JP2010075800A - Oxygen reduction catalyst and method for manufacturing the same, and oxygen reduction electrode, and method for manufacturing the same - Google Patents

Oxygen reduction catalyst and method for manufacturing the same, and oxygen reduction electrode, and method for manufacturing the same Download PDF

Info

Publication number
JP2010075800A
JP2010075800A JP2008244954A JP2008244954A JP2010075800A JP 2010075800 A JP2010075800 A JP 2010075800A JP 2008244954 A JP2008244954 A JP 2008244954A JP 2008244954 A JP2008244954 A JP 2008244954A JP 2010075800 A JP2010075800 A JP 2010075800A
Authority
JP
Japan
Prior art keywords
oxygen reduction
water
porphyrin derivative
soluble
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008244954A
Other languages
Japanese (ja)
Inventor
Osamu Ikeda
修 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Priority to JP2008244954A priority Critical patent/JP2010075800A/en
Publication of JP2010075800A publication Critical patent/JP2010075800A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen reduction catalyst which has high oxygen reducing capacity and is excellent in practicality, and to provide an oxygen reduction electrode. <P>SOLUTION: The oxygen reduction catalyst is based on a material obtained by heat-treating a water-soluble porphyrin derivative which has an anion group and a trivalent metal as a central metal thereof. The water-soluble porphyrin derivative before heat-treated has such a double regular structure that a cation bonds the adjacent anion groups of the water-soluble porphyrin derivative to each other and also bonds the adjacent metals thereof to each other. The oxygen reduction catalyst is manufactured by adding the cation to an aqueous solution of the water-soluble porphyrin derivative to react them with each other and obtain a product and heat-treating the obtained product in an inert gas atmosphere. The oxygen reduction catalyst is deposited on an electrically-conductive electrode base stock, which is then used as the oxygen reduction electrode. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池の電極等に使用される酸素還元触媒及びその製造方法に関するものであり、さらには、酸素還元用電極及びその製造方法に関する。   The present invention relates to an oxygen reduction catalyst used for an electrode of a fuel cell and a method for producing the same, and further relates to an electrode for oxygen reduction and a method for producing the same.

地球温暖化や環境汚染問題等に対する新技術の開発が様々な分野で進められており、燃料電池の開発もその一つである。例えば高分子電解質型燃料電池においては、酸素触媒能に優れた触媒の開発が実用化の鍵を握っており、白金に代わる新たな酸素極触媒の開発が待たれるところである。白金は高価であり、その存在も偏在していることから、資源の乏しい我が国にあっては、白金に代わる酸素極触媒の開発が必要不可欠である。白金に匹敵する酸素還元能を有する酸素極触媒が開発されれば、前述の燃料電池等の実用化も大きく進展するものと期待される。   The development of new technologies for global warming and environmental pollution problems has been promoted in various fields, and the development of fuel cells is one of them. For example, in polymer electrolyte fuel cells, the development of a catalyst with excellent oxygen catalytic ability is the key to practical use, and the development of a new oxygen electrode catalyst to replace platinum is awaited. Since platinum is expensive and its existence is unevenly distributed, in Japan, where resources are scarce, it is essential to develop an oxygen electrode catalyst that can replace platinum. If an oxygen electrode catalyst having an oxygen reducing ability comparable to platinum is developed, it is expected that the above-described practical use of the fuel cell will greatly advance.

このような状況から、新規な酸素極触媒について、各方面で検討が進められており、テトラフェニルポルフィリンやテトラメトキシフェニルポルフィリン、さらにはこれらに中心金属やハロゲン元素を導入したポルフィリン誘導体等を酸素還元用触媒として用いることが提案されている。本願発明者らも、これらポルフィリン誘導体よりも酸素還元性能に優れた酸素還元用電極の製造方法を既に提案している(特許文献1等を参照)。   Under these circumstances, new oxygen electrode catalysts have been studied in various fields. Tetraphenylporphyrin, tetramethoxyphenylporphyrin, and porphyrin derivatives with central metals and halogen elements introduced into them can be reduced with oxygen. It has been proposed to be used as a catalyst. The inventors of the present application have already proposed a method for producing an electrode for oxygen reduction that is superior in oxygen reduction performance to these porphyrin derivatives (see Patent Document 1 and the like).

本願発明者らによって提案された特許文献1には、メソテトラキス(4−スルフォナトフェニル)ポルフィリンメタルハライドを電極素材に担持せしめ、且つこれを不活性ガス雰囲気中400℃以上800℃付近までの範囲で熱処理する酸素還元用電極の製造方法が開示されている。製造される酸素還元用電極は、酸素過電圧が小さい値でも酸素還元反応を起こすという利点を有している。
特開昭62−17951号公報
In Patent Document 1 proposed by the inventors of the present application, mesotetrakis (4-sulfonatophenyl) porphyrin metal halide is supported on an electrode material, and this is in a range from 400 ° C. to 800 ° C. in an inert gas atmosphere. Discloses a method for manufacturing an oxygen reduction electrode that is heat-treated. The manufactured oxygen reduction electrode has an advantage that an oxygen reduction reaction occurs even when the oxygen overvoltage is small.
Japanese Patent Laid-Open No. 62-17951

しかしながら、例えば燃料電池の酸素還元用電極を考えた場合、前述の特許文献1に記載される製造方法で製造される酸素還元用電極であっても酸素還元能が必ずしも十分とは言えず、さらなる改良が望まれる。   However, for example, when an oxygen reduction electrode of a fuel cell is considered, even an oxygen reduction electrode manufactured by the manufacturing method described in Patent Document 1 described above cannot always be said to have sufficient oxygen reduction capability. Improvement is desired.

本発明は、このような従来の実情に鑑みて提案されたものであり、高い酸素還元能力を有し、安価で入手が容易である等、実用性に優れた酸素還元用触媒及びその製造方法を提供することを目的とする。さらには、係る酸素還元用触媒を利用することで、性能に優れた酸素還元用電極及びその製造方法を提供することを目的とする。   The present invention has been proposed in view of such conventional circumstances, and has a high oxygen reduction capability, is inexpensive and easily available, and has a practical utility and a method for producing the same. The purpose is to provide. Furthermore, it aims at providing the electrode for oxygen reduction excellent in performance, and its manufacturing method by utilizing the catalyst for this oxygen reduction.

本発明者は、前述の目的を達成するために、種々の研究を重ねてきた。その結果、アニオン基を有し中心金属がIII価の金属である水溶性ポルフィリン誘導体にカチオンを作用させることにより、規則性の高い立体構造の形成が促進され、飛躍的に高い酸素還元性能を発揮することを見出すに至った。   The present inventor has conducted various studies in order to achieve the above-described object. As a result, the formation of a highly ordered three-dimensional structure is promoted by causing a cation to act on a water-soluble porphyrin derivative that has an anionic group and the central metal is a trivalent metal. I came to find out what to do.

