilization by reduction of lead in the slag and leads to suppression of NOx generation.

しかし、その反面、前記還元による炉内の酸素濃度の低下は、CO(一酸化炭素)の発生を促進する。このCOの発生量が多いと、前記溶融炉に二次燃焼室を設ける必要が生じ、しかも、この二次燃焼室ではダストによる閉塞が起こり易いという新たな問題を引き起こす。   However, the decrease in the oxygen concentration in the furnace due to the reduction promotes the generation of CO (carbon monoxide). When the amount of CO generated is large, it is necessary to provide a secondary combustion chamber in the melting furnace, and this causes a new problem that the secondary combustion chamber is easily clogged with dust.

本発明は、このような事情に鑑み、廃棄物の焼却残渣等をプラズマにて溶融処理するにあたり、COの発生を抑えながら、生成される溶融スラグ中のPb含有量及びNOx発生量の低減を達成することを可能にする溶融処理方法を提供することを目的とする。   In view of such circumstances, the present invention reduces the Pb content and NOx generation amount in the generated molten slag while suppressing the generation of CO when melting incineration residues of waste with plasma. The object is to provide a melt processing method which makes it possible to achieve.

本発明者は、前記課題を解決するために前記溶融炉内の酸素濃度とCO発生量との関係に着目した。その結果、当該酸素濃度を4%以上とすることにより、当該酸素濃度が4%未満である場合に比べてCO発生量の著しい低減を図ることができる一方、当該酸素濃度が10%を超える領域では当該酸素濃度の増加に伴うCO発生量の低減はほとんど見られないという知見を得ることができた。その一方、前記酸素濃度と溶融スラグ中のPb含有量及びNOx発生量との関係については、当該酸素濃度が増えるほど当該Pb含有量及び当該NOx発生量が増加することを確認した。   The present inventor paid attention to the relationship between the oxygen concentration in the melting furnace and the amount of CO generated in order to solve the above problems. As a result, by setting the oxygen concentration to 4% or more, the CO generation amount can be significantly reduced as compared with the case where the oxygen concentration is less than 4%, while the region where the oxygen concentration exceeds 10%. Then, the knowledge that the reduction of the amount of CO generation accompanying the increase in the oxygen concentration was hardly observed was obtained. On the other hand, regarding the relationship between the oxygen concentration, the Pb content in the molten slag, and the NOx generation amount, it was confirmed that the Pb content and the NOx generation amount increase as the oxygen concentration increases.

本発明は、このような観点からなされたものであり、プラズマを用いて廃棄物の焼却残渣を溶融処理する方法であって、酸素含有ガスを作動ガスとするプラズマ発生装置を具備する溶融炉内に前記焼却残渣を供給することと、前記溶融炉内で前記プラズマ発生装置が生成するプラズマによって前記焼却残渣を溶融処理し、これにより生じた溶融スラグを炉外に排出して回収することと、前記溶融炉内に供給される焼却残渣に炭素源を添加するとともに、その添加量を、当該炭素源による前記溶融炉内の酸素の吸収により当該溶融炉内の酸素濃度が4%以上10%以下となるように決定することと、を含むものである。   The present invention has been made from such a point of view, and is a method for melting incineration residue of waste using plasma, in a melting furnace equipped with a plasma generator using an oxygen-containing gas as a working gas. Supplying the incineration residue to, melting the incineration residue with the plasma generated by the plasma generator in the melting furnace, and discharging and recovering the molten slag generated thereby, While adding a carbon source to the incineration residue supplied into the melting furnace, the amount of addition is such that oxygen concentration in the melting furnace is 4% or more and 10% or less due to absorption of oxygen in the melting furnace by the carbon source. And so on.

この方法によれば、前記焼却残渣への炭素源の添加によって前記溶融炉内の酸素濃度を4%以上とすることにより、当該酸素濃度を4%未満とする場合(すなわち炉内雰囲気をほぼ完全に還元する場合)に比べて炉内でのCO発生量の著しい低減を図る一方、当該酸素濃度を10%以下にするまで炉内雰囲気を還元することで、焼却残渣に含まれるPbの揮発の促進により溶融スラグ中のPb含有量を低減させることができるとともに、NOx発生量も低減させることができる。   According to this method, when the oxygen concentration in the melting furnace is set to 4% or more by adding a carbon source to the incineration residue, the oxygen concentration is set to less than 4% (that is, the atmosphere in the furnace is almost completely set). The amount of CO generated in the furnace is significantly reduced as compared with the case of reducing the oxygen concentration in the furnace, while reducing the atmosphere in the furnace until the oxygen concentration is reduced to 10% or less. The Pb content in the molten slag can be reduced by the promotion, and the NOx generation amount can also be reduced.

