JP2010075017A - Non-contact power supply device - Google Patents

Non-contact power supply device Download PDF

Info

Publication number
JP2010075017A
JP2010075017A JP2008242928A JP2008242928A JP2010075017A JP 2010075017 A JP2010075017 A JP 2010075017A JP 2008242928 A JP2008242928 A JP 2008242928A JP 2008242928 A JP2008242928 A JP 2008242928A JP 2010075017 A JP2010075017 A JP 2010075017A
Authority
JP
Japan
Prior art keywords
core
power supply
peripheral surface
supply line
pickup unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008242928A
Other languages
Japanese (ja)
Other versions
JP5635729B2 (en
Inventor
Yasushi Nihata
康 二畠
Hiroshi Maeda
裕史 前田
Koichi Teraura
浩一 寺裏
Yoji Endo
洋治 遠藤
Yukihiro Matsunobu
幸博 松信
Masato Toki
政人 土岐
Shinji Hara
信次 原
Hironobu Hori
堀  宏展
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008242928A priority Critical patent/JP5635729B2/en
Priority to KR1020117006742A priority patent/KR101258003B1/en
Priority to PCT/IB2009/006874 priority patent/WO2010032116A1/en
Priority to CN200980137080.2A priority patent/CN102159423B/en
Priority to TW98131774A priority patent/TWI397236B/en
Publication of JP2010075017A publication Critical patent/JP2010075017A/en
Application granted granted Critical
Publication of JP5635729B2 publication Critical patent/JP5635729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the efficiency of power transmission from a power supply line to a pickup section than in a device in the prior art, and increasing a power supply amount. <P>SOLUTION: A core 2 has a structure in which both an inner circumferential surface and an outer circumferential surface are each formed of a curved surface (cylindrical surface) and a cross sectional shape is a substantial C shape crossing in an axial direction (direction perpendicular to a sheet face). With this configuration, a magnetic flux ϕ leaking from a portion other than an opening groove to the outside hardly occurs. Thus, this apparatus has the improved efficiency of power transmission from the power supply line 100 to the pickup section 1 and can increase power supply amount, compared to a conventional core 2' in which an inner circumferential surface and outer circumferential surface are both formed by butting a plurality of planes. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高周波電流が流れる給電線と誘導結合されるピックアップ部を備え、ピックアップ部に誘起される誘導起電力によって負荷に給電する非接触給電装置に関するものである。   The present invention relates to a non-contact power supply apparatus that includes a pickup unit that is inductively coupled to a power supply line through which a high-frequency current flows, and that supplies power to a load by an induced electromotive force induced in the pickup unit.

この種の非接触給電装置として、例えば、特許文献1に記載されているものがある。特許文献1に記載されているものは、移動ユニットの移動線路に沿って高周波電流を流す給電線(フィーダ)を張設し、前記給電線と誘導結合されたピックアップ部を前記移動ユニットに配置し、前記ピックアップ部に誘起される誘導起電力によって負荷(移動ユニットを移動させる電動機)に給電するものである。   As this type of non-contact power feeding device, for example, there is one described in Patent Document 1. In Patent Document 1, a power supply line (feeder) for passing a high-frequency current is stretched along a mobile line of a mobile unit, and a pickup unit inductively coupled to the power supply line is arranged in the mobile unit. The load (electric motor that moves the moving unit) is fed by the induced electromotive force induced in the pickup unit.

ピックアップ部は、給電線を周方向に沿って囲む筒状のコアと、コアに巻線を巻回してなるコイルとを有し、給電線の周囲に生じる磁束の大半がコア内を通ることでコイルに誘起される誘導起電力を高くしている。尚、コアには、少なくとも給電線が径方向に通過可能である開口溝が給電線の軸方向に沿って設けられ、給電線へのピックアップ部の装着及び離脱が容易に行えるようになっている。
特表2003−528555号公報
The pickup unit has a cylindrical core surrounding the power supply line along the circumferential direction and a coil formed by winding a winding around the core, and most of the magnetic flux generated around the power supply line passes through the core. The induced electromotive force induced in the coil is increased. The core is provided with an opening groove along the axial direction of the power supply line so that at least the power supply line can pass in the radial direction so that the pickup portion can be easily attached to and detached from the power supply line. .
Special table 2003-528555 gazette

ところで、特許文献1に記載されている従来例のピックアップ部においては、断面形状コ字形のコアが用いられている。このようにコアの内周面及び外周面が何れも複数の平面を突き合わせて構成されている場合、平面と平面の境界部分(角の部分)において磁束の一部がコアの外に漏れてしまうことにより、給電線からピックアップ部への電力伝達の効率が低下してしまうという問題がある。   By the way, in the pickup part of the conventional example described in Patent Document 1, a core having a U-shaped cross section is used. In this way, when the inner peripheral surface and the outer peripheral surface of the core are both configured by abutting a plurality of planes, a part of the magnetic flux leaks out of the core at the boundary portion (corner portion) between the plane and the plane. As a result, there is a problem in that the efficiency of power transmission from the feeder line to the pickup unit is reduced.

本発明は上記事情に鑑みて為されたものであり、その目的は、従来と比較して給電線からピックアップ部への電力伝達の効率が向上し且つ給電量を増大することができる非接触給電装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to improve the efficiency of power transmission from the power supply line to the pickup unit and increase the power supply amount compared to the conventional case. To provide an apparatus.

請求項1の発明は、上記目的を達成するために、高周波電流が流れる給電線と誘導結合されるピックアップ部を備え、ピックアップ部に誘起される誘導起電力によって負荷に給電する非接触給電装置において、ピックアップ部は、給電線を周方向に沿って囲む筒状のコアと、コアに巻線を巻回してなるコイルとを有し、コアは、少なくとも給電線が径方向に通過可能である開口溝が給電線の軸方向に沿って設けられ、内周面又は外周面の少なくとも一方が曲面で構成されていることを特徴とする。   In order to achieve the above object, a first aspect of the present invention provides a non-contact power feeding device that includes a pickup unit that is inductively coupled to a feeder line through which a high-frequency current flows, and that feeds a load by an induced electromotive force induced in the pickup unit. The pickup unit has a cylindrical core surrounding the power supply line along the circumferential direction and a coil formed by winding a winding around the core, and the core has an opening through which at least the power supply line can pass in the radial direction. The groove is provided along the axial direction of the feeder line, and at least one of the inner peripheral surface and the outer peripheral surface is formed of a curved surface.

請求項1の発明によれば、筒状のコアの内周面又は外周面の少なくとも一方が曲面で構成されているので、従来例のようにコアの内周面及び外周面が何れも複数の平面を突き合わせて構成されている場合と比較して、コアの外に漏れる磁束を減らすことができる。その結果、従来と比較して給電線からピックアップ部への電力伝達の効率が向上し且つ給電量を増大することができる。   According to the invention of claim 1, since at least one of the inner peripheral surface or the outer peripheral surface of the cylindrical core is formed of a curved surface, both the inner peripheral surface and the outer peripheral surface of the core are plural as in the conventional example. Compared with the case where the planes are configured to face each other, the magnetic flux leaking out of the core can be reduced. As a result, the efficiency of power transmission from the power supply line to the pickup unit can be improved and the power supply amount can be increased as compared with the conventional case.

請求項2の発明は、請求項1の発明において、コアは、内周面及び外周面の双方が曲面で構成され且つ軸方向に交差する断面形状が略C形に形成されていることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the core is configured such that both the inner peripheral surface and the outer peripheral surface are curved surfaces, and the cross-sectional shape intersecting the axial direction is formed in a substantially C shape. And

請求項2の発明によれば、コアの外に漏れる磁束をさらに減らすことができる。   According to invention of Claim 2, the magnetic flux which leaks out of a core can further be reduced.

請求項3の発明は、請求項1又は2の発明において、開口溝を挟んで対向するコアの両端部は、コアの当該両端部を除く部位よりも、軸方向に沿った断面の面積が大きく形成されていることを特徴とする。   The invention of claim 3 is the invention of claim 1 or 2, in which both ends of the core facing each other across the opening groove have a larger cross-sectional area along the axial direction than portions excluding the both ends of the core. It is formed.

請求項3の発明によれば、コアの両端部における磁気抵抗を相対的に低減し、開口溝からコアの外に漏れる磁束を減らすことができる。   According to invention of Claim 3, the magnetic resistance in the both ends of a core can be reduced relatively, and the magnetic flux which leaks out of an opening groove | channel from a core can be reduced.

請求項4の発明は、請求項1〜3の何れか1項の発明において、コイルは、コアに対して巻線が単層巻きされてなることを特徴とする。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the coil is formed by winding a single layer of a winding around a core.

請求項4の発明によれば、巻線が多層巻きされる場合と比較してコイルの高周波抵抗を低減することができる。   According to the invention of claim 4, the high-frequency resistance of the coil can be reduced as compared with the case where the winding is wound in multiple layers.

請求項5の発明は、請求項1〜4の何れか1項の発明において、ピックアップ部は、コアの外側を囲む磁気シールド体を有することを特徴とする。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects of the present invention, the pickup section includes a magnetic shield body that surrounds the outside of the core.

請求項5の発明によれば、コアやコイルへの外部磁界の影響を抑えて損失を低減することができる。   According to the invention of claim 5, the loss can be reduced by suppressing the influence of the external magnetic field on the core and the coil.

本発明によれば、従来と比較して給電線からピックアップ部への電力伝達の効率が向上し且つ給電量を増大することができる。   According to the present invention, it is possible to improve the efficiency of power transmission from the power supply line to the pickup unit and to increase the power supply amount as compared with the prior art.

以下、図面を参照して本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施形態の非接触給電装置は、図3(a)に示すようにループ状に設置された給電線100と、給電線100に高周波電流を流す高周波電源110と、給電線100と誘導結合されるピックアップ部1とを備え、ピックアップ部1から負荷(例えば、インバータ並びにモータ)111に給電するものである。   The contactless power supply device according to the present embodiment is inductively coupled to a power supply line 100 installed in a loop shape as shown in FIG. 3A, a high-frequency power source 110 that supplies a high-frequency current to the power supply line 100, and the power supply line 100. The pickup unit 1 supplies power to the load (for example, an inverter and a motor) 111 from the pickup unit 1.

給電線100は、図3(b)に示すように円筒形状の内管部101と、内管部101の外側に配置された円筒形状の外管部102と、内管部101と外管部102を互いに同心となるように連結する連結部103とが金属板を曲げ加工することで一体に形成された導体を、角筒状の合成樹脂成形品からなる絶縁体104で被覆して構成されている。すなわち、高周波電流が流れる給電線においては、導体の材料(金属板)が有する電気抵抗以外に表皮効果と近接効果による抵抗(高周波抵抗)が存在するが、図3(b)に示す二重管構造の導体を給電線100に用いれば、円柱形状の導体に比較して高周波抵抗を低減し且つ損失を減少させることができる。   As shown in FIG. 3B, the power supply line 100 includes a cylindrical inner tube portion 101, a cylindrical outer tube portion 102 disposed outside the inner tube portion 101, an inner tube portion 101, and an outer tube portion. The connecting part 103 that connects the two parts 102 so as to be concentric with each other is formed by coating a conductor integrally formed by bending a metal plate with an insulator 104 made of a synthetic resin molded product having a rectangular tube shape. ing. That is, in the feeder line through which high-frequency current flows, there is resistance (high-frequency resistance) due to the skin effect and proximity effect in addition to the electrical resistance of the conductor material (metal plate), but the double tube shown in FIG. If a conductor having a structure is used for the feeder line 100, high-frequency resistance can be reduced and loss can be reduced as compared with a cylindrical conductor.

ピックアップ部1は、コア2、コイル3、ボビン4、磁気シールド体5、受電回路部6を有している。受電回路部6は、コイル3とともに共振回路を形成するコンデンサ、コイル3並びにコンデンサの共振回路から出力される共振電圧を定電圧化する定電圧回路などを有している。   The pickup unit 1 includes a core 2, a coil 3, a bobbin 4, a magnetic shield body 5, and a power receiving circuit unit 6. The power receiving circuit unit 6 includes a capacitor that forms a resonance circuit together with the coil 3, a constant voltage circuit that makes the resonance voltage output from the resonance circuit of the coil 3 and the capacitor constant, and the like.

コア2は、図1(a)に示すように内周面及び外周面の双方が曲面(円筒面)で構成され且つ軸方向(紙面に垂直な方向)に交差する断面形状が略C形に形成されている。ここで、開口溝2aを挟んで対向するコア2の両端部20,20は、コア2の当該両端部20を除く部位(以下、「胴部」と呼ぶ。)21よりも、軸方向に沿った断面の面積が大きく形成されている。   As shown in FIG. 1 (a), the core 2 has both an inner peripheral surface and an outer peripheral surface formed by curved surfaces (cylindrical surfaces), and the cross-sectional shape intersecting the axial direction (direction perpendicular to the paper surface) is substantially C-shaped. Is formed. Here, both end portions 20 and 20 of the core 2 facing each other across the opening groove 2a are more along the axial direction than portions (hereinafter referred to as “body portions”) 21 excluding the both end portions 20 of the core 2. The area of the cross section is large.

ボビン4は、円弧状に湾曲した角筒形状の合成樹脂成形品からなり、軸方向の両端部に外鍔40が設けられている。尚、コア2は開口溝2aと反対側の箇所で胴体部20が二分割されており、それぞれの胴体部20,20にボビン4,4が外挿された後に胴体部20,20の端部同士が接合されることによって、図1(a)に示すコア2が構成されている。   The bobbin 4 is formed of a rectangular tube-shaped synthetic resin molded product that is curved in an arc shape, and outer casings 40 are provided at both ends in the axial direction. The core 2 has a body portion 20 divided into two at the opposite side of the opening groove 2a, and the end portions of the body portions 20, 20 after the bobbins 4, 4 are extrapolated to the body portions 20, 20, respectively. The cores 2 shown in FIG. 1 (a) are configured by joining together.

コイル3は、絶縁被覆を有する巻線がボビン4,4に単層巻きされることで形成されている。尚、コア2の端部21と胴部20との段差が巻線の直径よりも大きく設定されており、コイル3がコア2の端部20よりも外側にはみ出さないようになっている。このようにコイル3がコア2の端部20よりも外側にはみ出さないことにより、コイル3の端部からコア2の端部20の外へ漏れる磁束を減らすことができる。   The coil 3 is formed by winding a winding having an insulating coating around the bobbins 4 and 4 in a single layer. The step between the end 21 of the core 2 and the body 20 is set larger than the diameter of the winding so that the coil 3 does not protrude beyond the end 20 of the core 2. Thus, since the coil 3 does not protrude outside the end portion 20 of the core 2, magnetic flux leaking from the end portion of the coil 3 to the outside of the end portion 20 of the core 2 can be reduced.

磁気シールド体5は、高透磁率である金属磁性材料により略円筒形状に形成されてコア2並びにコイル3に外挿される。但し、磁気シールド体5にはコア2の開口溝2aと連通する溝5aが軸方向に沿って設けられている。   The magnetic shield body 5 is formed in a substantially cylindrical shape by a metal magnetic material having a high magnetic permeability, and is extrapolated to the core 2 and the coil 3. However, the magnetic shield body 5 is provided with a groove 5a communicating with the opening groove 2a of the core 2 along the axial direction.

而して、開口溝2aを通してコア2の内側に配置される給電線100に高周波電流が流れると、給電線100を中心とする同心円上に高周波磁界(磁束φ)が発生し、磁束φの大半がコア2内を周方向に沿って通過する。このとき、従来例のようにコア2’の内周面及び外周面が何れも複数の平面を突き合わせて構成されている場合、つまり、断面形状が略コ字形のコア2’の場合、図1(c)に示すように平面と平面の境界部分(角の部分)において磁束φの一部がコア2’の外に漏れてしまう。   Thus, when a high frequency current flows through the opening groove 2a to the power supply line 100 arranged inside the core 2, a high frequency magnetic field (magnetic flux φ) is generated on a concentric circle centering on the power supply line 100, and most of the magnetic flux φ. Passes through the core 2 along the circumferential direction. At this time, when the inner peripheral surface and the outer peripheral surface of the core 2 ′ are both configured by abutting a plurality of planes as in the conventional example, that is, when the core 2 ′ has a substantially U-shaped cross section, FIG. As shown in (c), a part of the magnetic flux φ leaks out of the core 2 ′ at the boundary portion (corner portion) between the flat surfaces.

一方、本実施形態におけるコア2は、内周面及び外周面の双方が曲面で構成され且つ軸方向に交差する断面形状が略C形に形成されているので、図1(b)に示すように開口溝2a以外の部分から外部に漏れる磁束φが殆ど生じない。そのため、図1(c)に示す従来例のコア2’と比較して給電線100からピックアップ部1への電力伝達の効率が向上し且つ給電量を増大することができる。尚、本実施形態ではコア2の内周面及び外周面の双方を曲面で構成しているが、例えば、図2(a)に示すように外周面のみを曲面で構成してもよいし、あるいは図2(b)に示すように内周面のみを曲面で構成してもよく、これら何れの形状のコア2であっても、内周面及び外周面が何れも複数の平面を突き合わせて構成されている従来例のコア2’に比べれば、開口溝2a以外の部分から外部に漏れる磁束φを低減することが可能である。但し、これら2種類のコア2に対して本実施形態のコア2が最も電力伝達の効率が高くなることは明らかである。   On the other hand, the core 2 in the present embodiment has both an inner peripheral surface and an outer peripheral surface formed of curved surfaces, and a cross-sectional shape that intersects the axial direction is formed in a substantially C shape. The magnetic flux φ leaking to the outside from the portion other than the opening groove 2a is hardly generated. Therefore, compared with the conventional core 2 ′ shown in FIG. 1C, the efficiency of power transmission from the power supply line 100 to the pickup unit 1 can be improved and the power supply amount can be increased. In the present embodiment, both the inner peripheral surface and the outer peripheral surface of the core 2 are configured with curved surfaces, but for example, only the outer peripheral surface may be configured with a curved surface as shown in FIG. Alternatively, as shown in FIG. 2 (b), only the inner peripheral surface may be configured by a curved surface, and the inner peripheral surface and the outer peripheral surface are abutted with a plurality of planes in any of these shapes of the core 2. Compared to the conventional core 2 ′ that is configured, it is possible to reduce the magnetic flux φ leaked to the outside from a portion other than the opening groove 2a. However, it is clear that the core 2 of the present embodiment has the highest power transmission efficiency with respect to these two types of cores 2.

ところで、高周波電源110に対する往きと戻りの2本の給電線100のうちの一方の給電線100がコア2の内側に配置され、他方の給電線100がピックアップ部1の近傍に配置されている場合、当該他方の給電線100の周囲に生じる磁束がコア2内を通過する磁束φと打ち消しあい、その結果、ピックアップ部1の電力伝達の効率が低下してしまう虞がある。これに対して本実施形態では、コア2並びにコイル3が磁気シールド体5で覆われて磁気シールドされているので、上述のようにコア2内を通過する磁束φが外部の磁界(磁束)で打ち消されるのを防ぐことができ、その結果、損失を低減することができる。   By the way, in the case where one of the two feed lines 100 going back and forth to the high frequency power supply 110 is arranged inside the core 2 and the other feed line 100 is arranged in the vicinity of the pickup unit 1. The magnetic flux generated around the other power supply line 100 cancels out with the magnetic flux φ passing through the core 2, and as a result, the power transmission efficiency of the pickup unit 1 may be reduced. On the other hand, in this embodiment, since the core 2 and the coil 3 are covered with the magnetic shield body 5 and are magnetically shielded, the magnetic flux φ passing through the core 2 is an external magnetic field (magnetic flux) as described above. It is possible to prevent cancellation, and as a result, loss can be reduced.

また、本実施形態では給電線100への装着と離脱が容易に行えるようにピックアップ部1のコア2に開口溝2aを設けているが、この開口溝2aの部分(ギャップ)においては磁気回路の磁気抵抗が大幅に増大してしまう。そこで本実施形態では、開口溝2aを挟んで対向するコア2の両端部20,20をコア2の当該両端部20を除く胴部21よりも、軸方向に沿った断面の面積を大きく形成することにより、コア2の両端部20,20における磁気抵抗を胴部21と比較して相対的に低減し、開口溝2aからコア2の外に漏れる磁束を減らすようにしている。   In the present embodiment, the opening groove 2a is provided in the core 2 of the pickup unit 1 so that the power supply line 100 can be easily attached to and detached from the feeder line 100. However, the portion (gap) of the opening groove 2a has a magnetic circuit. The magnetic resistance is greatly increased. Therefore, in the present embodiment, both ends 20 and 20 of the core 2 facing each other across the opening groove 2a are formed to have a larger cross-sectional area along the axial direction than the barrel 21 excluding the both ends 20 of the core 2. Thus, the magnetic resistance at both ends 20 and 20 of the core 2 is relatively reduced as compared with the body portion 21, and the magnetic flux leaking out of the core 2 from the opening groove 2 a is reduced.

さらに、巻線を多層巻きしてコイルを形成した場合、近接効果によって巻線の高周波抵抗が増大して電力伝達の効率化が低下してしまう虞がある。そこで本実施形態では、コア2に対して巻線を単層巻きしてコイル3を形成することにより、巻線が多層巻きされる場合と比較してコイル3の高周波抵抗を低減し、ひいては電力伝達の効率を向上することができる。   Furthermore, when a coil is formed by winding multiple windings, the high frequency resistance of the winding may increase due to the proximity effect, which may reduce the efficiency of power transmission. Therefore, in the present embodiment, by forming the coil 3 by winding a single layer of the winding around the core 2, the high frequency resistance of the coil 3 is reduced as compared with the case where the winding is wound in multiple layers, and as a result The transmission efficiency can be improved.

本発明の実施形態を示し、(a)は一部省略したピックアップ部の断面図、(b)は同上におけるコア内を通過する磁束の説明図、(c)は従来例におけるコア内を通過する磁束の説明図である。1A and 1B show an embodiment of the present invention, in which FIG. 1A is a cross-sectional view of a pickup unit partially omitted, FIG. 1B is an explanatory diagram of magnetic flux passing through the core in the above, and FIG. It is explanatory drawing of magnetic flux. (a),(b)は同上におけるコアの別の構成を示す平面図である。(A), (b) is a top view which shows another structure of the core in the same as the above. (a)は同上の全体構成図、(b)は同上における給電線の断面図である。(A) is a whole block diagram same as the above, (b) is sectional drawing of the feeder in the same as the above.

符号の説明Explanation of symbols

1 ピックアップ部
2 コア
2a 開口溝
3 コイル
1 Pickup part 2 Core 2a Opening groove 3 Coil

Claims (5)

高周波電流が流れる給電線と誘導結合されるピックアップ部を備え、ピックアップ部に誘起される誘導起電力によって負荷に給電する非接触給電装置において、
ピックアップ部は、給電線を周方向に沿って囲む筒状のコアと、コアに巻線を巻回してなるコイルとを有し、
コアは、少なくとも給電線が径方向に通過可能である開口溝が給電線の軸方向に沿って設けられ、内周面又は外周面の少なくとも一方が曲面で構成されていることを特徴とする非接触給電装置。
In a non-contact power feeding device that includes a pickup unit that is inductively coupled to a power feed line through which a high-frequency current flows, and that feeds a load by an induced electromotive force induced in the pickup unit,
The pickup unit has a cylindrical core surrounding the power supply line along the circumferential direction, and a coil formed by winding a winding around the core.
The core is provided with an opening groove through which at least a power supply line can pass in a radial direction along the axial direction of the power supply line, and at least one of an inner peripheral surface or an outer peripheral surface is configured by a curved surface. Contact power supply device.
コアは、内周面及び外周面の双方が曲面で構成され且つ軸方向に交差する断面形状が略C形に形成されていることを特徴とする請求項1記載の非接触給電装置。   2. The non-contact power feeding apparatus according to claim 1, wherein the core has both an inner peripheral surface and an outer peripheral surface formed of curved surfaces, and a cross-sectional shape intersecting the axial direction is formed in a substantially C shape. 開口溝を挟んで対向するコアの両端部は、コアの当該両端部を除く部位よりも、軸方向に沿った断面の面積が大きく形成されていることを特徴とする請求項1又は2記載の非接触給電装置。   3. The cross-sectional area along the axial direction is formed larger at both end portions of the core facing each other across the opening groove than at a portion excluding the both end portions of the core. 4. Non-contact power feeding device. コイルは、コアに対して巻線が単層巻きされてなることを特徴とする請求項1〜3の何れか1項に記載の非接触給電装置。   The contactless power supply device according to any one of claims 1 to 3, wherein the coil has a single layer wound around a core. ピックアップ部は、コアの外側を囲む磁気シールド体を有することを特徴とする請求項1〜4の何れか1項に記載の非接触給電装置。   The non-contact power feeding apparatus according to claim 1, wherein the pickup unit includes a magnetic shield body that surrounds the outside of the core.
JP2008242928A 2008-09-22 2008-09-22 Non-contact power feeding device Active JP5635729B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008242928A JP5635729B2 (en) 2008-09-22 2008-09-22 Non-contact power feeding device
KR1020117006742A KR101258003B1 (en) 2008-09-22 2009-09-18 Contactless power supply system
PCT/IB2009/006874 WO2010032116A1 (en) 2008-09-22 2009-09-18 Contactless power supply system
CN200980137080.2A CN102159423B (en) 2008-09-22 2009-09-18 Contactless power supply system
TW98131774A TWI397236B (en) 2008-09-22 2009-09-21 Contactless power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008242928A JP5635729B2 (en) 2008-09-22 2008-09-22 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JP2010075017A true JP2010075017A (en) 2010-04-02
JP5635729B2 JP5635729B2 (en) 2014-12-03

Family

ID=42206272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008242928A Active JP5635729B2 (en) 2008-09-22 2008-09-22 Non-contact power feeding device

Country Status (1)

Country Link
JP (1) JP5635729B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014526873A (en) * 2011-09-15 2014-10-06 インテル コーポレイション Coil technology
CN112735729A (en) * 2020-12-29 2021-04-30 中国船舶重工集团有限公司第七一0研究所 Cylindrical radial open-ended no square coil

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108002A (en) * 1984-10-30 1986-05-26 Hitachi Metals Ltd Separation type disc wheel
JPH05190026A (en) * 1992-01-16 1993-07-30 Murata Mfg Co Ltd High-frequency lead wire
JPH0837121A (en) * 1994-07-26 1996-02-06 Matsushita Electric Works Ltd Power supply device
JPH08505277A (en) * 1992-10-20 1996-06-04 エレクトリック パワー リサーチ インスチテュート インコーポレイテッド Contactless power supply system
JP2003109833A (en) * 2001-09-28 2003-04-11 Itoki Crebio Corp Electric power receiving core and electric power supply system to moving body
JP2003118671A (en) * 2001-08-09 2003-04-23 Sumitomo Wiring Syst Ltd Charging system for power-assisted small vehicle
JP2006141115A (en) * 2004-11-11 2006-06-01 Asyst Shinko Inc Power supplying apparatus
WO2007125686A1 (en) * 2006-04-28 2007-11-08 Panasonic Electric Works Co., Ltd. Power supply line for high-frequency current

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108002A (en) * 1984-10-30 1986-05-26 Hitachi Metals Ltd Separation type disc wheel
JPH05190026A (en) * 1992-01-16 1993-07-30 Murata Mfg Co Ltd High-frequency lead wire
JPH08505277A (en) * 1992-10-20 1996-06-04 エレクトリック パワー リサーチ インスチテュート インコーポレイテッド Contactless power supply system
JPH0837121A (en) * 1994-07-26 1996-02-06 Matsushita Electric Works Ltd Power supply device
JP2003118671A (en) * 2001-08-09 2003-04-23 Sumitomo Wiring Syst Ltd Charging system for power-assisted small vehicle
JP2003109833A (en) * 2001-09-28 2003-04-11 Itoki Crebio Corp Electric power receiving core and electric power supply system to moving body
JP2006141115A (en) * 2004-11-11 2006-06-01 Asyst Shinko Inc Power supplying apparatus
WO2007125686A1 (en) * 2006-04-28 2007-11-08 Panasonic Electric Works Co., Ltd. Power supply line for high-frequency current

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014526873A (en) * 2011-09-15 2014-10-06 インテル コーポレイション Coil technology
US9177717B2 (en) 2011-09-15 2015-11-03 Intel Corporation Coil techniques
CN112735729A (en) * 2020-12-29 2021-04-30 中国船舶重工集团有限公司第七一0研究所 Cylindrical radial open-ended no square coil

Also Published As

Publication number Publication date
JP5635729B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5276393B2 (en) Non-contact power feeding device
JP5297129B2 (en) Non-contact power feeding device
JP2007324380A (en) Common-mode choke coil for high-frequency waves
JP5635729B2 (en) Non-contact power feeding device
TWI397236B (en) Contactless power supply system
JP2012023090A (en) Reactor
JP5480483B2 (en) Non-contact power feeding device
JP2009218388A (en) High-voltage transformer
JP2012023079A (en) Reactor
JP2010245183A (en) Coupling coil and arc welder provided with the same
JP2009240121A (en) Non-contact power feeding apparatus
JP2007201206A (en) Ferrite core and inductance element
JP2009135840A (en) Drive unit
JP6763074B1 (en) Line filter
JP6702440B2 (en) Contactless power supply coil unit
JP2017184486A (en) Transmission device
JP2016105464A (en) Magnetic component and electric power transmitter
JP2009111316A (en) Reactor
JPH11297545A (en) Power feeding choke coil
JP6160071B2 (en) Inductor
JP2009272438A (en) Switching transformer
JP5179305B2 (en) Non-contact power feeding device
JP6302365B2 (en) Coil device for non-contact power supply
US20140266556A1 (en) Core tube for a transformer and an associated method thereof
JP2023120852A (en) Non-contact power transmission device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100716

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131023

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131031

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20131220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141017

R151 Written notification of patent or utility model registration

Ref document number: 5635729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151