本発明は、このような知見に基づいて完成されたものである。すなわち、本発明の酸素還元用触媒は、アニオン基を有し中心金属がIII価の金属である水溶性ポルフィリン誘導体の熱処理物を主体とする酸素還元用触媒であって、熱処理前において、カチオンによって前記水溶性ポルフィリン誘導体のアニオン基間及び金属間がそれぞれ結びつけられた二重の規則的構造を有することを特徴とする。また、本発明の酸素還元用触媒の製造方法は、アニオン基を有し中心金属がIII価の金属である水溶性ポルフィリン誘導体の水溶液にカチオンを加えて反応させ、得られる生成物に対して不活性ガス雰囲気中で熱処理を施すことを特徴とする。   The present invention has been completed based on such findings. That is, the oxygen reduction catalyst of the present invention is an oxygen reduction catalyst mainly composed of a heat-treated product of a water-soluble porphyrin derivative having an anion group and a central metal being a trivalent metal. The water-soluble porphyrin derivative has a double regular structure in which anion groups and metals are linked to each other. In addition, the method for producing an oxygen reduction catalyst of the present invention is effective for adding a cation to an aqueous solution of a water-soluble porphyrin derivative having an anionic group and a central metal being a trivalent metal, and reacting with the resulting product. The heat treatment is performed in an active gas atmosphere.

同様に、本発明の酸素還元用電極は、アニオン基を有し中心金属がIII価の金属である水溶性ポルフィリン誘導体の熱処理物を主体とする酸素還元用触媒が導電性の電極素材の表面に担持されてなる酸素還元用電極であって、前記酸素還元用触媒は、熱処理前において、カチオンによって前記水溶性ポルフィリン誘導体のアニオン基間及び金属間がそれぞれ結びつけられた二重の規則的構造を有することを特徴とする。また、本発明の酸素還元用電極の製造方法は、アニオン基を有し中心金属がIII価の金属である水溶性ポルフィリン誘導体の水溶液にカチオンを加えて反応させ、得られる生成物を導電性の電極素材に担持させた後、不活性ガス雰囲気中で熱処理を施すことを特徴とする。   Similarly, the oxygen reduction electrode of the present invention has an oxygen reduction catalyst mainly composed of a heat-treated product of a water-soluble porphyrin derivative having an anionic group and a central metal of a trivalent metal on the surface of the conductive electrode material. A supported oxygen reduction electrode, wherein the oxygen reduction catalyst has a double regular structure in which anion groups and metals of the water-soluble porphyrin derivative are connected to each other by a cation before heat treatment. It is characterized by that. In addition, the method for producing an electrode for oxygen reduction according to the present invention comprises adding a cation to an aqueous solution of a water-soluble porphyrin derivative having an anionic group and a central metal being a trivalent metal, and reacting the resulting product with a conductive material. After being supported on the electrode material, heat treatment is performed in an inert gas atmosphere.

本発明の酸素還元用触媒が優れた酸素還元能を示した理由として、規則性の高い立体構造が形成されたことを挙げることができる。アニオン基を有し中心金属がIII価の金属である水溶性ポルフィリン誘導体にカチオンを作用させると、水溶性ポルフィリン誘導体の側鎖にあるアニオン基と塩を形成し、アニオン基間が結合されて平面的な分子構造を有する水溶性ポルフィリン誘導体分子の面内方向(いわば横方向)の規則的構造を促進する。さらに、これ以外にポルフィリン環の中心にあるM(III)−OH(Mは中心金属)と反応し、金属間でM(III)−O−MII−O−M(III)(MIIはカチオン)なる結合が形成され、水溶性ポルフィリン誘導体分子の厚さ方向(いわば縦方向)の規則的構造が促進される。この結果、ほぼ完全なFace to Face構造が形成されたことになり、ポルフィリン環平面の間で酸素分子が活性化される。 The reason why the oxygen reduction catalyst of the present invention showed excellent oxygen reducing ability is that a highly ordered three-dimensional structure was formed. When a cation is allowed to act on a water-soluble porphyrin derivative that has an anionic group and the central metal is a trivalent metal, a salt is formed with the anionic group in the side chain of the water-soluble porphyrin derivative, and the anionic group is bonded to form a plane. Promotes a regular structure in the in-plane direction (the lateral direction) of a water-soluble porphyrin derivative molecule having a typical molecular structure. Furthermore, it reacts with M I (III) -OH (M I is the central metal) in the center of the porphyrin ring, and M I (III) -OM- II- O-M I (III) between the metals. (M II is a cation) becomes bonds are formed, regular structure in the thickness direction of the water-soluble porphyrin derivative molecule (so to speak vertical direction) is promoted. As a result, an almost complete Face to Face structure is formed, and oxygen molecules are activated between the porphyrin ring planes.

例えばコバルトポルフィリンの側鎖を共有結合で連結したFace to Face型の2核錯体を合成し、酸素の4電子還元能を報告した例はあるが、本発明のような側鎖と軸配位子の2点からFace to Face型の錯体が形成された例はない。   For example, we have synthesized a face-to-face binuclear complex in which the side chains of cobalt porphyrin are covalently linked and reported the 4-electron reduction ability of oxygen. There is no example of a face-to-face complex formed from these two points.

本発明によれば、白金に匹敵する高い酸素還元能を有する酸素還元用触媒を提供することが可能である。本発明の酸素還元用触媒は、白金のような高価で供給が逼迫した資源を必要とせず、安価で実用性に優れたものである。また、係る酸素還元用触媒を使用することにより、安価で性能に優れた酸素還元用電極の提供も可能となる。   According to the present invention, it is possible to provide an oxygen reduction catalyst having a high oxygen reduction ability comparable to platinum. The oxygen reduction catalyst of the present invention does not require expensive and tightly supplied resources such as platinum, and is inexpensive and excellent in practicality. Further, by using such an oxygen reduction catalyst, it is possible to provide an oxygen reduction electrode that is inexpensive and excellent in performance.

また、燃料電池の分野においては、例えば酸性電解質型燃料電池では白金に代わる酸素還元用電極触媒の開発が困難であることが認識されるようになり、アルカリ電解質型の燃料電池を開発する動きがある。本発明の酸素還元用触媒、酸素還元用電極は、このアルカリ電解質型の燃料電池やアルミニウム−空気等の空気電池の触媒、電極としての応用も期待される。   In the field of fuel cells, for example, it has been recognized that it is difficult to develop an electrode catalyst for oxygen reduction instead of platinum in an acidic electrolyte fuel cell, and there is a movement to develop an alkaline electrolyte fuel cell. is there. The oxygen reduction catalyst and oxygen reduction electrode of the present invention are also expected to be used as catalysts and electrodes for such alkaline electrolyte fuel cells and air cells such as aluminum-air.