この発明において、前記炭素源は前記溶融炉内で前記焼却残渣に添加されてもよいが、前記溶融炉の外部で前記焼却残渣に添加され、この焼却残渣と混合された状態で前記溶融炉内に供給されることが、より好ましい。このように予め焼却残渣と混合された状態で溶融炉内に供給される炭素源は、当該焼却残渣の周辺の雰囲気を集中的に還元することができるので、炭素源の添加量を抑えながら前記焼却残渣中のPbの揮発を有効に促進することが可能である。すなわち、炭素源の添加により溶融スラグ中のPb含有量の低減を図りながらも、当該炭素源の添加量を抑制することでCO発生量のさらなる低減を図ることができる。   In this invention, the carbon source may be added to the incineration residue in the melting furnace, but is added to the incineration residue outside the melting furnace and mixed with the incineration residue in the melting furnace. More preferably, it is supplied. In this way, the carbon source supplied into the melting furnace in a state of being mixed with the incineration residue in advance can intensively reduce the atmosphere around the incineration residue, so the amount of carbon source is suppressed while suppressing It is possible to effectively promote volatilization of Pb in the incineration residue. That is, while reducing the Pb content in the molten slag by adding a carbon source, it is possible to further reduce the amount of CO generated by suppressing the added amount of the carbon source.

特に、前記焼却残渣と前記炭素源との混合物がスクリューフィーダにより前記溶融炉内に供給されれば、当該スクリューフィーダの攪拌機能によって前記焼却残渣と前記炭素源との混合が促進され、当該炭素源によるPbの揮発促進効果がさらに高められる。   In particular, if the mixture of the incineration residue and the carbon source is supplied into the melting furnace by a screw feeder, the mixing of the incineration residue and the carbon source is promoted by the stirring function of the screw feeder, and the carbon source This further enhances the Pb volatilization promoting effect.

前記焼却残渣に添加される炭素源としては0.5mm以上4mm未満の粒径をもつコークスが好適である。このように4mm未満の粒径をもつコークスは、大粒径のものと比べて溶融対象である焼却残渣との接触面積が大きく、よって、焼却残渣中のPbの揮発をより効果的に促進することができる。また、粒径が0.5mm未満のダスト状のものと異なり、Pbの揮発を促進する前に炉内Oと反応することがほとんどなく、その大部分が前記Pbの揮発に寄与することができる。 As the carbon source added to the incineration residue, coke having a particle size of 0.5 mm or more and less than 4 mm is suitable. Thus, coke having a particle size of less than 4 mm has a larger contact area with the incineration residue to be melted than that of a large particle size, and thus more effectively promotes volatilization of Pb in the incineration residue. be able to. In addition, unlike dusty particles having a particle size of less than 0.5 mm, it hardly reacts with O 2 in the furnace before promoting the volatilization of Pb, and the majority contributes to the volatilization of Pb. it can.

以上のように、本発明によれば、プラズマ式の溶融炉に供給される廃棄物の焼却残渣への炭素源の添加量を適正化することにより、COの発生を抑制しながら溶融スラグ中の鉛含有量及びNOx発生量を有効に低減することができる効果がある。   As described above, according to the present invention, by optimizing the amount of carbon source added to the incineration residue of the waste supplied to the plasma melting furnace, the generation of CO is suppressed while suppressing the generation of CO. There is an effect that the lead content and the NOx generation amount can be effectively reduced.

図1は、本発明に係る廃棄物の焼却残渣の溶融処理方法を実施するためのプラズマ溶融装置を示す。この装置は、溶融炉10と、この溶融炉10に廃棄物の焼却残渣(例えば主灰、飛灰またはその混合物)を供給するための供給装置20と、前記溶融炉10内で前記焼却残渣を溶融するためのプラズマを生成するプラズマトーチ30とを備える。   FIG. 1 shows a plasma melting apparatus for carrying out the method for melting a waste incineration residue according to the present invention. This apparatus includes a melting furnace 10, a supply device 20 for supplying waste incineration residue (for example, main ash, fly ash, or a mixture thereof) to the melting furnace 10, and the incineration residue in the melting furnace 10. And a plasma torch 30 that generates plasma for melting.

前記供給装置20は、前記溶融炉10の側壁から当該溶融炉10内に前記焼却残渣を供給するものであり、当該焼却残渣を収容してこれを適量ずつ降下させるホッパー22と、このホッパー22から降下する焼却残渣を前記溶融炉10内へ水平方向に搬入するスクリューフィーダ24とを含む。このスクリューフィーダ24は、螺旋状の羽根を有する本体スクリュー26と、これを収容する供給管28とを有し、前記本体スクリュー26は、その回転により前記焼却残渣を前記供給管28を通じて前記溶融炉10内に送り込む。   The supply device 20 supplies the incineration residue from the side wall of the melting furnace 10 into the melting furnace 10. The hopper 22 accommodates the incineration residue and lowers it by an appropriate amount. And a screw feeder 24 that carries the incineration residue descending horizontally into the melting furnace 10. The screw feeder 24 includes a main body screw 26 having spiral blades and a supply pipe 28 for accommodating the main screw 26, and the main body screw 26 rotates the incineration residue through the supply pipe 28 through the supply pipe 28. 10 into.

