JP2010077524A - Powder of tungsten alloy with transition metal dissolved therein as solid solution and process for producing the same - Google Patents

Powder of tungsten alloy with transition metal dissolved therein as solid solution and process for producing the same Download PDF

Info

Publication number
JP2010077524A
JP2010077524A JP2009116291A JP2009116291A JP2010077524A JP 2010077524 A JP2010077524 A JP 2010077524A JP 2009116291 A JP2009116291 A JP 2009116291A JP 2009116291 A JP2009116291 A JP 2009116291A JP 2010077524 A JP2010077524 A JP 2010077524A
Authority
JP
Japan
Prior art keywords
tungsten
transition metal
iron
alloy powder
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009116291A
Other languages
Japanese (ja)
Other versions
JP5522713B2 (en
Inventor
Masao Morishita
政夫 森下
Hiroaki Yamamoto
宏明 山本
Masaaki Ikebe
政昭 池邉
Masahiro Iwasaki
政弘 岩崎
Hidefumi Yanagida
秀文 柳田
Hiroshi Nishimaki
宏 西牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANALLOY INDUSTRY CO Ltd
Hyogo Prefectural Government
Original Assignee
SANALLOY INDUSTRY CO Ltd
Hyogo Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANALLOY INDUSTRY CO Ltd, Hyogo Prefectural Government filed Critical SANALLOY INDUSTRY CO Ltd
Priority to JP2009116291A priority Critical patent/JP5522713B2/en
Publication of JP2010077524A publication Critical patent/JP2010077524A/en
Application granted granted Critical
Publication of JP5522713B2 publication Critical patent/JP5522713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powder of a tungsten alloy with a transition metal dissolved therein as a solid solution that is suitable as a material for a cemented carbide and a material for a catalyst. <P>SOLUTION: The powder of the tungsten alloy with the transition metal dissolved therein which is shown by general formula [1] is characterized in that at least one transition metal element selected from the group consisting of cobalt, iron, manganese, and nickel is dissolved as a solid solution in a tungsten grating and a peak derived from a bcc tungsten phase appears in an X-ray diffraction diagram. Formula [1]: M-W wherein M represents one or more elements selected from Co, Fe, Mn, or Ni. The use of the powder of the tungsten alloy can provide a tungsten carbide with a transition metal dissolved therein as a solid solution in which a solid solution phase of at least one transition metal element selected from the group consisting of cobalt, iron, manganese, and nickel, tungsten, and carbon is included in a tungsten carbide skeleton, and a tungsten carbide diffused cemented carbide. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は遷移金属固溶タングステン合金粉末及びその製造方法に関する。   The present invention relates to a transition metal solid solution tungsten alloy powder and a method for producing the same.

タングステンは高い融点と弾性率を有し、フィラメント材料やタングステン炭化物(WC)の原料として有用である。しかしながら、その資源は専ら中国に偏在していることから、中国の国内需要の急増に伴い、その価格が高騰する傾向にある。タングステンを省資源化した材料を開発するためには、タングステンの一部を遷移金属元素で代替する必要がある。   Tungsten has a high melting point and elastic modulus, and is useful as a raw material for filament materials and tungsten carbide (WC). However, since the resources are mainly unevenly distributed in China, the price tends to rise with the rapid increase in domestic demand in China. In order to develop a material that saves tungsten, it is necessary to replace a part of tungsten with a transition metal element.

しかしながら、タングステンはその融点の高さから溶融製造は困難である。また、形状付与のために粉末冶金技術を用いる場合にも、タングステン粉末と遷移金属元素の素粉末混合法では、合金化が進行しない問題がある。さらに、合金粉末製造のためのアトマイズ法の適用も困難である。   However, it is difficult to manufacture melted tungsten because of its high melting point. In addition, when using powder metallurgy technology for imparting a shape, there is a problem that alloying does not proceed in the powder mixing method of tungsten powder and transition metal element. Furthermore, it is difficult to apply the atomizing method for producing the alloy powder.

他方、従来から金属塩又は金属水酸化物の共沈法を用いてタングステン合金粉末を製造する方法が知られている(特許文献1、特許文献2)。   On the other hand, conventionally, a method for producing a tungsten alloy powder by using a coprecipitation method of a metal salt or a metal hydroxide is known (Patent Document 1, Patent Document 2).

特表2002−527626号公報JP 2002-527626 Gazette 米国特許第4913731号明細書U.S. Pat. No. 4,913,731

しかしながら、特許文献1、2記載の製造方法では共沈という操作の関係上、合金粉末にはタングステン相及び遷移金属元素を合金化したタングステン相以外に、遷移金属元素の相が含まれ、合金化が十分進行していなかった。   However, due to the operation of coprecipitation in the production methods described in Patent Documents 1 and 2, the alloy powder includes a transition metal element phase in addition to the tungsten phase and the tungsten phase alloyed with the transition metal element. Was not progressing sufficiently.

本発明はかかる問題点に鑑み、遷移金属元素を固溶(強制固溶を含む)した新規タングステン合金粉末を提供することを課題とする。   In view of such problems, an object of the present invention is to provide a novel tungsten alloy powder in which a transition metal element is dissolved (including forced solid solution).

上記目標を達成するため、本発明者は、鋭意研究を重ねた結果、水溶液中にタングステンイオンと遷移金属イオンをイオンレベルで均一・一様化し、蒸発乾固又は噴霧乾燥した後、熱分解させ、水素熱還元を行ってタングステン粉末を得ると、遷移金属元素を完全に強制固溶したタングステン合金粉末を作製できることを見出し、ここに本発明をなしたものである。   In order to achieve the above goal, the present inventor has conducted extensive research, and as a result, the tungsten ion and the transition metal ion are uniformly and uniformized at an ionic level in an aqueous solution, evaporated to dryness or spray dried, and then thermally decomposed. The inventors have found that when a tungsten powder is obtained by performing hydrogen thermal reduction, a tungsten alloy powder in which the transition metal element is completely compulsorily dissolved can be produced, and the present invention is made here.

すなわち、本発明はコバルト、鉄、マンガン及びニッケルの群から選ばれる少なくとも1種の遷移金属元素がタングステン格子中に固溶されてなり、X線回折図形にbccタングステン相ピークが認められる式[1]で示される遷移金属固溶タングステン合金粉末にある。
式[1]:M−W(但し、MはCo,Fe,MnまたはNiから選ばれる1種以上を示す)
単一金属がタングステンに固溶した、1)コバルトがタングステン格子中に固溶されてなり、Co−Wで示される遷移金属固溶タングステン合金粉末、2)鉄がタングステン格子中に固溶されてなり、式:Fe−Wで示される遷移金属固溶タングステン合金粉末、3)ニッケルがタングステン格子中に固溶されてなり、式:Ni−Wで示される遷移金属固溶タングステン合金粉末挙げられる。
That is, according to the present invention, at least one transition metal element selected from the group consisting of cobalt, iron, manganese and nickel is dissolved in a tungsten lattice, and the formula [1 In the transition metal solid solution tungsten alloy powder.
Formula [1]: MW (where M represents one or more selected from Co, Fe, Mn, or Ni)
Single metal is dissolved in tungsten 1) Cobalt is dissolved in tungsten lattice, transition metal solid solution tungsten alloy powder indicated by Co-W, 2) Iron is dissolved in tungsten lattice The transition metal solid solution tungsten alloy powder represented by the formula: Fe-W, 3) Nickel is dissolved in the tungsten lattice, and the transition metal solid solution tungsten alloy powder represented by the formula: Ni-W is exemplified.