以下、本発明を適用した酸素還元用触媒、酸素還元用電極、及びそれらの製造方法の実施形態について、詳細に説明する。   Hereinafter, embodiments of an oxygen reduction catalyst, an oxygen reduction electrode, and a method for producing the same according to the present invention will be described in detail.

先ず、本発明の酸素還元用触媒であるが、本発明の酸素還元用触媒は、アニオン基を有し中心金属がIII価の金属である水溶性ポルフィリン誘導体の熱処理物を主体とする酸素還元用触媒である。水溶性ポルフィリン誘導体としては、具体的には、下記(I)式で表される水溶性ポルフィリン誘導体を挙げることができる。   First, the oxygen reduction catalyst of the present invention, the oxygen reduction catalyst of the present invention is for oxygen reduction mainly composed of a heat-treated product of a water-soluble porphyrin derivative having an anionic group and a central metal being a trivalent metal. It is a catalyst. Specific examples of the water-soluble porphyrin derivative include water-soluble porphyrin derivatives represented by the following formula (I).

Figure 2010075800
(ただし、式中、MはIII価の金属、Xはハロゲン原子、Yはアニオン基を表す。)
Figure 2010075800
(In the formula, M represents a trivalent metal, X represents a halogen atom, and Y represents an anionic group.)

ここで、ポルフィリンの側鎖(フェニル基の4位)に導入されるアニオン基Yとしては、任意のアニオン基を選択することができるが、例えばスルフォン基(−SOH)、カルボキシル基(−COOH)、リン酸基(−CHPOH)等を例示することができる。後述のカチオンとの反応性等を考慮すると、これらの中ではスルフォン基(−SOH)が最も好ましい。中心金属についても、III価の金属であれば任意であるが、カチオンにより金属間の結合を形成するためには、鉄(Fe)を選択することが好ましい。 Here, as the anion group Y introduced into the side chain of the porphyrin (the 4-position of the phenyl group), any anion group can be selected. For example, a sulfone group (—SO 3 H), a carboxyl group (— COOH), phosphate groups (—CH 2 PO 3 H), and the like. In consideration of reactivity with a cation described later, a sulfone group (—SO 3 H) is most preferable among these. The central metal is not particularly limited as long as it is a trivalent metal, but iron (Fe) is preferably selected in order to form a bond between metals by a cation.

したがって、アニオン基を有し中心金属がIII価の金属である水溶性ポルフィリン誘導体の代表例としては、下記式(II)に示される水溶性鉄ポルフィリンを挙げることができる。式(II)に示される水溶性鉄ポルフィリンは、テトラ(4−スルフォナトフェニル)ポルフィリン鉄(III)クロリドであり、以下においてはFe(III)(TPPS)Clと略して表記する。その他、Fe(III)(TPPS)Clと同じ水溶性で正電荷を有するテトラ(N−メチルピリジニウム−4−イル)ポルフィリン鉄クロリド[Fe(III)(TMPyP)Cl]等にも適用可能である。 Therefore, a typical example of a water-soluble porphyrin derivative having an anion group and a central metal being a valent metal is a water-soluble iron porphyrin represented by the following formula (II). The water-soluble iron porphyrin represented by the formula (II) is tetra (4-sulfonatophenyl) porphyrin iron (III) chloride, and is abbreviated as Fe (III) (TPPS 4 ) Cl below. Others, Fe (III) (TPPS 4 ) Cl tetra having a positive charge at the same water-soluble as (N- methylpyridinium-4-yl) can be applied to the porphyrin iron chloride [Fe (III) (TMPyP) Cl] , etc. is there.

Figure 2010075800
Figure 2010075800

前述の水溶性ポルフィリン誘導体は、熱処理前において、カチオンによってアニオン基間及び金属間がそれぞれ結びつけられた二重の規則的構造を有し、これが熱処理後にも維持されることによって、本発明の酸素還元用触媒は、高い酸素還元能を発現する。すなわち、熱処理前に水溶性ポルフィリン誘導体にカチオンを作用させると、カチオンとの相互作用によって、前記水溶性ポルフィリン誘導体分子のアニオン基(例えばスルフォン基)間が結合され、横方向の規則的構造が構築される。前記横方向の規則的構造は、水溶性ポルフィリン誘導体分子の側鎖にあるアニオン基とカチオンとが塩を形成することで構築される。水溶性ポルフィリン誘導体の分子は平面性が高く、平面状の水溶性ポルフィリン分子が面内(前記横方向)において結合することで、平面構造が形成される。   The water-soluble porphyrin derivative described above has a double regular structure in which anion groups and metals are respectively connected by cations before heat treatment, and this is maintained even after heat treatment. The catalyst for use expresses high oxygen reduction ability. That is, when a cation is allowed to act on the water-soluble porphyrin derivative before heat treatment, the anion groups (for example, sulfone groups) of the water-soluble porphyrin derivative molecule are bonded by the interaction with the cation, and a lateral regular structure is constructed. Is done. The regular structure in the lateral direction is constructed by forming a salt between an anion group and a cation in a side chain of a water-soluble porphyrin derivative molecule. The molecule of the water-soluble porphyrin derivative has high planarity, and a planar structure is formed by bonding the planar water-soluble porphyrin molecule in the plane (the lateral direction).

それとともに、各水溶性ポルフィリン誘導体の中心金属間においても、カチオンによる相互作用によって連結された形になり、縦方向(平面状の水溶性ポルフィリン誘導体分子の厚さ方向)の規則的構造が構築される。例えば、水溶性ポルフィリン誘導体がFe(III)(TPPS)Clである場合、ポルフィリン環の中心にあるFe(III)−OHとカチオンMIIが反応し、Fe(III)−O−MII−O−Fe(III)が形成されることで縦方向の規則的構造が形成される。 At the same time, the central metal of each water-soluble porphyrin derivative is linked by cation interaction, and a regular structure in the vertical direction (thickness direction of the planar water-soluble porphyrin derivative molecule) is constructed. The For example, when the water-soluble porphyrin derivative is Fe (III) (TPPS 4 ) Cl, Fe (III) -OH at the center of the porphyrin ring and the cation M II react to form Fe (III) -O-M II-. A regular structure in the vertical direction is formed by forming O-Fe (III).

