JP2010077504A - Film deposition method and film-depositing apparatus - Google Patents

Film deposition method and film-depositing apparatus Download PDF

Info

Publication number
JP2010077504A
JP2010077504A JP2008247913A JP2008247913A JP2010077504A JP 2010077504 A JP2010077504 A JP 2010077504A JP 2008247913 A JP2008247913 A JP 2008247913A JP 2008247913 A JP2008247913 A JP 2008247913A JP 2010077504 A JP2010077504 A JP 2010077504A
Authority
JP
Japan
Prior art keywords
substrate
processed
film forming
film
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008247913A
Other languages
Japanese (ja)
Inventor
Atsushi Gomi
淳 五味
Yasushi Mizusawa
寧 水澤
Tatsuo Hatano
達夫 波多野
Masamichi Hara
正道 原
Kaoru Yamamoto
薫 山本
Satoshi Taga
敏 多賀
Chiaki Yasumuro
千晃 安室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2008247913A priority Critical patent/JP2010077504A/en
Priority to PCT/JP2009/065999 priority patent/WO2010035647A1/en
Publication of JP2010077504A publication Critical patent/JP2010077504A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45519Inert gas curtains
    • C23C16/45521Inert gas curtains the gas, other than thermal contact gas, being introduced the rear of the substrate to flow around its periphery
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal carbonyl compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film deposition method capable of depositing a metallic film having the uniform film thickness even when the metallic film is deposited by using metal carbonyl for a raw material. <P>SOLUTION: In the film deposition method for depositing a film of a metal A on a substrate W to be processed by using a compound AxBy of the metal A for generating the reversible reaction and a functional group B for a raw material, gas 31 containing the compound AxBy is fed to a surface of the substrate W, the compound AxBy is decomposed into the metal A and the functional group B in a vicinity of the surface of the substrate W, inert gas 41 is fed to a vicinity of an outer peripheral part of the substrate W so that the film deposition rate at a center part of the substrate W is balanced with the film deposition rate of the outer peripheral part of the substrate W. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明は、半導体基板等の被処理基板上に膜を成膜する成膜方法及び成膜装置に関する。   The present invention relates to a film forming method and a film forming apparatus for forming a film on a substrate to be processed such as a semiconductor substrate.

半導体装置の製造においては、半導体ウエハ上に絶縁膜、導電膜等の膜を成膜する。絶縁膜は、化学的気相堆積法(CVD法)を用いて成膜されることが一般的であり、導体膜はスパッタリング法を用いて成膜されることが一般的である。   In manufacturing a semiconductor device, a film such as an insulating film or a conductive film is formed on a semiconductor wafer. The insulating film is generally formed using a chemical vapor deposition method (CVD method), and the conductor film is generally formed using a sputtering method.

半導体装置は、その微細化が進み、良好なステップカバレッジを持つ膜の成膜が重要となってきている。このため、導体膜の成膜においてもCVD法が多用されるようになってきている。   As semiconductor devices are miniaturized, it has become important to form a film having good step coverage. For this reason, the CVD method is frequently used also in the formation of a conductor film.

CVD法を用いた導体膜の成膜方法として、金属カルボニルを原料に用いた金属膜の成膜方法が知られている(特許文献1)
特開2004−197163号公報
As a method for forming a conductor film using a CVD method, a method for forming a metal film using metal carbonyl as a raw material is known (Patent Document 1).
JP 2004-197163 A

金属カルボニルを原料に用いた金属膜の成膜においては、金属カルボニルを安定供給するために、キャリアガスとしてCOガスを用いる。金属カルボニルは金属膜のプリカーサーであり、分解、例えば、熱分解する際に金属とCOガスとに分かれる。   In forming a metal film using metal carbonyl as a raw material, CO gas is used as a carrier gas in order to stably supply metal carbonyl. Metal carbonyl is a precursor of a metal film, and is divided into metal and CO gas during decomposition, for example, thermal decomposition.

ところが、COガスは、近時、金属カルボニルの分解反応を抑制する働きがあることが分かってきた。このため、金属カルボニルを原料に用いた成膜は、成膜速度が被処理基板の中央部分において速く、外周部分に向かうにつれて遅くなる、という傾向を示す。   However, it has recently been found that CO gas has a function of suppressing the decomposition reaction of metal carbonyl. For this reason, the film formation using metal carbonyl as a raw material has a tendency that the film formation rate is high in the central portion of the substrate to be processed and becomes slower toward the outer peripheral portion.

このような傾向から、金属カルボニルを原料に用いた金属膜の成膜においては、被処理基板の中央部分から外周部分にかけて均一な膜厚を持つ金属膜をいかに成膜するかが課題となっている。   From such a tendency, in the formation of a metal film using metal carbonyl as a raw material, how to form a metal film having a uniform film thickness from the central part to the outer peripheral part of the substrate to be processed becomes an issue. Yes.

この発明は、金属カルボニルを原料に用いて金属膜の成膜する場合であっても、均一な膜厚を持つ金属膜を成膜可能な成膜方法、及びその成膜方法を用いた成膜装置を提供することを目的とする。   The present invention relates to a film forming method capable of forming a metal film having a uniform film thickness even when a metal film is formed using metal carbonyl as a raw material, and film formation using the film forming method An object is to provide an apparatus.

上記目的を達成するために、この発明の第1の態様に係る成膜方法は、可逆反応を生じる金属Aと官能基Bとの化合物AxByを原料に用いて、前記金属Aの膜を被処理基板上に成膜する成膜方法であって、前記化合物AxByを含むガスを前記被処理基板の表面に供給し、前記化合物AxByを前記被処理基板の表面近傍において金属Aと官能基Bとに分解させるとともに、不活性ガスを、前記被処理基板の中央部分の成膜速度と前記被処理基板の外周部分の成膜速度とが均衡するように前記被処理基板の外周部分近傍に供給し、前記金属Aの膜を前記被処理基板上に成膜する。   In order to achieve the above object, a film forming method according to a first aspect of the present invention uses a compound AxBy of a metal A and a functional group B that causes a reversible reaction as a raw material, and the metal A film is processed. A film forming method for forming a film on a substrate, wherein a gas containing the compound AxBy is supplied to the surface of the substrate to be processed, and the compound AxBy is converted into a metal A and a functional group B in the vicinity of the surface of the substrate to be processed. While decomposing, supplying an inert gas to the vicinity of the outer peripheral portion of the substrate to be processed so that the film forming speed of the central portion of the substrate to be processed and the film forming speed of the outer peripheral portion of the substrate to be processed are balanced. The metal A film is formed on the substrate to be processed.

