JP2010076025A - Precision machining method of cutting blade of rotary multi-blade tool - Google Patents

Precision machining method of cutting blade of rotary multi-blade tool Download PDF

Info

Publication number
JP2010076025A
JP2010076025A JP2008245788A JP2008245788A JP2010076025A JP 2010076025 A JP2010076025 A JP 2010076025A JP 2008245788 A JP2008245788 A JP 2008245788A JP 2008245788 A JP2008245788 A JP 2008245788A JP 2010076025 A JP2010076025 A JP 2010076025A
Authority
JP
Japan
Prior art keywords
blade
cutting edge
cutting blade
rotary multi
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008245788A
Other languages
Japanese (ja)
Other versions
JP5131849B2 (en
Inventor
Chisato Tsutsumi
千里 堤
Nozomi Mishima
望 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008245788A priority Critical patent/JP5131849B2/en
Publication of JP2010076025A publication Critical patent/JP2010076025A/en
Application granted granted Critical
Publication of JP5131849B2 publication Critical patent/JP5131849B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Milling Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a precision machining method capable of reducing the dimensional difference from the center of rotation of a cutting blade of a rotary multi-blade tool by forming cyclic grooves specific to each cutting blade in the rotary multi-blade tool, specifying the outermost circumferential cutting blade and determining the target machining amount from a machining striation, and successively repeating the working. <P>SOLUTION: In the precision machining method of the cutting blade of the rotary multi-blade tool, comb-blade grooves of different patterns are formed on a circumferential surface ridge or an end face ridge of each cutting blade of the rotary multi-blade tool by each cutting blade, a sample is cut by using the rotary multi-blade tool, the outermost circumferential cutting blade is specified from the pattern of the width of the lowest valley of a worked surface, and the specified outermost circumferential cutting blade is worked by the amount of the difference between the lowest valley and the highest hill of the working surface with an optional excessive working amount β added thereto. By successively repeating this work, the height of the cutting blade is aligned at high accuracy. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光学素子の加工に用いられる工具のように、加工精度が高く、表面粗さの優れた切削加工のできる高精度の回転多刃工具の精密加工法に関するものである。   The present invention relates to a precision machining method for a high-precision rotary multi-blade tool capable of cutting with high machining accuracy and excellent surface roughness, such as a tool used for machining an optical element.

X線ミラーの加工や液晶のバックライトなどに鋸刃状波形が求められる場合がある。
図1は、X線ミラーのホログラム光学素子の加工モデルを模示するもので、(a)は、回転多刃工具でX線ホログラム光学素子を切削加工している状態を示す斜視図、(b)は、回転多刃工具の中の一つの切れ刃による加工の様子を示す斜視図、(c)は、切れ刃の先端の拡大図、(d)は、光学素子断面の拡大図を示している。
本発明者は単結晶ダイヤモンド切れ刃を用いた回転多刃工具の開発を行っており、その関係で以下においてダイヤモンド切れ刃を例にして記載することがあるが、他の工具についても同様である。
In some cases, a sawtooth waveform is required for processing an X-ray mirror, a liquid crystal backlight, or the like.
FIG. 1 illustrates a processing model of a hologram optical element of an X-ray mirror. FIG. 1A is a perspective view illustrating a state in which the X-ray hologram optical element is cut with a rotary multi-blade tool. ) Is a perspective view showing a state of machining with one cutting edge in a rotary multi-blade tool, (c) is an enlarged view of the tip of the cutting edge, and (d) is an enlarged view of a cross section of the optical element. Yes.
The present inventor has developed a rotary multi-blade tool using a single crystal diamond cutting edge, and in this connection, the diamond cutting edge may be described as an example below, but the same applies to other tools. .

図2は、回転多刃工具で加工した鋸刃状溝の拡大図を示す。細線が各切れ刃を示し、太線が谷の形状を示す。回転多刃工具を用いて鋸刃状波形を加工する場合、図2に示すように切れ刃の高さが揃っていないと被加工物の鋸刃状の谷底幅が広くなりシャープに加工されない。また、せっかく複数の切れ刃が有りながら実際に加工に寄与する切れ刃の数が少なくなり振動の原因ともなる。   FIG. 2 shows an enlarged view of a sawtooth groove machined with a rotary multi-blade tool. A thin line shows each cutting edge, and a thick line shows the shape of the valley. When a sawtooth waveform is machined using a rotary multi-blade tool, if the heights of the cutting edges are not uniform as shown in FIG. 2, the sawtooth valley width of the workpiece is widened and is not sharpened. In addition, although there are a plurality of cutting edges, the number of cutting edges that actually contribute to the processing is reduced, which causes vibration.