前記プラズマトーチ30は、前記溶融炉10の天壁に組み付けられ、酸素含有ガス(例えば空気)を作動ガスとして前記溶融炉10内にプラズマを発生させる。このプラズマは、前記供給装置20から供給される焼却残渣を高温(例えば1300℃)にて加熱、溶融し、溶融スラグ12を生成する。   The plasma torch 30 is assembled to the top wall of the melting furnace 10 and generates plasma in the melting furnace 10 using an oxygen-containing gas (for example, air) as a working gas. The plasma heats and melts the incineration residue supplied from the supply device 20 at a high temperature (for example, 1300 ° C.) to generate a molten slag 12.

前記溶融炉10は、前記溶融スラグ12を出滓するためのスラグ出滓口14を有する。このスラグ出滓口14は、前記供給装置20が接続される側壁と反対側の側壁において当該供給装置20と略同等の高さ位置に形成される。従って、溶融炉10内で発生した溶融スラグ12は前記スラグ出滓口14よりも下側の炉底部に溜められ、その余剰分が前記スラグ出滓口14から炉外へ連続的に出滓される。この溢れ出た溶融スラグ12は図略のスラグ処理装置に搬入され、冷却、固化される。その固化物は適宜搬出されて再利用に供される。   The melting furnace 10 has a slag outlet 14 for discharging the molten slag 12. The slag outlet 14 is formed at a height position substantially equal to the supply device 20 on the side wall opposite to the side wall to which the supply device 20 is connected. Therefore, the molten slag 12 generated in the melting furnace 10 is accumulated in the bottom of the furnace below the slag outlet 14 and the excess is continuously discharged from the slag outlet 14 to the outside of the furnace. The The overflowing molten slag 12 is carried into a slag processing apparatus (not shown), and cooled and solidified. The solidified product is appropriately carried out and reused.

前記溶融炉10には、図略のガス排出口が設けられ、このガス排出口が適当な配管を介して排ガス処理設備32に接続される。前記溶融炉10内で前記焼却残渣の溶融により発生したガスは排ガスとして前記排ガス処理設備32に送られ、ここで適当な処理を受けた後に系外へ排出される。   The melting furnace 10 is provided with a gas discharge port (not shown), and this gas discharge port is connected to the exhaust gas treatment facility 32 through an appropriate pipe. The gas generated by melting the incineration residue in the melting furnace 10 is sent to the exhaust gas treatment facility 32 as exhaust gas, where it is subjected to appropriate treatment and then discharged out of the system.

次に、この溶融処理装置において行われる焼却残渣の溶融処理方法を説明する。   Next, an incineration residue melting method performed in this melting processing apparatus will be described.

溶融処理の対象となる焼却残渣は、供給装置20のホッパー22に投入され、スクリューフィーダ24によって溶融炉10内に供給されるが、この方法の特徴として、ホッパー22内の焼却残渣には予め適量の炭素源が添加される。   The incineration residue to be melted is put into the hopper 22 of the supply device 20 and supplied into the melting furnace 10 by the screw feeder 24. As a feature of this method, an appropriate amount of incineration residue in the hopper 22 is previously stored. Of carbon source is added.

この炭素源は、前記溶融炉10内の雰囲気の還元(すなわち酸素濃度の低減)に寄与するものであればよく、例えばコークス、木質残渣物、木炭、廃プラスチックが好適に利用される。特に、0.5mm以上4mm未満の粒径をもつコークスは、予め前記焼却残渣に添加されることにより、後述のように、前記焼却残渣に含まれるPbの炉内での揮発を有効に促進することができる。   Any carbon source may be used as long as it contributes to the reduction of the atmosphere in the melting furnace 10 (that is, the oxygen concentration is reduced). For example, coke, wood residue, charcoal, and waste plastic are preferably used. In particular, coke having a particle size of 0.5 mm or more and less than 4 mm is added to the incineration residue in advance to effectively promote volatilization of Pb contained in the incineration residue in the furnace as described later. be able to.

この炭素源の添加量は、前記溶融炉10内のO濃度を4%以上10%以下にするように設定される。具体的に、この炭素源の単位時間当たりの添加量Ca[kg/h]は、以下のようにして算定することが可能である。 The amount of carbon source added is set so that the O 2 concentration in the melting furnace 10 is 4% or more and 10% or less. Specifically, the addition amount Ca [kg / h] per unit time of the carbon source can be calculated as follows.

いま、単位時間当たりに溶融炉10内に実質上入るOの量(実質O導入量)をQo[mN/h]、単位時間当たりに炉内に入るガスの総量(空気流入量)をQt[mN/h]とすると、炉内O濃度Doは次式にて表される。 Now, the amount of O 2 substantially entering the melting furnace 10 per unit time (substantial O 2 introduction amount) is Qo [m 3 N / h], and the total amount of gas entering the furnace per unit time (air inflow amount) ) Is Qt [m 3 N / h], the furnace O 2 concentration Do is expressed by the following equation.

