JP2010073595A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2010073595A
JP2010073595A JP2008241994A JP2008241994A JP2010073595A JP 2010073595 A JP2010073595 A JP 2010073595A JP 2008241994 A JP2008241994 A JP 2008241994A JP 2008241994 A JP2008241994 A JP 2008241994A JP 2010073595 A JP2010073595 A JP 2010073595A
Authority
JP
Japan
Prior art keywords
battery
electrolyte secondary
secondary battery
aqueous electrolyte
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008241994A
Other languages
Japanese (ja)
Inventor
Yoshihiro Niida
善洋 新居田
Yasuhisa Kojima
育央 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2008241994A priority Critical patent/JP2010073595A/en
Publication of JP2010073595A publication Critical patent/JP2010073595A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having quicker response to an internal pressure change of the battery due to overcharging or the like and effectively preventing thermal runaway, without adversely affecting battery characteristics. <P>SOLUTION: A core material b with a fire-retardant constituent includes a pressure-sensitive microcapsule with a wall material "a" coated to be electrodeposited on an inner wall of a battery can. The microcapsule discharges the fire-retardant constituent in case a battery thickness is changed at a rate of 5% or more to prevent troubles by immediately coping with abnormal reactions. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery.

近年、携帯電話やノートパソコン等移動情報端末などの発展は目覚しく電気自動車やハイブリッド自動車などの実用化に伴って、一次電池のみならず電源として使用されるニッケル水素電池やリチウムイオン電池などの二次電池も大きく需要を伸ばしている。各種二次電池の中でも、リチウムイオン電池に代表される非水電解質二次電池は、高いエネルギー密度を有し、高容量化が可能であるということから、広く使用されるようになってきている。   In recent years, mobile information terminals such as mobile phones and laptop computers have been developed remarkably, and with the practical application of electric vehicles and hybrid vehicles, secondary batteries such as nickel metal hydride batteries and lithium ion batteries used as power sources as well as primary batteries Batteries are also in great demand. Among various secondary batteries, non-aqueous electrolyte secondary batteries represented by lithium ion batteries have been widely used because they have a high energy density and can have a high capacity. .

これらの非水電解質二次電池においては、安全対策が重要であり、特に外部衝撃の短絡による発火事故、あるいは、充電時の充電装置の故障や不適切な急速充電操作によって、電池に過大電圧、過大充電電流、逆接続電圧がかかり、電池内部の温度が上昇することによる電池の破裂事故、などを防止する目的から、バイメタル式サーマルプロテクタやPTC素子が、装着されている。   In these non-aqueous electrolyte secondary batteries, safety measures are important, especially over-voltage due to ignition accidents due to external impact short-circuits, charging device failures during charging, or improper rapid charging operations. A bimetallic thermal protector and a PTC element are mounted for the purpose of preventing a battery rupture accident caused by an excessive charging current and reverse connection voltage applied and a rise in temperature inside the battery.

過充電が起こった場合には、電池内部において正極上での電解質溶液の酸化分解が開始してガスが発生し、電池の温度が上昇し始める。そして、発生するガスにより、正極とセパレータとの接着部の剥離が生じ、過電圧が上昇して、単位面積当たりの充電レートが、上昇する結果、部分的にセパレータが、シャットダウンする。このような現象が生じた状態で、更に充電を継続すると、有効電極面積が更に減少して、更なる電流の集中を招くため、部分的に異常な量の熱が発生する。この結果、セパレータが溶融して、電池内でショートが生じるため、電池温度が異常に上昇する。   When overcharge occurs, oxidative decomposition of the electrolyte solution on the positive electrode starts inside the battery, gas is generated, and the temperature of the battery starts to rise. Then, due to the generated gas, peeling of the bonded portion between the positive electrode and the separator occurs, the overvoltage rises, and the charge rate per unit area rises. As a result, the separator partially shuts down. If charging is continued in a state where such a phenomenon has occurred, the effective electrode area is further reduced and further current concentration is caused, so that an abnormal amount of heat is partially generated. As a result, the separator melts and a short circuit occurs in the battery, so that the battery temperature rises abnormally.

上記のことを考慮して、従来の電池において、電解質中の添加剤を過充電状態で重合させることにより、過充電の対策がなされている。このような構成であれば、正極とセパレータとの接着部の剥離が生じ難くなるので、有効電極面積の減少を抑制し、電流の集中による電池内でのショートの発生を抑えることができる。しかしながら、セパレータの気孔率の低下、あるいは電解質中の添加剤が変化した場合には、負荷特性等の電池特性が低下するという課題を有していた。   In consideration of the above, in conventional batteries, countermeasures against overcharge are taken by polymerizing the additive in the electrolyte in an overcharged state. Such a configuration makes it difficult for the adhesive portion between the positive electrode and the separator to be peeled off, so that the reduction of the effective electrode area can be suppressed and the occurrence of a short circuit in the battery due to current concentration can be suppressed. However, when the porosity of the separator is lowered or the additive in the electrolyte is changed, there is a problem that battery characteristics such as load characteristics are lowered.