また、この発明の第2の態様に係る成膜装置は、可逆反応を生じる金属Aと官能基Bとの化合物AxByを原料に用いて、前記金属Aの膜を被処理基板上に成膜する成膜装置であって、前記被処理基板が載置される載置台が配置され、前記被処理基板の表面上に成膜処理を行う処理室と、前記化合物AxByを含むガスを前記被処理基板の表面に供給する原料ガス供給部と、前記被処理基板の外周部分近傍に不活性ガスを供給する不活性ガス供給部と、前記成膜処理の際に前記不活性ガスの流量を、前記被処理基板の中央部分の成膜速度と前記被処理基板の外周部分の成膜速度とが均衡するように制御する制御機構と、を具備する。   Moreover, the film forming apparatus according to the second aspect of the present invention forms the metal A film on the substrate to be processed using a compound AxBy of the metal A and the functional group B that causes a reversible reaction as a raw material. A film forming apparatus, wherein a mounting table on which the substrate to be processed is mounted is disposed, a processing chamber for performing a film forming process on a surface of the substrate to be processed, and a gas containing the compound AxBy. A source gas supply unit for supplying to the surface of the substrate, an inert gas supply unit for supplying an inert gas to the vicinity of the outer peripheral portion of the substrate to be processed, and a flow rate of the inert gas during the film formation process. And a control mechanism for controlling the film formation speed at the central portion of the processing substrate to be balanced with the film formation speed at the outer peripheral portion of the substrate to be processed.

この発明によれば、金属カルボニルを原料に用いて金属膜の成膜する場合であっても、均一な膜厚を持つ金属膜を成膜可能な成膜方法、及びその成膜方法を用いた成膜装置を提供できる。   According to this invention, even when a metal film is formed using metal carbonyl as a raw material, a film forming method capable of forming a metal film having a uniform film thickness and the film forming method are used. A film forming apparatus can be provided.

以下、この発明の実施形態を、図面を参照して説明する。この説明に際し、全図にわたり、共通の部分には共通の参照符号を付す。   Embodiments of the present invention will be described below with reference to the drawings. In this description, common parts are denoted by common reference symbols throughout the drawings.

(第1の実施形態)
図1はこの発明の第1の実施形態に係る成膜装置の一例を概略的に示す断面図である。
(First embodiment)
FIG. 1 is a sectional view schematically showing an example of a film forming apparatus according to the first embodiment of the present invention.

図1に示すように、第1の実施形態に係る成膜装置は、被処理基板Wが載置される載置台2が配置され、被処理基板Wの表面上に成膜処理を行う処理室1を備えている。   As shown in FIG. 1, in the film forming apparatus according to the first embodiment, a mounting table 2 on which a substrate W to be processed is mounted is disposed, and a processing chamber that performs a film forming process on the surface of the substrate W to be processed. 1 is provided.

処理室1の上部には原料ガス供給部3が設けられている。原料ガス供給部3はガス供給機構5に接続される。ガス供給機構5は、成膜される膜の原料を含むガス31を、ガス供給管51aを介して原料ガス供給部3に供給する。原料ガス供給部3は、本例ではシャワーヘッドであり、ガス供給管51aに接続され、原料を含むガス31が拡散される拡散空間32と、この拡散空間32の被処理基板Wと対向する面に形成された複数のガス吐出孔33とを備えている。   A source gas supply unit 3 is provided in the upper part of the processing chamber 1. The source gas supply unit 3 is connected to a gas supply mechanism 5. The gas supply mechanism 5 supplies a gas 31 containing a film raw material to be formed to the raw material gas supply unit 3 through a gas supply pipe 51a. In this example, the source gas supply unit 3 is a shower head, and is connected to the gas supply pipe 51a. The diffusion space 32 in which the gas 31 containing the source is diffused and the surface of the diffusion space 32 that faces the substrate W to be processed. And a plurality of gas discharge holes 33 formed on the surface.

ガス供給機構5は、原料ガス供給部52と、キャリアガス供給部53と、不活性ガス供給部54とを備えている。   The gas supply mechanism 5 includes a source gas supply unit 52, a carrier gas supply unit 53, and an inert gas supply unit 54.

本例では、成膜される膜の原料として可逆反応“AxBy⇔xA+yB”を生じる金属Aと官能基Bとの化合物AxByを用いる。このような化合物の一例は、金属Aに官能基としてカルボニル基が化合した金属カルボニルである。本例では、金属カルボニルとして、ルテニウム(Ru)にカルボニル基が化合したルテニウム−カルボニル系化合物、具体的な分子式としてはRu(CO)12を用いた。Ru(CO)12は常温で固体である。このため、本例の原料ガス供給部52は加熱機構を有し、昇華したRu(CO)12をキャリアガスとともに供給するバブラ55を備えている。 In this example, a compound AxBy of a metal A and a functional group B that causes a reversible reaction “AxBy⇔xA + yB” is used as a raw material of a film to be formed. An example of such a compound is metal carbonyl in which a carbonyl group is combined as a functional group with metal A. In this example, a ruthenium-carbonyl compound in which a carbonyl group is combined with ruthenium (Ru) is used as the metal carbonyl, and Ru 3 (CO) 12 is used as a specific molecular formula. Ru 3 (CO) 12 is solid at room temperature. For this reason, the raw material gas supply unit 52 of this example has a heating mechanism and includes a bubbler 55 that supplies the sublimated Ru 3 (CO) 12 together with the carrier gas.

本例では、キャリアガスとしてCOガスを用いる。COガスはキャリアガス供給源56からマスフローコントローラ(MFC)57a、バルブ58aを介してガス供給管51aへと送られる。これとともに、本例では、COガスは、MFC57b、バルブ58bを介してバブラ55内に保持されたRu(CO)12にバブリングガスとして供給される。COガスがバブリングガスとして供給されることで、Ru(CO)12は気化する。気化したRu(CO)12は、バルブ58cを介してガス供給管51aへと送られる。 In this example, CO gas is used as the carrier gas. The CO gas is sent from the carrier gas supply source 56 to the gas supply pipe 51a through the mass flow controller (MFC) 57a and the valve 58a. At the same time, in this example, CO gas is supplied as bubbling gas to Ru 3 (CO) 12 held in the bubbler 55 via the MFC 57b and the valve 58b. By supplying CO gas as a bubbling gas, Ru 3 (CO) 12 is vaporized. The vaporized Ru 3 (CO) 12 is sent to the gas supply pipe 51a through the valve 58c.

