JP2010074825A - 積層デバイスと、これを用いた電子機器 - Google Patents

積層デバイスと、これを用いた電子機器 Download PDF

Info

Publication number
JP2010074825A
JP2010074825A JP2009190839A JP2009190839A JP2010074825A JP 2010074825 A JP2010074825 A JP 2010074825A JP 2009190839 A JP2009190839 A JP 2009190839A JP 2009190839 A JP2009190839 A JP 2009190839A JP 2010074825 A JP2010074825 A JP 2010074825A
Authority
JP
Japan
Prior art keywords
electrode layer
shaped inductor
inductor conductor
inductor
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009190839A
Other languages
English (en)
Inventor
Tetsuo Shimamura
徹郎 島村
Michael Hoeft
ミヒャエル・ヘフト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009190839A priority Critical patent/JP2010074825A/ja
Publication of JP2010074825A publication Critical patent/JP2010074825A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets

Abstract

【課題】複数の共振器を有する積層デバイスの特性劣化を抑制すること。
【解決手段】
本発明の積層デバイスは、第1ビア状インダクタ導体31と第2ビア状インダクタ導体32との距離が第1ビア状インダクタ導体31の長さの1.5倍よりも短い位置関係である場合に、第1ビア状インダクタ導体31の他方の端と側面グランド電極13との間に接続されて誘電シート層1〜4に略平行に配置されたインダクタ電極層33とを備えたことを特徴とするものである。これにより、第1ビア状インダクタ導体31の長さを短くすることができ、その結果、第1ビア状インダクタ導体31と第2ビア状インダクタ導体32との磁界結合を抑制することができる。
【選択図】図1

Description

本発明は、複数の絶縁体層を積層してなる積層デバイスと、これを備えた電子機器に関する。
従来からセラミクスを積層した絶縁体に複数の共振器を内蔵した積層デバイスが種々提案されている。以下、従来の積層デバイスについて図9、図10を用いて説明する。図9は従来の積層デバイスの分解斜視図である。また、図10は従来の積層デバイスの断面模式図(図9のB−B’線の断面図)である。なお、共通する構成要素は同じ記号を用いている。
図9,図10において、901,902,903,904,905は誘電シート層であり、これらを積層して絶縁体920が構成される。絶縁体920の内部又は表面において前記誘電シート層901に対して略平行に配置されたグランド電極層906,907と、絶縁体の側面に配置された側面グランド電極912,913と、絶縁体に形成された複数の共振器921,922を有する積層デバイスである。そして、複数の共振器のうち1つの第1共振器921は、誘電シート層904に略平行に配置された第1容量電極層908と、一方の端が前記第1容量電極層908に接続されると共に誘電シート層904に対し略垂直に設けられた第1ビア状インダクタ導体914を備えた構成である。
なお、図9におけるビア状インダクタ導体914a,914bは一本の直線状に接続され、図10に示される第1ビア状インダクタ導体914を構成する。また、複数の共振器921,922のうち他の1つの第2共振器922は、誘電体シート層904に略平行に配置された第2容量電極層909と、一方が前記第2容量電極層909に接続されると共に誘電シート層904に対し略垂直に設けられた第2ビア状インダクタ導体915とを備えている。なお、図9におけるビア状インダクタ導体915a,915bは一本の直線状に接続され、図10に示される第1ビア状インダクタ導体915を構成する。
容量結合電極910,911は誘電体シート903を挟んで第1容量電極層908、第2容量電極層909に対向してキャパシタを形成し、複数の共振器921,922間を容量で結合する。この容量値と、第1ビア状インダクタ導体914,第2ビア状インダクタ導体915の磁界結合の結合係数の値の組み合わせを適当にすることで所望の特性を得ることができる。なお、本出願に関連する先行技術文献として、下記特許文献1が知られている。
特開平9−238040号公報。 国際公開第WO2006/109465号。 特開2007−123678号公報。
しかし、上記の従来の積層デバイスでは低背化すると挿入損失が増大するうえ、小型にしようとすると共振器間の間隔が狭くなるために両者の磁界結合が強くなりすぎることから所望の特性が得られないといった問題があった。即ち、第1ビア状インダクタ導体と第2ビア状インダクタ導体との距離が前記第1ビア状インダクタ導体長の1.5倍よりも短い場合において、上記磁界結合が特に強くなるという問題があった。
半径a、長さlで中心間距離がdである直線状の導線の自己インダクタンスは(数1)で求めることができ、相互インダクタンスは(数2)で求めることができる。
Figure 2010074825
Figure 2010074825
これによれば、a=0.04mm、l=0.45mmでd=0.9mmの場合、自己インダクタンスは0.2433nH、相互インダクタンスは0.022nH、結合係数とすれば0.091となる。このときに中心周波数2.45GHzで帯域幅100MHzとなるワイヤレスLAN用フィルタの設計を試みた。この際、図9,図10の構成に基づく等価回路を用いて設計を行った。この結果、図11に示すような良好な特性が得られた。このときの挿入損失は帯域内で2.3dB、帯域外減衰量は1990MHzで30dB、1800MHz以下の減衰量は、最小値で45dBが得られた。
ところが、小型化を狙い、d=0.89×l、すなわちd=0.4mmとすると相互インダクタンスは、0.047nH、結合係数としては、0.192となる。図12は同様の仕様のフィルタ設計を同じ手法で試みたときの特性である。挿入損失は2.2dBとなり良好であるが、1800MHz以下の減衰量は最小値で33dBとかなり劣化することがわかる。
逆に、この領域の減衰量を確保しようとすれば、通過帯域内特性が大きくくずれ、挿入損失が3dBより大きくなる。また、インピーダンスの整合も悪くなり、フィルタとして利用しにくくなってしまう。このように、共振器間の間隔が近くなると必然的に磁界結合が強くなりすぎて性能が劣化し小型化を進めるにあたって大きな障害となるのである。
以上の事情を鑑み、本発明は、複数の共振器を有する積層デバイスの特性劣化を抑制することを目的とする。
上記目的を達成するために、本発明の積層デバイスは、第1ビア状インダクタ導体と第2ビア状インダクタ導体との距離が第1ビア状インダクタ導体長の1.5倍よりも短い位置関係である場合に、第1ビア状インダクタ導体の他方の端と側面グランド電極との間に接続されて誘電シート層に略平行に配置されたインダクタ電極層とを備えたことを特徴とするものである。
本発明の積層デバイスは、誘電シート層に略平行に配置されたインダクタ電極層を設けることにより、第1ビア状インダクタ導体の長さを短くすることができ、その結果、第1ビア状インダクタ導体と第2ビア状インダクタ導体との磁界結合を抑制することができる。
本発明の積層デバイスの分解斜視図である。 本発明の積層デバイスの断面模式図(図1のA−A’面の断面図)である。 ビア状インダクタ導体間の距離と磁界結合の結合係数の関係を示すグラフである。 本発明の積層デバイスの特性を示すグラフである。 第1ビア状インダクタ導体の長さと磁界結合の結合係数の関係を示すグラフである。 インダクタ電極層の構造を示す上面模式図である。 電極層の断面形状を示す断面模式図である。 インダクタ電極層の電流の流れを示す模式図である。 従来の積層デバイスの分解斜視図である。 従来の積層デバイスの断面模式図(図9のB−B’線の断面図)である。 従来の積層デバイスの特性を示すグラフである。 従来の積層デバイスの特性を示すグラフである。
以下、本発明に係る実施形態について図面を参照して説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。
(実施の形態1)
以下、実施の形態1の積層デバイスについて図1および図2を用いて説明する。図1は、実施の形態1の積層デバイスの分解斜視図である。また図2は実施の形態1の積層デバイスの断面模式図(図1のA−A’面の断面図)である。
実施の形態1の積層デバイスは、複数の誘電シート層1,2,3,4を積層して構成された絶縁体51と、絶縁体51の内部又は表面において誘電シート層1に対して略平行に配置されたグランド電極層11,12と、絶縁体51の向かい合う側面に配置された側面グランド電極13,14と、絶縁体51に形成された複数の共振器61,62を有する。そして、複数の共振器61,62のうち1つの第1共振器61は、誘電体シート層4に略平行に配置された第1容量電極層21と、一方の端が前記第1容量電極層21に接続されると共に誘電シート層4に対し略垂直に設けられた第1ビア状インダクタ導体31を備えた構成である。
なお、図1におけるビア状インダクタ導体31a,31bは一本の直線状に接続され、第1ビア状インダクタ導体31を構成する。また、複数の共振器61,62のうち他の1つの第2共振器62は、誘電体シート層4に略平行に配置された第2容量電極層22と、一方が前記第2容量電極層22に接続されると共に誘電体シート層4に対し略垂直に設けられた第2ビア状インダクタ導体32とを備えた構成である。
なお、図1におけるビア状インダクタ導体32a,32b,32cは一本の直線状になるように接続され、第2ビア状インダクタ導体32を構成する。また、容量結合電極23は誘電体シート3を挟んで第1容量電極層21、第2容量電極層22に対向してキャパシタを形成し、複数の共振器61,62間を容量で結合する。この容量値と、第1ビア状インダクタ導体31,第2ビア状インダクタ導体32の磁界結合の結合係数の値の組み合わせを適当に設定することで所望の特性を得ることができる。ここで、第1ビア状インダクタ導体31と第2ビア状インダクタ導体32との距離は第1ビア状インダクタ導体31の長さの1.5倍よりも短くなっている。
さらにまた、この積層デバイスは、第1ビア状インダクタ導体31の他方の端と側面グランド電極13との間に接続されて誘電シート層4に略平行に配置されたインダクタ電極層33を備えたことを特徴とする。誘電シート層4に略平行に配置されたインダクタ電極層33を設けることにより、第1ビア状インダクタ導体31の長さを短くすることができ、その結果、第1ビア状インダクタ導体31と第2ビア状インダクタ導体32とを近づけても、磁界結合を抑制することができるのである。
図3は第1ビア状インダクタ導体31と第2ビア状インダクタ導体32の長さが等しい場合に、両者の距離と結合係数との関係を(数1)、(数2)で計算した結果を示すグラフである。それぞれの半径は0.05mmとした。実線はこれらのインダクタ導体が0.45mmの場合、点線が0.6mmの場合、一点鎖線が1.0mmの場合である。結合係数を0.11以下に抑えようとすれば、第1ビア状インダクタ導体31の長さの1.5倍程度の距離が必要となることがわかる。逆に言えば、小型のためにおおむね第1ビア状インダクタ導体31の長さの1.5倍以下の距離で設計を行おうとした場合、上記のような磁界結合を抑制する機構が必要となってくるのである。
ところで、半径a、長さlの直線状の導体と半径a、長さlのもう一方の直線状の導体の中心間距離がdである場合、相互インダクタンスは(数3)で求めることができる。
Figure 2010074825
なお、それぞれの自己インダクタンスに関しては、(数1)で求めることができる。
今回の第2ビア状インダクタ導体32の長さを0.442mm、第1ビア状インダクタ導体31の長さを0.22mmとした。第1、第2ビア状インダクタ導体31、32の半径は40μmである。また、小型化を追求し、両ビア状インダクタ導体間31、32の距離は0.4mmとし、絶縁体51の厚みよりも狭い間隔とした。この場合に第1ビア状インダクタ導体31の自己インダクタンスL3と第2ビア状インダクタ導体32の自己インダクタンスL4は(数1)で求めることができ、それぞれ、L3=0.0978nH、L4=0.2381nHとなる。このときに各ビア状インダクタ導体31、32の相互インダクタンスの値は(数3)から、M2=0.0224nHとなる。
さて、インダクタ電極層33の長さと形状を調整して、第1ビア状インダクタ導体31とインダクタ電極層33の合計のインダクタンスを、第2ビア状インダクタ導体32が構成するインダクタンス値と同じ値になるようにすれば、それぞれの共振器61,62の持つインダクタンス値は、0.2381nHとなり、各ビア状インダクタ導体31、32の相互インダクタンスは上で求めたM2となるため、結果として共振器61,62間の結合係数としては0.094となる。これは、インダクタ電極層33と第2ビア状インダクタ導体32とは互いに垂直の関係にあるため磁界結合にほとんど寄与しないからである。
この第1と第2のビア状インダクタ導体31,32の形状と配置を反映して、実物の3次元モデルを作成し、3次元電磁界シミュレータを用いてシミュレーションを実施し、設計を試みた。
誘電シート1の材料については、特許文献2に記載の材料を用いた。その材料とは、xBaO−yNd−zTiO−wBi系の誘電体フィラーとガラス粉末を混合し900度程度の低温で焼結した低温焼結セラミクス材料である。この材料は高周波でのQ値が高く、ワイヤレスLANの周波数領域である2.4−2.5GHzで1000を超えるQ値が得られる。また、この材料は誘電率も57と高く、キャパシタを小型に形成できる。
各電極材料は、例えば銀である。各電極は、銀粉末を樹脂中に分散させたペーストを用い、それぞれの誘電体シート上に印刷し、積層することにより形成させる。各ビアについてはレーザ又は機械加工で誘電体シートにスルーホールを空け、銀ペーストを充填して形成させる。これら誘電体シートを積層した後、同時に焼成することで図3に示すような一体の積層デバイスが得られるのである。上記セラミクス材料を用いた場合、焼成温度は920度程度であり銀の焼結を十分確保できるので4.7×10といった高い導電率を得ることができる。またこの温度は銀の融点よりも低いため、寸法精度の高い安定した形状を得ることができる。
また、3次元電磁界シミュレーションを用いて上記構成にもとづいてモデルを作製し計算を実行した。
上記の構成によってビア状インダクタ導体間の距離が0.4mmに抑えられているので、最終的に外形サイズについては0.8mm×0.6mm×0.5mmの小型化を達成しつつ、図4に示す良好な特性を得ることができた。
挿入損失は2.13dB,1990MHzの減衰量は30dB、1800MHz以下の最小値で43dBとなっており、ビア状インダクタ導体間の距離が0.95mmであることを想定した図11の特性とほぼ同等の特性が得られたこととなる。
なお、上記の理論式による計算は、理想的な場合であって、現実のデバイスのように周囲にグランド電極11、12、13、14が存在するような状況では、位置によって計算結果が10%程度ずれることがほとんどである。最終的には、第1ビア状インダクタ導体31の長さは0.24mmとなった。得られた特性から逆算すると、第2ビア状インダクタ導体32のインダクタンスは0.2567nH、第1ビア状インダクタ導体31とインダクタ電極層33の合計のインダクタンスは0.2569nH、結合係数は0.095であり、ほぼ狙い通りの値が得られた。
さて、この実施例では、第1ビア状インダクタ導体31の長さは第2ビア状インダクタ導体32の長さの54.3%となった。この結果が示すように、第1ビア状インダクタ導体31の長さが第2ビア状インダクタ導体32の長さの60%以下であることが望ましい。
図5は、それぞれのビア状インダクタ導体31、32の半径を0.04mmとし、第2ビア状インダクタ導体32の長さを0.45mm、第1ビア状インダクタ導体31との距離を第2ビア状インダクタ導体32の長さと同じ0.45mmとしたときの、第1ビア状インダクタ導体31の長さと共振器61,62間の結合係数の関係をグラフにしたものである。各ビア状インダクタ導体31、32の相互インダクタンス値は(数3)を用いて求めた。ここで第1ビア状インダクタ導体31の長さを変えるにしたがって、インダクタ電極層33との合計のインダクタンス値が第2ビア状インダクタ導体32と同じになるようにインダクタ電極層33の長さを調整すると仮定する。したがって共振器61,62間の磁界結合の結合係数は各ビア状インダクタ導体31、32の相互インダクタンス値を第2ビア状インダクタンス32の自己インダクタンス値で割ったものとなる。
これによれば、第1ビア状インダクタ導体31の長さを0.27mm以下とすることで、共振器61,62間の結合係数を0.11以下に抑えることができる。
フィルタの回路構成や要求仕様によっても異なるが、多くの場合、共振器61,62間の磁界結合は0.03〜0.11の範囲で設計すると良好な特性を得ることができる。つまり、第1ビア状インダクタ導体31の長さを第2ビア状インダクタ導体32の長さの60%以下とすることで、お互いの距離を第2ビア状インダクタ32の長さ程度まで近づけることができるのである。
さらに、第1ビア状インダクタ導体31と第2のビア状インダクタ導体32の半径は、40μm以上であることが望ましい。(数1)から(数3)によれば、自己インダクタンスはビア状インダクタ導体の半径を小さくすることで大きくなる。一方で相互インダクタンスはビア状インダクタ導体31、32の半径とは無関係である。したがって共振器61,62間の結合係数を下げるためには各ビア状インダクタ導体31、32の半径を小さくすることでも達成できる。また、フィルタ設計上、インダクタンス値が高いほうが容易となる。また容量電極層21,22は誘電体シート4を挟んでグランド電極層12との間に容量を形成するが、ビア状インダクタ導体31、32のインダクタンスと反比例して小さくすることができるので、容量電極層21,22の面積も小さくでき、小型化設計が容易となる。したがって、各ビア状インダクタ導体31、32の半径を小さくすることがこの点からも有利である。
しかし、各ビア状インダクタ導体31、32の半径を小さくすると共振器61,62のQ値(共振先鋭度)が著しく劣化する。実際にシミュレーションで確認すると、各ビア状インダクタ導体31、32の半径40μm未満では挿入損失が大きくなり逆に性能が劣化する。特に、第1ビア状インダクタ導体31は誘電体シート層と略平行なインダクタ電極層33に接続されており、このような部分を持たない第2ビア状インダクタ導体と比較して、Q値が7割程度まで減少してしまう。したがって、上記実施例に示したように、特に第1ビア状インダクタ導体31は半径40μm以上が望ましい。
上限は容量電極層21,22とグランド電極層12との間で得られる容量値の最大値によって決まる。これは、容量値とインダクタンス値との積の平行根がフィルタの中心周波数に2πをかけたものとなるからである。
さらにまた、第1ビア状インダクタ導体31と第2ビア状インダクタ導体32の少なくとも一方は2枚の側面グランド電極13、14からの距離が略等しい位置に設けられた構成であることが望ましい。
上記実施例では、第1ビア状インダクタ導体31は両方の側面グランド電極13、14との距離が等しい位置関係にある。ビア状インダクタ導体31、32は側面グランド電極13、14との距離が近くなるとインダクタンスが低くなるうえ、Q値が低くなる。したがってできるだけ離すことで特性の劣化を防ぐことができる。側面グランド電極13、14が両側面にある場合、双方からの距離が等しい位置関係になる。
また、インダクタ電極層は、Q値の劣化を防ぐために単一の直線形状であるほうが望ましい。
さらに、インダクタ電極層33が形成された直線と側面グランド電極13が形成された平面とのなす角度は鋭角であることが望ましい。これは、所望のインダクタンス値を確保しつつ、Q値の劣化を防ぐためには、単一の直線形状を保ちつつ、側面グランド電極13とのなす角度を変えていくことでインダクタンス値を調整するほうが、単にビア状インダクタ電極31の位置を変えて側面グランド電極13、14との距離を変えて調整するよりも高いQ値が得られるからである。
さらにまた、第1ビア状インダクタ導体31を短くしながら、なおかつ、高いインダクタンスを得ようと考えた場合、上記の実施例に示すごとく、インダクタ電極層33は側面グランド電極に対して平行に配置された部分を介した折り返し形状とすることが望ましい。Q値の観点では、インダクタ電極層33を単一の直線状にするべきであるが、より小型の積層デバイスを実現しようと考えれば、インダクタ電極層33を折り返し形状とすることで大きなメリットを得ることができる。
また、実際に積層デバイスを製造する際には上に触れたとおりの製造プロセスをとるが、50mm×50mmや100mm×100mmといった大きな誘電シートの中の縦横に上記サイズのパタンを多数個並べ、一括で積層し、その後に個々の積層デバイスに切断する。このときに、切断時に誤差が発生するため、上記実施例のままでは、インダクタ電極層33の長さが変動し、特性のばらつきが発生し、歩留まりが低下する。
そこで、図6の上面模式図に示すように、インダクタ電極層33は幅の異なる2つ以上の直線形状33a,33bから構成されることが望ましい。例えば、直線形状33bの幅を100μmとするのに対し、直線形状33aを300μmとする。このように、側面グランド電極に接続される部分33aを太くしているが、この部分は低いインピーダンスとなり、インダクタ電極層33のインダクタンス値にほとんど影響しなくなる。したがって切断ずれによって、インダクタ電極層33の長さにばらつきが発生しても特性ばらつきに影響しなくなるのである。
また、インダクタ電極層33を幅の異なる2つ以上の直線形状33a,33bから構成することにより、インダクタ電極層33のインダクタンス値を調整する際にも直線形状33aの長さを変えることで、直線形状33bの長さを調節できるので設計が容易となる。
さらにまた、インダクタ電極層33を構成する電極の総厚みは、10μm以上であることが望ましい。これは、インダクタ電極層33が薄いとQ値が下がるのでできる限り厚いほうが良いからである。2GHz以上の周波数になると電流は、インダクタ電極層33の表面とエッジ部に集中するので、厚みが5μmもあれば十分であると思われる。しかし、積層デバイスはグリーンシート上に銀ペーストで電極パタンを印刷して、これを積層するので、圧力によって、インダクタ電極層33の断面形状は図7に示すような形状になる。即ち、インダクタ電極層33の端部の膜厚は中央部と比較して薄くなるので、適当なQ値を得るためにはインダクタ電極層33の膜厚は10μm以上が必要となってくるのである。
しかし、インダクタ電極層33の膜厚を厚くすると、グリーンシート上の段差が大きくなり積層性が悪くなるので、インダクタ電極層33は複数の電極層から構成しトータルの膜厚を厚くすることが望ましい。
上記実施例においてインダクタ電極層33の幅を100μmとビア状インダクタ導体31の直径よりも大きくしたが、プロセスが許すならば、インダクタ電極33の幅を第1ビア状インダクタ導体31の直径よりも小さくしたほうが望ましい。図8の(a)はインダクタ電極層33の幅がビア状インダクタ導体31の直径よりも大きい場合、図8の(b)はインダクタ電極層33の幅がビア状インダクタ導体31の直径よりも小さい場合の電流の流れを示す概念図である。ここに示すとおり、インダクタ電極33の幅を第1ビア状インダクタ導体31の直径よりも小さくすることにより、第1ビア状インダクタ導体31とインダクタ電極層33との接続部での電流の流れがスム−スになるので、Q値が向上する。
ただし、この際、インダクタ電極層33の厚みは、幅が狭くなったぶんだけ厚くする必要があり、例えば、インダクタ電極層33を幅50μm、厚み40μmとする。上記実施例での幅100μm、厚み10μmと比較して断面積が2倍となるので、Q値が向上し挿入損失が低くなるメリットが得られる。なお、このような形状で印刷するには、例えば特許文献3に開示されたプロセスを用いることで実現できる。また、めっき等でこのような形状の電極をあらかじめ形成したうえでグリーンシートに転写する方法でも実現できる。
そして、この積層デバイスに対して信号処理回路等を接続することで、電子機器を小型低背化することができるのである。
以上詳述したように、本発明の積層デバイスによれば、誘電シート層に略平行に配置されたインダクタ電極層を設けることにより、第1ビア状インダクタ導体の長さを短くすることができ、その結果、第1ビア状インダクタ導体と第2ビア状インダクタ導体との磁界結合を抑制することができる。
1,2,3,4…誘電体シート層、
11,12…グランド電極層、
13,14…側面グランド電極、
21、22…容量電極層、
23…容量結合電極、
31a,31b,31、32a、32b、32…ビア状インダクタ導体、
33a、33b、33…インダクタ電極層、
41〜44…入出力電極、
51…絶縁体、
61,62…共振器、
81…電流。

Claims (12)

  1. 複数の誘電シート層を積層して構成された絶縁体と、
    前記絶縁体の内部又は表面において前記誘電シート層に対して略平行に配置されたグランド電極層と、
    前記絶縁体の側面に配置された側面グランド電極と、
    前記絶縁体に形成された複数の共振器を有する積層デバイスであって、
    前記複数の共振器のうち1つの第1共振器は、
    誘電シート層に略平行に配置された第1容量電極層と、
    一方の端が前記第1容量電極層に接続されると共に誘電シート層に対し略垂直に設けられた第1ビア状インダクタ導体を備えた構成であり、
    前記複数の共振器のうち他の1つの第2共振器は、
    誘電体シート層に略平行に配置された第2容量電極層と、
    一方が前記第2容量電極層に接続されると共に誘電シート層に対し略垂直に設けられた第2ビア状インダクタ導体とを備えた構成であって、
    前記第1ビア状インダクタ導体と前記第2ビア状インダクタ導体との距離は、前記第1ビア状インダクタ導体長の1.5倍よりも短い位置関係であって、
    前記第1ビア状インダクタ導体の他方の端と前記側面グランド電極との間に接続されて前記誘電シート層に略平行に配置されたインダクタ電極層とを備えたことを特徴とする積層デバイス。
  2. 前記第1ビア状インダクタ導体の長さが第2ビア状インダクタ導体の長さの60%以下であることを特徴とする請求項1記載の積層デバイス。
  3. 前記第1と第2のビア状インダクタ導体の半径は、40μm以上であることを特徴とする請求項1記載の積層デバイス。
  4. 前記側面グランド電極は、前記絶縁体の向かい合う側面に配置されると共に、前記第1ビア状インダクタ導体と前記第2ビア状インダクタ導体の少なくともどちらか一方は2枚の前記側面グランド電極からの距離が略等しい位置に設けられたことを特徴とする請求項1に記載の積層デバイス。
  5. 前記インダクタ電極層が単一の直線形状であることを特徴とする請求項1に記載の積層デバイス。
  6. 前記インダクタ電極層が形成された直線と前記側面グランド電極が形成された平面とのなす角度は鋭角である請求項5に記載の積層デバイス。
  7. 前記インダクタ電極層は前記側面グランド電極に対して平行に配置された部分を介した折り返し形状である請求項4に記載の積層デバイス。
  8. 前記インダクタ電極層が幅の異なる2つ以上の直線形状から構成されたことを特徴とする請求項1に記載の積層デバイス。
  9. 前記インダクタ電極層を構成する電極の総厚みは、10μm以上であることを特徴とする請求項1に記載の積層デバイス。
  10. 前記インダクタ電極層は複数の電極層から構成されたことを特徴とする請求項1に記載の積層デバイス。
  11. 前記インダクタ電極の幅は前記第1ビア状インダクタ導体の直径よりも小さいことを特徴とする請求項1に記載の積層デバイス。
  12. 請求項1に記載の積層デバイスと、
    前記積層デバイスに接続された信号処理回路とを備えたことを特徴とする電子機器。
JP2009190839A 2008-08-20 2009-08-20 積層デバイスと、これを用いた電子機器 Pending JP2010074825A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009190839A JP2010074825A (ja) 2008-08-20 2009-08-20 積層デバイスと、これを用いた電子機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008211474 2008-08-20
JP2009190839A JP2010074825A (ja) 2008-08-20 2009-08-20 積層デバイスと、これを用いた電子機器

Publications (1)

Publication Number Publication Date
JP2010074825A true JP2010074825A (ja) 2010-04-02

Family

ID=41695811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009190839A Pending JP2010074825A (ja) 2008-08-20 2009-08-20 積層デバイスと、これを用いた電子機器

Country Status (2)

Country Link
US (1) US8106722B2 (ja)
JP (1) JP2010074825A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018032916A (ja) * 2016-08-23 2018-03-01 株式会社村田製作所 高周波増幅器モジュール
CN107769740A (zh) * 2016-08-23 2018-03-06 株式会社村田制作所 高频放大器模块

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10115520B2 (en) * 2011-01-18 2018-10-30 Mojo Mobility, Inc. Systems and method for wireless power transfer
US11071239B2 (en) 2018-09-18 2021-07-20 Avx Corporation High power surface mount filter
JP7268161B2 (ja) 2018-12-20 2023-05-02 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション 低インダクタンスビアアセンブリを備える多層フィルタ
DE112019006352T5 (de) 2018-12-20 2021-08-26 Avx Corporation Mehrschichtfilter, umfassend einen rückführsignalreduzierungsvorsprung
US11563414B2 (en) 2018-12-20 2023-01-24 KYOCERA AVX Components Corporation Multilayer electronic device including a capacitor having a precisely controlled capacitive area
CN113228504A (zh) 2018-12-20 2021-08-06 阿维科斯公司 高频多层滤波器
DE112019006353T5 (de) 2018-12-20 2021-09-09 Avx Corporation Mehrschichtfilter mit einem kondensator; der mit mindestens zwei durchkontaktierungen verbunden ist
WO2020132187A1 (en) 2018-12-20 2020-06-25 Avx Corporation Multilayer electronic device including a high precision inductor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3501327B2 (ja) 1995-12-28 2004-03-02 株式会社村田製作所 Lc共振部品
US7592886B2 (en) 2005-03-31 2009-09-22 Panasonic Corporation Dielectric porcelain composition and high frequency device using the same
JP2007123678A (ja) 2005-10-31 2007-05-17 Matsushita Electric Ind Co Ltd 積層セラミック電子部品およびその製造方法
JP4434301B2 (ja) * 2007-11-22 2010-03-17 株式会社村田製作所 Lc複合電子部品

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018032916A (ja) * 2016-08-23 2018-03-01 株式会社村田製作所 高周波増幅器モジュール
CN107769741A (zh) * 2016-08-23 2018-03-06 株式会社村田制作所 高频放大器模块
CN107769740A (zh) * 2016-08-23 2018-03-06 株式会社村田制作所 高频放大器模块

Also Published As

Publication number Publication date
US20100045405A1 (en) 2010-02-25
US8106722B2 (en) 2012-01-31

Similar Documents

Publication Publication Date Title
JP2010074825A (ja) 積層デバイスと、これを用いた電子機器
US8947175B2 (en) Low-pass filter
US9030273B2 (en) Electronic component
JP7238937B2 (ja) コイル部品および、これを含むフィルタ回路
US8169288B2 (en) Electronic component and method for making the same
US6529101B2 (en) Multilayered LC filter
US9252737B2 (en) Filter
US9013249B2 (en) Electronic component
US20160042858A1 (en) Chip-type coil component and manufacturing method thereof
US9124237B2 (en) Electronic component
JP6729839B2 (ja) コイル部品および、これを含むフィルタ回路
US9178484B2 (en) Filter
US11239017B2 (en) Common mode choke coil and electronic apparatus
US20160126003A1 (en) Multilayer inductor
JP5614495B2 (ja) 電子部品
JP6500989B2 (ja) 回路基板、これを用いたフィルタ回路およびキャパシタンス素子
JP4535267B2 (ja) 電子部品
JP4242738B2 (ja) 積層型帯域通過フィルタ
JP2004350143A (ja) バラントランス
JPH05152803A (ja) 誘電体フイルタ
JP4502937B2 (ja) 積層ストリップラインフィルタ
JP4328296B2 (ja) 積層ストリップラインフィルタ
JP2005294686A (ja) 積層コイル部品
JP2009147732A (ja) 誘電体共振器
CN117501392A (zh) 复合元件