したがって電池を製造するにあたり、電池特性に影響を与えることなく、過充電、過放電の異常な温度上昇に際して、安全な非水電解液二次電池を提供する方法が求められており、この要求に応えるべく、様々な製造方法が提案されている。例えば特許文献1では、マイクロカプセルは難燃剤を有し、非水電解液に含有されていることにより、電池の異常な温度上昇に際して、破断等が生じない、安全な非水電解液二次電池を提供できることが開示されている。また特許文献2では、電解液に、温度が上昇したときに化学物質を放出するマイクロカプセルを含有させることによって、安全性を保った、リチウム二次電池の作製が可能であることが開示されている。   Therefore, in manufacturing batteries, there is a need for a method for providing a safe non-aqueous electrolyte secondary battery in the event of an abnormal temperature rise due to overcharge or overdischarge without affecting the battery characteristics. In order to respond, various manufacturing methods have been proposed. For example, in Patent Document 1, a microcapsule has a flame retardant and is contained in a non-aqueous electrolyte, so that the battery does not break when an abnormal temperature rise of the battery, and is a safe non-aqueous electrolyte secondary battery It is disclosed that can be provided. Patent Document 2 discloses that it is possible to manufacture a lithium secondary battery that maintains safety by including microcapsules that release chemical substances when the temperature rises in the electrolyte. Yes.

特開平09−045369号公報JP 09-045369 A 特開平06−283206号公報Japanese Patent Laid-Open No. 06-283206

上記特許文献においてマイクロカプセルの壁材には、感熱性物質を使用している。過充電等の異常は、正極上での電解質溶液の酸化分解が開始してガスが発生し、電池内部の反応が開始され、温度が異常上昇する。従って、温度が異常上昇してから難燃性成分であるマイクロカプセルの心材が放出されても、一定温度以上にならないと反応を抑制する効果を発揮しないことになり、速効的に反応を回避できない恐れがある。   In the above patent document, a thermosensitive material is used for the wall material of the microcapsule. Abnormalities such as overcharge cause the oxidative decomposition of the electrolyte solution on the positive electrode to generate gas, the reaction inside the battery is started, and the temperature rises abnormally. Therefore, even if the core material of the microcapsule, which is a flame retardant component, is released after the temperature has risen abnormally, the reaction will not be exerted unless the temperature exceeds a certain temperature, and the reaction cannot be avoided quickly. There is a fear.

上述の事情に鑑み本発明の主要な目的は、過充電等による電池内部の内圧変化に対し、より速い応答性をもって対応し、電池反応の熱暴走に伴う事故を効果的に防止する難燃性成分を有する化学物質を放出する非水電解質二次電池を提供することにある。   In view of the above circumstances, the main object of the present invention is to respond to changes in the internal pressure of the battery due to overcharge, etc. with faster response, and to effectively prevent accidents associated with thermal runaway of battery reactions An object of the present invention is to provide a non-aqueous electrolyte secondary battery that releases chemical substances having components.

すなわち、本発明の技術的課題は、電池特性に影響を与えることなく、過充電等による電池の内圧変化に対し、より速い応答性を持ち熱暴走による事故発生を効果的に防止する非水電解質二次電池を提供することにある。   That is, the technical problem of the present invention is a non-aqueous electrolyte that has a faster response to a change in the internal pressure of a battery due to overcharge or the like and effectively prevents an accident from occurring due to thermal runaway without affecting the battery characteristics. It is to provide a secondary battery.

本発明の非水電解質二次電池は、リチウムイオンを吸蔵、放出する正極材料および負極材料を有する電極と、前記電極間に介装されたセパレータとを含む電極体を電池缶に収納してなる非水電解質二次電池において、難燃性成分を有する心材を、壁材で覆った感応性マイクロカプセルを前記電池缶の内壁に電着塗装したことを特徴とする。   The non-aqueous electrolyte secondary battery of the present invention comprises an electrode body including an electrode having a positive electrode material and a negative electrode material that occlude and release lithium ions, and a separator interposed between the electrodes, in a battery can. In the nonaqueous electrolyte secondary battery, a sensitive microcapsule in which a core material having a flame retardant component is covered with a wall material is electrodeposited on the inner wall of the battery can.

本発明の非水電解質二次電池は、前記感応性マイクロカプセルは、圧力に感応して前記難燃性成分を放出することを特徴とする。   The nonaqueous electrolyte secondary battery of the present invention is characterized in that the sensitive microcapsules release the flame retardant component in response to pressure.

本発明の非水電解質二次電池は、前記難燃性成分がリン酸エステル、ペンタブロモジフェニルエーテル、オクタブロモジフェニルエーテル、デカブロモジフェニルエーテル、テトラブロモビスフェノールA、ヘキサブロモシクロドデカン、塩素化パラフィン、三酸化アンチモン、五酸化アンチモン、水酸化アルミニウム、水酸化マグネシウムから選択される少なくとも一種を有するものからなることを特徴とする。   In the nonaqueous electrolyte secondary battery of the present invention, the flame retardant component is phosphoric ester, pentabromodiphenyl ether, octabromodiphenyl ether, decabromodiphenyl ether, tetrabromobisphenol A, hexabromocyclododecane, chlorinated paraffin, antimony trioxide. And having at least one selected from antimony pentoxide, aluminum hydroxide, and magnesium hydroxide.

本発明の非水電解質二次電池は、前記感応性マイクロカプセルの前記壁材がメラミン樹脂、エポキシ樹脂、ポリウレタン樹脂、フェノール樹脂から選択される少なくとも一種を有するものからなることを特徴とする。   The nonaqueous electrolyte secondary battery of the present invention is characterized in that the wall material of the sensitive microcapsule comprises at least one selected from melamine resin, epoxy resin, polyurethane resin, and phenol resin.

本発明の非水電解質二次電池は、前記感応性マイクロカプセルを、前記電池缶の内壁に1μm以上、100μm以下の厚みで電着塗装することを特徴とする。   The nonaqueous electrolyte secondary battery of the present invention is characterized in that the sensitive microcapsules are electrodeposited on the inner wall of the battery can with a thickness of 1 μm or more and 100 μm or less.

本発明の非水電解質二次電池は、前記感応性マイクロカプセルが直径1μm以上、100μm以下の大きさであることを特徴とする。   The non-aqueous electrolyte secondary battery of the present invention is characterized in that the sensitive microcapsules have a diameter of 1 μm or more and 100 μm or less.

本発明の非水電解質二次電池は、前記感応性マイクロカプセルの前記難燃性成分を放出するのは電池厚みが5%以上変化する場合であることを特徴とする。   The nonaqueous electrolyte secondary battery of the present invention is characterized in that the flame retardant component of the sensitive microcapsule is released when the battery thickness changes by 5% or more.

本発明により、電池特性に影響を与えることなく、過充電等による電池の内圧変化に対し、より速い応答性を持ち熱暴走による事故発生を効果的に防止する非水電解質二次電池の提供が可能となった。   According to the present invention, there is provided a non-aqueous electrolyte secondary battery that has a faster response to an internal pressure change of a battery due to overcharge or the like and effectively prevents an accident from occurring due to thermal runaway without affecting the battery characteristics. It has become possible.

熱暴走の原因となり得る電池反応は、電池が膨れることによって電池内の正極とセパレータとの接着部の剥離が生じることに着目し、この電池が膨れた際に難燃性成分を効果的に放出する手段として、感応性マイクロカプセルを電池缶の内壁に電着塗装することが効果的であることを見出したものである。   The battery reaction, which can cause thermal runaway, pays attention to the fact that when the battery swells, the adhesion between the positive electrode and the separator in the battery peels off. When this battery swells, the flame retardant component is effectively released. As a means for achieving this, it has been found that it is effective to electrodeposit the sensitive microcapsules on the inner wall of the battery can.

本発明の感応性マイクロカプセルを含む非水電解質二次電池が、過放電や過充電等により電池の膨れから内部圧力上昇を起して、感応性マイクロカプセルの壁材が破壊され、心材の難燃性成分を放出し、電解質溶液中に拡散することで、熱暴走を防ぐ。従って、壁材を有する感応性マイクロカプセルを適切に設計して、電池缶の内壁に電着塗装した状態においては安定であるが、上記異常時に確実に難燃性成分を放出し得るように設計すれば、熱暴走による事故を効果的に防止することが可能になり、安全性が高められる。   The non-aqueous electrolyte secondary battery including the sensitive microcapsule of the present invention causes an increase in internal pressure from the swelling of the battery due to overdischarge, overcharge, etc., and the wall material of the sensitive microcapsule is destroyed, making the core material difficult. Releases flammable components and diffuses them into the electrolyte solution to prevent thermal runaway. Therefore, the sensitive microcapsules with wall materials are properly designed and stable in the state of electrodeposition coating on the inner wall of the battery can, but designed to reliably release flame retardant components in the event of abnormalities As a result, accidents due to thermal runaway can be effectively prevented, and safety can be improved.

図1は、感応性マイクロカプセルの断面図である。感応性マイクロカプセルは、心材bを壁材aで覆っており、一定の圧力がかかると壁材aが破壊され、心材bが放出される。   FIG. 1 is a cross-sectional view of a sensitive microcapsule. In the sensitive microcapsule, the core material b is covered with the wall material a. When a certain pressure is applied, the wall material a is destroyed and the core material b is released.

心材には難燃性成分の材料が使用されるが、その材料としては燃焼の原因となる酸素を含まず、熱を遮断する材料を選択する必要がある。具体的にはリン酸エステル、ペンタブロモジフェニルエーテル、オクタブロモジフェニルエーテル、デカブロモジフェニルエーテル、テトラブロモビスフェノールA、ヘキサブロモシクロドデカン、塩素化パラフィン、三酸化アンチモン、五酸化アンチモン、水酸化アルミニウム、水酸化マグネシウムが使用できる。   Although the material of a flame retardant component is used for the core material, it is necessary to select a material that does not contain oxygen that causes combustion and that blocks heat. Specifically, phosphate ester, pentabromodiphenyl ether, octabromodiphenyl ether, decabromodiphenyl ether, tetrabromobisphenol A, hexabromocyclododecane, chlorinated paraffin, antimony trioxide, antimony pentoxide, aluminum hydroxide, magnesium hydroxide Can be used.

壁材の材料としては、電池の電解質溶液に溶解しない材料を選択するのが特性上好ましい。さらに、電池が異常圧力に達したときに壁材が破れるか又は解けて開口し、心材を放出できる材質を使用するのが特性上好ましい。具体的にはメラミン樹脂、エポキシ樹脂、ポリウレタン樹脂、フェノール樹脂が使用できる。   As a material for the wall material, it is preferable in view of characteristics to select a material that does not dissolve in the battery electrolyte solution. Furthermore, it is preferable in terms of characteristics to use a material that can open or open the wall material when the battery reaches abnormal pressure. Specifically, melamine resin, epoxy resin, polyurethane resin, and phenol resin can be used.

電池缶内壁に感応性マイクロカプセルを電着塗装する厚みは、好ましくは1μm以上、100μm以下であり、より好ましくは10μm以上、20μm以下である。厚みが1μm未満では難燃性成分の量が不足して温度上昇反応を抑制できない恐れがあり、100μmを超えると電池容量が低下する恐れがあるためである。なお厚みの決定に当たっては、安全性と電池容量等に関して十分な設計検討がなされる必要がある。   The thickness of electrodepositing sensitive microcapsules on the inner wall of the battery can is preferably 1 μm or more and 100 μm or less, more preferably 10 μm or more and 20 μm or less. This is because if the thickness is less than 1 μm, the amount of the flame retardant component may be insufficient and the temperature rise reaction may not be suppressed, and if it exceeds 100 μm, the battery capacity may be reduced. In determining the thickness, it is necessary to perform sufficient design studies on safety, battery capacity, and the like.

感応性マイクロカプセルは、好ましくは1μm以上、100μm以下の大きさであり、より好ましくは10μm以上、30μm以下の大きさである。大きさが1μm未満では難燃性成分を効果的に放出できない恐れがあり、100μmを超えると電池容量が低下する恐れがあるためである。   The sensitive microcapsules preferably have a size of 1 μm or more and 100 μm or less, more preferably a size of 10 μm or more and 30 μm or less. This is because if the size is less than 1 μm, the flame-retardant component may not be effectively released, and if it exceeds 100 μm, the battery capacity may be reduced.

また、感応性マイクロカプセルの難燃性成分を放出するのは電池厚みが5%以上変化する場合であり、より好ましくは10%以上変化する場合である。電池の通常使用状態において電池厚みが5%未満変化することは起こりうることであり、電池厚みが5%未満の変化で難燃性成分が放出されると、電池の通常使用を阻害する恐れがあるためである。   Further, the release of the flame retardant component of the sensitive microcapsule occurs when the battery thickness changes by 5% or more, and more preferably by 10% or more. It is possible for the battery thickness to change by less than 5% in the normal use state of the battery, and if the flame retardant component is released with a change of the battery thickness of less than 5%, the normal use of the battery may be hindered. Because there is.

以下に本発明の実施例を詳述する。   Examples of the present invention are described in detail below.

(実施例1)
コバルト酸リチウムを94質量部と、PVdFを3質量部と、導電性カーボン3質量部を混合して、正極材料とした。この正極材料をN−メチル−2−ピロリドンに分散させてスラリー状とした。得られたスラリーを厚さ15μmのアルミ箔上に塗布し、乾燥後、厚さ160μmの正極を得た。
Example 1
94 parts by mass of lithium cobaltate, 3 parts by mass of PVdF, and 3 parts by mass of conductive carbon were mixed to obtain a positive electrode material. This positive electrode material was dispersed in N-methyl-2-pyrrolidone to form a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 15 μm, and after drying, a positive electrode having a thickness of 160 μm was obtained.

炭素材料粉末を96質量部と、PVdFを3質量部と、導電性カーボン1質量部を混合して、負極材料とした。この負極材料をN−メチル−2−ピロリドンに分散させてスラリー状とした。得られたスラリーを厚さ10μmの銅箔上に塗布し、乾燥後、厚さ110μmの負極を得た。   96 parts by mass of carbon material powder, 3 parts by mass of PVdF, and 1 part by mass of conductive carbon were mixed to obtain a negative electrode material. This negative electrode material was dispersed in N-methyl-2-pyrrolidone to form a slurry. The obtained slurry was applied onto a copper foil having a thickness of 10 μm, and after drying, a negative electrode having a thickness of 110 μm was obtained.

図2は、本発明の非水電解質二次電池の電極体を示す図である。電極体は、正極タブ5を溶接した正極板2と負極タブ6を溶接した負極板3を、セパレータ4を介して巻回し捲き止めテープ1を重ねてなる。正極、負極を使用して電極体を作製した。   FIG. 2 is a diagram showing an electrode body of the nonaqueous electrolyte secondary battery of the present invention. The electrode body is formed by winding a positive electrode plate 2 welded with a positive electrode tab 5 and a negative electrode plate 3 welded with a negative electrode tab 6 via a separator 4 and overlapping the winding tape 1. An electrode body was prepared using a positive electrode and a negative electrode.

エチレンカーボネート(EC)とジエチルカーボネート(DEC)が、体積比で2:1の割合で混合された非水溶媒に電解質塩である六フッ化リン酸リチウム(LiPF6)を1.0mol/lの濃度になるように溶解させた非水電解質溶液を調製した。 Lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt was added at 1.0 mol / l to a non-aqueous solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 2: 1. A non-aqueous electrolyte solution dissolved to a concentration was prepared.

難燃性成分を心材として、以下の手法で感応性マイクロカプセルを調製した。難燃性成分としてリン酸トリメチルを、エチルアルコール中に滴下してマイクロカプセルのコロイドエチルアルコール溶液を調製した。得られたコロイド溶液を分離ろ過した後、減圧乾燥して難燃性成分を含有した感応性マイクロカプセルを調製した。感応性マイクロカプセルの大きさは5μmであった。   Sensitive microcapsules were prepared by the following method using a flame retardant component as a core material. Trimethyl phosphate as a flame retardant component was dropped into ethyl alcohol to prepare a microcapsule colloidal ethyl alcohol solution. The resulting colloidal solution was separated and filtered, and then dried under reduced pressure to prepare sensitive microcapsules containing a flame retardant component. The size of the sensitive microcapsule was 5 μm.

上記のとおり調製した感応性マイクロカプセルを電着塗料とした電着槽に浸漬し、陰極として電池缶を、陽極として電着槽内の隔膜室内に極版を設置した。この間に直流電流を流すことで電池缶の内壁に感応性マイクロカプセルを電着塗装した。   The sensitive microcapsules prepared as described above were immersed in an electrodeposition bath using an electrodeposition paint, and a battery can was used as a cathode, and an electrode plate was installed as an anode in a diaphragm chamber in the electrodeposition bath. During this period, a sensitive microcapsule was electrodeposited on the inner wall of the battery can by passing a direct current.

電池缶内壁へ電着塗装した感応性マイクロカプセルの厚みは5μmであった。すなわち、大きさが5μmの感応性マイクロカプセルを1層だけ電着塗装した。   The thickness of the sensitive microcapsule electrodeposited on the inner wall of the battery can was 5 μm. That is, only one layer of sensitive microcapsules having a size of 5 μm was electrodeposited.

次に、電極体を電着塗装した電池缶に収納して非水電解質二次電池を作製した。   Next, the electrode body was housed in a battery can coated with an electrodeposition to produce a nonaqueous electrolyte secondary battery.

(実施例2)
大きさが15μmの感応性マイクロカプセルを1層だけ電着塗装した以外は実施例1と同様にして、非水電解質二次電池を作製した。
(Example 2)
A nonaqueous electrolyte secondary battery was fabricated in the same manner as in Example 1 except that only one layer of sensitive microcapsules having a size of 15 μm was electrodeposited.

(実施例3)
大きさが15μmの感応性マイクロカプセルを3層だけ電着塗装した以外は実施例1と同様にして、非水電解質二次電池を作製した。
(Example 3)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that only three layers of sensitive microcapsules having a size of 15 μm were electrodeposited.

(実施例4)
大きさが15μmの感応性マイクロカプセルを10層だけ電着塗装した以外は実施例1と同様にして、非水電解質二次電池を作製した。
Example 4
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that only 10 layers of sensitive microcapsules having a size of 15 μm were electrodeposited.

(比較例)
感応性マイクロカプセルを電着塗装しない以外は実施例1と同様にして、非水電解質二次電池を作製した。
(Comparative example)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the sensitive microcapsules were not electrodeposited.

(サイクル試験)
得られた実施例1〜4および比較例の非水電解質二次電池について、400mAの定電流で1時間かけて4.2Vまで充電した後、1.5時間かけて4.2Vの定電圧で充電後、400mAの電流で3.0Vまで放電する充放電を繰り返し行い、1サイクル目及び300サイクル目の放電容量を測定した。実施例1〜4および比較例の感応性マイクロカプセル電着塗装厚みと放電容量を表1に示す。
(Cycle test)
About the obtained non-aqueous electrolyte secondary battery of Examples 1-4 and a comparative example, after charging to 4.2V over 1 hour with a constant current of 400 mA, with a constant voltage of 4.2V over 1.5 hours After charging, charging and discharging were repeatedly performed at a current of 400 mA up to 3.0 V, and the discharge capacities at the first cycle and the 300th cycle were measured. Table 1 shows the thicknesses and discharge capacities of the sensitive microcapsule coatings of Examples 1 to 4 and Comparative Example.

Figure 2010073595
Figure 2010073595

表1からも分かるように、実施例1〜4と比較例を比較すると、放電容量は同等であることがわかる。したがって、感応性マイクロカプセルを電着塗装しても放電容量は損なわれないことがわかった。   As can be seen from Table 1, when Examples 1 to 4 are compared with Comparative Examples, it can be seen that the discharge capacities are equivalent. Therefore, it has been found that the discharge capacity is not impaired even when the sensitive microcapsules are electrodeposited.

(吸光度測定)
得られた実施例1〜4および比較例の非水電解質二次電池について、電池の厚みが5%増大する代替試験として、平板端子により電池全体に0.3kNの荷重で外部衝撃を加えた。これにより感応性マイクロカプセルの壁材が破れて開口し、心材が放出されているかどうかを確認するために遠心分離機を使用して電池内の電解液を取り出した。この電解液の吸光度を測定し、電解液中の、難燃性成分として使用したリン酸トリメチルの量を測定した。
(Absorbance measurement)
For the obtained non-aqueous electrolyte secondary batteries of Examples 1 to 4 and the comparative example, an external impact was applied to the whole battery with a load of 0.3 kN as a substitute test in which the battery thickness increased by 5%. As a result, the wall material of the sensitive microcapsule was broken and opened, and the electrolyte solution in the battery was taken out using a centrifuge to confirm whether the core material was released. The absorbance of this electrolytic solution was measured, and the amount of trimethyl phosphate used as a flame retardant component in the electrolytic solution was measured.

図3は、リン酸トリメチルの波長と吸光度の関係を示す図である。X軸には波長(nm)を、Y軸には吸光度(−)を表示した。実施例1〜4で製作した電池では、電解液中にリン酸トリメチルが放出されていることがわかった。また、感応性マイクロカプセルの電着塗装の厚みが厚いほどリン酸トリメチルの量が多いことがわかった。比較例で製作した電池からは、リン酸トリメチルが検出されなかった。   FIG. 3 is a diagram showing the relationship between the wavelength of trimethyl phosphate and the absorbance. Wavelength (nm) is displayed on the X-axis, and absorbance (-) is displayed on the Y-axis. In the batteries manufactured in Examples 1 to 4, it was found that trimethyl phosphate was released into the electrolyte. It was also found that the amount of trimethyl phosphate increased as the thickness of the electrodeposition coating on the sensitive microcapsules increased. Trimethyl phosphate was not detected from the battery manufactured in the comparative example.

(過充電試験)
得られた実施例1〜4および比較例の非水電解質二次電池について、端子電圧が5.0V、カットオフで24時間充電して、電池温度の上昇を確認した。実施例1〜4では、電池温度が上昇しても発煙しないことを確認した。しかし、比較例においては、実施例1〜4で製作した電池に比較して異常な温度上昇が認められた。また比較例で製作した電池20個のうち1個に異常発熱が認められた。
(Overcharge test)
About the obtained nonaqueous electrolyte secondary battery of Examples 1-4 and the comparative example, the terminal voltage was 5.0V and it charged for 24 hours by cutoff, and the raise of battery temperature was confirmed. In Examples 1 to 4, it was confirmed that no smoke was generated even when the battery temperature increased. However, in the comparative example, an abnormal temperature increase was recognized as compared with the batteries manufactured in Examples 1 to 4. In addition, abnormal heat generation was observed in one of the 20 batteries manufactured in the comparative examples.

実施例1〜4においては、過充電が発生した場合でも、電池の内圧変化により感応性マイクロカプセルから心材が放出され、難燃性成分が効果的に機能しており、熱暴走を防止できることがわかった。   In Examples 1 to 4, even when overcharge occurs, the core material is released from the sensitive microcapsule due to the change in the internal pressure of the battery, the flame retardant component functions effectively, and thermal runaway can be prevented. all right.

実施例の結果を総合して考慮すれば、電池特性に影響を与えることなく、過充電等による電池の内圧変化に対し、より速い応答性を持ち熱暴走による事故発生を効果的に防止する非水電解質二次電池が得られることがわかった。   Considering the results of the examples in a comprehensive manner, it has a faster response to changes in the internal pressure of the battery due to overcharging, etc. without affecting the battery characteristics, and effectively prevents accidents due to thermal runaway. It was found that a water electrolyte secondary battery can be obtained.

以上、実施例を用いて、この発明の実施の形態を説明したが、この発明は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   The embodiments of the present invention have been described above using the embodiments. However, the present invention is not limited to these embodiments, and the present invention is not limited to the scope of the present invention. Included in the invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

感応性マイクロカプセルの断面図。Sectional drawing of a sensitive microcapsule. 本発明の非水電解質二次電池の電極体を示す図。The figure which shows the electrode body of the nonaqueous electrolyte secondary battery of this invention. リン酸トリメチルの波長と吸光度の関係を示す図。The figure which shows the relationship between the wavelength of trimethyl phosphate and absorbance.

符号の説明Explanation of symbols

1 捲き止めテープ
2 正極板
3 負極板
4 セパレータ
5 正極タブ
6 負極タブ
a 壁材
b 心材
DESCRIPTION OF SYMBOLS 1 Scrape tape 2 Positive electrode plate 3 Negative electrode plate 4 Separator 5 Positive electrode tab 6 Negative electrode tab a Wall material b Core material

Claims (7)

リチウムイオンを吸蔵、放出する正極材料および負極材料を有する電極と、前記電極間に介装されたセパレータとを含む電極体を電池缶に収納してなる非水電解質二次電池において、難燃性成分を有する心材を、壁材で覆った感応性マイクロカプセルを前記電池缶の内壁に電着塗装したことを特徴とする非水電解質二次電池。   In a nonaqueous electrolyte secondary battery in which an electrode body including an electrode having a positive electrode material and a negative electrode material that occlude and release lithium ions and a separator interposed between the electrodes is housed in a battery can, flame retardancy A non-aqueous electrolyte secondary battery, wherein a sensitive microcapsule in which a core material having a component is covered with a wall material is electrodeposited on the inner wall of the battery can. 前記感応性マイクロカプセルは、圧力に感応して前記難燃性成分を放出することを特徴とする請求項1に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the sensitive microcapsules release the flame retardant component in response to pressure. 前記難燃性成分がリン酸エステル、ペンタブロモジフェニルエーテル、オクタブロモジフェニルエーテル、デカブロモジフェニルエーテル、テトラブロモビスフェノールA、ヘキサブロモシクロドデカン、塩素化パラフィン、三酸化アンチモン、五酸化アンチモン、水酸化アルミニウム、水酸化マグネシウムから選択される少なくとも一種を有するものからなることを特徴とする請求項1または2に記載の非水電解質二次電池。   The flame retardant component is phosphate ester, pentabromodiphenyl ether, octabromodiphenyl ether, decabromodiphenyl ether, tetrabromobisphenol A, hexabromocyclododecane, chlorinated paraffin, antimony trioxide, antimony pentoxide, aluminum hydroxide, hydroxide The nonaqueous electrolyte secondary battery according to claim 1, comprising at least one selected from magnesium. 前記感応性マイクロカプセルの前記壁材がメラミン樹脂、エポキシ樹脂、ポリウレタン樹脂、フェノール樹脂から選択される少なくとも一種を有するものからなることを特徴とする請求項1または2に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary according to claim 1 or 2, wherein the wall material of the sensitive microcapsule comprises at least one selected from a melamine resin, an epoxy resin, a polyurethane resin, and a phenol resin. battery. 前記感応性マイクロカプセルを、前記電池缶の内壁に1μm以上、100μm以下の厚みで電着塗装することを特徴とする請求項1〜4のいずれか1項に記載の非水電解質二次電池。   5. The nonaqueous electrolyte secondary battery according to claim 1, wherein the sensitive microcapsule is electrodeposited on the inner wall of the battery can with a thickness of 1 μm or more and 100 μm or less. 前記感応性マイクロカプセルが直径1μm以上、100μm以下の大きさであることを特徴とする請求項1〜5のいずれか1項に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the sensitive microcapsule has a diameter of 1 μm or more and 100 μm or less. 前記感応性マイクロカプセルの前記難燃性成分を放出するのは電池厚みが5%以上変化する場合であることを特徴とする請求項1〜6のいずれか1項に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary according to any one of claims 1 to 6, wherein the flame-retardant component of the sensitive microcapsule is released when the battery thickness changes by 5% or more. battery.
JP2008241994A 2008-09-22 2008-09-22 Nonaqueous electrolyte secondary battery Withdrawn JP2010073595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008241994A JP2010073595A (en) 2008-09-22 2008-09-22 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008241994A JP2010073595A (en) 2008-09-22 2008-09-22 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2010073595A true JP2010073595A (en) 2010-04-02

Family

ID=42205175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008241994A Withdrawn JP2010073595A (en) 2008-09-22 2008-09-22 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2010073595A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243170A (en) * 2012-05-17 2013-12-05 Nippon Chemicon Corp Fire retardant electrolytic capacitor
WO2018176980A1 (en) * 2017-03-31 2018-10-04 比亚迪股份有限公司 Flame-retardant package and lithium-ion battery thereof
WO2019216622A1 (en) * 2018-05-08 2019-11-14 주식회사 엘지화학 Case for lithium metal secondary battery, lithium metal secondary battery comprising same, method for manufacturing same
CN114069116A (en) * 2021-11-16 2022-02-18 吉林大学 Packaging method of lithium ion capsule battery flame-retardant packaging bag
WO2023070550A1 (en) * 2021-10-29 2023-05-04 宁德时代新能源科技股份有限公司 Slow release device for battery, and secondary battery comprising slow release device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243170A (en) * 2012-05-17 2013-12-05 Nippon Chemicon Corp Fire retardant electrolytic capacitor
WO2018176980A1 (en) * 2017-03-31 2018-10-04 比亚迪股份有限公司 Flame-retardant package and lithium-ion battery thereof
EP3703149A4 (en) * 2018-05-08 2021-01-27 Lg Chem, Ltd. Case for lithium metal secondary battery, lithium metal secondary battery comprising same, method for manufacturing same
KR20190128445A (en) * 2018-05-08 2019-11-18 주식회사 엘지화학 Case for lithium metal secondary battery, lithiium metal secondary batter comprising the same and manufacturing method thereof
CN111279510A (en) * 2018-05-08 2020-06-12 株式会社Lg化学 Case for lithium metal secondary battery, lithium metal secondary battery comprising same, and method for manufacturing same
JP2020535619A (en) * 2018-05-08 2020-12-03 エルジー・ケム・リミテッド Case for lithium metal secondary battery, lithium metal secondary battery including it and its manufacturing method
WO2019216622A1 (en) * 2018-05-08 2019-11-14 주식회사 엘지화학 Case for lithium metal secondary battery, lithium metal secondary battery comprising same, method for manufacturing same
KR102326080B1 (en) * 2018-05-08 2021-11-11 주식회사 엘지에너지솔루션 Case for lithium metal secondary battery, lithiium metal secondary batter comprising the same and manufacturing method thereof
JP7038958B2 (en) 2018-05-08 2022-03-22 エルジー エナジー ソリューション リミテッド Lithium metal secondary battery case, lithium metal secondary battery including it, and its manufacturing method
CN111279510B (en) * 2018-05-08 2022-07-19 株式会社Lg化学 Case for lithium metal secondary battery, lithium metal secondary battery comprising same, and method for manufacturing same
US11695151B2 (en) 2018-05-08 2023-07-04 Lg Energy Solution, Ltd. Case for lithium metal secondary battery, lithium metal secondary battery comprising same, method for manufacturing same
WO2023070550A1 (en) * 2021-10-29 2023-05-04 宁德时代新能源科技股份有限公司 Slow release device for battery, and secondary battery comprising slow release device
CN114069116A (en) * 2021-11-16 2022-02-18 吉林大学 Packaging method of lithium ion capsule battery flame-retardant packaging bag
CN114069116B (en) * 2021-11-16 2024-02-13 吉林大学 Encapsulation method of lithium ion capsule battery flame-retardant encapsulation package

Similar Documents

Publication Publication Date Title
CA2216898C (en) Improved additives for overcharge protection in non-aqueous rechargeable lithium batteries
JP4999292B2 (en) Non-aqueous electrolyte battery
US5714277A (en) Secondary battery
KR101058293B1 (en) Electrochemical device showing excellent safety
KR100601500B1 (en) Lithium ion secondary battery having temperature and pressure sensing type
US6309777B1 (en) Explosion-resistant large capacitive lithium ion secondary battery
JP4240078B2 (en) Lithium secondary battery
CN102077404A (en) Lithium ion secondary cell
KR20080041657A (en) Battery pack
KR101355407B1 (en) Micro capsule containing fire extinguishing compositions and lithium secondary battery with the same
JP2010086968A (en) Secondary battery and method for forming the same
CN106063019A (en) Nonaqueous electrolyte secondary battery
CN108172772B (en) Lithium ion secondary battery
JP5765404B2 (en) Lithium ion secondary battery
JPH11195429A (en) Nonaqueous electrolytic solution secondary battery
JP2010073595A (en) Nonaqueous electrolyte secondary battery
JP2006228520A (en) Secondary battery
JPH11176470A (en) Organic electrolyte secondary battery
McDowall Understanding lithium-ion technology
JP2006073308A (en) Non-aqueous electrolytic liquid secondary battery
JP4439870B2 (en) Nonaqueous electrolyte secondary battery
KR100880525B1 (en) Electrochemical device with high safety at high temperature and overvoltage and method for preventing ignition and explosion of the electrochemical device
KR20090105619A (en) Seal tape and secondary battery comprising the same
US11581616B2 (en) Cylindrical secondary battery having adhesion unit including gas-generating matertial
KR20140072794A (en) Non-aqueous electrolyte rechargeable battery pack

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100702

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111206