Do=100×Qo/Qt[%] …(1)
このうち、前記ガス総流入量Qtは、単位時間当たりに溶融炉10内に供給されるプラズマガス(空気)の量Qp及び溶融炉外から炉内にリークする空気の流量(リーク量)Qとの和(=Qp+Q)に等しく、プラズマガス供給量Qpは流量計により検出され、後者は溶融炉10の周辺での空気量の収支バランスの演算結果から求められる。
Do = 100 × Qo / Qt [%] (1)
Among them, the total gas inflow amount Qt includes the amount Qp of plasma gas (air) supplied into the melting furnace 10 per unit time and the flow rate (leakage amount) Q L of air leaking from the outside of the melting furnace into the furnace. equal to the sum (= Qp + Q L) of the plasma gas supply amount Qp is detected by the flow meter, the latter is determined from the calculation results of the account balance of the amount of air around the melting furnace 10.

一方、前記実質O導入量Qoは、実際に単位時間当たりに溶融炉10内に流入するOの流量(実O流入量)Qi[mN/h]から、単位時間当たりに溶融炉10内で前記炭素源により吸収されるOの量(すなわち還元量)Qr[mN/h]を減じたもの(=Qi−Qr)に等しく、実O流入量Qiは、前記空気流入量Qt(=Qp+Q)に空気中のO濃度(21%)を乗じたものに等しい。従って、前記(1)式は次のようになる。 Meanwhile, the substantially O 2 introduction amount Qo is actually from the flow rate of O 2 entering per unit time in the melting furnace 10 (actual O 2 flow rate) Qi [m 3 N / h ], melt per unit time the amount of O 2 absorbed by the carbon source the furnace 10 (i.e., reducing the amount) Qr [m 3 N / h ] minus the (= Qi-Qr) equally, the actual O 2 inflow Qi, the This is equal to the air inflow amount Qt (= Qp + Q L ) multiplied by the O 2 concentration in air (21%). Therefore, the equation (1) is as follows.

Do=100×[0.21(Qp+Q)−Qr]/(Qp+Q) …(2)
ここで、炭素源によるOの吸収とは、C+O=COという燃焼を意味する。互いに反応するCとOのモル比は1:1であるから、前記還元量Qrは、単位時間当たりに炉内に供給されるフリーカーボンの量に等しい。このフリーカーボンとは、酸素を消費することが可能な形態の炭素をいい、例えばCOのように無機物として固定されている炭素を除いた炭素を意味する。従って、このフリーカーボンの単位時間当たりの炉内への導入量(以下「導入フリーカーボン量」と称する。)をCi[kg/h]とすると、次の関係が成立する。
Do = 100 × [0.21 (Qp + Q L ) −Qr] / (Qp + Q L ) (2)
Here, the absorption of O 2 by the carbon source means combustion of C + O 2 = CO 2 . Since the molar ratio of C and O 2 that react with each other is 1: 1, the reduction amount Qr is equal to the amount of free carbon supplied into the furnace per unit time. This free carbon refers to carbon in a form capable of consuming oxygen, and means carbon excluding carbon fixed as an inorganic substance such as CO 2 . Therefore, when the amount of free carbon introduced into the furnace per unit time (hereinafter referred to as “the amount of free carbon introduced”) is Ci [kg / h], the following relationship is established.

Qr=Ci×22.4/12(炭素の元素量) …(3)
前記導入フリーカーボン量Ciは、単位時間当たりに炉内に供給される焼却残渣に含まれる未燃炭素量Co[kg/h]と、これに添加される炭素源中のフリーカーボンの量Ca[kg/h]との和(=Co+Ca)に等しいので、単位時間当たりに炉内に供給される焼却残渣の処理量をAs[kg/h]、これに含まれる未燃炭素の割合(この割合は化学分析により求めることができる。)をRc(%)、単位時間当たりに炉内に供給される炭素源の添加量をAt[kg/h]、これに含まれるフリーカーボンの割合(各炭素源によって異なる。例えばコークスなら80%)をRd(%)とすると、前記(3)式は次のようになる。
Qr = Ci × 22.4 / 12 (carbon element amount) (3)
The introduced free carbon amount Ci includes the unburned carbon amount Co [kg / h] contained in the incineration residue supplied into the furnace per unit time and the free carbon amount Ca [ kg / h], which is equal to the sum (= Co + Ca), the treatment amount of the incineration residue supplied into the furnace per unit time is As [kg / h], and the ratio of unburned carbon contained in this (this ratio) Can be determined by chemical analysis) Rc (%), the amount of carbon source added to the furnace per unit time is At [kg / h], and the ratio of free carbon contained in each carbon (each carbon Depending on the source, for example, 80% for coke) and Rd (%), the above equation (3) becomes as follows.