脆性材料であるセラミックスを高品位に加工するために加工する回転多刃工具の複数の単結晶ダイヤモンド切れ刃(以下単に「切れ刃」と記載することがある。)の高さを揃える必要がある。
従来、回転台金の外周端面に刃部を有する工具において、刃部に平均粒径の揃った単層の超砥粒を金属メッキにより固着し、固着された各超砥粒の所定基準線に対するばらつきを±5μm以内にした回転多刃工具が知られている(以下、従来技術という。例えば、特許文献1参照。)。
特開平9−47968号公報
It is necessary to align the heights of a plurality of single-crystal diamond cutting edges (hereinafter, simply referred to as “cutting edges”) of a rotary multi-blade tool that is processed to process a brittle ceramic material with high quality. .
Conventionally, in a tool having a blade portion on the outer peripheral end face of a rotating base metal, a single layer of superabrasive grains having a uniform average particle diameter is fixed to the blade portion by metal plating, and the fixed superabrasive particles are fixed to a predetermined reference line. A rotary multi-blade tool having a variation within ± 5 μm is known (hereinafter referred to as conventional technology; for example, see Patent Document 1).
Japanese Unexamined Patent Publication No. 9-47968

上記した従来技術のものでは、切れ刃の高さのばらつきを±5μm以内に調整しているがサブミクロンで切れ刃の高さの調整はできない。
これを解決するためには、次の代表的な3つの方法が考えられる。
1.先に形状加工した切れ刃をサブミクロン精度で刃先を揃えて台座に接着する。
2.台座に切れ刃を取り付けた後、台座ごと高さをピエゾ等で位置を制御する。
3.多刃工具を軸に取付け後に、最外周切れ刃を特定して最外周切れ刃の研磨加工を繰り返して切れ刃高さを揃える。
本発明は、上記「3.」に関するもので、回転多刃工具において、各切れ刃に固有の周期的な溝を付け、加工条痕から最外周切れ刃の特定と目標加工量を定め、加工することを順次繰り返すことにより、回転多刃工具の切れ刃の回転中心からの寸法の差を小さくすることのできる精密加工法を提供することを目的とする。
In the above-mentioned prior art, the variation in the height of the cutting edge is adjusted within ± 5 μm, but the height of the cutting edge cannot be adjusted by submicron.
In order to solve this, the following three typical methods are conceivable.
1. The cutting edge that has been processed in advance is aligned with the cutting edge with submicron accuracy and bonded to the base.
2. After attaching the cutting blade to the pedestal, the height of the pedestal is controlled by piezo or the like.
3. After attaching the multi-blade tool to the shaft, the outermost peripheral cutting edge is identified and the outermost peripheral cutting edge is repeatedly ground to align the cutting edge height.
The present invention relates to the above-mentioned “3.” In a rotary multi-blade tool, a periodic groove unique to each cutting edge is provided, the outermost cutting edge is specified from the machining streak, the target machining amount is determined, An object of the present invention is to provide a precision machining method capable of reducing the difference in dimension from the rotation center of the cutting edge of the rotary multi-blade tool by sequentially repeating this process.

上記目的を達成するため本発明の回転多刃工具の切れ刃の精密加工法は、回転多刃工具の各切れ刃の周面稜線または端面稜線に各切れ刃によってパターンの異なる櫛刃状の溝を形成し、この回転多刃工具を用いて試料を切削加工し、加工面の一番低い谷の幅のパターンから最外周切れ刃を特定し、該特定された最外周切れ刃に対して加工面の一番低い谷と一番高い山との差分に、任意の余剰加工量βを加えた分だけ加工するという作業を順次繰り返すことにより切れ刃高さを高精度に揃えることを特徴としている。   In order to achieve the above object, the precision machining method of the cutting edge of the rotary multi-blade tool according to the present invention is a comb-like groove having a different pattern depending on the cutting edge on the peripheral edge line or end face ridge line of each cutting edge of the rotary multi-blade tool. The sample is cut using this rotary multi-blade tool, the outermost peripheral cutting edge is identified from the pattern of the lowest valley width of the processed surface, and the outermost peripheral cutting edge is processed. It is characterized by aligning the cutting edge height with high accuracy by sequentially repeating the process of adding an optional excess machining amount β to the difference between the lowest valley and the highest mountain on the surface. .