上記コバルト、鉄、ニッケルの一部は、鉄、マンガン及びニッケルの群から選ばれる1種以上と置換することができ、複合遷移金属固溶タングステン粉末を得ることができる。その内、4)コバルトの一部を、鉄、鉄−マンガン及びニッケルの群から選ばれる1種以上と置換した式[2]:Co−M1−W(但し、M1はFe,MnまたはNiから選ばれる1種以上を示す)で示される遷移金属固溶タングステン合金粉末、5)鉄がタングステン格子中に固溶されてなり、鉄の一部がマンガン及びニッケルの群から選ばれる1種以上と置換した式[3]:Fe−M2−W(但し、M2は,Co,MnまたはNiから選ばれる1種以上を示す)で示される遷移金属固溶タングステン合金粉末が好ましい。
Part of the cobalt, iron, and nickel can be substituted with one or more selected from the group consisting of iron, manganese, and nickel, and a composite transition metal solid solution tungsten powder can be obtained. Among them, 4) Formula [2] in which a part of cobalt is replaced with one or more selected from the group of iron, iron-manganese and nickel (wherein M1 is Fe, Mn or Ni) A transition metal solid solution tungsten alloy powder represented by 1), 5) one or more selected from the group consisting of manganese and nickel, wherein iron is dissolved in a tungsten lattice. A transition metal solid solution tungsten alloy powder represented by the substituted formula [3]: Fe-M2-W (wherein M2 represents one or more selected from Co, Mn or Ni) is preferable.

タングステンに対する遷移金属の固溶量はタングステンの等量モルまで可能である。固溶元素としては、コバルトの場合、タングステン60〜90mol%に対しコバルト40〜10mol%が適当であり、他の遷移金属も同様である。
The amount of transition metal dissolved in tungsten can be up to an equimolar amount of tungsten. As the solid solution element, in the case of cobalt, 40 to 10 mol% of cobalt is appropriate with respect to 60 to 90 mol% of tungsten, and the same applies to other transition metals.

本発明は、上記遷移金属固溶タングステン粉末を得る製造方法を提供することを第2の目的とするものであり、タングステンイオンを含む水溶液と、コバルト、鉄、鉄―マンガン及びニッケルの群から選ばれる少なくとも1種の遷移金属イオンを含む水溶液を、タングステンイオンが60mol%以上、遷移金属イオンが40mol%以下の比率で混合し、該混合水溶液を蒸発乾固させるか又は噴霧乾燥させ、得られた固形物を熱分解した後水素熱還元することによって、遷移金属元素を固溶した式[1]で示される遷移金属固溶タングステン合金粉末
式[1]:M−W(但し、MはCo、Fe、MnまたはNiから選ばれる1種以上を示す)
を製造するようにしたことを特徴とする遷移金属固溶タングステン合金粉末の製造方法を提供するものである。
The second object of the present invention is to provide a production method for obtaining the transition metal solid solution tungsten powder, which is selected from the group consisting of an aqueous solution containing tungsten ions and cobalt, iron, iron-manganese and nickel. An aqueous solution containing at least one kind of transition metal ions was mixed at a ratio of 60 mol% or more of tungsten ions and 40 mol% or less of transition metal ions, and the mixed aqueous solution was evaporated to dryness or spray dried. The transition metal solid solution tungsten alloy powder represented by the formula [1] in which the transition metal element is solid-solved by thermally decomposing the solid matter and then hydrogenothermal reduction Formula [1]: MW (where M is Co, One or more selected from Fe, Mn or Ni)
The present invention provides a method for producing a transition metal solid solution tungsten alloy powder characterized in that the above is produced.

本発明においては、タングステンイオンを含む水溶液がパラタングステン酸アンモニウム(5( NH4)2 O・12WO3 ・5H2 O)水溶液であり、コバルト、鉄、鉄−マンガン及びニッケルの群から選ばれる少なくとも一種の遷移金属イオンを含む水溶液が遷移金属錯体塩水溶液であるのが好ましい。遷移金属錯体塩として酢酸塩(Fe(OH)(C23OO) 2 、Co( C233)2・4H2O、Mn( CH3COO)2・4H2O、Ni(C233)2・xH2O)、および硫酸塩(FeSO4、CoSO4・7H2 O、NiSO4・6H2O、MnSO4・5H2 O)を用いることができる。 In the present invention, the aqueous solution containing tungsten ions is an aqueous solution of ammonium paratungstate (5 (NH 4 ) 2 O · 12WO 3 · 5H 2 O), and at least selected from the group consisting of cobalt, iron, iron-manganese and nickel. The aqueous solution containing a kind of transition metal ion is preferably an aqueous transition metal complex salt solution. As transition metal complex salts, acetate (Fe (OH) (C 2 H 3 OO) 2 , Co (C 2 H 3 O 3 ) 2 .4H 2 O, Mn (CH 3 COO) 2 .4H 2 O, Ni ( C 2 H 3 O 3 ) 2 .xH 2 O) and sulfates (FeSO 4 , CoSO 4 .7H 2 O, NiSO 4 .6H 2 O, MnSO 4 .5H 2 O) can be used.

本発明で得られるタングステン合金粉末は、遷移金属元素がタングステン格子中に固溶されてなり、X線回折図形にbcc相ピークが認められることを特徴とするので、この遷移金属固溶タングステン合金粉末ではタングステン粒界に実質的に遷移金属元素又はその金属化合物が存在しないことが分かる。   The tungsten alloy powder obtained in the present invention is characterized in that the transition metal element is dissolved in the tungsten lattice and the bcc phase peak is observed in the X-ray diffraction pattern. Then, it can be seen that there is substantially no transition metal element or its metal compound at the tungsten grain boundary.

本発明に係るタングステン合金粉末は、式[1]で示される遷移金属固溶タングステン合金粉末
式[1]:M−W(但し、MはCo、Fe、MnまたはNiから選ばれる1種以上を示す)
である。コバルトを0.3〜20.8重量%含み、残部がタングステンからなるのを基本とするが、コバルトの全てあるいは一部を、鉄、マンガン及びニッケルの一種以上の元素で置換することにより形成される。ここで、コバルトを含めM成分がタングステン合金粉末の0.3重量%未満では省資源の効果が得られず、20.8重量%を超えると、タンクステン粒界に第2相が析出し、遷移金属元素を固溶(強制固溶)したタングステン合金粉末にならない。
The tungsten alloy powder according to the present invention is a transition metal solid solution tungsten alloy powder represented by the formula [1] Formula [1]: MW (where M is one or more selected from Co, Fe, Mn or Ni). Show)
It is. Cobalt is contained in an amount of 0.3 to 20.8% by weight, and the balance is basically tungsten, but is formed by replacing all or part of cobalt with one or more elements of iron, manganese and nickel. The Here, if the M component including cobalt is less than 0.3% by weight of the tungsten alloy powder, the resource saving effect cannot be obtained, and if it exceeds 20.8% by weight, the second phase is precipitated at the tank stainless grain boundary, It does not become a tungsten alloy powder in which transition metal elements are dissolved (forced solid solution).