Qr=(As×Rc+At×Rd)×22.4/12 …(4)
この(4)式を前記(2)式に代入すれば、目標となる炉内O濃度Do(例えば7%)を得るための炭素源の添加量At[kg/h]を逆算することができる。
Qr = (As × Rc + At × Rd) × 22.4 / 12 (4)
By substituting the equation (4) into the equation (2), the addition amount At [kg / h] of the carbon source for obtaining the target furnace O 2 concentration Do (for example, 7%) can be calculated backward. it can.

このような炭素源の添加によって酸素濃度が調節された溶融炉10内でプラズマによる焼却残渣の加熱及び溶融が行われることにより、Pb含有量の低い溶融スラグ12を生成してこれを回収することができるとともに、炉内でのNOx発生量及びCO発生量をともに効果的に低減することができる。その理由は次のとおりである。   By heating and melting the incineration residue by plasma in the melting furnace 10 in which the oxygen concentration is controlled by adding such a carbon source, the molten slag 12 having a low Pb content is generated and recovered. In addition, both the NOx generation amount and the CO generation amount in the furnace can be effectively reduced. The reason is as follows.

1.CO発生量の低減について
図2は、図1に示される装置において、1350±50℃の運転温度で運転したときの炉内O濃度の測定値とCO濃度の測定値との関係を示したものである。この図に示されるように、炉内O濃度が4%以上の領域では同濃度が4%未満の領域に比べてCO濃度が著しく低い。従って、炉内O濃度を4%以上に制御することは、CO発生量を低減する上できわめて有効である。その一方、炉内O濃度が10%に達すればCOの発生はほとんどなく、それより炉内O濃度を増やしてもCO濃度の低減効果は変わらない。
1. FIG. 2 shows the relationship between the measured value of the O 2 concentration in the furnace and the measured value of the CO concentration when the apparatus shown in FIG. 1 is operated at an operating temperature of 1350 ± 50 ° C. Is. As shown in this figure, the CO concentration in the region where the O 2 concentration in the furnace is 4% or more is significantly lower than the region where the concentration is less than 4%. Therefore, controlling the O 2 concentration in the furnace to 4% or more is extremely effective in reducing the amount of CO generated. On the other hand, if the in-furnace O 2 concentration reaches 10%, almost no CO is generated, and even if the in-furnace O 2 concentration is increased, the effect of reducing the CO concentration does not change.

2.溶融スラグ中Pb含有量の低減について
図3は、前記と同様の条件で装置を運転したときの炉内O濃度の測定値と溶融スラグ中Pb濃度の測定値との関係をそれぞれ示したものである。ここで、溶融スラグ中Pb濃度は、水底の底質調査と同様の方法にて測定されたものである。具体的には、粉砕した試料に硝酸、塩酸、過塩素酸を加えてホットプレート上で加熱濃縮する処理と、これに硝酸及び塩酸を加えてホットプレート上で加熱溶解する処理とが行われた後、その処理済の試料を定容化してそのPb含有量をICP発光分析法により測定するという手法により、前記測定値が得られる。
2. 3. Reduction of Pb content in molten slag FIG. 3 shows the relationship between the measured value of the O 2 concentration in the furnace and the measured value of the Pb concentration in the molten slag when the apparatus is operated under the same conditions as described above. It is. Here, the Pb concentration in the molten slag was measured by the same method as the bottom sediment survey of the water bottom. Specifically, nitric acid, hydrochloric acid and perchloric acid were added to the crushed sample and heated and concentrated on a hot plate, and nitric acid and hydrochloric acid were added to the ground sample and heated and dissolved on the hot plate. Thereafter, the measured value can be obtained by a method in which the volume of the treated sample is made constant and the Pb content is measured by ICP emission spectrometry.

図3に示されるように、溶融スラグ中Pb濃度は前記炉内O濃度にほぼ比例して増大する。換言すれば、炉内O濃度を低く抑えるほど溶融スラグのPb含有量を低減することが可能である。これは、焼却残渣の周囲の酸素濃度が低減されることにより、当該焼却残渣に含まれるPbO(酸化鉛)の還元が促進され、Pbが例えばPbClとして揮発することが促進されるためであると考えられる。 As shown in FIG. 3, the Pb concentration in the molten slag increases almost in proportion to the O 2 concentration in the furnace. In other words, it is possible to reduce the Pb content of the molten slag as the O 2 concentration in the furnace is kept low. This is because reduction of the oxygen concentration around the incineration residue promotes reduction of PbO (lead oxide) contained in the incineration residue and promotes volatilization of Pb as, for example, PbCl 2. it is conceivable that.