本発明の回転多刃工具の切れ刃の精密加工法は、以下のような優れた効果を奏する。
(1)回転多刃工具の切れ刃の高さの差をサブミクロンに調整することができる。
(2)被加工物の鋸刃状の谷底幅が狭くなりシャープに加工することができる。
(3)複数の切れ刃が実際の加工に寄与するので加工時の振動を抑制することができる。
The precision machining method of the cutting edge of the rotary multi-blade tool of the present invention has the following excellent effects.
(1) The height difference of the cutting edge of the rotary multi-blade tool can be adjusted to submicron.
(2) The sawtooth-shaped valley bottom width of the workpiece is narrowed and can be processed sharply.
(3) Since a plurality of cutting edges contribute to actual machining, vibration during machining can be suppressed.

以下、図面を参照して、本発明の回転多刃工具の切れ刃の精密加工法の実施の形態について詳細に説明するが、本発明は、これに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加えうるものである。   Hereinafter, with reference to the drawings, an embodiment of the precision machining method of the cutting edge of the rotary multi-blade tool of the present invention will be described in detail. However, the present invention is not limited to this and is not interpreted. Various changes, modifications, and improvements can be made based on the knowledge of those skilled in the art without departing from the scope of the invention.

図3は、回転多刃工具が回転軸に装着された状態を示す斜視図である。図3のものでは、回転多刃工具は8枚の切れ刃により構成されている。切れ刃の枚数についてはこれに限定されるものではない。   FIG. 3 is a perspective view showing a state where the rotary multi-blade tool is mounted on the rotary shaft. In the thing of FIG. 3, the rotary multiblade tool is comprised by the eight cutting blades. The number of cutting edges is not limited to this.

図4は、1枚の切れ刃1を示したもので、(a)は回転方向から見た図、(b)は(a)の側面図、(c)は(a)の正面図である。
図4において、(イ)は端面、(ロ)は周面、(ハ)はすくい面、(ニ)は端面切れ刃角、(ホ)は周面切れ刃角、(ヘ)は端面逃げ角、(ト)は周面逃げ角、(チ)は端面稜線、(リ)は周面稜線である。
図4の切れ刃1では、周面(ロ)と端面(イ)の有る場合を示しているが、周面(ロ)だけの工具や端面(イ)のみの工具もある。
4A and 4B show a single cutting edge 1. FIG. 4A is a view seen from the rotational direction, FIG. 4B is a side view of FIG. 4A, and FIG. 4C is a front view of FIG. .
In FIG. 4, (A) is the end face, (B) is the peripheral face, (C) is the rake face, (D) is the end face cutting edge angle, (E) is the peripheral face cutting edge angle, and (F) is the end face clearance angle. , (G) is the circumferential clearance angle, (H) is the edge ridgeline, and (R) is the circumferential ridgeline.
The cutting edge 1 in FIG. 4 shows a case where there are a peripheral surface (b) and an end surface (b), but there are also a tool having only a peripheral surface (b) and a tool having only an end surface (b).

〔発明の概要〕
切れ刃1の加工は、端面稜線(チ)と周面稜線(リ)までの回転中心からの高さを揃えるために端面(イ)が高い切れ刃の端面(イ)と、周面(ロ)が高い切れ刃の周面(ロ)を研磨加工するものである。
すなわち、一番高い切れ刃の特定を行い、該特定された一番高い切れ刃の目標加工量を求め、一番高い切れ刃を目標加工量+余剰加工量β(以下単に「β」と記す場合がある。)で順次研磨加工を繰り返すことにより切れ刃高さを揃える。
[Summary of the Invention]
The processing of the cutting edge 1 is performed in order to align the height from the center of rotation to the end surface ridge line (H) and the peripheral surface ridge line (L), and the end surface (A) of the cutting edge having a high end surface (A) and the peripheral surface (B) ) Polishing the peripheral surface (b) of the cutting edge having a high height.
That is, the highest cutting edge is identified, the target machining amount of the identified highest cutting edge is obtained, and the highest cutting edge is expressed as target machining amount + excess machining amount β (hereinafter simply referred to as “β”). In some cases, the cutting edge height is made uniform by repeating the polishing process sequentially.