コバルトは、タングステンの格子位置に置換して存在することで、タングステンの代替元素として作用し、価格が高騰しているタングステンの省資源化に有効である。また、コバルトを固溶(強制固溶)することで触媒活性が高め、本発明合金粉末に触媒としての機能を付与することができる。
他方、ニッケルは、コバルトと類似の機能をもち、コバルトよりも価格が安いことに特徴を有する。また、ニッケルはコバルト以上に触媒活性を付与する。鉄及びは、タンクステン粉末の強度を向上させ、しかも安価であることに特徴を有する。また、鉄、鉄―マンガンはその変態的特徴を有効に利用することができ、超硬合金金型の破壊靱性の改善に役立てることができる。
Cobalt is present in substitution for the lattice position of tungsten, so that it acts as an alternative element for tungsten and is effective for resource saving of tungsten, which is rising in price. Moreover, catalytic activity can be increased by dissolving cobalt in a solid solution (forced solid solution), and a function as a catalyst can be imparted to the alloy powder of the present invention.
On the other hand, nickel has a function similar to that of cobalt and is characterized by a lower price than cobalt. Nickel also imparts catalytic activity over cobalt. Iron and iron are characterized by improving the strength of tank stainless powder and being inexpensive. Moreover, iron, iron-manganese can effectively utilize their transformation characteristics, and can be used to improve the fracture toughness of cemented carbide molds.

遷移金属イオンを含む水溶液としては、金属錯体塩、例えば、鉄、ニッケル、マンガンおよびコバルトの酢酸塩(Co( C233)2・4H2O、Fe(OH)(C23OO) 2 、Mn( CH3COO)2・4H2O、Ni(C233)2・xH2O)を用いると、水溶性であり、かつ、有害物質を発生させず、環境負荷が小さい。また、鉄、ニッケルおよびコバルトの遷移金属硫酸塩(CoSO4・7H2 O、FeSO4、NiSO4・6H2 O)の使用も循環型社会実現のために有効である。一般的に、銅の電解精製プロセスでは、電解液中の硫酸中に、鉄、ニッケルおよびコバルトの遷移金属が濃縮される。したがって、銅の電解精製で発生した廃液を、本発明のタングステン合金粉末の原料として使用することができ、かつ、蒸発乾固あるいは噴霧乾燥時に発生した硫酸も、副製品として有効利用することができる。 Examples of the aqueous solution containing transition metal ions include metal complex salts such as iron, nickel, manganese and cobalt acetates (Co (C 2 H 3 O 3 ) 2 .4H 2 O, Fe (OH) (C 2 H 3 OO) 2 , Mn (CH 3 COO) 2 .4H 2 O, Ni (C 2 H 3 O 3 ) 2 .xH 2 O) are water-soluble and do not generate harmful substances. The load is small. Use of transition metal sulfates of iron, nickel and cobalt (CoSO 4 .7H 2 O, FeSO 4 , NiSO 4 .6H 2 O) is also effective for realizing a recycling society. In general, copper electrorefining processes concentrate iron, nickel and cobalt transition metals in sulfuric acid in the electrolyte. Therefore, the waste liquid generated by electrolytic refining of copper can be used as a raw material for the tungsten alloy powder of the present invention, and sulfuric acid generated during evaporation to dryness or spray drying can also be effectively used as a by-product. .

以下、本発明を実施例に基づいて説明する。   Hereinafter, the present invention will be described based on examples.

表1に示す化学成分(mol%)を有する、従来材(No.1)、本発明材(No.2〜No.9)、比較材(No.10、No.11)を作製し、X線回折とEPMAにより、強制固溶体生成の可否、第2相析出の有無を調べた。   A conventional material (No. 1), a material of the present invention (No. 2 to No. 9), and a comparative material (No. 10, No. 11) having chemical components (mol%) shown in Table 1 were prepared, and X By means of line diffraction and EPMA, the possibility of forced solid solution formation and the presence or absence of second phase precipitation were examined.

表1において、溶液法とは本発明プロセスのことであり、遷移金属酢酸塩(Co( C233)2・4H2O、Fe(OH)(C23OO) 2 、Mn( CH3COO)2・4H2O及び/又はNi(C233)2・xH2O)の水溶液とパラタングステン酸アンモニウム(5( NH4)2 O・12WO3 ・5H2 O)の水溶液を混合した後、蒸発乾固(噴霧乾燥でもよい)させ、得られた固形物を大気中823Kで酸化物に熱分解した後、水素ガス中1073Kで1h保持することにより水素熱還元してタンクステン合金粉末を得る方法である。 In Table 1, the solution method is the process of the present invention, and includes transition metal acetates (Co (C 2 H 3 O 3 ) 2 .4H 2 O, Fe (OH) (C 2 H 3 OO) 2 , Mn An aqueous solution of (CH 3 COO) 2 · 4H 2 O and / or Ni (C 2 H 3 O 3 ) 2 · xH 2 O) and ammonium paratungstate (5 (NH 4 ) 2 O · 12WO 3 · 5H 2 O ) And then evaporated to dryness (may be spray-dried), and the resulting solid was thermally decomposed to oxides at 823 K in the atmosphere, and then kept at 1073 K in hydrogen gas for 1 h for hydrothermal reduction. Thus, a tank stainless alloy powder is obtained.

試料No.1は、粉末冶金の従来技術である素粉末混合法を適用して、表1の化学組成となるよう純コバルト粉末7.42重量%と残部純タングステン粉末を秤量して混合後、2ton/cm2の圧力で圧縮成型した後、水素ガス中、1073Kで1h保持して得た従来材である。第2相として純コバルト相が残留し、タングステンとの合金化は進行しなかった。 Sample No. 1 is a powder metallurgy, which is a conventional technique of powder metallurgy, and 7.42% by weight of pure cobalt powder and the remaining pure tungsten powder are weighed and mixed to obtain the chemical composition shown in Table 1, and then 2 ton / cm. This is a conventional material obtained by compression molding at a pressure of 2 and holding in hydrogen gas at 1073 K for 1 h. A pure cobalt phase remained as the second phase, and alloying with tungsten did not proceed.

試料No.2は、溶液法によって得られた本発明材である。遷移金属酢酸塩(Co( C233)2・4H2O)の水溶液とパラタングステン酸アンモニウムを混合した。得られた
合金粉末のX線回折図形はbccW相のピークのみが見られ、Coを均一に強制固溶したW合金粉末が得られた。
Sample No. 2 is the material of the present invention obtained by a solution method. An aqueous solution of transition metal acetate (Co (C 2 H 3 O 3 ) 2 .4H 2 O) and ammonium paratungstate were mixed. In the X-ray diffraction pattern of the obtained alloy powder, only the peak of the bcc W phase was observed, and a W alloy powder in which Co was forcibly solid-solved was obtained.