なお、前記縦方向の規則的構造の形成については、下記式(III)で示される架橋反応によるものと考えられる。このことは、カチオンによるアニオン基間の結合(反応)では溶液のpH値が変化せず、中性のままであるのに対して、金属(Fe)間の結合では溶液が酸性になることから推測される。下記式(III)で示される架橋反応では、プロトン2Hが放出される形になり、溶液が酸性化することを裏付けている。 The formation of the regular structure in the vertical direction is considered to be due to a crosslinking reaction represented by the following formula (III). This is because the pH value of the solution does not change at the bond (reaction) between the anion groups by the cation and remains neutral, whereas the bond between the metals (Fe) becomes acidic. Guessed. In the cross-linking reaction represented by the following formula (III), proton 2H + is released, which confirms that the solution is acidified.

Figure 2010075800
Figure 2010075800

これら横方向と縦方向の規則的構造の形成により、二重の規則的構造(ほぼ完全なFace
to Face構造)が形成される。なお、前記横方向及び縦方向の規則的構造の構築のためのカチオンとしては、種々のカチオンを用いることができるが、例えばCa、Ba、Sr等のアルカリ土類金属イオン、二塩化酸化ジルコニウム、二塩化酸化ハフニウム等のオキソ金属イオン等を挙げることができる。
The formation of these lateral and longitudinal regular structures results in a double regular structure (almost complete Face
to Face structure) is formed. Various cations can be used as the cation for constructing the regular structure in the lateral direction and the longitudinal direction. For example, alkaline earth metal ions such as Ca, Ba, Sr, zirconium dichloride oxide, Examples include oxo metal ions such as hafnium dichloride oxide.

本発明の酸素還元用触媒では、以上のような二重の規則的構造の形成により、ポルフィリン環平面間で酸素分子の活性化、酸素の高効率での還元が達成される。例えば、前記縦方向の規則的構造が形成されることにより、上下のポルフィリン環の窒素原子が整列する形になり、前記酸素分子の活性化、高効率での還元に寄与しているものと考えられる。実際、Fe(III)(TPPS)Clを用いて作製した酸素還元用触媒においては、酸素還元に電位域でFe(IV)(oxo ferryl porphyrin)及びFe(V)(oxo ferryl porphyrin π-cation radical)の生成を間接的に確認しており、シトクロムP450と類似の機構[2Fe(III)←→2Fe(V)]で酸素の4電子還元が進行しているものと考えられる。 In the oxygen reduction catalyst of the present invention, activation of oxygen molecules and reduction of oxygen with high efficiency are achieved between the porphyrin ring planes by forming the double regular structure as described above. For example, it is considered that the formation of the regular structure in the vertical direction results in the nitrogen atoms of the upper and lower porphyrin rings being aligned, contributing to the activation of the oxygen molecules and the reduction with high efficiency. It is done. In fact, in an oxygen reduction catalyst prepared using Fe (III) (TPPS 4 ) Cl, Fe (IV) (oxo ferryl porphyrin) and Fe (V) (oxo ferryl porphyrin π-cation) are used in the potential range for oxygen reduction. radical) is indirectly confirmed, and it is considered that 4-electron reduction of oxygen proceeds by a mechanism similar to that of cytochrome P450 [2Fe (III) ← → 2Fe (V)].

以上のような本発明の酸素還元用触媒は、アニオン基を有し中心金属がIII価の金属である水溶性ポルフィリン誘導体の水溶液にカチオンを加えて反応させ、得られる生成物に対して不活性ガス雰囲気中で熱処理を施すことにより簡単に製造することができる。   The catalyst for oxygen reduction of the present invention as described above is inert to the product obtained by adding a cation to an aqueous solution of a water-soluble porphyrin derivative having an anionic group and the central metal being a trivalent metal. It can be easily manufactured by performing a heat treatment in a gas atmosphere.

例えば水溶性ポルフィリン誘導体としてFe(III)(TPPS)Clを使用する場合、Fe(III)(TPPS)Clの水溶液にカチオンを含む溶液を加えて反応させる。カチオン源としては、アルカリ土類金属の塩化物や、前記オキソ金属イオンの化合物等を挙げることができる。Fe(III)(TPPS)Clの水溶液にアルカリ土類金属の塩化物を加えて反応させると、沈殿を生成する。この沈殿を乾燥し、熱処理を施して酸素還元用触媒を得る。前記熱処理は、アルゴン雰囲気中や窒素雰囲気中等、不活性ガス雰囲気中で行う必要があり、熱処理温度は450℃〜750℃の範囲内に設定することが好ましい。より好ましい温度は、700℃前後である。 For example, when Fe (III) (TPPS 4 ) Cl is used as the water-soluble porphyrin derivative, a solution containing a cation is added to an aqueous solution of Fe (III) (TPPS 4 ) Cl and reacted. Examples of the cation source include alkaline earth metal chlorides and compounds of the oxo metal ions. When an alkaline earth metal chloride is added to an aqueous solution of Fe (III) (TPPS 4 ) Cl and reacted, a precipitate is formed. This precipitate is dried and subjected to a heat treatment to obtain an oxygen reduction catalyst. The heat treatment needs to be performed in an inert gas atmosphere such as an argon atmosphere or a nitrogen atmosphere, and the heat treatment temperature is preferably set within a range of 450 ° C to 750 ° C. A more preferable temperature is around 700 ° C.

得られる酸素還元用触媒は、酸素還元触媒に要求される4つの能力のいずれについても優れたものである。例えば、酸素還元触媒には、先ず第1に酸素過電圧が小さいことが要求されるが、本発明の酸素還元用触媒は、白金と同程度の性能を有する。第2に、酸素還元触媒には、酸素の水までの4電子還元能が高いことが要求されるが、本発明の酸素還元用触媒は、この点において白金よりも優れた性能を発揮する。第3に、酸素還元触媒は、一酸化炭素等による被毒に強いことが要求される。本発明の酸素還元用触媒は、中心金属である鉄イオン等の一酸化炭素への配位は知られていないことから、一酸化炭素による被毒は白金に比べて低いものと推定される。第4に、酸素還元触媒は、電解液中での安定性に優れることが要求される。本発明の酸素還元用触媒は、アルカリ溶液中での酸素還元能は白金より明らかに優れている。また、金属錯体の場合、アルカリ溶液中での安定性は酸水溶液ほど過酷ではないので、安定性に問題はない。   The obtained oxygen reduction catalyst is excellent in all of the four capacities required for the oxygen reduction catalyst. For example, an oxygen reduction catalyst is first required to have a low oxygen overvoltage, but the oxygen reduction catalyst of the present invention has a performance comparable to that of platinum. Second, the oxygen reduction catalyst is required to have a high four-electron reduction ability up to oxygen water, but the oxygen reduction catalyst of the present invention exhibits performance superior to platinum in this respect. Third, the oxygen reduction catalyst is required to be resistant to poisoning by carbon monoxide or the like. Since the oxygen reduction catalyst of the present invention is not known to be coordinated to carbon monoxide such as iron ions, which are central metals, it is estimated that poisoning by carbon monoxide is lower than that of platinum. Fourth, the oxygen reduction catalyst is required to be excellent in stability in the electrolytic solution. The oxygen reduction catalyst of the present invention is clearly superior to platinum in oxygen reduction ability in an alkaline solution. In the case of a metal complex, the stability in an alkaline solution is not as severe as that in an acid aqueous solution, so there is no problem in stability.