〔切れ刃の生成〕
対象とする切れ刃1の端面稜線(チ)と周面稜線(リ)を高精度の直線に研磨加工した後に、レーザー等で端面稜線(チ)および周面稜線(リ)に大小の櫛刃状の溝を周期的に入れる。この場合、溝は、大溝あるいは小溝のみであってもよい。その後、切れ刃高さを、回転多刃工具を装着した軸を回転させずに計測を行い、切れ刃の高さを揃える加工を行う。櫛刃のパターン(周期)は個々の切れ刃ごとに異なったものとする。
(Generation of cutting edge)
After polishing the end ridge line (chi) and peripheral ridge line (re) of the target cutting edge 1 into a highly accurate straight line, a large or small comb blade is formed on the end ridge line (chi) and peripheral ridge line (re) with a laser or the like. Periodic grooves are inserted. In this case, the groove may be only a large groove or a small groove. Thereafter, the cutting edge height is measured without rotating the shaft on which the rotary multi-blade tool is mounted, and processing for aligning the cutting edge height is performed. The comb blade pattern (cycle) is different for each cutting edge.

〔櫛刃による悪影響の回避〕
1枚の櫛刃だけで加工すると加工面に櫛刃の谷の部分が加工面の盛り上がりとなって残り加工面粗さを悪化させる。複数の櫛刃を周期を変えて設置することにより櫛刃の谷による加工面の悪化を防いでいる。
[Avoiding adverse effects of comb blades]
If machining is performed with only one comb blade, the valley portion of the comb blade is raised on the machining surface and the remaining machining surface roughness is deteriorated. By disposing a plurality of comb blades at different periods, deterioration of the processed surface due to the valleys of the comb blades is prevented.

〔櫛刃の例〕
図5に、切れ刃1の周面稜線(リ)の拡大図を示す。端面稜線(チ)も同様であるが、説明の都合上、周面稜線(リ)を例に説明する。図5に示す櫛刃状の溝は、三角形状の大溝2(ここではレーザー加工による三角形状を例示しているが四角形状等であってもよい。)が1つと小溝3が2つの組み合わせの繰り返しになっている。
図6に1周期の櫛刃の寸法モデルを示す。右側の大溝2の手前までが1周期である。左側の大溝2の左端から該大溝2および小溝3、3の谷底までの距離をA、B、C、周期をDとするとこの切れ刃1には、大溝2と小溝3、3および丘にあたる小切れ刃部4、5、6を持つ。
[Example of comb blade]
In FIG. 5, the enlarged view of the peripheral surface ridgeline (re) of the cutting blade 1 is shown. The same applies to the end surface ridge line (H), but for the convenience of description, the peripheral surface ridge line (L) will be described as an example. The comb-shaped groove shown in FIG. 5 is a combination of one large groove 2 having a triangular shape (here, a triangular shape formed by laser processing is illustrated but may be a square shape or the like) and two small grooves 3. It has been repeated.
FIG. 6 shows a dimensional model of one cycle of the comb blade. One cycle is before the right large groove 2 on the right side. When the distances from the left end of the large groove 2 on the left side to the bottoms of the large grooves 2 and the small grooves 3 and 3 are A, B and C, and the period is D, the cutting edge 1 has a small groove corresponding to the large groove 2 and the small grooves 3 and 3 and a hill. It has cutting edge parts 4, 5, and 6.