さらに、本例では、原料を含むガス31を希釈するための不活性ガスとしてアルゴン(Ar)ガスを用いる。Arガスは不活性ガス供給源59からマスフローコントローラ(MFC)57c、バルブ58dを介してガス供給管51へと送られる。   Furthermore, in this example, argon (Ar) gas is used as an inert gas for diluting the gas 31 containing the raw material. Ar gas is sent from the inert gas supply source 59 to the gas supply pipe 51 through the mass flow controller (MFC) 57c and the valve 58d.

このようにして、ガス供給管51aの内部では、キャリアガス(本例ではCOガス)、原料ガス(本例ではRu(CO)12ガス)、及び不活性ガス(本例ではArガス)が適切な流量で混合された原料を含むガス31が生成される。 Thus, inside the gas supply pipe 51a, the carrier gas (CO gas in this example), the raw material gas (Ru 3 (CO) 12 gas in this example), and the inert gas (Ar gas in this example) are contained. A gas 31 containing raw materials mixed at an appropriate flow rate is generated.

載置台2の外周部分には不活性ガス供給部4が設けられている。不活性ガス供給部4はガス供給機構5に接続される。ガス供給機構5は、不活性ガス41を、その不活性ガス供給源59からMFC57d、バルブ58eを介してガス供給管51bに供給する。ガス供給管51bに供給された不活性ガス41は不活性ガス供給部4に供給され、さらに、被処理基板Wの外周縁の周囲から、被処理基板Wの外周部分近傍の上方へと供給される。   An inert gas supply unit 4 is provided on the outer peripheral portion of the mounting table 2. The inert gas supply unit 4 is connected to a gas supply mechanism 5. The gas supply mechanism 5 supplies the inert gas 41 from the inert gas supply source 59 to the gas supply pipe 51b through the MFC 57d and the valve 58e. The inert gas 41 supplied to the gas supply pipe 51b is supplied to the inert gas supply unit 4, and is further supplied from the periphery of the outer peripheral edge of the substrate to be processed W to the vicinity of the outer peripheral portion of the substrate to be processed W. The

載置台2の内部にはヒーター電源21に接続された加熱機構22が設けられている。載置台2は被処理基板Wを加熱するヒータープレートを兼ねる。原料を含むガス31は、加熱された被処理基板Wの表面近傍において分解される。本例では、原料を含むガス31のうち、原料ガスであるRu(CO)12ガスが、以下のようにRuとCOガスとに熱分解され、Ruが金属固体として被処理基板Wの表面上に堆積される。 A heating mechanism 22 connected to a heater power source 21 is provided in the mounting table 2. The mounting table 2 also serves as a heater plate for heating the substrate W to be processed. The gas 31 containing the raw material is decomposed in the vicinity of the surface of the heated substrate W to be processed. In this example, among the gas 31 containing the raw material, Ru 3 (CO) 12 gas, which is the raw material gas, is thermally decomposed into Ru and CO gas as follows, and Ru is converted into a metal solid and the surface of the substrate W to be processed. Deposited on top.

Ru(CO)12↑ ⇔ Ru(CO)12−x↑+XCO↑
Ru(CO)12−x↑+Q → 3Ru+(12−X)CO↑
ここで“⇔”は可逆的であることを示し、“↑”はガス状態であることを示し、“↑”が付いていないものは固体状態であることを示し、“Q”は熱量が加わることを示す。
Ru 3 (CO) 12 ↑ ⇔ Ru 3 (CO) 12−x ↑ + XCO ↑
Ru 3 (CO) 12−x ↑ + Q → 3Ru + (12−X) CO ↑
Here, “⇔” indicates reversible, “↑” indicates a gas state, those without “↑” indicate a solid state, and “Q” indicates an amount of heat. It shows that.

上記したような化学式において明らかなように、第1番目の化学式に着目すると、熱分解によりCOガスが可逆的に発生しており、従って、COガス濃度が上昇すると、左方向への反応の進行は促進されて右方向への反応が抑制されることになる。この結果、原料ガスであるRu(CO)12の分解が抑制されるので、後述するようにCOガスの分圧(あるいは濃度)を調整することで被処理基板Wの全面に渡り均一な膜厚をもつ金属膜を成膜することができる。 As is clear from the above chemical formula, when focusing on the first chemical formula, CO gas is reversibly generated by thermal decomposition, and therefore, when the CO gas concentration increases, the reaction proceeds to the left. Will be promoted and the reaction to the right will be suppressed. As a result, since the decomposition of Ru 3 (CO) 12 that is the source gas is suppressed, a uniform film is formed over the entire surface of the substrate W to be processed by adjusting the partial pressure (or concentration) of the CO gas as will be described later. A metal film having a thickness can be formed.

処理室1には排気装置6が接続されている。排気装置6は、例えば、処理の間、処理室1内の処理空間Sを排気し、処理空間Sの圧力が適切な圧力に保たれるようにする。   An exhaust device 6 is connected to the processing chamber 1. For example, the exhaust device 6 exhausts the processing space S in the processing chamber 1 during processing so that the pressure of the processing space S is maintained at an appropriate pressure.

制御機構7は、マイクロプロセッサ(コンピュータ)からなるプロセスコントローラ71と、オペレータが成膜装置を管理するためにコマンドの入力操作等を行うキーボードや、基板処理システムの稼働状況を可視化して表示するディスプレイ等を含むユーザーインターフェース72と、成膜装置で実行される各種処理をプロセスコントローラ71の制御にて実現するための制御プログラムや、各種データ、および処理条件に応じて成膜装置に処理を実行させるためのプログラム、すなわちレシピが格納された記憶部73と、を備えている。   The control mechanism 7 includes a process controller 71 composed of a microprocessor (computer), a keyboard that allows an operator to input commands to manage the film forming apparatus, and a display that visualizes and displays the operating status of the substrate processing system. And the like, and a control program for realizing various processes executed by the film forming apparatus under the control of the process controller 71, various data, and causing the film forming apparatus to execute processes according to processing conditions. And a storage unit 73 in which a recipe is stored.