前述の酸素還元用触媒は、例えば燃料電池の酸素極触媒として用いることができる。この場合、前述の酸素還元用触媒を導電性の電極素材に担持させ、酸素還元用電極とすればよい。導電性の電極素材としては、各種金属やカーボンブラック、カーボンファイバ等の炭素材料等、任意の素材を使用することが可能である。   The aforementioned oxygen reduction catalyst can be used, for example, as an oxygen electrode catalyst of a fuel cell. In this case, the oxygen reduction catalyst described above may be supported on a conductive electrode material to form an oxygen reduction electrode. As the conductive electrode material, any material such as various metals, carbon black, carbon material such as carbon fiber, and the like can be used.

酸素還元用触媒を導電性の電極素材に担持させるには、例えばアニオン基を有し中心金属がIII価の金属である水溶性ポルフィリン誘導体の水溶液にカチオンを加えて反応させ、得られる生成物(沈殿)を導電性の電極素材に塗布した後、乾燥する等の手法によって担持させればよい。あるいは、水溶性ポルフィリン誘導体の水溶液に導電性の電極素材(例えばカーボンブラックやカーボンファイバ)を懸濁させ、カチオンを加えることでカーボンブラックやカーボンファイバ上に生成物を析出させ、担持させるようにしてもよい。   In order to support the oxygen reduction catalyst on a conductive electrode material, for example, a product obtained by adding a cation to an aqueous solution of a water-soluble porphyrin derivative having an anionic group and a central metal being a trivalent metal ( The precipitate is applied to the conductive electrode material and then supported by a method such as drying. Alternatively, a conductive electrode material (for example, carbon black or carbon fiber) is suspended in an aqueous solution of a water-soluble porphyrin derivative, and the product is precipitated and supported on the carbon black or carbon fiber by adding a cation. Also good.

前記生成物を導電性の電極素材に担持させた後、熱処理を行うことで生成物を熱処理物(酸素還元用触媒)とし、酸素還元用電極とする。熱処理の条件は前述の通りであり、700℃前後で行うことが好ましい。   After the product is supported on a conductive electrode material, a heat treatment is performed to make the product a heat treated product (oxygen reduction catalyst), thereby forming an oxygen reduction electrode. The conditions for the heat treatment are as described above, and it is preferable to perform the heat treatment at around 700 ° C.

以下、本発明を適用した具体的な実施例について、実験結果を基に説明する。   Hereinafter, specific examples to which the present invention is applied will be described based on experimental results.

酸素還元用電極の作製
負電荷を有する陰イオン性ポルフィリン[テトラ(4−スルフォナトフェニル)ポルフィリン]から塩化物イオンClを軸配位子とする水溶性鉄ポルフィリン[Fe(III)(TPPS)Cl]を合成した。次いで、合成したFe(III)(TPPS)Clの1mM水溶液に水溶性鉄ポルフィリンとアルカリ土類金属イオン(バリウムイオン)のモル比が1:50となるように塩化バリウム(カチオンはBa2+)を加え、反応させることにより混合溶液を調製した。この反応条件は、前記水溶性鉄ポルフィリンの側鎖がスルフォン酸のナトリウム塩である場合についてのものであるが、側鎖が遊離のスルフォン基である場合には、水酸化バリウムを用い、モル比約1:2で混合溶液を調製した。この混合溶液約100μl(担持される鉄ポルフィリン量が3×10−7mol/cmになるよう調整)を面積0.5cmの炭素電極上に塗布し、乾燥後、アルゴン雰囲気中、700℃で10分間熱処理して酸化還元用電極を作製した。
Preparation of electrode for oxygen reduction Water-soluble iron porphyrin [Fe (III) (TPPS) having chloride ion Cl as an axial ligand from negatively charged anionic porphyrin [tetra (4-sulfonatophenyl) porphyrin] 4 ) Cl] was synthesized. Next, barium chloride (cation is Ba 2+ ) so that the molar ratio of water-soluble iron porphyrin and alkaline earth metal ion (barium ion) is 1:50 in the synthesized 1 mM aqueous solution of Fe (III) (TPPS 4 ) Cl. Was added and reacted to prepare a mixed solution. This reaction condition is for the case where the side chain of the water-soluble iron porphyrin is a sodium salt of sulfonic acid, but when the side chain is a free sulfonic group, barium hydroxide is used and the molar ratio is A mixed solution was prepared at about 1: 2. About 100 μl of this mixed solution (adjusted so that the amount of iron porphyrin supported is 3 × 10 −7 mol / cm 2 ) was applied onto a carbon electrode having an area of 0.5 cm 2 , dried, and then 700 ° C. in an argon atmosphere. The electrode for oxidation reduction was produced by heat treatment for 10 minutes.

得られた酸素還元用電極を電極Aとする。電極Aと同様にして、塩化バリウムの変わりに塩化ストロンチウムまたは塩化カルシウムを用い、カチオンをSr2+、あるいはCa2+に変え、他は同様にして電極B及び電極Cを作製した。 The obtained electrode for oxygen reduction is referred to as electrode A. Similarly to the electrode A, strontium chloride or calcium chloride was used in place of barium chloride, and the cation was changed to Sr 2+ or Ca 2+ , and electrodes B and C were prepared in the same manner as in the case of the electrode A.