3.NOx発生量の低減について
図4は、同装置を同温度で運転したときの炉内O濃度の測定値と炉内NOx濃度との関係をそれぞれ示したものである。同図に示されるように、炉内NOx濃度は、前記溶融スラグ中Pb濃度と同様、前記炉内O濃度にほぼ比例して増大する。換言すれば、炉内O濃度を低く抑えるほどNOx発生量を低減することが可能である。
3. FIG. 4 shows the relationship between the measured value of the in-furnace O 2 concentration and the in-furnace NOx concentration when the apparatus is operated at the same temperature. As shown in the figure, the in-furnace NOx concentration increases in proportion to the in-furnace O 2 concentration, similar to the Pb concentration in the molten slag. In other words, the amount of NOx generated can be reduced as the furnace O 2 concentration is kept lower.

以上の測定結果から、炉内CO発生量の抑制と、溶融スラグ中Pb含有量及びNOx発生量の低減とを両立させるためには、炉内O2濃度を4%以上10%以下の範囲に制御することが有効であるとの結論を得ることができる。   From the above measurement results, in order to achieve both suppression of the amount of CO generated in the furnace and reduction of the Pb content in the molten slag and the amount of NOx generated, the O2 concentration in the furnace is controlled in the range of 4% to 10%. You can conclude that it is effective.

なお、この炉内O濃度の制御は、前記のように炭素源添加量を運転条件(プラズマガス量Qp、リーク量Q、焼却残渣中に含まれる未燃炭素量Co等)に基いて算定するものに限られない。例えば炉内O濃度をセンサにて感知し、その結果に基づくフィードバック制御の演算により炭素源添加量の操作を行ってもよい。 The control of the O 2 concentration in the furnace is based on the carbon source addition amount based on the operating conditions (plasma gas amount Qp, leak amount Q L , unburned carbon amount Co contained in the incineration residue, etc.) as described above. It is not limited to what is calculated. For example, the O 2 concentration in the furnace may be sensed by a sensor, and the carbon source addition amount may be manipulated by calculation of feedback control based on the result.

また、前記炭素源は前記焼却残渣と独立して溶融炉10内に供給されて当該溶融炉10内で前記焼却残渣に添加されてもよい。しかし、前記のように炭素源が溶融炉10の外部で焼却残渣に添加され、この焼却残渣と混合された状態で前記溶融炉10内に供給されることは、特に焼却残渣の周辺の雰囲気のO濃度を局所的に低減することを可能にし、より少ない炭素源量でPbの揮発を促進することができる利点がある。従って、溶融スラグ中のPb含有量を規定値以下に抑えるために必要な炭素源添加量を減らしてその分CO発生量のさらなる低減を図ることが可能である。特に、前記実施の形態のように前記焼却残渣と前記炭素源との混合物がスクリューフィーダ24により前記溶融炉内に供給されることでは、当該スクリューフィーダ24が前記焼却残渣と前記炭素源との混合を促進することにより、当該炭素源によるPb揮発促進効果をより高めることが可能になる。 The carbon source may be supplied into the melting furnace 10 independently of the incineration residue and added to the incineration residue in the melting furnace 10. However, as described above, the carbon source is added to the incineration residue outside the melting furnace 10 and supplied into the melting furnace 10 in a state of being mixed with the incineration residue, particularly in the atmosphere around the incineration residue. There is an advantage that the O 2 concentration can be locally reduced and the volatilization of Pb can be promoted with a smaller amount of carbon source. Therefore, it is possible to reduce the amount of carbon source added to reduce the Pb content in the molten slag to a specified value or less and further reduce the amount of generated CO. In particular, when the mixture of the incineration residue and the carbon source is supplied into the melting furnace by the screw feeder 24 as in the embodiment, the screw feeder 24 mixes the incineration residue and the carbon source. By promoting the above, it becomes possible to further enhance the Pb volatilization promoting effect by the carbon source.

前記の実施の形態に係る方法において、炭素源として用いられるコークスの粒径がスラグ中Pb含有量の低減効果に与える影響を確認すべく、種々の粒径範囲をもつコークスを用いて実験が行われた。その結果を表1に示す。   In the method according to the embodiment described above, experiments were conducted using coke having various particle size ranges in order to confirm the influence of the particle size of coke used as a carbon source on the effect of reducing the Pb content in the slag. It was broken. The results are shown in Table 1.

Figure 2010078242
Figure 2010078242

この実験は、炉内O濃度が10%、炉内温度が1350±50℃という炉運転条件下で行われた。また、使用されるコークスは予め篩により表1に示される4つのグループに分級され、それぞれのグループに属するコークスを炉内供給前の焼却残渣に予め添加することにより当該グループごとに実験が行われ、データ(スラグ中のPb含有量)が採取された。 This experiment was performed under furnace operating conditions in which the furnace O 2 concentration was 10% and the furnace temperature was 1350 ± 50 ° C. In addition, the coke to be used is classified in advance into four groups shown in Table 1 by sieving, and experiments are performed for each group by adding coke belonging to each group to the incineration residue before in-furnace supply. , Data (Pb content in slag) were collected.