レシピは記憶部73の中の記憶媒体に記憶されている。記憶媒体は、ハードディスクであってもよいし、CD-ROM、DVD、フラッシュメモリ等の可搬性のものであってもよい。また、他の装置から、例えば専用回線を介してレシピを適宜伝送させるようにしてもよい。必要に応じて、任意のレシピを、ユーザーインターフェース72からの指示等にて記憶部73から呼び出し、プロセスコントローラ71に実行させることで、プロセスコントローラ71の制御下で、成膜装置での所望の処理が行われる。   The recipe is stored in a storage medium in the storage unit 73. The storage medium may be a hard disk or a portable medium such as a CD-ROM, DVD, or flash memory. Moreover, you may make it transmit a recipe suitably from another apparatus via a dedicated line, for example. If necessary, an arbitrary recipe is called from the storage unit 73 by an instruction from the user interface 72 and is executed by the process controller 71, so that a desired process in the film forming apparatus is performed under the control of the process controller 71. Is done.

第1の実施形態に係る成膜装置が行う成膜方法は、基本的に、可逆反応“AxBy⇔xA+yB”を生じる金属Aと官能基Bとの化合物AxByを原料に用いて、金属Aの膜を被処理基板上に成膜するものである。そして、化合物AxBy、即ち、原料を含むガス31を被処理基板Wの表面に供給し、化合物AxByを被処理基板Wの表面近傍において金属Aと官能基Bとに分解させることで、被処理基板Wの表面上に金属Aの膜を堆積する。   The film forming method performed by the film forming apparatus according to the first embodiment basically uses a compound AxBy of a metal A and a functional group B that causes a reversible reaction “AxBy⇔xA + yB” as a raw material. Is formed on the substrate to be processed. Then, the compound AxBy, that is, the gas 31 containing the raw material is supplied to the surface of the substrate W to be processed, and the compound AxBy is decomposed into the metal A and the functional group B in the vicinity of the surface of the substrate W to be processed. A metal A film is deposited on the surface of W.

官能基Bは、本例ではカルボニル基であり、化合物AxByは金属カルボニルである。金属カルボニルは成膜される膜(金属)のプリカーサーであり、分解、例えば、熱分解する際に金属とCOガスとに分かれる。   The functional group B is a carbonyl group in this example, and the compound AxBy is a metal carbonyl. Metal carbonyl is a precursor of a film (metal) to be formed, and is divided into a metal and CO gas during decomposition, for example, thermal decomposition.

上述したように、COガス濃度が高いと金属カルボニルの分解反応を抑制する働きがあるため、金属カルボニルを原料に用いた成膜においては、成膜速度が被処理基板の中央部分において速く、外周部分に向かうにつれて遅くなる、という傾向を示す。   As described above, when the CO gas concentration is high, it has a function of suppressing the decomposition reaction of metal carbonyl. Therefore, in the film formation using metal carbonyl as a raw material, the film formation rate is high in the central portion of the substrate to be processed. It shows a tendency to slow down toward the part.

第1の実施形態では、このような傾向を利用して、被処理基板Wの外周部分近傍に不活性ガス41を供給し、被処理基板Wの中央部分の成膜速度と、被処理基板Wの外周部分の成膜速度とを均衡させる。均衡させるための一例は、被処理基板Wの外周部分近傍における雰囲気中の官能基B、本例ではCOガスとなるが、COガスの分圧を被処理基板Wの中央部分近傍におけるCOガスの分圧と等しいか、或いは低くすることである。   In the first embodiment, by using such a tendency, the inert gas 41 is supplied to the vicinity of the outer peripheral portion of the substrate to be processed W, the film formation speed of the central portion of the substrate to be processed W, the substrate W to be processed, and the like. The film forming speed of the outer peripheral portion of the film is balanced. An example for balancing is the functional group B in the atmosphere near the outer peripheral portion of the substrate W to be processed, which is CO gas in this example. It is equal to or lower than the partial pressure.

このようにCOガスの分圧を調整することで、被処理基板Wの中央部分の成膜速度と、被処理基板Wの外周部分の成膜速度とを均衡させることが可能となり、金属カルボニルを原料に用いた金属膜の成膜であったとしても、被処理基板Wの中央部分から外周部分にかけて均一な膜厚を持つ金属膜を成膜することが可能となる。   By adjusting the partial pressure of the CO gas in this way, it becomes possible to balance the film formation rate of the central portion of the substrate W to be processed and the film formation rate of the outer peripheral portion of the substrate W to be processed. Even if the metal film used for the raw material is formed, it is possible to form a metal film having a uniform film thickness from the central portion to the outer peripheral portion of the substrate W to be processed.

図2は、被処理基板上に成膜された膜の膜厚比(該当位置における膜厚/センターの膜厚との比)を示す図である。図2中の点線は、COガスの分圧を調整しない例(不活性ガスを供給しない)であり、実線は、COガスの分圧を調整した例(ウエハの外周部分近傍に不活性ガスを供給する)である。   FIG. 2 is a diagram showing the film thickness ratio (ratio of the film thickness at the corresponding position / the film thickness of the center) of the film formed on the substrate to be processed. The dotted line in FIG. 2 is an example in which the partial pressure of CO gas is not adjusted (inert gas is not supplied), and the solid line is an example in which the partial pressure of CO gas is adjusted (inert gas in the vicinity of the outer peripheral portion of the wafer). Supply).

成膜条件は、温度215℃、圧力100mT、キャリアガスとしてCOガスを100sccm、成膜時間60secとし、原料ガスにRu(CO)12ガスを用い、ウエハ上にRu膜を成膜した。不活性ガスにはArガスを用いた。 The deposition conditions were a temperature of 215 ° C., a pressure of 100 mT, a CO gas of 100 sccm as a carrier gas, a deposition time of 60 sec, a Ru 3 (CO) 12 gas as a source gas, and a Ru film was deposited on the wafer. Ar gas was used as the inert gas.

図2に示すように、COガスの分圧を調整しない場合(不活性ガス:0sccm)には、ウエハの中央部分(センター)付近の膜厚よりも、ウエハの外周部分に向かって膜厚が薄くなる傾向があることが分かる。   As shown in FIG. 2, when the partial pressure of the CO gas is not adjusted (inert gas: 0 sccm), the film thickness is closer to the outer peripheral part of the wafer than the film thickness near the central part (center) of the wafer. It turns out that there is a tendency to become thin.