〔櫛刃の周期例〕
図7に、8枚の切れ刃により構成されている回転多刃工具を想定して、周面稜線(リ)の稜線拡大図を表すところの8枚の櫛刃モデルを示す。図7は、次の周期の大溝3を含む1周期+αの切れ刃モデルを示すものであって、大溝2、小溝3および丘4、5、6の寸法の組み合わせを変えている。
[Example of comb blade cycle]
FIG. 7 shows eight comb blade models representing an enlarged view of the ridge line of the circumferential ridge line (re) assuming a rotary multi-blade tool composed of eight cutting edges. FIG. 7 shows a cutting cycle model of 1 cycle + α including the large groove 3 of the next cycle, and the combination of dimensions of the large groove 2, the small groove 3 and the hills 4, 5, 6 is changed.

図8に、横方向に溝と丘の長さの関係を示すところの8枚の櫛刃モデルを示す。ここで問題としているのは数値の絶対値ではなく全ての櫛刃の寸法の相対値である。網掛けは溝を示し、白抜きは丘を示している。大小の溝と切れ刃の丘からなる1周期の幅のモデルを示しており、図の大溝幅は小溝幅の2倍程度に設定しているが、実際の大溝幅は20μmから200μmを想定している。   FIG. 8 shows eight comb blade models showing the relationship between the length of the groove and the hill in the horizontal direction. The problem here is not the absolute value of the numerical value but the relative value of the dimensions of all the comb blades. Shaded areas indicate grooves and open areas indicate hills. A model with a width of one cycle consisting of large and small grooves and cutting edge hills is shown. The large groove width in the figure is set to about twice the small groove width, but the actual large groove width is assumed to be 20 to 200 μm. ing.

図8では、8枚の櫛刃の中から一番高い切れ刃、すなわち、最外周切れ刃を特定するため、丘の長さを基準に丘4、5、6の長さが短い時を0、長い時を1として2進数で0から7を示している。丘の長い部分と短い部分から2進数を判別しているが、例題では全体の周期を調整する為、周期を短くする場合は、丘の短い部分をより短く、長くする場合は丘の長い部分をより長く調整して判別で紛れないようにしている。
櫛刃加工の周期例の一つの方法として、2進数のみので周期を変更する方法、あるいは、全体の周期を変更する方法がある。また、これらの方法を複合して採用しても良いし、どちらか一方を採用しても良い。図8の例では2進数と全体の周期を複合して採用している。
In FIG. 8, in order to specify the highest cutting edge among the eight comb blades, that is, the outermost peripheral cutting edge, the time when the lengths of the hills 4, 5, 6 are short on the basis of the hill length is 0. In this case, 0 to 7 are shown in binary notation, where 1 is a long time. Binary numbers are discriminated from the long part and short part of the hill, but in the example, the whole period is adjusted. Is adjusted for a longer time so as not to be confused by discrimination.
One example of the comb blade processing cycle method is a method of changing the cycle because only binary numbers are used, or a method of changing the entire cycle. Further, these methods may be combined and either one of them may be employed. In the example of FIG. 8, a binary number and the entire period are combined.

〔櫛刃による最外周切れ刃の特定〕
図9に、櫛刃を設けた回転多刃工具を用いて無酸素銅など形状転写製の良い試料7を切削加工した時の加工面のモデルを示す。加工面8には回転多刃工具の多くの切れ刃が関与している。加工面の一番低い谷の幅が最外周切れ刃による加工面になっている。
[Identification of outermost cutting edge by comb blade]
FIG. 9 shows a model of the machined surface when a sample 7 having good shape transfer such as oxygen-free copper is cut using a rotary multi-blade tool provided with a comb blade. Many cutting edges of the rotary multi-blade tool are involved in the machining surface 8. The width of the lowest valley of the processed surface is the processed surface by the outermost peripheral cutting edge.

図10に、3枚の櫛刃10、11、12を用いて試料7を切削加工した時の加工モデルを示す。櫛刃10、11、12による加工面を8とすると、加工面8の山14、16、18および谷15、17、19の寸法から櫛刃12が最外周切れ刃であると特定できる。   FIG. 10 shows a processing model when the sample 7 is cut using three comb blades 10, 11, and 12. When the machining surface by the comb blades 10, 11, and 12 is 8, it can be specified that the comb blade 12 is the outermost peripheral cutting edge from the dimensions of the peaks 14, 16, 18 and the valleys 15, 17, 19 of the machining surface 8.