作製した酸素還元用電極の評価
作製した酸素還元用電極(電極A〜電極C)について、酸性溶液(0.5MHSO溶液)中での酸素還元能力を測定した。酸素還元能力の測定は、作製した各電極を酸素飽和0.5MHSO溶液に浸漬し、走査速度10mVs−1のサイクリックボルタンメトリーにより電流−電位曲線を測定することで行った。結果を図1に示す。図1には、比較のため白金担持カーボン電極及びカチオンによる架橋のないFe(III)(TPPS)Clを熱処理した電極(比較例電極)についての測定結果も併せて示す。なお、白金担持カーボン(Pt/CB)電極は、20質量%のPtを含むPt/CBを5mg採取し、5質量%ナフィオン溶液0.31mlに分散した後、分散液10μlを面積0.2cmの炭素電極上に塗布し、常温で乾燥して作製した。また、比較例電極は、1mMFe(III)Cl−TPPS水溶液150μLを0.5cmの炭素電極上に塗布、乾燥した後、アルゴン雰囲気中で熱処理することにより作製した。
Evaluation of the produced oxygen reduction electrode The produced oxygen reduction electrodes (electrodes A to C) were measured for their ability to reduce oxygen in an acidic solution (0.5 MH 2 SO 4 solution). The oxygen reduction ability was measured by immersing each produced electrode in an oxygen saturated 0.5 MH 2 SO 4 solution and measuring a current-potential curve by cyclic voltammetry at a scanning speed of 10 mVs −1 . The results are shown in FIG. For comparison, FIG. 1 also shows the measurement results for a platinum-supported carbon electrode and an electrode (Comparative Example electrode) heat-treated with Fe (III) (TPPS 4 ) Cl without crosslinking by cations. For the platinum-supported carbon (Pt / CB) electrode, 5 mg of Pt / CB containing 20% by mass of Pt was sampled and dispersed in 0.31 ml of 5% by mass Nafion solution, and then 10 μl of the dispersion was 0.2 cm 2 in area. This was coated on a carbon electrode and dried at room temperature. The comparative electrode was prepared by applying 150 μL of 1 mM Fe (III) Cl—TPPS 4 aqueous solution onto a 0.5 cm 2 carbon electrode, drying, and then heat-treating in an argon atmosphere.

図1から明らかなように、各電極A〜Cの酸性溶液中での酸素還元能力は、白金担持カーボン電極とほぼ同等の値を示した。また、比較例電極に比べて酸素還元能が高いことも確認された。具体的には、図1に示す電流−電位曲線から、酸素還元の触媒活性を比較することができ、例えば酸素還元のピーク電位がより正のものほど酸素還元の過電圧が小さく、燃料電池の電極に用いた場合、起電力が大きくなる。また、還元ピーク電流が大きいほど、燃料電池の電極に用いた場合、大きな電流が取り出せる。各電極A〜Cにおいては、比較例電極に比べて酸素還元のピーク電位が正であり、白金担持カーボン電極に近い値となっている。また、還元ピーク電流も比較例電極に比べて大きい。   As is clear from FIG. 1, the oxygen reducing ability of each of the electrodes A to C in the acidic solution showed almost the same value as that of the platinum-supported carbon electrode. It was also confirmed that the oxygen reducing ability was higher than that of the comparative electrode. Specifically, from the current-potential curve shown in FIG. 1, the catalytic activity of oxygen reduction can be compared. For example, the more positive the peak potential of oxygen reduction, the smaller the overvoltage of oxygen reduction, and the fuel cell electrode When used for, the electromotive force increases. In addition, the larger the reduction peak current, the larger the current that can be extracted when used for an electrode of a fuel cell. In each of the electrodes A to C, the peak potential of oxygen reduction is positive as compared with the comparative example electrode, which is a value close to that of the platinum-supporting carbon electrode. Also, the reduction peak current is larger than that of the comparative example electrode.

次に、電極Aについて、アルカリ溶液(1.0MKOH溶液)中での酸素還元能力を測定した。酸素還元能力の測定は、作製した各電極を酸素飽和1.0MKOH溶液に浸漬し、走査速度10mVs−1のサイクリックボルタンメトリーにより電流−電位曲線を測定することで行った。結果を図2に示す。なお、図2には、比較のため平滑白金電極(0.5cm)及び比較例電極についての測定結果も併せて示す。 Next, the electrode A was measured for oxygen reduction ability in an alkaline solution (1.0 M KOH solution). The oxygen reduction ability was measured by immersing each produced electrode in an oxygen saturated 1.0 M KOH solution and measuring a current-potential curve by cyclic voltammetry at a scanning speed of 10 mVs −1 . The results are shown in FIG. In addition, in FIG. 2, the measurement result about a smooth platinum electrode (0.5 cm < 2 >) and a comparative example electrode is also shown for a comparison.

図2から明らかなように、アルカリ溶液中での測定においても、電極Aは平滑白金電極や比較例電極に比べて酸素還元能力に優れていることがわかる。   As is apparent from FIG. 2, it can be seen that the electrode A is superior in oxygen reducing ability as compared with the smooth platinum electrode and the comparative example electrode even in the measurement in the alkaline solution.

さらに、電極Aと同様の方法により回転リング−ディスク電極を作製し、酸素還元のディスク電流(Idisc)と過酸化水素酸化のリング電流(Iring)の比率を求めた。その結果、白金を用いた回転リング−ディスク電極では、Iring/Idisc=0.13であったのに対して、本発明の酸素還元用触媒を用いた回転リング−ディスク電極では、Iring/Idisc=0.005であり、過酸化水素をほとんど生成せず、白金より優れていることが判明した。   Further, a rotating ring-disk electrode was produced by the same method as that for electrode A, and the ratio of the oxygen reduction disk current (Idisc) to the hydrogen peroxide oxidation ring current (Iring) was determined. As a result, in the rotating ring-disk electrode using platinum, Iring / Idisc = 0.13, whereas in the rotating ring-disk electrode using the oxygen reduction catalyst of the present invention, Iring / Idisc = It was found to be 0.005, hardly producing hydrogen peroxide and superior to platinum.

また、酸素還元には酸素を4電子で水にまで還元できる触媒と、 2電子で過酸化水素までしか還元できない触媒とがあり、 有害で過電圧の小さな2電子反応は酸素還元触媒として優れたものではない。前記Iring/Idiscについて、Ba2+架橋鉄ポルフィリン(電極Aと同様の方法により作製した回転リング−ディスク電極)と白金担持カーボン電極(Pt/CB)で比較し、反応電子数を比較すると4.0と3.9となり、Ba2+架橋鉄ポルフィリンの方が優れていることがわかった。 In addition, oxygen reduction includes a catalyst that can reduce oxygen to water with 4 electrons and a catalyst that can reduce hydrogen to only hydrogen peroxide with 2 electrons. is not. For the above Iring / Idisc, Ba 2+ cross-linked iron porphyrin (rotating ring-disk electrode prepared by the same method as that for electrode A) and platinum-supported carbon electrode (Pt / CB) were compared. It was found that Ba 2+ cross-linked iron porphyrin was superior.

表1に、種々の架橋剤(カチオン:M2+及びMO2+)で架橋したFe(III)(TPPS)Clにおける酸性溶液中の酸素還元活性をまとめて示す。 Table 1 summarizes the oxygen reduction activity in acidic solution for Fe (III) (TPPS 4 ) Cl crosslinked with various crosslinking agents (cations: M 2+ and MO 2+ ).

Figure 2010075800
Figure 2010075800

酸性溶液中での酸素還元能力の測定結果を示す特性図である。It is a characteristic view which shows the measurement result of the oxygen reduction ability in an acidic solution. アルカリ溶液中での酸素還元能力の測定結果を示す特性図である。It is a characteristic view which shows the measurement result of the oxygen reduction ability in an alkaline solution.

Claims (17)

アニオン基を有し中心金属がIII価の金属である水溶性ポルフィリン誘導体の熱処理物を主体とする酸素還元用触媒であって、
熱処理前において、カチオンによって前記水溶性ポルフィリン誘導体のアニオン基間及び金属間がそれぞれ結びつけられた二重の規則的構造を有することを特徴とする酸素還元用触媒。
A catalyst for oxygen reduction mainly comprising a heat-treated product of a water-soluble porphyrin derivative having an anionic group and a central metal being a trivalent metal,
A catalyst for oxygen reduction, characterized by having a double regular structure in which anion groups and metals of the water-soluble porphyrin derivative are linked by cations before heat treatment.
前記水溶性ポルフィリン誘導体は、下記式(I)に示される化合物であることを特徴とする請求項1記載の酸素還元用触媒。
Figure 2010075800
(ただし、式中、MはIII価の金属、Xはハロゲン原子、Yはアニオン基を表す。)
The oxygen-reducing catalyst according to claim 1, wherein the water-soluble porphyrin derivative is a compound represented by the following formula (I).
Figure 2010075800
(In the formula, M represents a trivalent metal, X represents a halogen atom, and Y represents an anionic group.)
前記水溶性ポルフィリン誘導体は、下記式(II)に示される水溶性鉄ポルフィリンであることを特徴とする請求項1記載の酸素還元用触媒。
Figure 2010075800
The oxygen-reducing catalyst according to claim 1, wherein the water-soluble porphyrin derivative is a water-soluble iron porphyrin represented by the following formula (II).
Figure 2010075800
アニオン基を有し中心金属がIII価の金属である水溶性ポルフィリン誘導体の水溶液にカチオンを加えて反応させ、得られる生成物に対して不活性ガス雰囲気中で熱処理を施すことを特徴とする酸素還元用触媒の製造方法。   Oxygen characterized by adding a cation to an aqueous solution of a water-soluble porphyrin derivative having an anionic group and a central metal being a trivalent metal, and subjecting the resulting product to heat treatment in an inert gas atmosphere A method for producing a catalyst for reduction. 前記カチオンは、アルカリ土類金属イオン、またはオキソ金属イオンであることを特徴とする請求項4記載の酸素還元用触媒の製造方法。   5. The method for producing an oxygen reduction catalyst according to claim 4, wherein the cation is an alkaline earth metal ion or an oxo metal ion. カチオン源として、アルカリ土類金属の塩化物を加えることを特徴とする請求項4記載の酸素還元用触媒の製造方法。   5. The method for producing an oxygen reduction catalyst according to claim 4, wherein an alkaline earth metal chloride is added as a cation source. 前記水溶性ポルフィリン誘導体は、下記式(I)に示される化合物であることを特徴とする請求項4乃至6のいずれか1項記載の酸素還元用触媒の製造方法。
Figure 2010075800
(ただし、式中、MはIII価の金属、Xはハロゲン原子、Yはアニオン基を表す。)
The method for producing an oxygen reduction catalyst according to any one of claims 4 to 6, wherein the water-soluble porphyrin derivative is a compound represented by the following formula (I).
Figure 2010075800
(In the formula, M represents a trivalent metal, X represents a halogen atom, and Y represents an anionic group.)
前記水溶性ポルフィリン誘導体は、下記式(II)に示される水溶性鉄ポルフィリンであることを特徴とする請求項4乃至6のいずれか1項記載の酸素還元用触媒の製造方法。
Figure 2010075800
The method for producing an oxygen reduction catalyst according to any one of claims 4 to 6, wherein the water-soluble porphyrin derivative is a water-soluble iron porphyrin represented by the following formula (II).
Figure 2010075800
アニオン基を有し中心金属がIII価の金属である水溶性ポルフィリン誘導体の熱処理物を主体とする酸素還元用触媒が導電性の電極素材の表面に担持されてなる酸素還元用電極であって、
前記酸素還元用触媒は、熱処理前において、カチオンによって前記水溶性ポルフィリン誘導体のアニオン基間及び金属間がそれぞれ結びつけられた二重の規則的構造を有することを特徴とする酸素還元用電極。
An oxygen reduction electrode in which an oxygen reduction catalyst mainly composed of a heat-treated product of a water-soluble porphyrin derivative having an anionic group and a central metal being a trivalent metal is supported on the surface of a conductive electrode material,
2. The oxygen reduction electrode according to claim 1, wherein the oxygen reduction catalyst has a double regular structure in which anion groups and metals of the water-soluble porphyrin derivative are linked by cations before heat treatment.
前記導電性の電極素材が炭素であることを特徴とする請求項9記載の酸素還元用電極。   The electrode for oxygen reduction according to claim 9, wherein the conductive electrode material is carbon. 前記水溶性ポルフィリン誘導体は、下記式(I)に示される化合物であることを特徴とする請求項9または10記載の酸素還元用電極。
Figure 2010075800
(ただし、式中、MはIII価の金属、Xはハロゲン原子、Yはアニオン基を表す。)
The electrode for oxygen reduction according to claim 9 or 10, wherein the water-soluble porphyrin derivative is a compound represented by the following formula (I).
Figure 2010075800
(In the formula, M represents a trivalent metal, X represents a halogen atom, and Y represents an anionic group.)
前記水溶性ポルフィリン誘導体は、下記式(II)に示される水溶性鉄ポルフィリンであることを特徴とする請求項9または10記載の酸素還元用電極。
Figure 2010075800
The oxygen-reducing electrode according to claim 9 or 10, wherein the water-soluble porphyrin derivative is a water-soluble iron porphyrin represented by the following formula (II).
Figure 2010075800
アニオン基を有し中心金属がIII価の金属である水溶性ポルフィリン誘導体の水溶液にカチオンを加えて反応させ、得られる生成物を導電性の電極素材に担持させた後、不活性ガス雰囲気中で熱処理を施すことを特徴とする酸素還元用電極の製造方法。   After reacting by adding a cation to an aqueous solution of a water-soluble porphyrin derivative having an anionic group and the central metal being a trivalent metal, the resulting product is supported on a conductive electrode material, and then in an inert gas atmosphere. A method for producing an oxygen reduction electrode, characterized by performing a heat treatment. 前記導電性の電極素材として炭素材料を用い、前記生成物を炭素材料上に塗布乾燥した後、前記熱処理を施すことを特徴とする請求項13記載の酸素還元用電極の製造方法。   14. The method for producing an oxygen reduction electrode according to claim 13, wherein a carbon material is used as the conductive electrode material, and the heat treatment is performed after the product is applied and dried on the carbon material. 前記水溶性ポルフィリン誘導体の水溶液に導電性の電極素材であるカーボンブラックまたはカーボンファイバーを懸濁させ、カチオンを加えることでカーボンブラックまたはカーボンファイバー上に前記生成物を析出させることを特徴とする請求項13記載の酸素還元用電極の製造方法。   The carbon black or carbon fiber, which is a conductive electrode material, is suspended in an aqueous solution of the water-soluble porphyrin derivative, and the product is precipitated on the carbon black or carbon fiber by adding a cation. 14. A method for producing an oxygen reduction electrode according to 13. 前記水溶性ポルフィリン誘導体は、下記式(I)に示される化合物であることを特徴とする請求項13乃至15記載の酸素還元用電極の製造方法。
Figure 2010075800
(ただし、式中、MはIII価の金属、Xはハロゲン原子、Yはアニオン基を表す。)
16. The method for producing an oxygen reducing electrode according to claim 13, wherein the water-soluble porphyrin derivative is a compound represented by the following formula (I).
Figure 2010075800
(In the formula, M represents a trivalent metal, X represents a halogen atom, and Y represents an anionic group.)
前記水溶性ポルフィリン誘導体は、下記式(II)に示される水溶性鉄ポルフィリンであることを特徴とする請求項13乃至15記載の酸素還元用電極の製造方法。
Figure 2010075800
16. The method for producing an oxygen reduction electrode according to claim 13, wherein the water-soluble porphyrin derivative is a water-soluble iron porphyrin represented by the following formula (II).
Figure 2010075800
JP2008244954A 2008-09-24 2008-09-24 Oxygen reduction catalyst and method for manufacturing the same, and oxygen reduction electrode, and method for manufacturing the same Pending JP2010075800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008244954A JP2010075800A (en) 2008-09-24 2008-09-24 Oxygen reduction catalyst and method for manufacturing the same, and oxygen reduction electrode, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008244954A JP2010075800A (en) 2008-09-24 2008-09-24 Oxygen reduction catalyst and method for manufacturing the same, and oxygen reduction electrode, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010075800A true JP2010075800A (en) 2010-04-08

Family

ID=42206877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008244954A Pending JP2010075800A (en) 2008-09-24 2008-09-24 Oxygen reduction catalyst and method for manufacturing the same, and oxygen reduction electrode, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010075800A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013501237A (en) * 2009-08-04 2013-01-10 ジェンテックス コーポレイション Cathode material for use in electrochemical sensors and related devices and method of manufacturing the same
KR20190014758A (en) * 2017-08-03 2019-02-13 인천대학교 산학협력단 Electrochemical catalyst and method of fabricating of the same
CN113889630A (en) * 2021-09-29 2022-01-04 陕西科技大学 Preparation method of composite structure oxygen reduction electrocatalyst for fuel cell cathode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013501237A (en) * 2009-08-04 2013-01-10 ジェンテックス コーポレイション Cathode material for use in electrochemical sensors and related devices and method of manufacturing the same
KR20190014758A (en) * 2017-08-03 2019-02-13 인천대학교 산학협력단 Electrochemical catalyst and method of fabricating of the same
KR102062428B1 (en) 2017-08-03 2020-01-03 인천대학교 산학협력단 Electrochemical catalyst and method of fabricating of the same
CN113889630A (en) * 2021-09-29 2022-01-04 陕西科技大学 Preparation method of composite structure oxygen reduction electrocatalyst for fuel cell cathode

Similar Documents

Publication Publication Date Title
Zhang et al. Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation
Liu et al. PEM fuel cell electrocatalysts based on transition metal macrocyclic compounds
Zhan et al. Activity of transition‐metal (manganese, iron, cobalt, and nickel) phosphates for oxygen electrocatalysis in alkaline solution
Wang et al. Transition metal and nitrogen Co‐doped carbon‐based electrocatalysts for the oxygen reduction reaction: from active site insights to the rational design of precursors and structures
Hu et al. Stability of single-atom catalysts for electrocatalysis
US8338051B2 (en) Electrode catalyst for fuel cell, method for producing the same, and fuel cell using the electrode catalyst
Yao et al. Porphyrin-based graphene oxide frameworks with ultra-large d-spacings for the electrocatalyzation of oxygen reduction reaction
Yin et al. PGM-free ORR catalysts designed by templating PANI-type polymers containing functional groups with high affinity to iron
JP2014512252A (en) Method for making a complete platinum monolayer on palladium-based core nanoparticles
Adhikary et al. Remarkable performance of the unique Pd–Fe 2 O 3 catalyst towards EOR and ORR: non-Pt and non-carbon electrode materials for low-temperature fuel cells
KR20150028300A (en) Catalyst for solid polymer fuel cell and method for producing same
JP2019067641A (en) Catalyst layer, fuel cell using catalyst layer, and manufacturing method of catalyst layer
JP2010075800A (en) Oxygen reduction catalyst and method for manufacturing the same, and oxygen reduction electrode, and method for manufacturing the same
JP4797166B2 (en) Noble metal catalyst-supported conductive polymer composite and method for producing the same
JP7220143B2 (en) Fuel cell
JP6159283B2 (en) Fuel cell electrode catalyst
WO2006090907A1 (en) Catalyst for fuel cell, membrane electrode assembly, and solid polymer electrolyte fuel cell
JP2007173173A (en) Cathode for fuel cell and manufacturing method of the same
JP2008177023A (en) Electrode for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell equipped with it
JP2021138994A (en) Electrode catalyst for reducing co2, method of producing electrode catalyst for reducing co2, co2 reducing electrode, and co2 reducing system
JP2005203147A (en) Electrode catalyst, manufacturing method of the same, and fuel cell
Han et al. Recent advances in metal-based electrocatalysts: from fundamentals and structural regulations to applications in anion-exchange membrane fuel cells
JP2008149485A (en) Composite material, its manufacturing method, electrode for solid polymer type fuel cell using composite material and solid polymer type fuel cell
KR100785519B1 (en) Manufacturing methods of carbon-supported multimetallic catalysts and electrocatalysts for fuel cells using the same
Williams Metal-Organic Frameworks and MOF-derived Carbon Materials for Fuel Cell Applications