対して、COガスの分圧を調整した場合(不活性ガス:98sccm)には、COガスの分圧を調整しない場合に比較して、ウエハの外周部分の膜厚が厚くなる傾向が見いだされた。ウエハの外周部分近傍に不活性ガスを供給してCOガスの分圧を調整する、ということは、ウエハの外周部分近傍において、雰囲気中のCOガスの濃度を局所的に減少させる、ということである。   On the other hand, when the partial pressure of CO gas is adjusted (inert gas: 98 sccm), the film thickness at the outer peripheral portion of the wafer tends to be thicker than when the partial pressure of CO gas is not adjusted. It was. Adjusting the partial pressure of CO gas by supplying an inert gas in the vicinity of the outer peripheral portion of the wafer means that the concentration of CO gas in the atmosphere is locally reduced in the vicinity of the outer peripheral portion of the wafer. is there.

このようにウエハの外周部分近傍において、雰囲気中のCOガスの濃度を局所的に減少させることで、ウエハの外周部分への金属膜、本例ではルテニウム膜の堆積を促進できる。   In this way, by locally reducing the concentration of CO gas in the atmosphere in the vicinity of the outer peripheral portion of the wafer, deposition of a metal film, in this example, a ruthenium film, on the outer peripheral portion of the wafer can be promoted.

従って、ウエハの外周部分近傍における雰囲気中のCOガスの濃度を、ウエハの中央部分の成膜速度と、ウエハの外周部分の成膜速度とが均衡するように減少させれば、ウエハWの中央部分から外周部分にかけて均一な膜厚を持つルテニウム膜を成膜できる。   Therefore, if the concentration of CO gas in the atmosphere in the vicinity of the outer peripheral portion of the wafer is decreased so that the film forming speed at the central portion of the wafer and the film forming speed at the outer peripheral portion of the wafer are balanced, A ruthenium film having a uniform film thickness can be formed from the portion to the outer peripheral portion.

このようなウエハの外周部分近傍における雰囲気中のCOガスの濃度の調節は、制御機構7を用いて、例えば、MFC57dにおける不活性ガスの流量を調節することで実現することができる。   Such adjustment of the concentration of CO gas in the atmosphere in the vicinity of the outer peripheral portion of the wafer can be realized, for example, by adjusting the flow rate of the inert gas in the MFC 57d using the control mechanism 7.

以上、第1の実施形態によれば、金属カルボニルを原料に用いて金属膜の成膜する場合であっても、均一な膜厚を持つ金属膜を成膜可能な成膜方法、及びその成膜方法を用いた成膜装置を提供できる。   As described above, according to the first embodiment, even when a metal film is formed using metal carbonyl as a raw material, a film forming method capable of forming a metal film having a uniform film thickness, and its formation. A film forming apparatus using the film method can be provided.

(第2の実施形態)
第2の実施形態は、不活性ガス供給部4の具体的な例である。
(Second Embodiment)
The second embodiment is a specific example of the inert gas supply unit 4.

図3Aは不活性ガス供給部4の具体的な第1の例を示す断面図、図3Bは図3Aの拡大図である。   3A is a sectional view showing a first specific example of the inert gas supply unit 4, and FIG. 3B is an enlarged view of FIG. 3A.

図3Aに示すように、ヒータープレートを兼ねる載置台2の外側には、載置台2の外縁を囲む外周部材23が設けられている。外周部材23には、これを貫通して上下動するピン部材24が設けられ、ピン部材24の先端には、被処理基板Wと外周部材23との間をカバーする、リング状のカバーリング25が設けられている。   As shown in FIG. 3A, an outer peripheral member 23 that surrounds the outer edge of the mounting table 2 is provided outside the mounting table 2 that also serves as a heater plate. The outer peripheral member 23 is provided with a pin member 24 that moves vertically through the outer peripheral member 23, and a ring-shaped cover ring 25 that covers a space between the substrate to be processed W and the outer peripheral member 23 at the tip of the pin member 24. Is provided.

不活性ガス供給部4は、例えば、載置台2と外周部材23との間に生じたクリアランス26を利用して得ることができる。クリアランス26に不活性ガス41を流せば、一部の不活性ガス41は矢印Aに示すようにカバーリング25の外側にも流れるが、残りは矢印Bに示すように被処理基板Wの外周部分から、被処理基板Wの外周部分近傍の上方へと流すことができる。   The inert gas supply unit 4 can be obtained by using, for example, a clearance 26 generated between the mounting table 2 and the outer peripheral member 23. If an inert gas 41 is allowed to flow through the clearance 26, a part of the inert gas 41 also flows outside the cover ring 25 as indicated by an arrow A, but the remaining part of the outer periphery of the substrate W to be processed is indicated by an arrow B. Then, it can flow upward in the vicinity of the outer peripheral portion of the substrate W to be processed.

このように、不活性ガス供給部4は、例えば、載置台2と外周部材23との間に生じたクリアランス26を利用することで、簡易に得ることができる。   As described above, the inert gas supply unit 4 can be easily obtained by using the clearance 26 generated between the mounting table 2 and the outer peripheral member 23, for example.

図4Aは不活性ガス供給部4の具体的な第2の例を示す断面図、図4Bは図4Aの拡大図である。   4A is a cross-sectional view showing a second specific example of the inert gas supply unit 4, and FIG. 4B is an enlarged view of FIG. 4A.

図3A及び図3Bに示した第1の例においては、カバーリング25は、被処理基板Wと外周部材23との間をカバーした。   In the first example shown in FIGS. 3A and 3B, the cover ring 25 covers the space between the substrate W to be processed and the outer peripheral member 23.

第2の例においては、カバーリング25を用いて被処理基板Wの外周部分を、さらにカバーするようにした。   In the second example, the cover ring 25 is used to further cover the outer peripheral portion of the substrate W to be processed.

カバーリング25を用いて被処理基板Wの外周部分をカバーすると、カバーされた部分への膜の堆積が抑制され、いわゆるベベル部への成膜の無い被処理基板Wを得ることができる。   When the outer peripheral portion of the substrate W to be processed is covered using the cover ring 25, film deposition on the covered portion is suppressed, and the substrate W to be processed without film formation on the so-called bevel portion can be obtained.

被処理基板Wのベベル部に、堆積された膜を付けるか付けないかは、ユーザーが任意に選定すれば良い。   The user may arbitrarily select whether or not to attach the deposited film to the bevel portion of the substrate W to be processed.

カバーリング25を用いて、被処理基板Wの外周部分をカバーした場合でも、カバーリング25と被処理基板との間にはクリアランス27がある。不活性ガス41は、このクリアランス27を介して被処理基板Wの外周部分から、被処理基板Wの外周部分近傍の上方へと流すことができる。   Even when the cover ring 25 is used to cover the outer peripheral portion of the substrate W to be processed, there is a clearance 27 between the cover ring 25 and the substrate to be processed. The inert gas 41 can flow from the outer peripheral portion of the substrate to be processed W through the clearance 27 to the vicinity of the outer peripheral portion of the substrate to be processed W.

よって、カバーリング25を用いて被処理基板Wの外周部分をカバーした場合でも、不活性供給部4は、例えば、載置台2と外周部材23との間に生じたクリアランス26、及びカバーリング25と被処理基板との間に生じたクリアランス27を利用することで、簡易に得ることができる。   Therefore, even when the outer peripheral portion of the substrate W to be processed is covered using the cover ring 25, the inert supply unit 4 includes, for example, the clearance 26 generated between the mounting table 2 and the outer peripheral member 23, and the cover ring 25. Can be easily obtained by using the clearance 27 generated between the substrate and the substrate to be processed.

(第3の実施形態)
図5はこの発明の第3の実施形態に係る成膜装置の一例を概略的に示す断面図である。
(Third embodiment)
FIG. 5 is a sectional view schematically showing an example of a film forming apparatus according to the third embodiment of the present invention.

図5に示すように、第3の実施形態に係る成膜装置が、第1の実施形態に成膜装置と異なるところは、不活性ガス供給部4を、載置台2の外周部分ではなく、原料ガス供給部3の外周部分に設けたことである。これ以外は、第1の実施形態に係る成膜装置であるので、同一の部分については同一の参照符号を付して、その説明は省略する。   As shown in FIG. 5, the film forming apparatus according to the third embodiment is different from the film forming apparatus according to the first embodiment in that the inert gas supply unit 4 is not an outer peripheral part of the mounting table 2. This is provided at the outer peripheral portion of the source gas supply unit 3. Other than this, since it is the film forming apparatus according to the first embodiment, the same parts are denoted by the same reference numerals, and the description thereof is omitted.

このように、不活性ガス供給部4を原料ガス供給部3の外周部分に設け、不活性ガス41が、原料ガス供給部3の周囲から、被処理基板Wの外周部分近傍の上方へ供給するようにしても、例えば、被処理基板Wの外周部分近傍における雰囲気中の官能基B、例えば、COガスの分圧を被処理基板Wの中央部分近傍における分圧と等しいか、或いは低くすることができ、被処理基板Wの中央部分の成膜速度と、被処理基板Wの外周部分の成膜速度とを均衡させることができる。   As described above, the inert gas supply unit 4 is provided in the outer peripheral portion of the source gas supply unit 3, and the inert gas 41 is supplied from the periphery of the source gas supply unit 3 to above the vicinity of the outer peripheral portion of the substrate W to be processed. Even in such a case, for example, the partial pressure of the functional group B in the atmosphere in the vicinity of the outer peripheral portion of the substrate W to be processed, for example, the CO gas partial pressure is made equal to or lower than the partial pressure in the vicinity of the central portion of the substrate W Thus, the film formation rate at the central portion of the substrate W to be processed and the film formation rate at the outer peripheral portion of the substrate W to be processed can be balanced.

よって、第1の実施形態と同様の効果を得ることができる。   Therefore, the same effect as the first embodiment can be obtained.

以上、この発明をいくつかの実施形態に基づき説明したが、この発明は上記実施形態に限られるものではない。   As mentioned above, although this invention was demonstrated based on some embodiment, this invention is not limited to the said embodiment.

例えば、上記実施形態においては、成膜される膜の原料としてルテニウム−カルボニル系化合物、例えば、Ru(CO)12を用い、Ru膜の成膜を例に説明したが、この発明はRu膜の成膜に限られるものではなく、ルテニウム−カルボニル系化合物以外の金属カルボニルを原料に用いた金属膜の成膜にも適用できる。 For example, in the above-described embodiment, a ruthenium-carbonyl compound such as Ru 3 (CO) 12 is used as a raw material for a film to be formed, and the Ru film is formed as an example. The present invention is not limited to this film formation, and can also be applied to the formation of a metal film using a metal carbonyl other than a ruthenium-carbonyl compound as a raw material.

具体的な例としては、例えば、Cr(CO)、Co(CO)、Ni(CO)、Mo(CO)、Rh(CO)12、W(CO)、及びRe(CO)10を原料に用いたクロム(Cr)膜、コバルト(Co)膜、ニッケル(Ni)膜、モリブデン(Mo)膜、ロジウム(Rh)膜、タングステン(W)膜、及びレニウム(Re)膜の成膜にも適用できる。 Specific examples include, for example, Cr (CO) 6 , Co 2 (CO) 8 , Ni (CO) 4 , Mo (CO) 6 , Rh 4 (CO) 12 , W (CO) 6 , and Re 2. Chromium (Cr) film, cobalt (Co) film, nickel (Ni) film, molybdenum (Mo) film, rhodium (Rh) film, tungsten (W) film, and rhenium (Re) using (CO) 10 as a raw material It can also be applied to film formation.

また、不活性ガスとしてアルゴンガスを用いたが、不活性ガスとしてはアルゴンガスに限られるものではなく、窒素ガスや、アルゴン以外の希ガスを用いることも可能である。   In addition, although argon gas is used as the inert gas, the inert gas is not limited to argon gas, and nitrogen gas or a rare gas other than argon can also be used.

その他、この発明は、発明の主旨を逸脱しない範囲で様々に変形可能であるし、上記いくつかの実施形態を組み合わせての実施も可能である。特に、第2の実施形態において説明した不活性ガス供給部4の例においては、第1の例と第2の例とを組み合わせ、不活性ガス供給部4を、載置台2の外周部分と、原料ガス供給部3の外周部分との双方に設けることも可能である。   In addition, the present invention can be variously modified without departing from the gist of the invention, and can be implemented by combining the above-described embodiments. In particular, in the example of the inert gas supply unit 4 described in the second embodiment, the first example and the second example are combined, and the inert gas supply unit 4 is connected to the outer peripheral portion of the mounting table 2; It is also possible to provide both on the outer peripheral portion of the source gas supply unit 3.

この発明の第2の実施形態に係る成膜装置の一例を概略的に示す断面図Sectional drawing which shows roughly an example of the film-forming apparatus which concerns on 2nd Embodiment of this invention 被処理基板の該当位置における膜厚とセンターの膜厚との関係を示す図The figure which shows the relationship between the film thickness in the applicable position of the substrate to be processed and the film thickness of the center 図3Aは不活性ガス供給部4の具体的な第1の例を示す断面図、図3Bは図3Aの拡大図3A is a cross-sectional view showing a first specific example of the inert gas supply unit 4, and FIG. 3B is an enlarged view of FIG. 3A. 図4Aは不活性ガス供給部4の具体的な第2の例を示す断面図、図4Bは図4Aの拡大図4A is a cross-sectional view showing a second specific example of the inert gas supply unit 4, and FIG. 4B is an enlarged view of FIG. 4A. この発明の第3の実施形態に係る成膜装置の一例を概略的に示す断面図Sectional drawing which shows roughly an example of the film-forming apparatus which concerns on 3rd Embodiment of this invention

符号の説明Explanation of symbols

1…処理室、2…載置台、3…原料ガス供給部、4…不活性ガス供給部、5…ガス供給機構、6…排気装置、7…制御機構
DESCRIPTION OF SYMBOLS 1 ... Processing chamber, 2 ... Mounting stand, 3 ... Raw material gas supply part, 4 ... Inert gas supply part, 5 ... Gas supply mechanism, 6 ... Exhaust device, 7 ... Control mechanism

Claims (14)

可逆反応を生じる金属Aと官能基Bとの化合物AxByを原料に用いて、前記金属Aの膜を被処理基板上に成膜する成膜方法であって、
前記化合物AxByを含むガスを前記被処理基板の表面に供給し、前記化合物AxByを前記被処理基板の表面近傍において金属Aと官能基Bとに分解させるとともに、
不活性ガスを、前記被処理基板の中央部分の成膜速度と前記被処理基板の外周部分の成膜速度とが均衡するように前記被処理基板の外周部分近傍に供給し、前記金属Aの膜を前記被処理基板上に成膜することを特徴とする成膜方法。
A film forming method for forming a film of the metal A on a substrate to be processed using a compound AxBy of a metal A and a functional group B that causes a reversible reaction as a raw material,
Supplying a gas containing the compound AxBy to the surface of the substrate to be processed, decomposing the compound AxBy into a metal A and a functional group B in the vicinity of the surface of the substrate to be processed;
An inert gas is supplied to the vicinity of the outer peripheral portion of the substrate to be processed so that the film forming speed of the central portion of the substrate to be processed and the film forming speed of the outer peripheral portion of the substrate to be processed are balanced. A film forming method comprising forming a film on the substrate to be processed.
前記被処理基板の外周部分近傍における雰囲気中の前記官能基Bの分圧が、前記被処理基板の中央部分近傍における前記官能基Bの分圧と等しいか、或いは低くされることを特徴とする請求項1に記載の成膜方法。   The partial pressure of the functional group B in the atmosphere near the outer peripheral portion of the substrate to be processed is equal to or lower than the partial pressure of the functional group B near the center portion of the substrate to be processed. Item 2. The film forming method according to Item 1. 前記不活性ガスが、前記被処理基板の外周縁の周囲から、前記被処理基板の外周部分近傍の上方へ供給されることを特徴とする請求項1又は請求項2に記載の成膜方法。   3. The film forming method according to claim 1, wherein the inert gas is supplied from the periphery of the outer peripheral edge of the substrate to be processed upward to the vicinity of the outer peripheral portion of the substrate to be processed. 前記不活性ガスが、前記化合物AxByを含むガスを供給するガス供給部の周囲から、前記被処理基板の外周部分近傍の上方へ供給されることを特徴とする請求項1又は請求項2に記載の成膜方法。   The said inert gas is supplied to the upper direction of the outer peripheral part vicinity of the said to-be-processed substrate from the circumference | surroundings of the gas supply part which supplies the gas containing the said compound AxBy. The film forming method. 前記官能基Bが、カルボニル基であることを特徴とする請求項1乃至請求項4いずれか一項に記載の成膜方法。   The film forming method according to any one of claims 1 to 4, wherein the functional group B is a carbonyl group. 前記金属が、クロム、コバルト、ニッケル、モリブデン、ルテニウム、ロジウム、タングステン、及びレニウムのいずれか一つを含むことを特徴とする請求項5に記載の成膜方法。   The film forming method according to claim 5, wherein the metal includes any one of chromium, cobalt, nickel, molybdenum, ruthenium, rhodium, tungsten, and rhenium. 前記化合物AxByを含むガスが、化合物AxByガスとキャリアガスとしてCOガスとを含むことを特徴とする請求項5又は請求項6に記載の成膜方法。   The film forming method according to claim 5 or 6, wherein the gas containing the compound AxBy includes the compound AxBy gas and a CO gas as a carrier gas. 可逆反応を生じる金属Aと官能基Bとの化合物AxByを原料に用いて、前記金属Aの膜を被処理基板上に成膜する成膜装置であって、
前記被処理基板が載置される載置台が配置され、前記被処理基板の表面上に成膜処理を行う処理室と、
前記化合物AxByを含むガスを前記被処理基板の表面に供給する原料ガス供給部と、
前記被処理基板の外周部分近傍に不活性ガスを供給する不活性ガス供給部と、
前記成膜処理の際に前記不活性ガスの流量を、前記被処理基板の中央部分の成膜速度と前記被処理基板の外周部分の成膜速度とが均衡するように制御する制御機構と、
を具備することを特徴とする成膜装置。
A film forming apparatus for forming a film of the metal A on a substrate to be processed using a compound AxBy of a metal A and a functional group B that causes a reversible reaction as a raw material,
A processing chamber in which a mounting table on which the substrate to be processed is mounted is disposed, and a film forming process is performed on the surface of the substrate to be processed;
A source gas supply unit for supplying a gas containing the compound AxBy to the surface of the substrate to be processed;
An inert gas supply unit for supplying an inert gas in the vicinity of the outer peripheral portion of the substrate to be processed;
A control mechanism for controlling the flow rate of the inert gas during the film forming process so that the film forming speed of the central portion of the substrate to be processed and the film forming speed of the outer peripheral portion of the substrate to be processed are balanced;
A film forming apparatus comprising:
前記被処理基板の外周部分近傍における雰囲気中の前記官能基Bの分圧が、前記被処理基板の中央部分近傍における前記官能基Bの分圧と等しいか、或いは低くされることを特徴とする請求項8に記載の成膜装置。   The partial pressure of the functional group B in the atmosphere near the outer peripheral portion of the substrate to be processed is equal to or lower than the partial pressure of the functional group B near the center portion of the substrate to be processed. Item 9. The film forming apparatus according to Item 8. 前記不活性ガス供給部が、前記載置台の外周部分に設けられていることを特徴とする請求項8又は請求項9に記載の成膜装置。   The film forming apparatus according to claim 8, wherein the inert gas supply unit is provided in an outer peripheral portion of the mounting table. 前記不活性ガス供給部が、前記原料ガス供給部の外周部分に設けられていることを特徴とする請求項8又は請求項9に記載の成膜装置。   The film forming apparatus according to claim 8, wherein the inert gas supply unit is provided on an outer peripheral portion of the source gas supply unit. 前記官能基Bが、カルボニル基であることを特徴とする請求項8乃至請求項11いずれか一項に記載の成膜装置。   The film forming apparatus according to claim 8, wherein the functional group B is a carbonyl group. 前記金属が、クロム、コバルト、ニッケル、モリブデン、ルテニウム、ロジウム、タングステン、及びレニウムのいずれか一つを含むことを特徴とする請求項12に記載の成膜装置。   The film forming apparatus according to claim 12, wherein the metal includes any one of chromium, cobalt, nickel, molybdenum, ruthenium, rhodium, tungsten, and rhenium. 前記化合物AxByを含むガスが、化合物AxByガスとキャリアガスとしてCOガスとを含むことを特徴とする請求項12又は請求項13に記載の成膜装置。   The film forming apparatus according to claim 12 or 13, wherein the gas containing the compound AxBy includes the compound AxBy gas and a CO gas as a carrier gas.
JP2008247913A 2008-09-26 2008-09-26 Film deposition method and film-depositing apparatus Pending JP2010077504A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008247913A JP2010077504A (en) 2008-09-26 2008-09-26 Film deposition method and film-depositing apparatus
PCT/JP2009/065999 WO2010035647A1 (en) 2008-09-26 2009-09-14 Film forming method and film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008247913A JP2010077504A (en) 2008-09-26 2008-09-26 Film deposition method and film-depositing apparatus

Publications (1)

Publication Number Publication Date
JP2010077504A true JP2010077504A (en) 2010-04-08

Family

ID=42059648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008247913A Pending JP2010077504A (en) 2008-09-26 2008-09-26 Film deposition method and film-depositing apparatus

Country Status (2)

Country Link
JP (1) JP2010077504A (en)
WO (1) WO2010035647A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150047564A1 (en) * 2013-08-15 2015-02-19 Samsung Sdi Co., Ltd. Chemical vapor deposition device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053030A (en) * 1999-08-11 2001-02-23 Tokyo Electron Ltd Film forming device
JP2001351864A (en) * 2000-06-09 2001-12-21 Toshiba Ceramics Co Ltd Thin film vapor growth method and system
JP2007520052A (en) * 2003-09-30 2007-07-19 東京エレクトロン株式会社 A method of depositing a metal layer from a metal-carbonyl precursor.
JP2007270355A (en) * 2006-03-30 2007-10-18 Tokyo Electron Ltd Method and system for initiating a deposition process utilizing a metal carbonyl precursor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053030A (en) * 1999-08-11 2001-02-23 Tokyo Electron Ltd Film forming device
JP2001351864A (en) * 2000-06-09 2001-12-21 Toshiba Ceramics Co Ltd Thin film vapor growth method and system
JP2007520052A (en) * 2003-09-30 2007-07-19 東京エレクトロン株式会社 A method of depositing a metal layer from a metal-carbonyl precursor.
JP2007270355A (en) * 2006-03-30 2007-10-18 Tokyo Electron Ltd Method and system for initiating a deposition process utilizing a metal carbonyl precursor

Also Published As

Publication number Publication date
WO2010035647A1 (en) 2010-04-01

Similar Documents

Publication Publication Date Title
JP5225957B2 (en) Film formation method and storage medium
JP5778132B2 (en) Deposition equipment
JP2009084625A (en) Raw material gas supply system and film deposition apparatus
JP5109299B2 (en) Deposition method
JP6426893B2 (en) Method of forming contact layer
JP2007154297A (en) Film deposition method and film deposition system
JPWO2007102333A1 (en) Ruthenium film forming method and computer-readable storage medium
US7582571B2 (en) Substrate processing method and recording medium
WO2009119147A1 (en) Method for film formation, apparatus for film formation, and computer-readable recording medium
US20090029047A1 (en) Film-forming apparatus and film-forming method
JP5653018B2 (en) Method for forming manganese oxide film
JP2013153142A (en) Substrate processing apparatus, manufacturing method of semiconductor device, and program
KR100935483B1 (en) Film-forming apparatus, film-forming method and recording medium
US7960278B2 (en) Method of film deposition
JP2015124398A (en) FILM DEPOSITION METHOD FOR Ti FILM
JP2010077504A (en) Film deposition method and film-depositing apparatus
US9236467B2 (en) Atomic layer deposition of hafnium or zirconium alloy films
TWI515326B (en) Film forming method and plasma film forming device
JP2007266185A (en) Substrate processor and method of manufacturing semiconductor device
KR100353510B1 (en) system for metal organic chemical vapor deposition
JP2010111888A (en) METHOD FOR DEPOSITING Ti FILM, FILM DEPOSITION SYSTEM AND STORAGE MEDIUM
JP2008274343A (en) Ti FILM DEPOSITING METHOD, AND STORAGE MEDIUM
JP5656683B2 (en) Film formation method and storage medium
JP2016065287A (en) Production method of semiconductor device, substrate treatment apparatus and program
JP5281856B2 (en) Film forming method, film forming apparatus, and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A02 Decision of refusal

Effective date: 20130521

Free format text: JAPANESE INTERMEDIATE CODE: A02