〔櫛刃による最外周切れ刃の目標加工量〕
図10の加工面8の形状から最外周切れ刃の目標加工量Eを求める。目標加工量Eは加工面8の一番低い面と高い山までの高さの差として求められる。
[Target processing amount of outermost cutting edge with comb blade]
A target machining amount E of the outermost peripheral cutting edge is obtained from the shape of the machining surface 8 in FIG. The target machining amount E is obtained as a difference in height between the lowest surface of the machining surface 8 and a high mountain.

〔櫛刃高さが等しい場合の処理法〕
図10では、回転中心からの距離は測定器の分解能が十分に高く、同一の高さの切れ刃は存在しない事を前提としている。
万一、2つの切れ刃の中心からの距離が測定器の分解能以上に同一の場合、2つの大溝の周期の最小公倍数から2枚の外周切れ刃の同定は可能になる。この場合2枚の最外周切れ刃の加工量を変化させて加工して切れ刃高さを変化させる必要がある。
高さを揃える目的と一見矛盾している様に思えるが、2枚以上の切れ刃が測定器の分解能以上に高さが揃った場合や、2枚の切れ刃で最小公倍数で求められない場合は、全ての切れ刃の加工量を変えて加工する。加工量は加工工程の目標精度の範囲内にする。例えば0,0.1,0.2,0.3,…μmこのようにして櫛刃高さが揃い最外周切れ刃の特定不能を回避する。
[Treatment method when the comb blade height is equal]
In FIG. 10, the distance from the rotation center is premised on that the resolution of the measuring instrument is sufficiently high and there is no cutting edge of the same height.
In the unlikely event that the distance from the center of the two cutting edges is the same as the resolution of the measuring instrument, the two outer cutting edges can be identified from the least common multiple of the period of the two large grooves. In this case, it is necessary to change the cutting edge height by changing the processing amount of the two outermost cutting edges.
At first glance it seems to contradict the purpose of aligning the heights, but when two or more cutting edges are aligned at a height higher than the resolution of the measuring instrument, or when the two common cutting edges cannot be obtained with the least common multiple Is to change the processing amount of all cutting edges. The amount of machining should be within the target accuracy of the machining process. For example, 0, 0.1, 0.2, 0.3,... Μm.

〔最外周切れ刃の特定による切れ刃高さを揃える方法〕
最外周切れ刃を目標加工量Eよりβ程度多く研磨加工する。β程度多く加工する目的は、(1)切れ刃高さが揃うことを防止するため、(2)切れ刃の高さを早く収束させるためである。βの値は作業者が任意に決める。また各加工で一定である必要はない。
加工と最外周切れ刃の特定を繰り返し、徐々に切れ刃の高さの差を少なくすることで切れ刃高さを高精度に揃える事を目指す。
[Method of aligning the cutting edge height by specifying the outermost cutting edge]
The outermost peripheral cutting edge is polished by about β more than the target processing amount E. The purpose of machining by as much as β is (1) to prevent the cutting edge heights from being aligned, and (2) to quickly converge the cutting edge height. The value of β is arbitrarily determined by the operator. Moreover, it does not need to be constant in each processing.
The aim is to align the cutting edge height with high accuracy by repeating machining and specifying the outermost cutting edge and gradually reducing the difference in cutting edge height.