この実験の結果、前記表1に示されるように、炭素源として0.5mm以上4.0mm未満の粒径をもつグループのコークスを使用する場合に、スラグ中のPb含有量を最も減らすことができた。その理由は次のように考察される。   As a result of this experiment, as shown in Table 1, the Pb content in the slag can be reduced most when a group of coke having a particle size of 0.5 mm or more and less than 4.0 mm is used as the carbon source. did it. The reason is considered as follows.

1)コークスの粒径が小さいほど当該コークスと焼却残渣との接触面積が大きくなる。このことは、炭素源としてのコークスが焼却残渣中のPbの局所的な還元・揮発をより有効に促進する。   1) The smaller the coke particle size, the larger the contact area between the coke and the incineration residue. This effectively promotes the local reduction and volatilization of Pb in the incineration residue by coke as a carbon source.

2)しかし、粒径が0.5mm未満のダスト状のコークスは、焼却残渣中のPbの揮発促進に寄与する前に炉内Oとの反応によって消滅してしまうために、当該Pbの揮発促進に寄与することができる割合が少ない。 2) However, since the dusty coke having a particle size of less than 0.5 mm disappears due to the reaction with O 2 in the furnace before contributing to the promotion of the volatilization of Pb in the incineration residue, the volatilization of the Pb A small percentage can contribute to the promotion.

3)結論として、0.5mm以上4.0mm未満の粒径をもつコークスが最もPbの揮発促進に寄与することができる。   3) As a conclusion, coke having a particle size of 0.5 mm or more and less than 4.0 mm can contribute most to the promotion of Pb volatilization.

本発明の実施の形態に係るプラズマ溶融装置の断面図である。It is sectional drawing of the plasma melting apparatus which concerns on embodiment of this invention. 前記装置において得られた炉内O濃度の測定値と炉内CO濃度の測定値との関係を示すグラフである。It is a graph showing the relationship between the measurement values of the furnace CO concentration in the furnace O 2 concentration obtained in the apparatus. 前記装置において得られた炉内O濃度の測定値と溶融スラグ中Pb濃度の測定値との関係を示すグラフである。Is a graph showing the relationship between the measurement values of the molten slag in Pb concentration in the reactor in the O 2 concentration obtained in the apparatus. 前記装置において得られた炉内O濃度の測定値と炉内NOx濃度の測定値との関係を示すグラフである。Is a graph showing the relationship between the measurement values of the furnace NOx concentration in the reactor in the O 2 concentration obtained in the apparatus.

符号の説明Explanation of symbols

10 溶融炉
12 溶融スラグ
14 スラグ出滓口
20 供給装置
24 スクリューフィーダ
30 プラズマトーチ
DESCRIPTION OF SYMBOLS 10 Melting furnace 12 Molten slag 14 Slag outlet 20 Feeding device 24 Screw feeder 30 Plasma torch

Claims (4)

プラズマを用いて廃棄物の焼却残渣を溶融処理する方法であって、
溶融炉内に前記焼却残渣を供給することと、
前記溶融炉内に供給した焼却残渣を、酸素含有ガスを作動ガスとするプラズマ発生装置により生成したプラズマによって溶融処理し、これにより生じた溶融スラグを溶融炉の外部に排出して回収することと、
前記溶融炉内に供給される溶融残渣に炭素源を添加するとともに、その添加量を、当該炭素源による前記溶融炉内の酸素の吸収により当該溶融炉内の酸素濃度が4%以上10%以下となるように決定することと、を含むことを特徴とする廃棄物の焼却残渣の溶融処理方法。
A method of melting waste incineration residue using plasma,
Supplying the incineration residue into a melting furnace;
Melting the incineration residue supplied into the melting furnace with plasma generated by a plasma generator using an oxygen-containing gas as a working gas, and discharging and recovering the generated molten slag to the outside of the melting furnace; ,
While adding a carbon source to the molten residue supplied into the melting furnace, the amount of addition is such that the oxygen concentration in the melting furnace is 4% or more and 10% or less due to absorption of oxygen in the melting furnace by the carbon source. And a melting treatment method for waste incineration residues, comprising:
請求項1記載の廃棄物の焼却残渣の溶融処理方法において、
前記炭素源は前記溶融炉の外部で前記焼却残渣に添加され、この焼却残渣と混合された状態で前記溶融炉内に供給されることを特徴とする廃棄物の焼却残渣の溶融処理方法。
In the melting processing method of the incineration residue of the waste according to claim 1,
The carbon source is added to the incineration residue outside the melting furnace, and is supplied into the melting furnace in a state of being mixed with the incineration residue.
請求項2記載の廃棄物の焼却残渣の溶融処理方法において、
前記焼却残渣と前記炭素源との混合物がスクリューフィーダにより前記溶融炉内に供給されることを特徴とする廃棄物の焼却残渣の溶融処理方法。
In the melting processing method of the incineration residue of the waste according to claim 2,
A waste incineration residue melting treatment method, wherein a mixture of the incineration residue and the carbon source is supplied into the melting furnace by a screw feeder.
請求項2または3記載の廃棄物の焼却残渣の溶融処理方法において、
前記焼却残渣に添加される炭素源が0.5mm以上4mm未満の粒径をもつコークスであることを特徴とする廃棄物の焼却残渣の溶融処理方法。
In the method for melting a waste incineration residue according to claim 2 or 3,
A method for melting a waste incineration residue, wherein the carbon source added to the incineration residue is coke having a particle size of 0.5 mm or more and less than 4 mm.
JP2008247884A 2008-09-26 2008-09-26 Method for melting waste incineration residue Active JP5374105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008247884A JP5374105B2 (en) 2008-09-26 2008-09-26 Method for melting waste incineration residue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008247884A JP5374105B2 (en) 2008-09-26 2008-09-26 Method for melting waste incineration residue