試料No.3は、溶液法によって得られた本発明材である。この80mol%W−20mol%Coの組成となるように遷移金属酢酸塩(Co( C233)2・4H2O)の水溶液とパラタングステン酸アンモニウムを混合した。得られた合金粉末のX線回折図形はbccW相のピークのみがみられ、Coを均一に強制固溶したW合金粉末が得られた。この組成の水素熱還元温度、1073Kにおける平衡相は、W相とCo76相である。溶液法によって、最初、水溶液中コバルトイオンとタングステンイオンとをイオンレベルで均一にすると、水素熱還元後もコバルトはタングステン格子中に捕獲され、平衡相Co76相を形成できないことが確認された。すなわち、溶液法を適用すると、非平衡状態で強制固溶体合金粉末を製造できた。 Sample No. 3 is a material of the present invention obtained by a solution method. An aqueous solution of transition metal acetate (Co (C 2 H 3 O 3 ) 2 .4H 2 O) and ammonium paratungstate were mixed so that the composition was 80 mol% W-20 mol% Co. In the X-ray diffraction pattern of the obtained alloy powder, only the peak of the bcc W phase was observed, and a W alloy powder in which Co was forcibly solid-solved was obtained. The equilibrium phase at the hydrogen thermal reduction temperature of 1073 K of this composition is the W phase and the Co 7 W 6 phase. When cobalt ions and tungsten ions in an aqueous solution are first made uniform at the ion level by the solution method, it is confirmed that cobalt is trapped in the tungsten lattice even after hydrothermal reduction and an equilibrium phase Co 7 W 6 phase cannot be formed. It was. That is, when the solution method was applied, a forced solid solution alloy powder could be produced in a non-equilibrium state.

試料No.4及び試料No.5は、溶液法によって得られた本発明材である。この60mol%W−40mol%Coの組成まで、Coを均一に強制固溶したW合金粉末が得られることが確認された。溶液法を適用すると、この組成まで平衡相Co76相を形成することなく、平衡状態で強制固溶体合金粉末を製造できた。 Sample No. 4 and sample no. 5 is a material of the present invention obtained by a solution method. It was confirmed that a W alloy powder in which Co was uniformly and forcibly dissolved to the composition of 60 mol% W-40 mol% Co was obtained. When the solution method was applied, forced solid solution alloy powder could be produced in an equilibrium state without forming an equilibrium phase Co 7 W 6 phase up to this composition.

試料No.6は、Co( C233)2・4H2O水溶液の一部を、Fe(OH)(C23OO) 2 水溶液に置き換えた溶液法によって得られた本発明材である。Coの一部をFeで置換しても強制固溶体合金粉末の製造は可能であった。 Sample No. 6 is the material of the present invention obtained by a solution method in which a part of the Co (C 2 H 3 O 3 ) 2 .4H 2 O aqueous solution is replaced with an Fe (OH) (C 2 H 3 OO) 2 aqueous solution. . Even if a part of Co was replaced with Fe, forced solid solution alloy powder could be produced.

試料No.7はCo( C233)2・4H2O水溶液の一部を、Fe(OH)(C23OO)2 、Mn(CH3COO)2・4H2O及びNi(C233)2・xH2Oの水溶液に置き換えた溶液法によって得られた本発明材である。Coの一部をFe、Mn、Niで置換しても強制固溶体合金粉末の製造は可能であった。 Sample No. 7 is a part of Co (C 2 H 3 O 3 ) 2 .4H 2 O aqueous solution, Fe (OH) (C 2 H 3 OO) 2 , Mn (CH 3 COO) 2 .4H 2 O and Ni (C It is the material of the present invention obtained by a solution method in which the solution is replaced with an aqueous solution of 2 H 3 O 3 ) 2 .xH 2 O. Even if a part of Co was replaced with Fe, Mn and Ni, forced solid solution alloy powder could be produced.

試料No.8は、Co( C233)2・4H2O水溶液の一部を、Ni(C233)2・xH2O水溶液に置き換えた溶液法によって得られた本発明材である。Coの一部をNiで置換しても強制固溶体合金粉末の製造は可能であった。 Sample No. 8 is a material of the present invention obtained by a solution method in which a part of a Co (C 2 H 3 O 3 ) 2 .4H 2 O aqueous solution is replaced with a Ni (C 2 H 3 O 3 ) 2 · xH 2 O aqueous solution. It is. Even if a part of Co was replaced by Ni, forced solid solution alloy powder could be produced.

試料No.9は、Co( C233)2・4H2O水溶液の一部を、Fe(OH)(C23OO) 2 及びNi(C233)2・xH2Oの水溶液に置き換えた溶液法によって得られた本発明材である。Coの一部をFe及びNiを複合して置換しても強制固溶体合金粉末の製造は可能であった。 Sample No. 9 is a part of an aqueous solution of Co (C 2 H 3 O 3 ) 2 .4H 2 O, Fe (OH) (C 2 H 3 OO) 2 and Ni (C 2 H 3 O 3 ) 2 .xH 2 O. It is this invention material obtained by the solution method replaced with the aqueous solution. The forced solid solution alloy powder could be produced even if a part of Co was replaced with a composite of Fe and Ni.

試料No.10は、溶液法によって得られた比較材である。この10mol%W−90mol%Coの組成では、最終的に平衡相であるCo3Wが第2相として析出した。したがって、Co量が多いと、溶液法を用いても、Co格子中でのW原子の拡散が容易であるため、強制固溶体の作製は不可能であった。 Sample No. 10 is a comparative material obtained by the solution method. In this composition of 10 mol% W-90 mol% Co, Co 3 W which is an equilibrium phase finally precipitated as the second phase. Therefore, if the amount of Co is large, even if the solution method is used, the diffusion of W atoms in the Co lattice is easy, so that it is impossible to produce a forced solid solution.

試料No.11は、溶液法によって得られた比較材である。この50mol%W−50mol%Coの組成では、最終的に平衡相であるCo76が第2相として析出した。したがって、この組成においても、W原子は拡散するため、強制固溶体の作製は不可能であった。 Sample No. 11 is a comparative material obtained by the solution method. In the composition of 50 mol% W-50 mol% Co, Co 7 W 6 which is an equilibrium phase finally precipitated as the second phase. Therefore, even in this composition, since W atoms diffuse, it was impossible to produce a forced solid solution.

試料No.12は、Co( C233)2・4H2O水溶液の一部を、Fe(OH)(C23OO) 2水溶液に置き換えた溶液法によって得られた本発明材である。Coの一部を微量のFeで置換した強制固溶体合金粉末である。 Sample No. 12 is a material of the present invention obtained by a solution method in which a part of a Co (C 2 H 3 O 3 ) 2 .4H 2 O aqueous solution is replaced with an Fe (OH) (C 2 H 3 OO) 2 aqueous solution. . This is a forced solid solution alloy powder in which a part of Co is replaced with a small amount of Fe.

試料No.13は、Co( C233)2・4H2O水溶液の一部を、Fe(OH)(C23OO) 2水溶液に置き換えた溶液法によって得られた本発明材である。No.8に示したNi(C233)2・xH2O水溶液を加えずとも、強制固溶体合金粉末の製造は可能であった。 Sample No. 13 is a material of the present invention obtained by a solution method in which a part of a Co (C 2 H 3 O 3 ) 2 .4H 2 O aqueous solution is replaced with an Fe (OH) (C 2 H 3 OO) 2 aqueous solution. . The forced solid solution alloy powder could be produced without adding the Ni (C 2 H 3 O 3 ) 2 .xH 2 O aqueous solution shown in No. 8.

試料No.14は、Co( C233)2・4H2O水溶液の全てを、Fe(OH)(C23OO) 2水溶液に置き換えた溶液法によって得られた本発明材である。全てをFeで置換しても強制固溶体合金粉末の製造は可能であった。 Sample No. 14 is the material of the present invention obtained by a solution method in which the entire Co (C 2 H 3 O 3 ) 2 .4H 2 O aqueous solution is replaced with an Fe (OH) (C 2 H 3 OO) 2 aqueous solution. Even if all were replaced with Fe, it was possible to produce forced solid solution alloy powder.

試料No.15は、Co( C233)2・4H2O水溶液の全てを、Fe(OH)(C23OO) 2水溶液及びMn(CH3COO)2・4H2O水溶液に置き換えた溶液法によって得られた本発明材である。Coの全てをFe及びMnで置換しても強制固溶体合金粉末の製造は可能であった。 Sample No. 15 replaces all Co (C 2 H 3 O 3 ) 2 · 4H 2 O aqueous solution with Fe (OH) (C 2 H 3 OO) 2 aqueous solution and Mn (CH 3 COO) 2 · 4H 2 O aqueous solution. It is this invention material obtained by the solution method. Even if all of Co was replaced with Fe and Mn, forced solid solution alloy powder could be produced.

[タンクステン炭化物製造例]
表2に示す化学成分(wt%)を有する、従来材(No.21)、本発明材(No.22〜No.28、No.31〜No.34)、比較材(No.29、No.30)を作製した。
[Production example of tank stainless carbide]
Conventional materials (No. 21), invention materials (No. 22 to No. 28, No. 31 to No. 34), and comparative materials (No. 29, No.) having the chemical components (wt%) shown in Table 2. 30) was produced.

表2中の本発明材No.22〜No.27は、溶液法による遷移金属を強制固溶したタングステン合金粉末に、グラファイトを添加混合して作製した。すなわち、遷移金属酢酸塩(Co( C233)2・4H2O、Fe(OH)(C23OO) 2 、Mn( CH3COO)2・4H2O及び/又はNi(C233)2・xH2O)の水溶液とパラタングステン酸アンモニウム(5( NH4)2 O・12WO3 ・5H2 O)の水溶液を混合した後、蒸発乾固(又は噴霧乾燥)させ、得られた固形物を大気中823Kで酸化物に熱分解し、水素ガス中1073Kで1h保持することにより水素熱還元して、遷移金属元素を強制固溶したタンクステン合金粉末を作製した。
次に、このタングステン合金粉末に、グラファイトを混合し、Ar中、1473Kで1h保持してタングステン炭化物を作製した。
Invention material No. 1 in Table 2. 22-No. No. 27 was prepared by adding and mixing graphite to a tungsten alloy powder in which a transition metal was forcibly dissolved by a solution method. That is, transition metal acetates (Co (C 2 H 3 O 3 ) 2 .4H 2 O, Fe (OH) (C 2 H 3 OO) 2 , Mn (CH 3 COO) 2 .4H 2 O and / or Ni After mixing an aqueous solution of (C 2 H 3 O 3 ) 2 .xH 2 O) and an aqueous solution of ammonium paratungstate (5 (NH 4 ) 2 O.12WO 3 .5H 2 O), evaporation to dryness (or spraying) Dried), the resulting solid was thermally decomposed into oxides at 823 K in the atmosphere, and reduced to hydrogen by reducing it to 1073 K in hydrogen gas for 1 h. Produced.
Next, graphite was mixed with this tungsten alloy powder, and held in Ar at 1473 K for 1 h to produce tungsten carbide.

試料No.21は、粉末冶金の従来技術であるWO3にグラファイトを混合し、1473Kで1h、炭化したWC炭化物である。WC骨格内に金属相は内包されていなかった。 Sample No. 21 is WC carbide obtained by mixing graphite with WO 3 which is a conventional technique of powder metallurgy and carbonizing it at 1473K for 1 hour. The metal phase was not included in the WC skeleton.

試料No.22、試料No.23、試料No.24、試料No.25、試料No.26、試料No.27及びNo.28は溶液法と炭化によって得られた本発明材である。WC骨格中に金属相が内包された特異な組織が得られた。この金属相は、タングステンの省資源化に役立ち、かつ、炭化物の機械的性質の改善に役立つ。試料No.22、試料No.23、試料No.24及び試料No.25の順で金属相を多く内包することが分かった。   Sample No. 22, Sample No. 23, sample no. 24, Sample No. 25, sample no. 26, Sample No. 27 and no. 28 is the material of the present invention obtained by the solution method and carbonization. A unique tissue in which a metal phase was encapsulated in the WC skeleton was obtained. This metal phase is useful for resource saving of tungsten and for improving the mechanical properties of the carbide. Sample No. 22, Sample No. 23, sample no. 24 and sample no. It was found that many metal phases were included in the order of 25.

試料No.26、試料No.27及びNo.28は、内包する金属相のコバルトを鉄、鉄−マンガンおよびニッケルで置換し、価格を低減した炭化物である。   Sample No. 26, Sample No. 27 and no. 28 is a carbide reduced in price by replacing cobalt in the metal phase contained therein with iron, iron-manganese and nickel.

試料No.29及びNo.30は、溶液法と炭化によって得られた比較材である。試料No.29のようにタングステン量に比してコバルト量が多いと、タンクステン合金粉末の作製時に、コバルト中、タングステンが拡散して、平衡相のCo3WやCo76が生成する。その結果、この合金粉末を炭化すると炭化物の周囲を金属相が取り囲み、炭化物中に金属相を内包することができない。 Sample No. 29 and No. 30 is a comparative material obtained by the solution method and carbonization. Sample No. When the amount of cobalt is larger than the amount of tungsten as in 29, tungsten is diffused in cobalt during the production of the tank stainless alloy powder, and Co 3 W and Co 7 W 6 in an equilibrium phase are generated. As a result, when this alloy powder is carbonized, the metal phase surrounds the carbide, and the metal phase cannot be included in the carbide.

表2中の本発明材No.31及びNo.32は、溶液法による遷移金属を強制固溶したタングステン合金粉末に、グラファイトを添加混合して作製した。すなわち、試料No.26と同様にして、遷移金属酢酸塩(Co( C233)2・4H2O水溶液、Fe(OH)(C23OO) 2 水溶液及びパラタングステン酸アンモニウム(5( NH4)2 O・12WO3 ・5H2 O)水溶液を混合した後、蒸発乾固(又は噴霧乾燥)させ、得られた固形物を大気中823Kで酸化物に熱分解した後、水素ガス中1073Kで1h保持することにより水素熱還元して、遷移金属元素を強制固溶したタンクステン合金粉末を作製した。次に、このタングステン合金粉末に、グラファイトを混合し、Ar中、1473Kで1h保持してタングステン炭化物を作製した。WC骨格中にCo-Fe固溶体相が内包された特異な組織が得られた。 Invention material No. 1 in Table 2. 31 and no. No. 32 was prepared by adding and mixing graphite to a tungsten alloy powder in which a transition metal was forcibly dissolved by a solution method. That is, in the same manner as Sample No. 26, transition metal acetate (Co (C 2 H 3 O 3 ) 2 .4H 2 O aqueous solution, Fe (OH) (C 2 H 3 OO) 2 aqueous solution and ammonium paratungstate After mixing (5 (NH 4 ) 2 O · 12WO 3 · 5H 2 O) aqueous solution, it was evaporated to dryness (or spray drying), and the resulting solid was thermally decomposed into oxides at 823 K in the atmosphere. A tank stainless alloy powder in which transition metal elements were forcibly dissolved was prepared by holding it at 1073 K in hydrogen gas for 1 h, and then graphite was mixed with this tungsten alloy powder, and 1473 K in Ar. A tungsten carbide was produced by holding for 1 h at a specific structure in which a Co—Fe solid solution phase was encapsulated in the WC skeleton.

表2中の本発明材No.33及びNo.34は、溶液法によるFe及びMnを強制固溶したタングステン合金粉末に、グラファイトを添加混合して作製した。すなわち、Fe(OH)(C23OO) 2 水溶液及びMn(CH3COO)2・4H2O水溶液、パラタングステン酸アンモニウム(5( NH4)2 O・12WO3 ・5H2 O)水溶液を混合した後、混合した後、蒸発乾固(又は噴霧乾燥)させ、得られた固形物を大気中823Kで酸化物に熱分解した後、水素ガス中1073Kで1h保持することにより水素熱還元して、遷移金属元素を強制固溶したタンクステン合金粉末を作製した。次に、このタングステン合金粉末に、グラファイトを混合し、Ar中、1473Kで1h保持してタングステン炭化物を作製した。Coの全てをFe、あるいはFe及びMnで置換すると、金属Fe、あるいはFe-Mn固溶体を内包するWC炭化物の作製が可能であった。 Invention material No. 1 in Table 2. 33 and no. No. 34 was prepared by adding and mixing graphite to a tungsten alloy powder in which Fe and Mn were forcibly dissolved by a solution method. That is, Fe (OH) (C 2 H 3 OO) 2 aqueous solution, Mn (CH 3 COO) 2 .4H 2 O aqueous solution, ammonium paratungstate (5 (NH 4 ) 2 O.12WO 3 .5H 2 O) aqueous solution After mixing, after evaporating to dryness (or spray drying), the resulting solid was thermally decomposed into oxides at 823 K in the atmosphere, and then heated to 1073 K in hydrogen gas for 1 h for hydrothermal reduction Thus, a tank stainless alloy powder in which the transition metal element was forcibly dissolved was prepared. Next, graphite was mixed with this tungsten alloy powder, and held in Ar at 1473 K for 1 h to produce tungsten carbide. When all of Co was replaced with Fe, or Fe and Mn, it was possible to produce WC carbide containing metallic Fe or Fe-Mn solid solution.

図1に、試料No.23の本発明材をEPMA観察した結果を示す。SEM像と対応するWとCのX線像より、WCの骨格が形成されていることが分かった。また、CoのX線像より、WCの骨格中に金属相が形成されていることが理解できる。即ち、
即ち、
(a)は、SEM像である。白く見える部分がWC骨格であり、黒く見える部分が金属Coからなるドメインである。1623 Kで3.6 ks焼結時にCoドメインは不可避的に成長するが、なお、3mm以下を保っている。
(b)WのX線像である。WC骨格の形成を示す。
(c)CoのX線像である。WC骨格中のCoドメインの形成を示す。
(d)CのX線像である。WC骨格の形成を示す。
この金属相の形成がタングステンの使用量削減に有効であり、かつ、機械的特性も向上させる。したがって、この新規WC炭化物を分散した超硬合金は、耐摩耗材料として好適である。
In FIG. The result of having observed 23 invention materials by EPMA is shown. From the SEM image and the corresponding X-ray images of W and C, it was found that a WC skeleton was formed. Further, it can be understood from the X-ray image of Co that a metal phase is formed in the WC skeleton. That is,
That is,
(A) is an SEM image. The part that appears white is the WC skeleton, and the part that appears black is a domain made of metal Co. The Co domain inevitably grows when sintered at 1623 K for 3.6 ks, but it remains below 3 mm.
(B) X-ray image of W. The formation of the WC skeleton is shown.
(C) X-ray image of Co. The formation of the Co domain in the WC skeleton is shown.
(D) X-ray image of C. The formation of the WC skeleton is shown.
The formation of this metal phase is effective for reducing the amount of tungsten used and also improves the mechanical properties. Therefore, the cemented carbide in which this new WC carbide is dispersed is suitable as an abrasion resistant material.

超硬合金は公知の製造方法、すなわち本発明のタングステン炭化物をCo粉末とともに焼結することによって製造できる。図2に、試料No.34の本発明材に5mass%の結合相Coを加えて、1623 Kで3.6 ks焼結によって、試作した超硬合金中のEPMA写真を示した。超硬合金中、WC骨格にFe-Mn固溶体相が形成され、結合相Coの一部は焼結中にこのFe-Mn固溶体相に分配されることが分かった。ビッカ−ス硬さはHv1945であり、極めて高い硬さを示した。また、ビッカ−ス硬さ試験圧痕の先端にクラックは発生せず、靱性も良好であることが分かった。即ち、(6枚の写真の示す意味を追加して下さい 回答:青字を加えて下さい)。
(a)は、SEM像である。白く見える部分がWC骨格であり、黒く見える部分がFe-Mn固溶体相からなるドメインである。焼結時に金属ドメインは不可避的に成長するが、なお、1mm以下を保っている。このSEM像のビッカ-ス硬さ試験のあっ痕を示す。ビッカ−ス硬さはHv1945であり、極めて高い硬さを示した。また、ビッカ−ス硬さ試験圧痕の先端にクラックは発生せず、靱性も良好であることが分かった。
(b)は、WのX線像である。WC骨格の形成を示す。また、Wの一部はFe-Mn固溶体ドメイン分配される。
(c)は、FeのX線像である。Fe-Mn固溶体ドメインの形成を示す。
(d)は、CoのX線像である。結合相Coの一部は焼結中にFe-Mn固溶体ドメインに分配されることを示す。
(e)は、CのX線像である。WC骨格の形成を示す。
(f)は、MnのX線像である。Fe-Mn固溶体ドメインの形成を示す。
金属ドメインを内包するWC炭化物がこのような高い硬さを示す理由は,本発明において、WC骨格が金属ドメインの変形を拘束するマイクロ構造を創出することに成功したためである。
The cemented carbide can be produced by a known production method, that is, by sintering the tungsten carbide of the present invention together with Co powder. FIG. 2 shows an EPMA photograph in a cemented carbide alloy manufactured by adding 3.6 mass of binder phase Co to the present invention material of Sample No. 34 and sintering at 1623 K for 3.6 ks. It was found that in the cemented carbide, a Fe-Mn solid solution phase was formed in the WC skeleton, and a part of the binder phase Co was distributed to this Fe-Mn solid solution phase during sintering. The Vickers hardness was Hv1945, indicating a very high hardness. It was also found that cracks did not occur at the tip of the Vickers hardness test indentation and that the toughness was good. That is, (Please add the meanings shown in the six photos. Answer: Please add blue letters).
(A) is an SEM image. The white part is the WC skeleton, and the black part is the domain composed of the Fe-Mn solid solution phase. The metal domain inevitably grows during sintering, but it remains below 1 mm. The trace of the Vickers hardness test of this SEM image is shown. The Vickers hardness was Hv1945, indicating a very high hardness. It was also found that cracks did not occur at the tip of the Vickers hardness test indentation and that the toughness was good.
(B) is an X-ray image of W. The formation of the WC skeleton is shown. In addition, a part of W is distributed in the Fe-Mn solid solution domain.
(C) is an X-ray image of Fe. The formation of Fe-Mn solid solution domains is shown.
(D) is an X-ray image of Co. It shows that a part of the binder phase Co is distributed to the Fe-Mn solid solution domain during sintering.
(E) is an X-ray image of C. The formation of the WC skeleton is shown.
(F) is an X-ray image of Mn. The formation of Fe-Mn solid solution domains is shown.
The reason why the WC carbide including the metal domain exhibits such a high hardness is that in the present invention, the WC skeleton has succeeded in creating a microstructure that restrains deformation of the metal domain.

以上詳述したように、本発明合金粉末は、タングステン格子中に遷移金属元素を均一一様に強制固溶している。したがって、タングステンの一部を遷移金属元素で代替した合金粉末として、超硬合金用タングステン炭化物原料など、タングステンを省資源化するための用途に広く用いることができる。例えば、本発明のタングステン合金粉末はタングステン粉末と同様にタングステン炭化物を形成し、結合相Coで焼結した超硬合金を製造することができる。   As described in detail above, the alloy powder of the present invention has the transition metal element uniformly and uniformly dissolved in the tungsten lattice. Therefore, as an alloy powder in which a part of tungsten is replaced with a transition metal element, it can be widely used in applications for saving tungsten resources such as tungsten carbide raw materials for cemented carbide. For example, the tungsten alloy powder of the present invention forms tungsten carbide in the same manner as the tungsten powder, and can produce a cemented carbide sintered with the binder phase Co.

試料No.23の本発明材における金属相内包タングステン炭化物をEMPA観察した結果を示す図である。Sample No. It is a figure which shows the result of having observed the metal phase inclusion tungsten carbide in 23 material of this invention by EMPA. 試料No.343の本発明材における金属相内包タングステン炭化物をEMPA観察した結果を示す図である。Sample No. It is a figure which shows the result of having observed the metal phase inclusion tungsten carbide in 343 this invention material by EMPA.

Claims (6)

コバルト、鉄、マンガン及びニッケルの群から選ばれる少なくとも1種の遷移金属元素がタングステン格子中に固溶されてなり、X線回折図形にbccタングステン相ピークが認められる式[1]で示される遷移金属固溶タングステン合金粉末。
式[1]:M−W(但し、MはCo、Fe、MnまたはNiから選ばれる1種以上を示す)
Transition represented by the formula [1] in which at least one transition metal element selected from the group of cobalt, iron, manganese and nickel is dissolved in a tungsten lattice, and a bcc tungsten phase peak is observed in an X-ray diffraction pattern. Metal solute tungsten alloy powder.
Formula [1]: MW (where M represents one or more selected from Co, Fe, Mn or Ni)
コバルトの一部を、鉄、マンガン及びニッケルの群から選ばれる1種以上と置換した
式[2]:Co−M1−W(但し、M1はFe、MnまたはNiから選ばれる1種以上を示す)で示される請求項1記載の遷移金属固溶タングステン合金粉末。
Formula [2] in which a part of cobalt is substituted with one or more selected from the group consisting of iron, manganese and nickel (where M1 represents one or more selected from Fe, Mn or Ni) The transition metal solid solution tungsten alloy powder of Claim 1 shown by this.
鉄がタングステン格子中に固溶されてなり、鉄の一部がマンガン及びニッケルの群から選ばれる1種以上と置換した
式[3]:Fe−M2−W(但し、M2は,Co、MnまたはNiから選ばれる1種以上を示す)で示される請求項1記載の遷移金属固溶タングステン合金粉末。
Formula [3] in which iron is dissolved in a tungsten lattice and a part of iron is substituted with one or more selected from the group of manganese and nickel (where M2 is Co, Mn Or a transition metal solid solution tungsten alloy powder according to claim 1, which represents at least one selected from Ni).
タングステン60〜90mol%に対しコバルト、鉄、鉄−マンガン及びニッケルの群から選ばれる少なくとも1種40〜10mol%を固溶させてなる請求項1〜3のいずれかに記載の遷移金属固溶タングステン合金粉末。   The transition metal solid solution tungsten according to any one of claims 1 to 3, wherein at least one selected from the group consisting of cobalt, iron, iron-manganese, and nickel is dissolved in 60 to 90 mol% of tungsten. Alloy powder. タングステンイオンを含む水溶液と、コバルト、鉄、鉄―マンガン及びニッケルの群から選ばれる少なくとも1種の遷移金属イオンを含む水溶液を、タングステンイオンが60mol%以上、遷移金属イオンが40mol%以下の比率で混合し、
該混合水溶液を蒸発乾固させるか又は噴霧乾燥させ、
得られた固形物を熱分解した後水素熱還元することによって、遷移金属元素を固溶した式[1]で示される遷移金属固溶タングステン合金粉末
式[1]:M−W(但し、MはCo、Fe、MnまたはNiから選ばれる1種以上を示す)
を製造するようにしたことを特徴とする遷移金属固溶タングステン合金粉末の製造方法。
An aqueous solution containing tungsten ions and an aqueous solution containing at least one transition metal ion selected from the group consisting of cobalt, iron, iron-manganese and nickel are in a ratio of 60 mol% or more and 40 mol% or less of transition metal ions. Mixed,
Evaporating the mixed aqueous solution to dryness or spray drying;
The obtained solid is thermally decomposed and then subjected to hydrogenothermal reduction to form a transition metal solid solution tungsten alloy powder represented by the formula [1] in which a transition metal element is dissolved. Formula [1]: MW (where M Represents one or more selected from Co, Fe, Mn or Ni)
A process for producing a transition metal solid solution tungsten alloy powder characterized by comprising producing
タングステンイオンを含む水溶液がパラタングステン酸アンモニウム水溶液であり、コバルト、鉄、鉄−マンガン及びニッケルの群から選ばれる少なくとも一種の遷移金属イオンを含む水溶液が遷移金属錯体塩水溶液である請求項4記載の遷移金属固溶タングステン合金粉末の製造方法。   The aqueous solution containing tungsten ions is an ammonium paratungstate aqueous solution, and the aqueous solution containing at least one transition metal ion selected from the group of cobalt, iron, iron-manganese and nickel is an aqueous transition metal complex salt solution. Method for producing transition metal solid solution tungsten alloy powder.
JP2009116291A 2008-08-25 2009-05-13 Transition metal solid solution tungsten alloy powder and method for producing the same Active JP5522713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009116291A JP5522713B2 (en) 2008-08-25 2009-05-13 Transition metal solid solution tungsten alloy powder and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008215605 2008-08-25
JP2008215605 2008-08-25
JP2009116291A JP5522713B2 (en) 2008-08-25 2009-05-13 Transition metal solid solution tungsten alloy powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010077524A true JP2010077524A (en) 2010-04-08
JP5522713B2 JP5522713B2 (en) 2014-06-18

Family

ID=41721328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009116291A Active JP5522713B2 (en) 2008-08-25 2009-05-13 Transition metal solid solution tungsten alloy powder and method for producing the same

Country Status (5)

Country Link
US (1) US20110243787A1 (en)
EP (1) EP2332675A1 (en)
JP (1) JP5522713B2 (en)
CN (1) CN102131601A (en)
WO (1) WO2010024159A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101752687B1 (en) 2015-04-24 2017-06-30 서울대학교 산학협력단 High strength tungsten alloy with low activation and manufacturing method for the same
WO2018042926A1 (en) * 2016-08-30 2018-03-08 住友電気工業株式会社 Aqueous solution composition and method for producing same, oxide powder and method for producing same, carbide powder and method for producing same, and super-hard alloy and method for producing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2013CH04500A (en) 2013-10-04 2015-04-10 Kennametal India Ltd
CN106480347A (en) * 2016-12-05 2017-03-08 郑州丽福爱生物技术有限公司 A kind of high-strength aluminum alloy material and preparation method thereof
CN109128163B (en) * 2018-08-16 2021-09-14 北京科技大学 Method for preparing high-performance tungsten-based metal part