〔櫛刃による加工精度の向上モデル〕
表1に、櫛刃による加工精度の向上モデルを示す。
単結晶ダイヤモンドの研磨は砥粒径分布の大きい方で示すと4、2、0.5、0.1μmの4工程で仕上げている。表1では、各工程で目標とする全ての切れ刃の高さの差を目標精度として表している。本手法では4μmの粗加工では加工能率が良いが寸法の制御が困難なのに対して、0.1μmの極微粒による仕上げ加工では寸法制御は容易であるが加工能率は非常に悪い。なるべく若い工程で切れ刃群の回転中心からの距離の差を小さくして次の工程に移るのが好ましい。
最外周切れ刃が特定され加工するとき、切れ刃と目標加工量の+βの数値を記録しておき全ての切れ刃を加工した後は、次の工程に進む。βを記録することで切れ刃の高さの差を推定できる。目指す精度まで加工して加工は終了する。
実用では10nmまでの精度を必要としない場合が多い。
[Processing accuracy improvement model with comb blade]
Table 1 shows an improvement model of processing accuracy by a comb blade.
Polishing of single crystal diamond is finished in four steps of 4, 2, 0.5, and 0.1 μm, as indicated by the larger abrasive grain size distribution. In Table 1, the difference in height of all cutting edges targeted in each process is represented as target accuracy. In this method, the machining efficiency is good in rough machining of 4 μm, but it is difficult to control the dimensions. On the other hand, in the finishing process using ultrafine particles of 0.1 μm, the dimension control is easy, but the machining efficiency is very poor. It is preferable to move to the next step by reducing the difference in distance from the rotation center of the cutting blade group as young as possible.
When the outermost peripheral cutting edge is specified and processed, the numerical value of the cutting edge and the target processing amount + β is recorded, and after all the cutting edges are processed, the process proceeds to the next step. By recording β, the difference in the height of the cutting edge can be estimated. Machining is completed after processing to the desired accuracy.
In practical use, accuracy up to 10 nm is often not required.

X線ミラーのホログラム光学素子の加工モデルを模示する図である。It is a figure which illustrates the processing model of the hologram optical element of an X-ray mirror. 回転多刃工具で加工した鋸刃状溝の拡大図である。It is an enlarged view of the saw-tooth groove processed with the rotary multi-blade tool. 回転多刃工具が回転軸に装着された状態を示す斜視図である。It is a perspective view which shows the state with which the rotary multiblade tool was mounted | worn with the rotating shaft. 1枚の切れ刃を示したもので、(a)は回転方向から見た図、(b)は(a)の側面図、(c)は(a)の正面図である。1 shows a single cutting edge, where (a) is a view seen from the direction of rotation, (b) is a side view of (a), and (c) is a front view of (a). 切れ刃の周面稜線の拡大図である。It is an enlarged view of the peripheral surface ridgeline of a cutting edge. 1周期の櫛刃の寸法モデルを示す説明図である。It is explanatory drawing which shows the dimension model of the comb blade of 1 period. 周面稜線の稜線拡大図を表すところの8枚の櫛刃モデルを示す斜視図である。It is a perspective view which shows the eight comb blade models which represent the ridgeline enlarged view of a surrounding surface ridgeline. 横方向に溝と丘の長さの関係を示すところの8枚の櫛刃モデルを示す説明図である。It is explanatory drawing which shows eight comb blade models which show the relationship between the length of a groove | channel and a hill in a horizontal direction. 櫛刃を設けた回転多刃工具を用いて試料を切削加工した時の加工面のモデルを示す斜視図である。It is a perspective view which shows the model of the processing surface when a sample is cut using the rotary multiblade tool which provided the comb blade. 3枚の櫛刃を用いて試料を切削加工した時の加工モデルを示す説明図である。It is explanatory drawing which shows the process model when the sample is cut using three comb blades.

符号の説明Explanation of symbols

1 切れ刃
2 大溝
3 小溝
4 切れ刃の丘
5 切れ刃の丘
6 切れ刃の丘
7 試料
8 加工面
10 櫛刃
11 櫛刃
12 櫛刃
14 加工面の山
15 加工面の谷
16 加工面の山
17 加工面の谷
18 加工面の山
19 加工面の谷
DESCRIPTION OF SYMBOLS 1 Cutting edge 2 Large groove 3 Small groove 4 Cutting edge hill 5 Cutting edge hill 6 Cutting edge hill 7 Sample 8 Processing surface 10 Comb blade 11 Comb blade 12 Comb blade 14 Pile of processing surface 15 Valley of processing surface 16 Cutting surface Mountain 17 Valley of machining surface 18 Mountain of machining surface 19 Valley of machining surface

Claims (1)