Publications (2)

Publication Number Publication Date
JP2010078242A true JP2010078242A (en) 2010-04-08
JP5374105B2 JP5374105B2 (en) 2013-12-25

Family

ID=42208899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008247884A Active JP5374105B2 (en) 2008-09-26 2008-09-26 Method for melting waste incineration residue

Country Status (1)

Country Link
JP (1) JP5374105B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020534156A (en) * 2017-09-22 2020-11-26 ユーロプラズマ Processes and equipment for vitrification of powdered materials
WO2023103347A1 (en) * 2021-12-09 2023-06-15 中国华能集团清洁能源技术研究院有限公司 Apparatus and method for utilizing waste heat of garbage incinerator slag by means of coupled plasma cracking

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752006B2 (en) * 1988-10-31 1995-06-05 川崎製鉄株式会社 How to treat municipal waste incineration ash
JPH11104592A (en) * 1997-10-01 1999-04-20 Kubota Corp Fusing treatment of incineration ash

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752006B2 (en) * 1988-10-31 1995-06-05 川崎製鉄株式会社 How to treat municipal waste incineration ash
JPH11104592A (en) * 1997-10-01 1999-04-20 Kubota Corp Fusing treatment of incineration ash

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020534156A (en) * 2017-09-22 2020-11-26 ユーロプラズマ Processes and equipment for vitrification of powdered materials
JP7150028B2 (en) 2017-09-22 2022-10-07 ユーロプラズマ Process and apparatus for vitrification of powdery substances
WO2023103347A1 (en) * 2021-12-09 2023-06-15 中国华能集团清洁能源技术研究院有限公司 Apparatus and method for utilizing waste heat of garbage incinerator slag by means of coupled plasma cracking

Also Published As

Publication number Publication date
JP5374105B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
CN101797572B (en) Method for treating waste incineration fly ash by using plasmas
US20060228294A1 (en) Process and apparatus using a molten metal bath
JP4833093B2 (en) Waste incineration fly ash treatment method
JP6521482B2 (en) Incineration ash treatment apparatus, waste incineration apparatus, incineration ash treatment method and waste incineration method
JP2010075897A (en) Apparatus for fly ash treatment, method for fly ash treatment, waste disposal system, and operation method for waste disposal system
JP5374105B2 (en) Method for melting waste incineration residue
JP2013226505A (en) Exhaust gas treatment apparatus and exhaust gas treatment method using the same
JP2008296080A (en) Method and apparatus for making heavy metal containing material harmless
JP2007127355A (en) Rubbish incinerating/melting method and device therefor
JP4949713B2 (en) Method for firing heavy metal-containing raw materials
JP2009034591A (en) Detoxification treatment apparatus and method for ash to be treated
JP2002113327A (en) Method for controlling feed rate of desalting agent for exhaust gas
WO2015196889A1 (en) Side-blast tin smelting apparatus
JP2023503236A (en) Improved plasma-induced fuming furnace
JP2009226237A (en) Treatment method of treating waste
JP2006118853A (en) Process for influencing properties of combustion residue
JP2010115588A (en) Melting treatment method of incineration ash and melting treatment equipment
JP2005095749A (en) Method and apparatus for treating water used for granulating molten slag
JP4096013B2 (en) Granulated slag treatment equipment
CN220432873U (en) Dust and ash treatment device for smelting reduction steelmaking
JP4248767B2 (en) Method and apparatus for melting waste incineration ash
JP2002257480A (en) Low-co2 exhausting type burning apparatus and method for using the same
JP5019327B2 (en) Exhaust gas treatment facility and exhaust gas treatment method
JP5416752B2 (en) Incineration ash melting method and waste melting equipment
JP5999861B1 (en) Radioactive substance removal method and radioactive substance removal system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130920

R150 Certificate of patent or registration of utility model

Ref document number: 5374105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250