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925950A (en) * 1982-07-16 1984-02-10 ドルニエ・ジステム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Sintered body comprising tungsten alloy
JPH04124201A (en) * 1990-09-12 1992-04-24 Sumitomo Electric Ind Ltd Tungsten alloy particles and manufacture thereof
JPH04308003A (en) * 1991-04-05 1992-10-30 Sumitomo Electric Ind Ltd Tungsten alloy granule for shielding radiation
JPH059641A (en) * 1991-07-04 1993-01-19 Sumitomo Electric Ind Ltd Fine crystal-grained tungsten alloy and production thereof
JPH06100973A (en) * 1992-09-18 1994-04-12 Sumitomo Electric Ind Ltd Tungsten alloy having fine crystalline grain and its production
JPH07500804A (en) * 1991-08-07 1995-01-26 ラットジャーズ,ザ ステート ユニバーシティ オブ ニュージャージー Carbothermal reaction process for nanophase WC-Co powder production
WO2007060907A1 (en) * 2005-11-28 2007-05-31 A.L.M.T.Corp. Tungsten alloy particles, machining process with the same, and process for production thereof
JP2007262475A (en) * 2006-03-28 2007-10-11 Kyocera Corp Cemented carbide powder and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913731A (en) 1988-10-03 1990-04-03 Gte Products Corporation Process of making prealloyed tungsten alloy powders
KR100213682B1 (en) * 1997-03-04 1999-08-02 서상기 Method of manufacturing w/cu material
FR2784690B1 (en) 1998-10-16 2001-10-12 Eurotungstene Poudres MICRONIC METAL POWDERS BASED ON TUNGSTENE AND / OR MOLYBDENE AND 3D TRANSITION MATERIALS
CN1590573A (en) * 2003-08-25 2005-03-09 金益民 Production technology of nano-grade tungsten cobalt mixed powder
JP4492877B2 (en) * 2005-09-27 2010-06-30 日本新金属株式会社 Method for producing high purity molybdenum-tungsten alloy powder used as raw material powder for sputtering target

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925950A (en) * 1982-07-16 1984-02-10 ドルニエ・ジステム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Sintered body comprising tungsten alloy
JPH04124201A (en) * 1990-09-12 1992-04-24 Sumitomo Electric Ind Ltd Tungsten alloy particles and manufacture thereof
JPH04308003A (en) * 1991-04-05 1992-10-30 Sumitomo Electric Ind Ltd Tungsten alloy granule for shielding radiation
JPH059641A (en) * 1991-07-04 1993-01-19 Sumitomo Electric Ind Ltd Fine crystal-grained tungsten alloy and production thereof
JPH07500804A (en) * 1991-08-07 1995-01-26 ラットジャーズ,ザ ステート ユニバーシティ オブ ニュージャージー Carbothermal reaction process for nanophase WC-Co powder production
JPH06100973A (en) * 1992-09-18 1994-04-12 Sumitomo Electric Ind Ltd Tungsten alloy having fine crystalline grain and its production
WO2007060907A1 (en) * 2005-11-28 2007-05-31 A.L.M.T.Corp. Tungsten alloy particles, machining process with the same, and process for production thereof
JP2007262475A (en) * 2006-03-28 2007-10-11 Kyocera Corp Cemented carbide powder and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101752687B1 (en) 2015-04-24 2017-06-30 서울대학교 산학협력단 High strength tungsten alloy with low activation and manufacturing method for the same
WO2018042926A1 (en) * 2016-08-30 2018-03-08 住友電気工業株式会社 Aqueous solution composition and method for producing same, oxide powder and method for producing same, carbide powder and method for producing same, and super-hard alloy and method for producing same
KR20190049706A (en) 2016-08-30 2019-05-09 스미토모덴키고교가부시키가이샤 Aqueous solution composition and its production method, oxide powder and its production method, carbide powder and its production method, cemented carbide and its production method

Also Published As

Publication number Publication date
EP2332675A1 (en) 2011-06-15
US20110243787A1 (en) 2011-10-06
WO2010024159A1 (en) 2010-03-04
CN102131601A (en) 2011-07-20
JP5522713B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
Liu et al. Scalable synthesis of nanoporous high entropy alloys for electrocatalytic oxygen evolution
JP5522713B2 (en) Transition metal solid solution tungsten alloy powder and method for producing the same
CN111304512B (en) Medium-high entropy alloy material, preparation method and application thereof
CN103998134B (en) Carrier, gold-supported genotype catalyst, methanation reaction equipment and relative method for carried metal
Lesani et al. Nanostructured MnCo2O4 synthesized via co-precipitation method for SOFC interconnect application
Zou et al. Highly alloyed PtRu black electrocatalysts for methanol oxidation prepared using magnesia nanoparticles as sacrificial templates
Xu et al. Powder metallurgy synthesis of porous NiMo alloys as efficient electrocatalysts to enhance the hydrogen evolution reaction
Wang et al. Au–Cu–Pt ternary catalyst fabricated by electrodeposition and galvanic replacement with superior methanol electrooxidation activity
JP5522712B2 (en) Transition metal-encapsulated tungsten carbide, tungsten carbide-dispersed cemented carbide and method for producing the same
Azar et al. Synthesis and consolidation of W–Cu composite powders with silver addition
Li et al. Influence of rare-earth element doping on interface and mechanical properties of WC particles reinforced steel matrix composites
CN108866418A (en) A kind of preparation method of oxide dispersion intensifying iron-cobalt-nickel medium entropy alloy
Jiang et al. Preparation and characterization of bimetallic Pt^ Ni-P/CNT catalysts via galvanic displacement reaction on electrolessly-plated Ni-P/CNT
Wang et al. Microstructure, thermal properties, and corrosion behaviors of FeSiBAlNi alloy fabricated by mechanical alloying and spark plasma sintering
Li et al. Electrosynthesis of Ti 5 Si 3, Ti 5 Si 3/TiC, and Ti 5 Si 3/Ti 3 SiC 2 from Ti-bearing blast furnace slag in molten CaCl 2
Highfield et al. Raney multi-metallic electrodes from regular crystalline and quasi-crystalline precursors: I. Cu-stabilized Ni/Mo cathodes for hydrogen evolution in acid
Ma et al. An Electro-Assisted Powder Metallurgical Route for the Preparation of Porous Ti and NiTi in Molten CaCl 2
Zabinski et al. MAGNETIC FIELD EFFECT ON PROPERTIES OF GALVANOSTATICALLY DEPOSITED Co-Pd ALLOYS.
US8974857B2 (en) Methods for manufacturing of cobalt boride coating layer on surface of steels by using a pack cementation process
CN109112329A (en) A kind of graphene/magnesium alloy and preparation method thereof with excellent interfacial characteristics
JP6082935B2 (en) Manufacturing method of conductive material
KR20150092231A (en) Core-shell catalyst and method for palladium-based core particle
JP2012187495A (en) Catalyst, and method for producing the same
JPH06212324A (en) Tic grain dispersed sintered ti alloy and its production
CN112941558B (en) Preparation method of composite material catalytic electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130712

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131007

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140403

R150 Certificate of patent or registration of utility model

Ref document number: 5522713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250