回転多刃工具の各切れ刃の周面稜線または端面稜線に各切れ刃によってパターンの異なる櫛刃状の溝を形成し、この回転多刃工具を用いて試料を切削加工し、加工面の一番低い谷の幅のパターンから最外周切れ刃を特定し、該特定された最外周切れ刃に対して加工面の一番低い谷と一番高い山との差分に、任意の余剰加工量βを加えた分だけ加工するという作業を順次繰り返すことにより切れ刃高さを高精度に揃えることを特徴とする回転多刃工具の切れ刃の精密加工法。   Comb-like grooves with different patterns are formed by the cutting edges on the peripheral ridge line or end face ridge line of each cutting edge of the rotary multi-blade tool. The outermost peripheral cutting edge is identified from the pattern of the lowest valley width, and an arbitrary excess machining amount β is added to the difference between the lowest valley and the highest peak of the machining surface with respect to the identified outermost circumferential cutting edge. A precision machining method for the cutting edge of a rotary multi-blade tool, characterized by aligning the cutting edge height with high precision by sequentially repeating the process of machining as much as is added.
JP2008245788A 2008-09-25 2008-09-25 Precision machining of cutting edge of rotary multi-blade tool Expired - Fee Related JP5131849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008245788A JP5131849B2 (en) 2008-09-25 2008-09-25 Precision machining of cutting edge of rotary multi-blade tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008245788A JP5131849B2 (en) 2008-09-25 2008-09-25 Precision machining of cutting edge of rotary multi-blade tool

Publications (2)

Publication Number Publication Date
JP2010076025A true JP2010076025A (en) 2010-04-08
JP5131849B2 JP5131849B2 (en) 2013-01-30

Family

ID=42207064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008245788A Expired - Fee Related JP5131849B2 (en) 2008-09-25 2008-09-25 Precision machining of cutting edge of rotary multi-blade tool

Country Status (1)

Country Link
JP (1) JP5131849B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106270672A (en) * 2016-08-30 2017-01-04 湖北三江航天红阳机电有限公司 A kind of processing method of fiberglass part
CN116493873A (en) * 2023-06-25 2023-07-28 深圳市锴诚精密模具有限公司 Precise machining process for raised grains

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106270672A (en) * 2016-08-30 2017-01-04 湖北三江航天红阳机电有限公司 A kind of processing method of fiberglass part
CN106270672B (en) * 2016-08-30 2018-10-12 湖北三江航天红阳机电有限公司 A kind of processing method of glass steel part
CN116493873A (en) * 2023-06-25 2023-07-28 深圳市锴诚精密模具有限公司 Precise machining process for raised grains
CN116493873B (en) * 2023-06-25 2023-11-21 深圳市锴诚精密模具有限公司 Precise machining process for raised grains

Also Published As

Publication number Publication date
JP5131849B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
KR102081572B1 (en) Method and device for machining a tool by removing material
JP5864920B2 (en) Manufacturing method of diffraction grating
JP2014532171A (en) Method for obtaining cutting edge preparation profile of a cutting tool
JP6657547B2 (en) Cutting tool and manufacturing method thereof
JP6253533B2 (en) Cutting tool manufacturing method
CN107427929B (en) Processing unit (plant) and method are scraped in cutting element, rotation
JP2016112678A (en) Diamond sintered compact ball end mill and manufacturing method therefor
JP5131849B2 (en) Precision machining of cutting edge of rotary multi-blade tool
CN110039406B (en) Ultra-precision machining tool and method for monocrystalline silicon optical complex surface
JP4753893B2 (en) Diamond reamer
JP2006198743A (en) Small-diameter rotary tool, and method of cutting workpiece formed of high-hardness material
JP4529789B2 (en) NC data generation method
JP2008183657A (en) Single crystal diamond multi-cutting tool and its manufacturing method
JP4878517B2 (en) Diamond tools
JP5689138B2 (en) Deburring method for end face burrs of total groove and total rotary cutting tool for chamfering
JP6635501B2 (en) Tool for rotary cutting of brittle material and rotary cutting method
JP6723623B1 (en) Cutting method
JP4221117B2 (en) Molding sheet mold production equipment
JP3762248B2 (en) Die processing method for diffractive optical element
JP2007313590A (en) Thread cutting tip, and its manufacturing method
JP5183256B2 (en) Cutting tool and cutting method using the same
JP2007307911A (en) Saw tooth with hard layer
JP5908367B2 (en) Manufacturing method of mold for optical member manufacturing
JP4112757B2 (en) Single crystal diamond tool and manufacturing method thereof.
JP7023624B2 (en) Microfabrication equipment, control equipment, master manufacturing method, and microfabrication method of base material for master

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees